

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

Part 96 MEASUREMENT REPORT

Applicant Name:

Microsoft Corporation One Microsoft way Redmond, WA, 98052 United States Date of Testing: 03/16/2022 - 06/14/2022 Test Report Issue Date: 07/21/2022 Test Site/Location: Element, Columbia, MD, USA Test Report Serial No.: 1M2204040049-10-R1.C3K

FCC ID: APPLICANT:

C3K1997

Microsoft Corporation

Application Type:	Certification
Model:	1997
EUT Type:	Portable Computing Device
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	96
Test Procedure(s):	ANSI C63.26-2015, KDB 940660 D01 v03, WINNF-TS-0122
v1 0 2	

v1.0.2

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

Note: This revised Test Report (S/N: 1M2204040049-10-R1.C3K) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 1 01 49
			V3.0.1/6/2022

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	Software and Firmware	5
	2.5	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Measurement Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEAS	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAMF	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	.10
	7.2	Occupied Bandwidth	. 11
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	.16
	7.4	Band Edge Emissions at Antenna Terminal	.27
	7.5	Radiated Power (EIRP)	.33
	7.6	Radiated Spurious Emissions Measurements	.36
	7.7	Frequency Stability / Temperature Variation	.42
	7.8	End User Device Additional Requirement (CBSD Protocol)	.44
8.0	CON	CLUSION	49

FCC ID: C3K1997		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 2 01 49
			\/3.0.1/6/2022

MEASUREMENT REPORT FCC Part 96

				EII	Emission	
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Designator
	20 MHz	QPSK	3560.0 - 3690.0	0.145	21.61	18M0G7D
		16QAM	3560.0 - 3690.0	0.137	21.37	18M0W7D
	15 MHz	QPSK	3557.5 - 3692.5	0.157	21.95	13M5G7D
LTE Band 48		16QAM	3557.5 - 3692.5	0.147	21.68	13M5W7D
	10 MHz	QPSK	3555.0 - 3695.0	0.161	22.07	9M00G7D
		16QAM	3555.0 - 3695.0	0.141	21.50	9M00W7D
	5 MHz	QPSK	3552.5 - 3697.5	0.156	21.93	4M53G7D
		16QAM	3552.5 - 3697.5	0.150	21.75	4M51W7D
EUT Overview						

Note: EIRP levels shown in the table above are measured over the full channel bandwidth. These values will appear on the Grant of Authorization.

FCC ID: C3K1997	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 5 01 49
			\/3.0.1/6/2022

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is a OnGo Alliance Approved Test Lab (ATL)
- Element Washington DC LLC is a WInnForum Approved Test Lab
- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 40
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 4 of 49
			V3 0 1/6/2022

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Microsoft Corporation Portable Computing Device FCC ID: C3K1997**. The test data contained in this report pertains only to the emissions due to the EUT's LTE Band 48 operation in the CBRS band. Per FCC Part 96, this device is evaluated as a Citizens Band End User Devices (CBE).

Test Device Serial No.: JP220, 5S220, JS220, JT220

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1 and FR2), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5, 6GHz), Bluetooth (1x, EDR, LE)

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version 1.930.0 installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Faye 5 01 49
			1/2 0 1/6/2022

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} E_{[dB\mu V/m]} &= Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And \\ EIRP_{[dBm]} &= E_{[dB\mu V/m]} + 20logD - 104.8; \ where \ D \ is the measurement \ distance \ in \ meters. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 6 01 49
			\/2.0.1/6/2022

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: C3K1997	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 40	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 7 of 49	
			V3 0 1/6/2022	

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/4/2022	Annual	1/4/2023	AP2-001
-	AP2-002	EMC Cable and Switch System	3/11/2022	Annual	3/11/2023	AP2-002
-	ETS-001	EMC Cable and Switch System	12/9/2021	Annual	12/9/2022	ETS-001
-	ETS-002	EMC Cable and Switch System	3/10/2022	Annual	3/10/2023	ETS-002
-	LTx1	Licensed Transmitter Cable Set	12/19/2021	Annual	12/19/2022	LTx1
-	LTx3	LIcensed Transmitter Cable Set	8/18/2021	Annual	8/18/2022	LTx3
-	LTx5	LIcensed Transmitter Cable Set	12/19/2021	Annual	12/19/2022	LTx5
-	LTx6-40	Licensed Transmitter Cable Set	12/19/2021	Annual	12/19/2022	LTx6-40
-	WL40-1	WLAN Cable Set (40GHz)	12/19/2021	Annual	12/19/2022	WL40-1
Anritsu	MT8000A	Radio Communication Test Station	8/2/2021	Annual	8/2/2022	6272337437
Anritsu	MT8821C	Radio Communication Analyzer	N/A			6201525694
Espec	ESX-2CA	Environmental Chamber	8/27/2020	Annual	8/27/2022	17620
ETS-Lindgren	3116C	DRG Horn Antenna	5/11/2021	Biennial	5/11/2023	218893
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/20/2021	Biennial	4/20/2023	00125518
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	7/21/2021	Annual	7/21/2022	MY49430494
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	2/14/2022	Annual	2/14/2023	MY52350166
Keysight Technologies	N9030B	PXA Signal Analyzer, Multi-touch	1/7/2022	Annual	1/7/2023	MY57141001
Keysight Technologies	N9038A	MXE EMI Receiver	1/21/2022	Annual	1/21/2023	MY51210133
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		100976
Rohde & Schwarz	CMW500	Radio Communication Tester		N/A		112347
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	5/25/2021	Annual	5/25/2022	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/28/2022	Annual	3/28/2023	101716
Rohde & Schwarz	TC-TA18	Cross Polarized Vivaldi Test Antenna	8/13/2020	Biennial	8/13/2022	101073
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/27/2020	Biennial	7/27/2022	A051107
Sunol	JB6	LB6 Antenna	11/13/2020	Biennial	11/13/2022	A082816

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:			
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 8 of 49		
			V/3 0 1/6/2022		

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (7250 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: C3K1997		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 5 01 45
			\/2.0.1/6/2022

7.0 TEST RESULTS

7.1 Summary

Company Name:	Microsoft Corporation
FCC ID:	<u>C3K1997</u>
FCC Classification:	Citizens Band End User Devices (CBE)
Mode(s):	<u>LTE</u>

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power*	2.1046(a), 2.1046(c)	N/A	PASS	-
	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.2
CONDUCTED	Conducted Band Edge / Spurious Emissions (EUD)	2.1051, 96.41(e)(ii)	 -13 dBm/MHz at frequencies within 0-B MHz of channel edge (where B is the bandwidth of the assigned channel) -25 dBm/MHz at frequencies greater than B MHz above and below channel edge -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz 	PASS	Sections 7.3, 7.4
CON	Frequency Stability	2.1055	Fundamental emissions stay within authorized frequency block	PASS	Section 7.7
	End User Device Additional Requirements (CBSD Protocol)	96.47	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS	Section 7.8
RADIATED	Equivalent Isotropic Radiated Power (EIRP) (EUD)	96.41(b)	23 dBm/10MHz	PASS	Section 7.5
RADI	Radiated Spurious Emissions	2.1053, 96.41(e)	-40 dBm/MHz	PASS	Section 7.6

