

APPENDIX E: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}^{'}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and

 $j = \sqrt{-1}$

3 Composition / Information on ingredients

withheld as a trade secret.

3.2 Mixtures Description: Aqueous solution with	surfactants and inhibitors						
Declarable, or hazardous components:							
CAS: 107-21-1	Ethanediol	>1.0-4.9%					
EINECS: 203-473-3	STOT RE 2, H373;						
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302						
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%					
EINECS: 271-781-5	Eye Irrit. 2, H319						
Reg.nr.: 01-2119527859-22-0000							
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%					
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319						
Reg.nr.: 01-2119539582-35-0000							
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%					
NLP: 500-236-9	Aquatic Chronic 2, H411;						
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319						
Additional information:							
For the wording of the listed risk phrases refer to section 16.							

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

Figure E-4

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: C3K1997	FCC URS (UNINTENTIONAL RADIATOR RF SOURCES) RF EXPOSURE EVALUATION	Approved by: Technical Manager
DUT Type: Portable Computing Device		APPENDIX E: Page 1 of 2
© 2022 Element		REV 1.0 04/06/2020

<u>a g</u> e S Ø Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)	
Product No.	SL AAM U16 BC (Batch: 210621-3)	
Manufacturer	SPEAG	

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.

Test Condition

Ambient Condition 22°C ; 30% humidity TSL Temperature 22°C 23-Jun-21 Test Date WM Operator Additional Information TSL Density TSL Heat-capacity

Results

	Measu	ired		Targe	et	Diff.to Targ	get [%]	15.0							
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0		1	Chin S			100	
600	55.7	26.7	0.89	56.1	0.95	-0.7	-6.3	% 5.0							
750	55.3	22.5	0.94	55.5	0.96	-0.4	-2.1	Permittivity 0.0 2.5-							
800	55.1	21.5	0.96	55.3	0.97	-0.4	-1.0	ermi							_
825	55.1	21.1	0.97	55.2	0.98	-0.3	-1.0	⊕ -5.0 ≻							
835	55.1	20.8	0.97	55.1	0.99	0.0	-1.5	a. 10.0					T.		
850	55.0	20.6	0.97	55.2	0.99	-0.3	-2.0	-15.0	00	1500	2500	3500	4500	550	0
900	54.9	19.9	0.99	55.0	1.05	-0.2	-5.7			1000	Freque	3500 ency MHz	1000		
1400	54.1	15.9	1.24	54.1	1.28	0.0	-3.1	15.0			1112		Miletr		
1450	54.0	15.7	1.27	54.0	1.30	0.0	-2.3	10.0							_
1600	53.8	15.3	1.36	53.8	1.39	0.0	-2.2	≈ 5.0							-
1625	53.8	15.2	1.38	53.8	1.41	0.1	-2.1	0.0 0.0 0.2- 0.2		/	1				
1640	53.8	15.2	1.39	53.7	1.42	0.1	-2.1	onpuo -5.0	Λ	~	1				1
1650	53.7	15.1	1.39	53.7	1.43	0.0	-2.8		10			-			
1700	53.7	15.0	1.42	53.6	1.46	0.3	-2.7	2-10.0		1	The last	1.1.2.1.1		10.02	
1750	53.6	14.9	1.45	53.4	1.49	0.3	-2.7	-15.0	00	1500	2500	3500 ncy MHz	4500	550	0
1800	53.5	14.9	1.49	53.3	1.52	0.4	-2.0				Freque	ncy MHz			
1810	53.5	14.9	1.50	53.3	1.52	0.4	-1.3	3500	50.9	15.9	3.10	51.3	3.31	-0.9	-6
1825	53.5	14.8	1.51	53.3	1.52	0.4	-0.7	3700	50.6	16.2	3.33	51.1	3.55	-1.0	-6
1850	53.5	14.8	1.52	53.3	1.52	0.4	0.0	5200	47.7	18.6	5.39	49.0	5.30	-2.6	1
1900	53.4	14.8	1.56	53.3	1.52	0.2	2.6	5250	47.6	18.7	5.46	49.0	5.36	-2.7	1
1950	53.4	14.7	1.60	53.3	1.52	0.2	5.3	5300	47.5	18.8	5.54	48.9	5.42	-2.8	2
2000	53.3	14.7	1.63	53.3	1.52	0.0	7.2	5500	47.1	19.1	5.83	48.6	5.65	-3.0	3
2050	53.3	14.7	1.67	53.2	1.57	0.1	6.4	5600	46.9	19.2	5.98	48.5	5.77	-3.2	3
2100	53.2	14.7	1.71	53.2	1.62	0.1	5.6	5700	46.7	19.3	6.13	48.3	5.88	-3.3	4
2150	53.1	14.7	1.75	53.1	1.66	0.0	5.4	5800	46.5	19.4	6.27	48.2	6.00	-3.5	4
2200	53.1	14.7	1.80	53.0	1.71	0.1	5.3	6000	46.1	19.7	6.57	47.9	6.23	-3.7	5
2250	53.0	14.7	1.84	53.0	1.76	0.1	4.5	6500							
2300	52.9	14.7	1.88	52.9	1.81	0.0	3.9	7000			1.1				
2350	52.9	14.8	1.93	52.8	1.85	0.1	4.3	7500							
2400	52.8	14.8	1.98	52.8	1.90	0.1	4.2	8000			1201				
2450	52.7	14.8	2.02	52.7	1.95	0.0	3.6	8500							
2500	52.6	14.9	2.07	52.6	2.02	-0.1	2.5	9000			1				
2550	52.5	14.9	2.12	52.6	2.09	-0.1	1.4	9500							
2600	52.5	15.0	2.16	52.5	2.16	0.0	0.0	10000							

Figure E-2: Body Tissue Equivalent Matter

FCC ID: C3K1997	FCC URS (UNINTENTIONAL RADIATOR RF SOURCES) RF EXPOSURE EVALUATION	Approved by: Technical Manager
DUT Type: Portable Computing Device		APPENDIX E: Page 2 of 2
© 2022 Element		REV 1.0 04/06/2020