

Page 1 of 12

Antenna Gain Test Report

Project No.: 4791102838

Project Name: Wireless Device

Antenna material: PCB antenna

Antenna type: Monopole

Antenna Size: 13.615mm\*6.869mm

Test Date: 2023.12.6

Project Engineer: Kebo Zhang

kebo. zhang.

Test Engineer: Burt Hu

Burt Hu

Test Standards: ANSI/IEEE std 149-2021

Issued Date: 2023.12.7

Test Lab: UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake

Branch

Lab Address: Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song

Shan Lake Hi-Tech Development Zone Dongguan, 523808,

People's Republic of China



Page 2 of 12

## **Revision History**

| Rev. | Issue Date | Revisions         | Revised By |
|------|------------|-------------------|------------|
| V0   | 2023.12.07 | Initial Issue     | \          |
|      |            | Removed Antenna   |            |
| V1   | 2024.07.03 | Vendor's name and | Burt Hu    |
|      |            | address           |            |

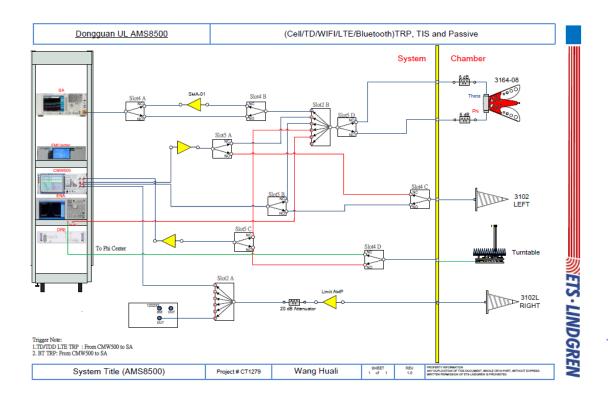


Page 3 of 12

| 1 | Test | Test Equipment Information       |    |
|---|------|----------------------------------|----|
| 2 | Setu | p block diagram                  | 5  |
| 3 | Test | Temperature and Humidity         | 6  |
| 4 | CAL  | BRATION AND UNCERTAINTY          | 7  |
|   | 4.1  | MEASURING INSTRUMENT CALIBRATION | 7  |
|   | 4.2  | MEASUREMENT UNCERTAINTY          | 7  |
| 5 | Test | Step Flow                        | 8  |
| 6 | Test | Result                           | 9  |
| 7 | Test | Result                           | 12 |



Page 4 of 12


# 1 Test Equipment Information

| Equipment  | Manufacturer  | Mode No. | Serial No.   | Cal date   | Cal Due    |
|------------|---------------|----------|--------------|------------|------------|
| Test       | ETS-Lindgren  | 8500     | /            | /          | /          |
| Chamber    | L 13-Lindgren | 8300     |              |            |            |
| Test       | ETS-Lindgren  | EMQuest  | 1496         | ,          | ,          |
| Software   | E13-Linagren  | V1.12    | 1490         | /          | /          |
| Network    | Kovojaht      | E5071C   | MY46524531   | 2023.10.12 | 2024.10.11 |
| Analyzer   | Keysight      | E507 IC  | WH 4052453 I | 2023.10.12 | 2024.10.11 |
| EXA Singal | Kay raight    | NOO40A   | MVEE4E0E44   | 2022 40 42 | 2024 40 44 |
| Analyzer   | Keysight      | N9010A   | MY55150514   | 2023.10.12 | 2024.10.11 |



Page 5 of 12

# 2 Setup block diagram





Page 6 of 12

# 3 Test Temperature and Humidity

Temperature: 22.3°C

Humidity: 60.1%



Page 7 of 12

#### **4 CALIBRATION AND UNCERTAINTY**

#### 4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

#### 4.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| To at Itam | Uncertainty   |               |  |
|------------|---------------|---------------|--|
| Test Item  | 2400-2500 MHz | 5150-5825 MHz |  |
| Gain       | 0.82 dB       | 0.82 dB       |  |
| Efficiency | 0.82 dB       | 0.82 dB       |  |