* See the RF Exposure Report for Transmitter Conducted Output Powers

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.1, Chamber Control v1.4.2.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	Dates: EUT Type:				
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 10 of 49			
	•		V3.0 1/6/2022			

7.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

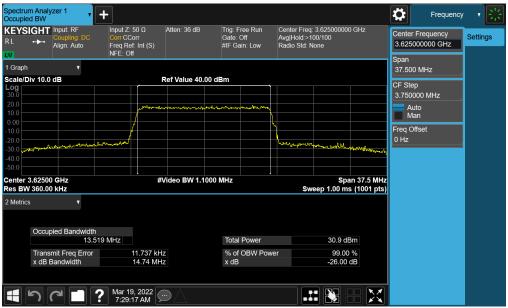
None

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates: EUT Type:		Dage 11 of 40		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 11 of 49		
			V3.0 1/6/2022		

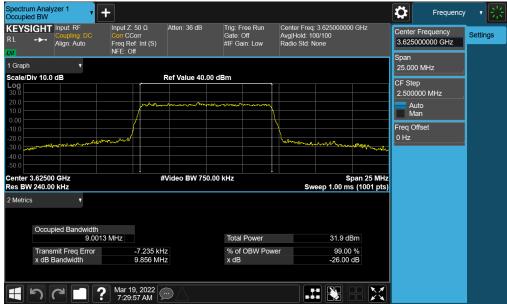
LTE Band 48

Spectrum	n Analyz	zer 1	•											_	54
Occupied			+											Frequency	- Y 25
KEYSI RL	-	Input: RF Coupling: DC Align: Auto	Input Z: Corr CCo Freq Ret NFE: Off	orr f: Int (S)	Atten: 36 dB		Gate:	ree Run Off iin: Low		Center Freq Avg Hold: 10 Radio Std: N) GHz	Center Fr 3.625000	equency 0000 GHz	Settings
1 Graph	_	T	HIE. OI										Span 50.000 M	IHz	
Scale/Di	v 10.0 o	dB			Ref Value 40	0.00 dE	ßm						CF Step		
Log 30.0													5.000000	MHz	
20.0 10.0				man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			manthera	ſ				Auto Man		
0.00				1					λ				Freq Offse	et	
-20.0	- the second	wanter	mohand							whenter	www.	warman free Maren	0 Hz		
-40.0												140.040			
Center 3	.62500	GHz		. #	Video BW 1.	5000 N	ИНz				S	pan 50 MHz			
Res BW										Sw	eep 1.00 m				
2 Metrics		•													
	Occupi	ied Bandwidth 17.9	93 MHz				Total	Power			32.4 dE	Bm			
	Transn	nit Freq Error	1	16.336 k⊢	z		% of	OBW Pov	ve	r	99.00	%			
	x dB B	andwidth		19.60 M⊦	z		x dB				-26.00	dB			
				_											
	う (Mar 19 7:28:4	9, 2022 45 AM											

Plot 7-1. Occupied Bandwidth Plot (LTE Band 48 - 20MHz QPSK - Full RB Configuration)


Plot 7-2. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 16-QAM - Full RB Configuration)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates: EUT Type:		Page 12 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 12 01 49		
		·	V3.0.1/6/2022		


Plot 7-3. Occupied Bandwidth Plot (LTE Band 48 - 15MHz QPSK - Full RB Configuration)


Plot 7-4. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 16-QAM - Full RB Configuration)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	st Dates: EUT Type:			
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 13 of 49		
			V3.0 1/6/2022		

Plot 7-5. Occupied Bandwidth Plot (LTE Band 48 - 10MHz QPSK - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates: EUT Type:		Page 14 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 14 01 49		
			V3.0 1/6/2022		

Plot 7-7. Occupied Bandwidth Plot (LTE Band 48 - 5MHz QPSK - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	t Dates: EUT Type:			
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 15 of 49		
<u></u>			V3.0 1/6/2022		

7.3 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

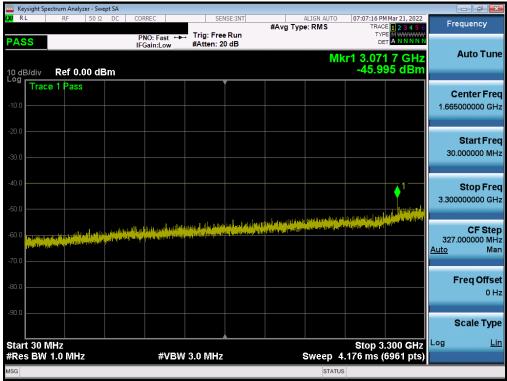
Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = Max Hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

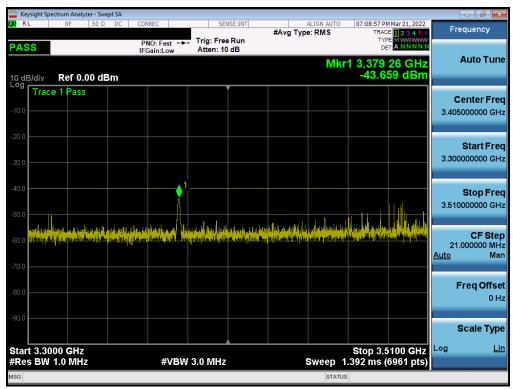
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

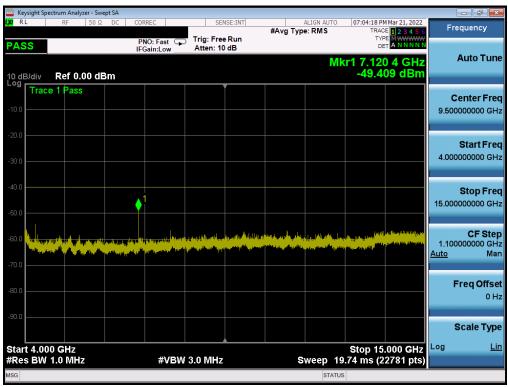

Test Note:

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz.


FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	Dates: EUT Type:			
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 16 of 49		
			V3.0 1/6/2022		

LTE Band 48

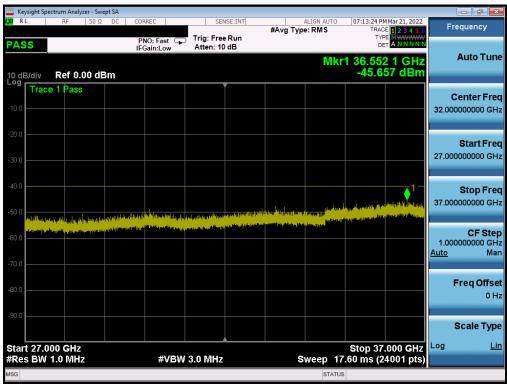
Plot 7-9. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)


Plot 7-10. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 40	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 17 of 49	
			V3.0 1/6/2022	

🔤 Keysight Sp	ectrum Analyze	er - Swej	pt SA									_	
L <mark>XI</mark> RL	RF	50 Ω	DC	CORREC		SEI	ISE:INT	#Avg Typ	ALIGN AUTO		M Mar 21, 2022	Freq	uency
PASS				PNO: Fast		Trig: Free Atten: 10				TY	PE MWWWWW ET A N N N N N		
				IFGain:Lov	N	Atten. It	uВ		Mice	_	60 GHz	A	uto Tune
10 dB/div	Ref 0.0	10 dB	m						WIKI	-53.	10 dBm		
Loa	e 1 Pass												
-10.0													nter Freq 00000 GHz
-10.0												3.8050	00000 GHZ
-20.0													
													Start Freq 00000 GHz
-30.0												3.6100	00000 GHZ
-40.0													
-40.0													Stop Freq
-50.0												4.0000	00000 GHz
all mar	ا ا با بابر بالحال	أر ال			الم الأسب ا	i al instr	hand ana ta t			A			05.04++
-60.0 ⁴⁴¹⁴⁴⁴ 4		All and a second		a nya na	i provinski se s Da dista da da	anteria (nerita) Anteria	personal an alta alta anti-anti-anti-alta alta	ite den ten berken. Gebeure den der	Notive Robies of pro-	Real Constitutes (1991) A section of the sector (1991)	a ang mang ang mang mang mang mang mang	39.00	CF Step 00000 MHz
									1			<u>Auto</u>	Man
-70.0													
-80.0												Fr	eq Offset
													0 Hz
-90.0												-	and a Third
												S	cale Type
Start 3.61										Stop 4.	0000 GHz	Log	Lin
#Res BW	1.0 MHz			#\	/BW 3	3.0 MHz		S	weep 1	.519 ms (2	2781 pts)		
MSG									STATU	IS			

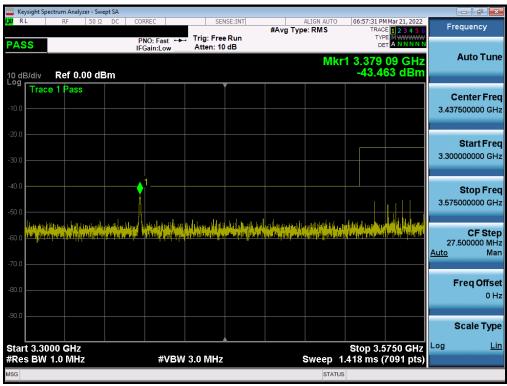
Plot 7-11. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)


Plot 7-12. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 49				
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 10 01 49				
			V3.0 1/6/2022				

	ctrum Analyz												
LXI RL	RF	50 Ω	DC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Mar 21, 2022	Frequ	uency
PASS				PNO: Fas IFGain:Lo	st 🖵	Trig: Fre Atten: 1				TY	PE MWWWWW ET A N N N N N		
				II Guilline					Mkr	1 26.35	3 0 GHz	A	uto Tune
10 dB/div Log	Ref 0.0		m							-49.6	01 dBm		
Trac	e 1 Pass						Ĭ					Cer	nter Freq
-10.0												21.00000	0000 GHz
-20.0													
-20.0													tart Freq
-30.0												15.00000	0000 GHz
-40.0											. 1		top Freq
-50.0												27.00000	0000 GHz
			L. marshite	ANT AND A DESCRIPTION	well we all	htter and here		particular and sector to be the	n a Garan Misabelanan Ang Sangar Misabelanan	landi da kana mana ing Pangana ng kana	a lateral and a second second		05.04++
-60.0	and a fill when the				ي الأنانية	and a second							CF Step 0000 GHz
-70.0												<u>Auto</u>	Mar
-70.0												_	
-80.0											<u> </u>	Fre	e q Offset 0 Hz
													0112
-90.0												Sc	ale Type
													Lin
Start 15.0 #Res BW				#	VBW	3.0 MHz			weep 20	Stop 27 80 ms (2	.000 GHz 4001 pts)	LUG	<u></u>
MSG									STATUS				
		_	-							0.001/			

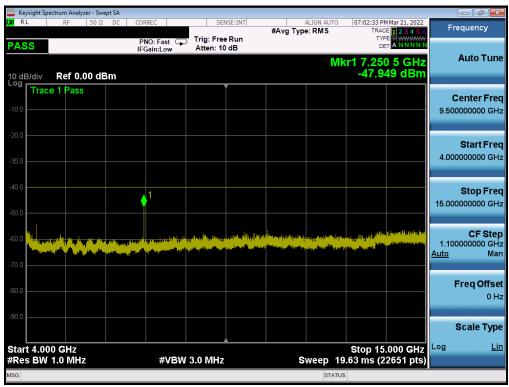
Plot 7-13. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)


Plot 7-14. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 19 01 49
			V3.0 1/6/2022

🔤 Keysight Sp	ectrum Analy:												
LXI RL	RF	50 Ω	DC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		1 Mar 21, 2022	Fr	equency
PASS				PNO: I IFGain	ast ↔ Low	Trig: Fre #Atten: 2				TYP			
10 dB/div	Ref 0.0	00 dB	m						M	(r1 3.072 -44.1	2 2 GHz 80 dBm		Auto Tune
Log Trac	e 1 Pass												Center Freq 5000000 GHz
-20.0												30	Start Fred 0.000000 MHz
-40.0										1.41		3.30	Stop Fred
-60.0 	ini pingline internet di Angeline (di para di bi			ling pant interfa	a ya daha ka a ƙ Wasar ƙasar ƙ	() <mark>(hipping)(hipping)</mark> _{And} and a special states	ter program prov To constant config	a di ang ng kang ang ang ang ang ang ang ang ang ang	i (_n a politika (na politik	a ha sha na ka sa sha sa sha sa sha sa sha A na sa sa sha sha sha sha sha sha sha sha	an a	327 <u>Auto</u>	CF Step 000000 MH: Mar
-80.0													F req Offse 0 H:
-90.0													Scale Type
Start 30 ľ #Res BW		2			#VBW	3.0 MHz			Sweep 4	Stop 3. .254 ms (.300 GHz 7091 pts)	Log	Lin
MSG									STATUS	5			

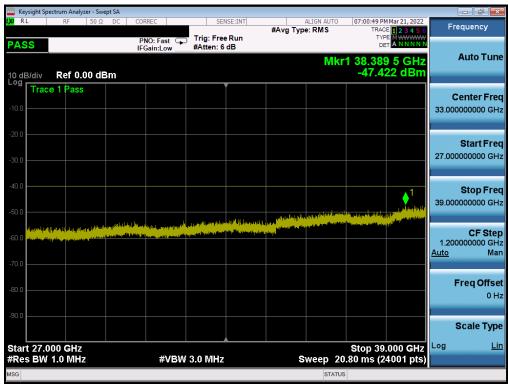
Plot 7-15. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)


Plot 7-16. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 20 01 49
			V3.0.1/6/2022