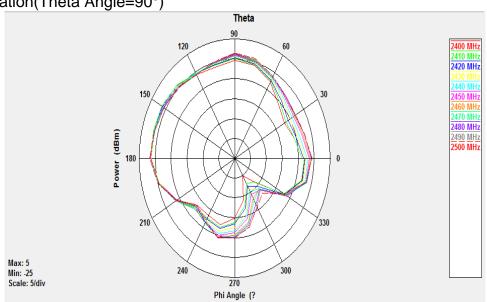
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.



Page 8 of 12

# 5 Test Step Flow

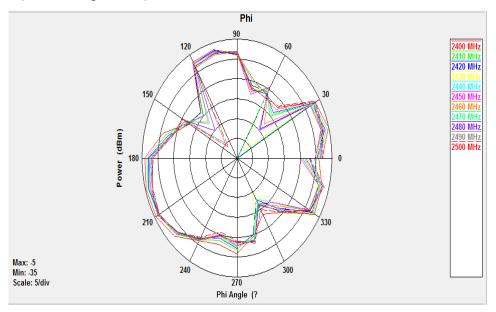
- 1) Maintain the test ambient temperature of 23±2 C, the instrument is powered on and preheated for more than 30 minutes;
- 2) Turn on the darkroom power supply, connect the test cable, and set up the sample according to the standard;
- 3) Outline sets the test content objectives and conducts calibration tests;
- 4) Run the software, when the test is completed, export the corresponding test diagram and test data, and save to the corresponding directory.



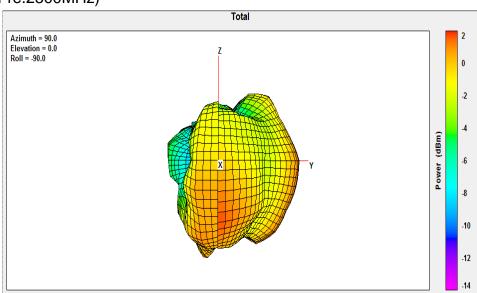

# 6 Test Result

| Frequency (MHz) | Efficiency (%) | Gain (dBi) |
|-----------------|----------------|------------|
| 2400            | 49.83          | 1.83       |
| 2410            | 50.14          | 1.76       |
| 2420            | 50.77          | 1.64       |
| 2430            | 52.40          | 1.61       |
| 2440            | 54.43          | 1.73       |
| 2450            | 56.87          | 1.82       |
| 2460            | 58.35          | 1.83       |
| 2470            | 59.45          | 1.90       |
| 2480            | 60.25          | 1.77       |
| 2490            | 60.58          | 1.79       |
| 2500            | 62.09          | 1.86       |

#### **Polarization Pattern Photos**


Theta Polarization(Theta Angle=90°)



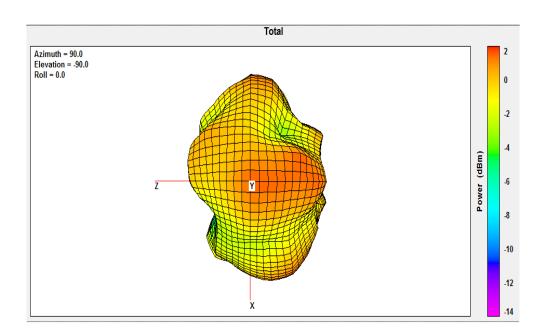

Page 10 of 12



## Phi Polarization(Theta Angle=90°)



## Total 3D Plot(Fre.2500MHz)






Total

Azimuth = 180.0
Elevation = 90.0
Roll = 0.0

(augp) to a control to a contro





Page 12 of 12

## 7 Test Result

Referred to 4791102838\_OTA setup photo.

## **END OF REPORT**