🔤 Keysight Sp	ectrum Analyz	er - Swep	ot SA								
LXI RL	RF	50 Ω	DC C	ORREC	SE	NSE:INT	#Avg Typ	ALIGN AUTO		Mar 21, 2022	Frequency
PASS				PNO: Fast C FGain:Low	Trig: Fre Atten: 10				TYP		
10 dB/div	Ref 0.0	00 dB	m					Mkr1	3.993 8 -52.	59 GHz 98 dBm	Auto Tune
-10.0	e 1 Pass										Center Free 3.837500000 GH
-30.0											Start Free 3.675000000 GH
-40.0											Stop Free 4.000000000 GH
-60.0	aalbala idag Taanaang	linge ber finse Andelinge für i	dagenda <mark>deter</mark> Angelogeder	an dalamin (n. 1976) An an	hananan baha ba	a (for 41) and a const Population and provide	handi Mirabi Para Yashi kasalar	n i fan Mesien (A e Henselyn gest fyd	aller den die der Repaire (Provinsie	() He had been been been been been been been bee	CF Step 32.500000 MH <u>Auto</u> Mar
-80.0											Freq Offse 0 H
-90.0											Scale Type
Start 3.67 #Res BW				#VB	W 3.0 MHz		s	weep 1.	Stop 4.0 510 ms (2	0000 GHz 2651 pts)	Log <u>Li</u> i
MSG								STATU	6		

Plot 7-17. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)


Plot 7-18. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 21 01 49
			V3 0 1/6/2022

	ectrum Analyz											7 X
XI RL	RF	50 Ω DC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Mar 21, 2022	Frequenc	су
PASS			PNO: IFGair	Fast 🖵	Trig: Fre Atten: 10				TYF			
			IFGall	1:LOW	Atten. N			Mkr		2 0 GHz	Auto	Tune
10 dB/div	Ref 0.0	0 dBm							-50.9	92 dBm		
Log Trace	e 1 Pass										Center	r Ero
-10.0											21.00000000	
-20.0											Start	tErec
-30.0											15.00000000	
30.0												
-40.0											Stop	Free
										▲1	27.00000000	
-50.0						. 1.		, a lata, (perilah feraja) ta	and the second second	TATISTIC DATE OF		
-60.0	elanna daharika	happin the state of the	denne ^{teles} teres	allere tyrn a'r yn Anwenne ar fer yn a'r	an a	ىرى بەر بىرى بىرى يىرى بىرىمىيە بىرى بەر ار ىغارە	n a lith a she was had a second	وسطياه والشروطين		i a sa an bian an a		Step
n à this much ath	alignetic descentes	and a state of the same									1.20000000 Auto	0 GH Mai
-70.0												
											FreqC	Offse
-80.0												0 H2
-90.0												
											Scale	Туре
Start 15.0	00 GHz								Stop 27	.000 GHz	Log	Lir
#Res BW				#VBW	3.0 MHz		s	weep 20	.80 ms (2	4001 pts)		
MSG								STATUS	5			

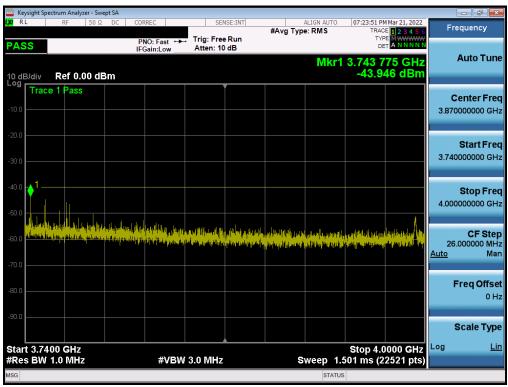
Plot 7-19. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

Plot 7-20. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 22 01 49
			V3.0.1/6/2022

	pectrum Analyz											-	- # X
XI RL	RF	50 Ω	DC	CORREC		SEI	ISE:INT	#Avg Typ	ALIGN AUTO		Mar 21, 2022	Fre	quency
PASS				PNO: Fa IFGain:L	ist ↔ ow	Trig: Free #Atten: 2		#/ 1 9 1 9 1		TYP			
10 dB/div Log	Ref 0.0	00 dB	m						M	(r1 3.072 -44.67	2 GHz 72 dBm	,	Auto Tune
-10.0	e 1 Pass												enter Freq 000000 GHz
-20.0													Start Fred
-30.0													000000 MHz
-40.0											•1		Stop Fred
	and and the second s	المتر والمرا			, lakteles, side Antipationes	anto de findema d	a ana <mark>ang panghang bang panghang bang panghang panghang panghang panghang panghang panghang panghang panghang Panghang panghang pang Panghang panghang pang</mark>	The second states of the secon	la la kalendar 1. januari 1. januari	all to plittle balances Argentattl Datasian		327 (CF Step
-70.0	i											<u>Auto</u>	Mar
-80.0												F	req Offse 0 H
-90.0												S	cale Type
Start 30 I #Res BW		2		#	VBW	3.0 MHz			Sweep 4	Stop 3. .332 ms (7	300 GHz 7221 pts)	Log	Lii
MSG									STATU	5			

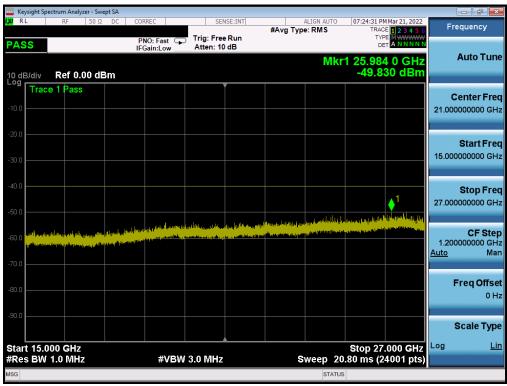
Plot 7-21. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)


Plot 7-22. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 25 01 49		
			V3 0 1/6/2022		

🤤 Keysight Spectrum Analyzer - Chanr	nel Power					
1 RF 50 Ω Gate: LO	DC CORREC #IFGain:Low	SENSE:INT Center Freq: 3.37919 Trig: Free Run #Atten: 8 dB	ALIGN AUTO 97950 GHz Avg Hold:>100/100	Radio Std		Frequency
10 dB/div Ref -30.00) dBm					
-40.0						Center Freq 3.379197950 GHz
-60.0 -70.0 -80.0	·····	man han	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-90.0						
-120 Center 3.3791980 GHz				Snan 1	.500 MHz	
Res BW 15 kHz		VBW 150 ki	Hz		ep 8 ms	CF Step 150.000 kHz Auto Man
Channel Power		Power	r Spectral Den	sity		
-43.12 dB	m / 1 MHz	-	103.1 dBn	ו /Hz		Freq Offset 0 Hz
MSG			STA	TUS		
	m / 1 MHz					

Plot 7-23. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)


Plot 7-24. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 24 01 49		
			V3.0.1/6/2022		

Keysight Spe													
LXI RL	RF	50 Ω	DC	CORREC		SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Mar 21, 2022	Fn	equency
PASS					ast 🖵	Trig: Fre		#/ 19 1 1		TY			
TAGO				IFGain:	Low	Atten: 1			8/11	_	0 1 GHz		Auto Tune
10 dB/div	Ref 0.0)0 dBr	n						IVIP	-48.3	83 dBm		
Log Trace	e 1 Pass						Ĭ					-	enter Freq
-10.0													0000000 GHz
-20.0													
												4 000	Start Freq
-30.0												4.000	000000 6H2
-40.0													
-40.0				1								45.000	Stop Freq
-50.0												15.000	J000000 GHZ
											L		
-60.0	all and print	ها هي تاري ا	and the second secon	يىرى <mark>دال</mark> ەر يەلە	11 mg 1 m	an an transferra	اللودائيوالحيية	a far da da	lage the state of the	and a state	n gener verste heter seitet. Lie slass det heter seitet st	1.100	CF Step
and the second			أكان خاجدا أأأن		التموا المواسطان	ويتقادينا أروي						<u>Auto</u>	Man
-70.0													
-80.0												i	Freq Offset
													0 Hz
-90.0													
													Scale Type
Start 4.00	0 GHz						A			Stop 15	.000 GHz	Log	Lin
#Res BW					#VBW	3.0 MHz		S	weep 19).52 ms (2	22521 pts)		
MSG									STATUS	5			

Plot 7-25. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

Plot 7-26. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 25 01 49		
			V3 0 1/6/2022		

		rum Analyzer											×
LXI RL	_	RF 5	50 Ω DC	CORF	REC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO e: RMS		M Mar 21, 2022	Frequency	/
PAS	S				O:Fast ⊊ ain:Low	Trig: Free #Atten: 6				TY D		Auto T	
10 dE Log	3/div	Ref 0.00	dBm						M	(r1 38.31 -47.4	7 5 GHz 37 dBm	Auto T	une
L08	Trace	1 Pass										Center F	Freq
-10.0												33.000000000	GHz
-20.0													
												Start F	
-30.0												27.000000000	GHz
-40.0												Oton F	-
											♦ ¹	Stop F 39.000000000	
-50.0								and attestion the	telephone which	an a			
-60.0	delement (page Anomina delement	and <mark>edates po</mark> l	and a straight of the state of		الشيرية الإيطانية المراجعة الم الأمريكية المحامد ومحادة	all a support of the second	ingen og en gange Det fillen generation	and the second s	and the second	in a statistical second se		CF S 1.200000000	Step
		and the first											Man
-70.0													
-80.0												Freq Of	
													0 Hz
-90.0												Scale T	vpe
0.	07.00									04			Lin
start #Res	t 27.00 s BW 1	0 GHZ .0 MHZ			#VBW	/ 3.0 MHz		s	weep 2	stop 39 20.80 m <u>s (</u> 2	0.000 GHz 24001 pts)		
MSG									STAT				

Plot 7-27. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 40		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 26 of 49		
			V3 0 1/6/2022		

7.4 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

For an End User Device, the conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B MHz (where B is the bandwidth in MHz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B MHz below the lower CBSD-assigned channel edge. At all frequencies greater than B MHz above the upper CBSD assigned channel edge and less than B MHz below the lower CBSD-assigned channel edge, the conducted power of any end user device emission shall not exceed -25 dBm/MHz. The conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

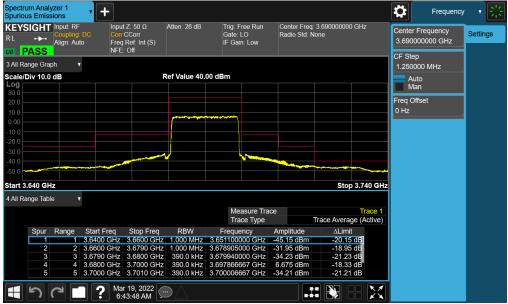
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 27 01 49		
			\/2.0.1/6/2022		

Test Note

Per 96.41(e)(3)(i), compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The fundamental emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

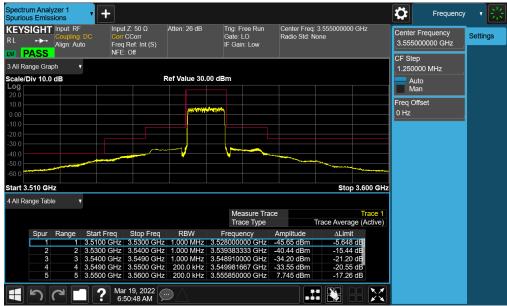

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 28 of 40		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 28 of 49		
1	·		V3.0 1/6/2022		

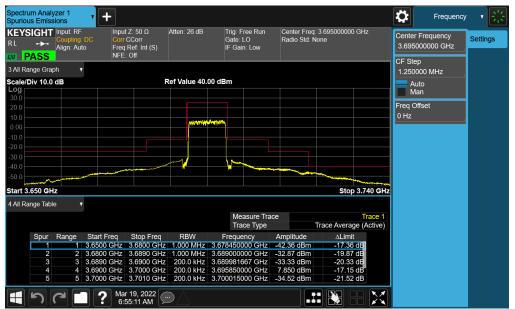
LTE Band 48

Plot 7-28. Channel - Ant1 Edge Plot (LTE Band 48 - 20MHz QPSK - Low Channel)

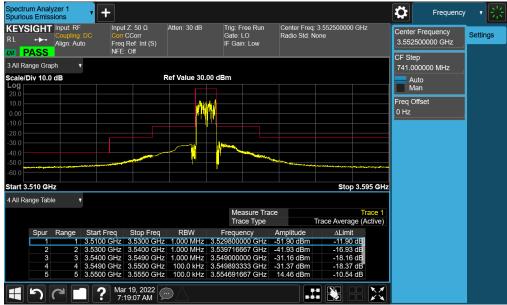
Plot 7-29. Channel - Ant1 Edge Plot (LTE Band 48 - 20MHz QPSK - High Channel)

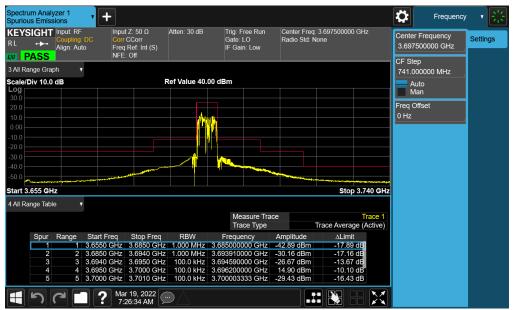
FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 29 01 49		
			\/3.0.1/6/2022		


Plot 7-30. Channel - Ant1 Edge Plot (LTE Band 48 - 15MHz QPSK - Low Channel)


Plot 7-31. Channel - Ant1 Edge Plot (LTE Band 48 - 15MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 50 01 49		
		-	V3.0.1/6/2022		


Plot 7-32. Channel - Ant1 Edge Plot (LTE Band 48 - 10MHz QPSK - Low Channel)


Plot 7-33. Channel - Ant1 Edge Plot (LTE Band 48 - 10MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 49		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 31 of 49		
			V3.0.1/6/2022		

Plot 7-34. Channel - Ant1 Edge Plot (LTE Band 48 - 5MHz QPSK - Low Channel)

Plot 7-35. Channel - Ant1 Edge Plot (LTE Band 48 - 5MHz QPSK - High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 52 01 49	
			V3.0 1/6/2022	

7.5 Radiated Power (EIRP)

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.2.4.4

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration.
- 8. The integration bandwidth was set equal to 10MHz. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Faye 55 01 49	
			V/3 0 1/6/2022	

The EUT and measurement equipment were set up as shown in the diagram below.

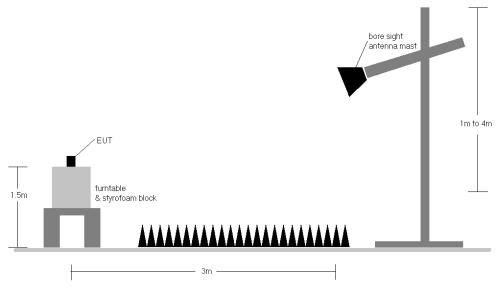


Figure 7-4. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The worst case EIRP shown in this section is found with LTE operating only using 1RB. As such, the EIRP/10MHz and full channel EIRP values will be identical since 1RB is fully contained within all available channel bandwidths for LTE Band 48 (i.e. 5, 10, 15, 20MHz).

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 34 01 49	
			\/3.0.1/6/2022	

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm/10MHz]	EIRP [Watts/10MHz]	EIRP Limit [dBm/10MHz]	Margin [dB]
N	QPSK	3560.0	V	281	269	7.15	1 / 50	13.16	20.31	0.107	23.00	-2.69
MHz	QPSK	3625.0	V	117	268	6.91	1/0	14.51	21.42	0.139	23.00	-1.58
20 1	QPSK	3690.0	V	129	265	6.60	1/0	15.01	21.61	0.145	23.00	-1.39
2	16-QAM	3690.0	V	129	265	6.60	1/0	14.77	21.37	0.137	23.00	-1.63
N	QPSK	3557.5	V	281	269	7.15	1 / 74	12.93	20.08	0.102	23.00	-2.92
MHz	QPSK	3625.0	V	117	268	6.91	1 / 74	14.37	21.28	0.134	23.00	-1.72
15 1	QPSK	3692.5	V	129	265	6.60	1 / 74	15.35	21.95	0.157	23.00	-1.05
-	16-QAM	3692.5	V	129	265	6.60	1 / 74	15.08	21.68	0.147	23.00	-1.32
N	QPSK	3555.0	V	281	269	7.15	1/0	13.45	20.60	0.115	23.00	-2.40
MHz	QPSK	3625.0	V	117	268	6.91	1 / 25	14.23	21.14	0.130	23.00	-1.86
101	QPSK	3695.0	V	129	265	6.59	1/0	15.47	22.07	0.161	23.00	-0.93
-	16-QAM	3695.0	V	129	265	6.59	1/0	14.91	21.50	0.141	23.00	-1.50
N	QPSK	3552.5	V	281	269	7.16	1 / 24	13.30	20.45	0.111	23.00	-2.55
MHz	QPSK	3625.0	V	117	268	6.91	1/0	14.02	20.93	0.124	23.00	-2.07
2 2	QPSK	3697.5	V	129	265	6.59	1 / 24	15.34	21.93	0.156	23.00	-1.07
	16-QAM	3697.5	V	129	265	6.59	1 / 24	15.16	21.75	0.150	23.00	-1.25
20 MHz	QPSK (Opposite Pol.)	3690.0	Н	126	265	6.15	1/0	15.17	21.32	0.135	23.00	-1.68

Table 7-2. EIRP Data (LTE Band 48)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 55 01 49	
			V3.0.1/6/2022	

7.6 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- Trace mode = Max Hold (In cases where the level is within 2dB of the limit, the final measurement is taken using triggering/gating and trace averaging.)
- 7. The trace was allowed to stabilize

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 30 01 49	
			V3 0 1/6/2022	

The EUT and measurement equipment were set up as shown in the diagram below.

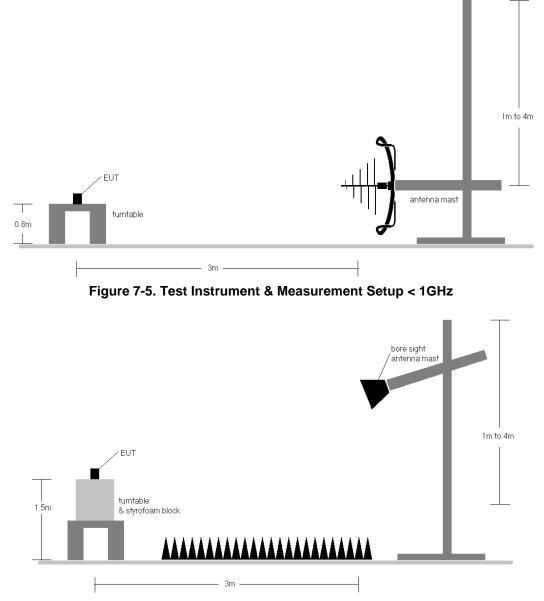
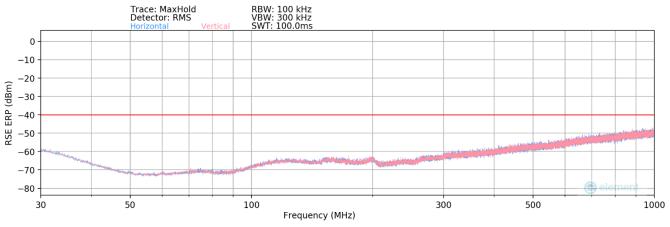


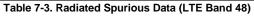
Figure 7-6. Test Instrument & Measurement Setup >1 GHz

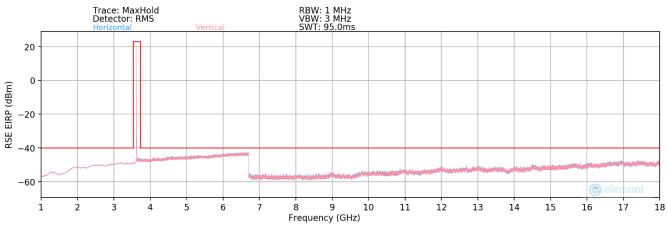
FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 37 01 49	
	·		V3.0 1/6/2022	


Test Notes

- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD 104.8; where D is the measurement distance in meters.$
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

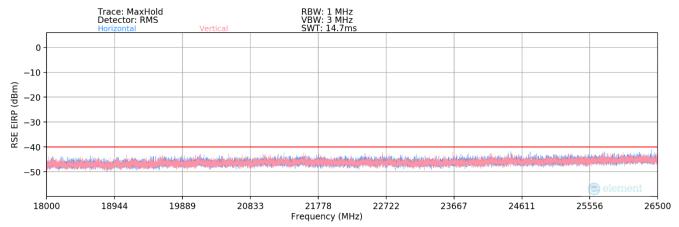
FCC ID: C3K1997		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 49	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 30 01 49	
			1/2 0 1/6/2022	

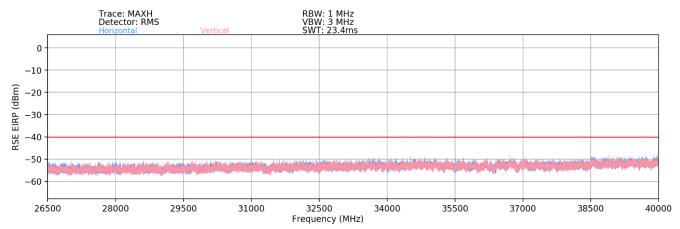

LTE Band 48



Bandwidth (MHz):	20
Frequency (MHz):	3625.0
RB Config (Size / Offset):	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
163.65	Н	-	-	-85.35	19.62	41.27	-56.14	-40.00	-16.14
427.50	Н	-	-	-84.62	24.26	46.64	-50.76	-40.00	-10.76
602.25	Н	-	-	-84.49	27.01	49.52	-47.89	-40.00	-7.89





FCC ID: C3K1997		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 40	
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 39 of 49	
	•		V3.0 1/6/2022	

Bandwidth (MHz):	20
Frequency (MHz):	3560.0
RB Config (Size / Offset):	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7120.0	Н	340	68	-77.34	8.23	37.89	-57.37	-40.00	-17.37
10680.0	Н	154	186	-77.12	12.63	42.51	-52.75	-40.00	-12.75
14240.0	Н	-	-	-79.96	15.38	42.42	-52.84	-40.00	-12.84
17800.0	Н	-	-	-79.94	18.10	45.16	-50.10	-40.00	-10.10

Table 7-4. Radiated Spurious Data (LTE Band 48 – Low Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 40		
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 40 of 49		
	·		V3.0 1/6/2022		

	Bandwidth (MHz):	20
	Frequency (MHz):	3625.0
	RB Config (Size / Offset):	1 / 50
1		

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7250.0	Н	137	63	-77.09	7.61	37.52	-57.74	-40.00	-17.74
10875.0	н	229	96	-77.45	12.18	41.73	-53.52	-40.00	-13.52
14500.0	Н	-	-	-79.94	15.49	42.55	-52.71	-40.00	-12.71

Table 7-5. Radiated Spurious Data (LTE Band 48 – Mid Channel)

Bandwidth (MHz):	20
Frequency (MHz):	3690.0
RB Config (Size / Offset):	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7380.0	Н	315	131	-77.56	8.30	37.74	-57.51	-40.00	-17.51
11070.0	Н	252	241	-78.66	12.57	40.91	-54.35	-40.00	-14.35
14760.0	Н	-	-	-80.73	16.23	42.50	-52.76	-40.00	-12.76

Table 7-6. Radiated Spurious Data (LTE Band 48 – High Channel)

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 41 01 49
			V3.0 1/6/2022

7.7 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 96, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI C63.26-2015 – Section 5.6

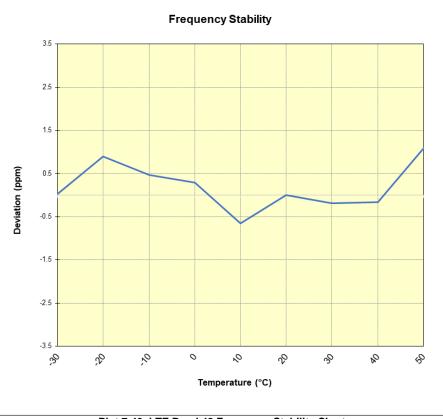
Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes


None

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 42 01 49
			V3.0 1/6/2022

LTE Band	LTE Band 48												
	Operating Fre	quency (Hz):	3,625,00	0,000									
	Ref. Vo	ltage (VDC):	7.6	0									
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)								
		- 30	3,625,094,097	90	0.0000025								
		- 20	3,625,097,259	3,252	0.0000897								
		- 10	3,625,095,714	1,707	0.0000471								
		0	3,625,095,052	1,045	0.0000288								
100 %	7.60	+ 10	3,625,091,617	-2,389	-0.0000659								
		+ 20 (Ref)	3,625,094,007	0	0.0000000								
		+ 30	3,625,093,303	-703	-0.0000194								
		+ 40	3,625,093,406	-601	-0.0000166								
		+ 50 3,625,097,932 3,925											
Battery Endpoint	7.20	+ 20	3,625,094,249	242	0.0000067								

Table 7-7. LTE Band 48 Frequency Stability Data

Plot 7-40. LTE Band 48 Frequency Stability Chart

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 43 01 49
			V3.0.1/6/2022

7.8 End User Device Additional Requirement (CBSD Protocol)

Test Overview and Limit

End user device additional requirements (CBSD Protocol) are tested per the test procedures listed below. During testing, the EUT is connected to a certified CBSD (Ruckus FCC ID: S9GQ910US00) as a companion device to show compliance with Part 96.47.

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.

Test Procedure Used

KDB 940660 D01 v03, WINNF-TS-0122 V1.0.2

Test Setup/Method

The EUT was connected via an RF cable to a certified CBSD and spectrum analyzer. The following procedure is performed by applying WINNF-TS-0122 CBRS CBSD Test Specification.

- 1. Run#1:
 - a. Setup WINNF.PT.C.HBT.1 with 3615MHz 3635MHz.
 - b. Enable AP service from Ruckus Cloud management.
 - c. Check EUT Tx frequency.
 - d. Disable AP service from Ruckus Cloud management and check EUT stop transmission within 10s.
- 2. Run#2:
 - a. Setup WINNF.PT.C.HBT.1 with 3660MHz 3680MHz.
 - b. Enable AP service from Ruckus Cloud management.
 - c. Check EUT Tx frequency.
 - d. Disable AP service from Ruckus Cloud management and check EUT stop transmission within 10s.

Test Notes

The EUT is an End User Device.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Faye 44 01 49
			\/3.0.1/6/2022

Run#1:

Keysight Sp		nalyzer - Sv	vept SA																-	ð	2
	RF	50 \$	2 AC	Р	RREC NO: Fa Gain:L	ast 🖵			e Run dB		#Avg Avg H				т	PM May 1 ACE 1 2 YPE MW DET P N	3 4 5 www	<mark>6</mark> ∀	Freq	uency	/
dB/div	Ref	0.00 d	Bm										M	(r2	3.630 -44.5				A	uto T	un
9 0.0 0.0								¢ [¶]											Ce 3.62500	nter F 00000	
.0 .0 .0										2									S 3.55000	tart F 00000	
.0 .0 .0					149-0489 								na Alaytai (Ar				i i la conta ni		S 3.70000	top F 00000	
art 3.5: es BW	1.2 №			~	#	WBW		ЛНz		5000				1.0	top 3.7 00 ms	(5001	pts			CF S	St M M
R MODE T	RC SCL 1 f 1 f			× <u>3.620 0</u> 3.630 0	1 GH 1 GH	z z	Y -23.57 -44.56			FUNC	CTION	FUNC	TION WIDT		FUNCT	TION VALU			Fr	eq Of	ffs 0
																		Lo		ale T	Г у !
							11	1									+				

Plot 7-41. Run#1 End User Device Frequency of Operations

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Page 45 01 49
		· ·	V3.0.1/6/2022

PNO: Fast Trig: Free Run #Avg Type: RMS Trace Det Past Provide Past 10 dB/div Ref 0.00 dBm		Spectrum Analyzer - Swe	•							
PRO: Fast	L <mark>XI</mark>	RF 50 Ω	AC CORREC	SE	NSE:INT	#Avg Typ	e: RMS			Frequency
100 gB/div Ref 0.00 dBm -67.76 dBm 100 gB/div Ref 0.00 dBm -67.76 dBm 100 gB/div Ref 0.00 dBm Center Freq 100 gB/div Ref 0.00 dBm Start Freq 200 gB/div Ref 0.00 dBm Start Freq 3.625000000 GHz Stop Freq 3.625000000 GHz Start Freq 200 gB/div Ref 0.00 dBm 400 gB/div Ref 0.00 dBm <		_		151		• //		TYP DE		Auto Tune
100 3.625000000 GHz 200 3.625000000 GHz 300 3.625000000 GHz 400		Ref 0.00 dE	3m					-67.7	2.020 s 76 dBm	
200 200 300 400 400 400 400 400 400 4										
30.0 Import of the constraint of the c										3.625000000 GHz
3000 Image: Stop Freq 3.625000000 GHz 4000 Image: Stop Freq 3.625000000 GHz 6000 Image: Stop Freq 5.000 GHz 6000 Image: Stop Freq 5.000 GHz 6000 Image: Stop Freq 5.000 GHz 6000 Image: Stop										
-50.0 -50.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.625000000 GHz</td></td<>										3.625000000 GHz
-60.0 1 Image: CF Step 1.20000 MHz -70.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -70.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 MHz Image: CF Step 1.20000 MHz -80.0 Image: CF Step 1.20000 Mz Image: CF Step 1.20000 Mz -80.0 Image: CF Step 1.20000 Mz Image: CF Step 1.20000 Mz -90.0 Image: CF Step 1.20000 Mz Image: CF Step 1.20000 Mz -90.0 Image: CF Step 1.20000 Mz Image: CF Step 1.20000 Mz -90.0 Image: CF Step 1.20000 Mz Image: CF Step 1.20000 Mz -90.0 Image: CF Step 1.2000 Mz Image	l Mar Di									
-000 1 -000 1 -000 1.200000 MHz -700 -000										CE Sten
-80.0 -80.0 -90.0			-broddin in den to ble bles he	a san dastadin sajada astikak girdista	a the base histopratic		in the second	Anno an	minul and stille	1.200000 MHz
-30.0 -30.0 -30.0 Center 3.625000000 GHz Res BW 1.2 MHz #VBW 3.0 MHz Sweep 15.00 s (5001 pts)	-70.0									
-90.0 -90.0 Center 3.625000000 GHz Res BW 1.2 MHz #VBW 3.0 MHz Sweep 15.00 s (5001 pts)	-80.0									
Center 3.625000000 GHz Span 0 Hz Res BW 1.2 MHz #VBW 3.0 MHz Sweep 15.00 s (5001 pts)										0 H2
Res BW 1.2 MHz #VBW 3.0 MHz Sweep 15.00 s (5001 pts)	-90.0									
							Swoon	S	pan 0 Hz	Log <u>Lin</u>
			7	FV DVV 3.0 IVINZ					oour pisj	

Plot 7-42. Run#1 End User Device Discontinues Operations within 10s

Note:

Marker 1: CBSD sends instructions to discontinue LTE operations.

Marker 2: EUT discontinues operation.

Marker 3: 10 seconds elapsed time from CBSD sending instructions to EUT.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 49				
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 40 01 49				
			\/3.0.1/6/2022				

Run#2:

(eysight Spec															
	RF	50 Ω	AC	CORREC PNO: F IFGain:	ast 🖵				J Type Hold::	e: RMS >1/1		TRA	M May 12, 20 CE 1 2 3 4 PE M ET P N N N	56	Frequency
B/div	Ref (0.00 di	3m							М	kr2		01 GH 91 dB		Auto Tu
															Center Fr 3.625000000 G
)))										Ŷ	, <mark>la</mark> da la	2			Start Fr 3.550000000 G
						Eth Lyphing di Hurg				nestinial		Heiseler.	4 Jacob - 1999		Stop Fr 3.700000000 G
nter 3.6 es BW					#VBW	3.0 MHz	:		s	Sweep	1.0	Span 1 00 ms (50.0 MI (5001 pt	S)	CF St 15.000000 M Auto M
MODE TRO	SCL f			64 99 GH		Y -50.491 d -56.091 d	Bm	NCTION	FUN	CTION WID	TH	FUNCT	ON VALUE	Â	
														ш	Freq Offs 0
															Scale Ty
														Ŧ	Log <u>i</u>
										STA	TUS				

Plot 7-43. Run#2 End User Device Frequency of Operations

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	Fage 47 01 49
		· ·	V3.0.1/6/2022

Keysight Sp	ectrum Analy		pt SA									_	
L <mark>XI</mark>	RF	<u>50 Ω</u>	AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS	TRAC	M May 12, 2022	F	requency
				PNO: Fas IFGain:Lo		Trig: Free Atten: 10				TY Di	PE WWWWWW ET P N N N N N		
				II Galli.LC	Jw .					Mkr1 4	83.5 ms		Auto Tune
10 dB/div	Ref 0.	00 dB	m							-67.	85 dBm		
Log													Center Freq
-10.0													0000000 GHz
-20.0													Start Freq
-30.0												3.67	0000000 GHz
00.0													
-40.0													Stop Freq
a transfer												3.67	0000000 GHz
-50.0													
-60.0													CF Step
	tellihadi yan birna di sia	. No state, Lond	alificity of the last	hat a state of the state	والمرابعة بالعال	والمرافع والقراف	وروي وي الغال هي وي	المورا وريري والمرافق ومرور والمرور	ففاغاذ أحجد ألافحاط فالالغ	يليرين فالقدير والع	h hi ha an	Auto	1.200000 MHz Man
-70.0	Miner by and is mineric as wh	al an a shi	<mark>diga da segunda se</mark>	and a second	and the second s	a - Ling and the second second	a daharan birata ta aning sa da	h that a subtrance of the sector of		a na ana ana ana ana ana ana ana ana an	a paljäälä on sainty panintaan		
-80.0													Freq Offset
-00.0													0 Hz
-90.0													
													Scale Type
Center 3.0	6700000	000 G	Hz							S	ipan 0 Hz	Log	Lin
Res BW 1	.2 MHz			#	VBW	3.0 MHz			Sweep	15.00 s	5001 pts)		
MSG									STATUS	3			

Plot 7-44. Run#2 End User Device Discontinues Operations within 10s

Note:

Marker 1: CBSD sends instructions to discontinue LTE operations.

Marker 2: EUT discontinues operation.

Marker 3: 10 seconds elapsed time from CBSD sending instructions to EUT.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	
			\/3.0.1/6/2022

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Microsoft Corporation Portable Computing Device FCC ID: C3K1997** complies with all of the End User Device requirements of Part 96 of the FCC Rules for LTE operation only.

FCC ID: C3K1997		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 49
1M2204040049-10-R1.C3K	03/16/2022 - 06/14/2022	Portable Computing Device	
<u></u>			V3.0 1/6/2022