

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
N		2510.0	Н	102	123	9.51	1/0	15.92	25.43	0.349	33.01	-7.58
Ŧ	QPSK	2535.0	н	126	122	9.40	1/0	15.97	25.37	0.345	33.01	-7.64
0		2560.0	Н	100	119	9.43	1 / 50	15.99	25.42	0.348	33.01	-7.59
2	16-QAM	2510.0	Н	102	123	9.51	1/0	15.39	24.90	0.309	33.01	-8.11
N		2507.5	Н	102	123	9.50	1/0	15.90	25.41	0.347	33.01	-7.60
H	QPSK	2535.0	Н	126	122	9.40	1 / 74	15.99	25.40	0.346	33.01	-7.61
5 1		2562.5	Н	100	119	9.43	1/0	16.01	25.43	0.349	33.01	-7.58
-	16-QAM	2507.5	Н	102	123	9.50	1 / 37	15.73	25.24	0.334	33.01	-7.77
N		2505.0	H	102	123	9.50	1 / 49	15.90	25.40	0.347	33.01	-7.61
Ŧ	QPSK	2535.0	н	126	122	9.40	1 / 49	15.99	25.39	0.346	33.01	-7.62
0		2565.0	Н	100	119	9.42	1 / 25	15.95	25.37	0.344	33.01	-7.64
-	16-QAM	2505.0	Н	102	123	9.50	1 / 25	15.47	24.97	0.314	33.01	-8.04
N		2502.5	Н	102	123	9.49	1 / 12	15.90	25.39	0.346	33.01	-7.62
Ľ Í	QPSK	2535.0	Н	126	122	9.40	1 / 12	16.03	25.43	0.350	33.01	-7.58
2		2567.5	Н	100	119	9.42	1 / 24	16.01	25.43	0.349	33.01	-7.58
Ŷ	16-QAM	2567.5	Н	100	119	9.42	1/0	15.57	24.98	0.315	33.01	-8.03
20 1411-	QPSK(Opposite Pol.)	2510.0	V	113	91	9.54	1 / 50	14.43	23.97	0.250	33.01	-9.04
	QPSK(HALF)	2510.0	н	175	165	9.51	1 / 50	14.53	24.04	0.253	33.01	-8.97

Table 7-11. EIRP Data (LTE Band 7 – North)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
Z		2510.0	Н	100	121	9.51	1/0	16.32	25.83	0.383	33.01	-7.18
H	QPSK	2535.0	Н	101	120	9.40	1 / 99	15.97	25.37	0.345	33.01	-7.64
0		2560.0	Н	100	116	9.43	1 / 50	16.32	25.75	0.376	33.01	-7.26
2	16-QAM	2510.0	Н	100	121	9.51	1/0	15.64	25.15	0.327	33.01	-7.86
Z		2507.5	Н	100	121	9.50	1/0	16.18	25.68	0.370	33.01	-7.33
HW	QPSK	2535.0	Н	101	120	9.40	1 / 74	15.95	25.36	0.343	33.01	-7.65
5 1		2562.5	Н	100	116	9.43	1 / 74	16.31	25.73	0.374	33.01	-7.28
-	16-QAM	2507.5	Н	100	121	9.50	1/0	15.72	25.22	0.333	33.01	-7.79
Z		2505.0	Н	100	121	9.50	1 / 49	16.44	25.94	0.393	33.01	-7.07
H	QPSK	2535.0	Н	101	120	9.40	1 / 25	15.96	25.36	0.344	33.01	-7.65
0		2565.0	Н	100	116	9.42	1/0	16.69	26.11	0.408	33.01	-6.90
-	16-QAM	2535.0	Н	101	120	9.40	1 / 49	15.40	24.80	0.302	33.01	-8.21
N		2502.5	H	100	121	9.49	1 / 12	16.26	25.75	0.376	33.01	-7.26
L I	QPSK	2535.0	Н	101	120	9.40	1 / 12	16.24	25.64	0.367	33.01	-7.37
2		2567.5	Н	100	116	9.42	25 / 0	16.17	25.59	0.362	33.01	-7.42
	16-QAM	2502.5	Н	100	121	9.49	1 / 12	15.81	25.30	0.339	33.01	-7.71
20 MHz	QPSK(Opposite Pol.)	2510.0	V	100	267	9.54	1 / 50	14.63	24.17	0.262	33.01	-8.84
20 MHz	QPSK(HALF)	2510.0	н	154	181	9.51	1 / 50	14.58	24.09	0.256	33.01	-8.92

Table 7-12. EIRP Data (LTE Band 7 – South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 114 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 114 01 103
© 2021 PCTEST				V2 3/28/2021

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
		2506.0	V	101	301	9.54	1 / 50	15.60	25.14	0.327	33.01	-7.87
20 MHz	QPSK	2593.0	V	107	316	9.46	1 / 99	16.81	26.27	0.424	33.01	-6.74
20 11112		2680.0	V	100	308	9.51	1/0	15.69	25.20	0.331	33.01	-7.81
	16-QAM	2593.0	V	107	316	9.46	1 / 99	16.90	26.36	0.433	33.01	-6.65
N		2503.5	V	101	301	9.54	75 / 0	15.62	25.16	0.328	33.01	-7.85
H H	QPSK	2593.0	V	107	316	9.46	75 / 0	16.82	26.28	0.425	33.01	-6.73
2 1		2682.5	V	100	308	9.51	75 / 0	15.60	25.11	0.324	33.01	-7.90
	16-QAM	2593.0	V	107	316	9.46	1/0	16.92	26.38	0.435	33.01	-6.63
N		2501.0	V	101	301	9.55	50 / 0	15.69	25.23	0.334	33.01	-7.78
H	QPSK	2593.0	V	107	316	9.46	50 / 0	16.84	26.30	0.427	33.01	-6.71
0		2685.0	V	100	308	9.52	50 / 0	15.71	25.23	0.333	33.01	-7.78
	16-QAM	2593.0	V	107	316	9.46	1 / 25	16.97	26.43	0.440	33.01	-6.58
N		2498.5	V	101	301	9.53	25 / 0	15.67	25.20	0.332	33.01	-7.81
Ë	QPSK	2593.0	V	107	316	9.46	25 / 0	16.83	26.29	0.426	33.01	-6.72
2		2687.5	V	100	308	9.52	25 / 0	15.67	25.19	0.330	33.01	-7.82
	16-QAM	2593.0	V	107	316	9.46	1 / 12	16.94	26.40	0.437	33.01	-6.61
	Opposite Pol. (QPSK)	2593.0	Н	123	35	9.49	1/0	16.50	25.99	0.397	33.01	-7.02
	Opposite Pol. (16-QAM)	2593.0	Н	123	35	9.49	1/0	16.64	26.13	0.410	33.01	-6.88
20 MHz	QPSK (Closed)	2593.0	Н	123	26	9.49	1/0	16.09	25.58	0.362	33.01	-7.43
	QPSK (OPEN)	2593.0	Н	104	117	9.49	1/0	15.39	24.88	0.308	33.01	-8.13
	QPSK (16-QAM)	2593.0	Н	104	117	9.49	1/0	15.81	25.30	0.339	33.01	-7.71

Table 7-13. EIRP Data (LTE Band 41(PC2) – North)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
z		2506.0	V	104	316	9.54	1/0	14.85	24.39	0.275	33.01	-8.62
Ŧ	QPSK	2593.0	V	103	318	9.46	1 / 99	16.68	26.14	0.411	33.01	-6.87
0		2680.0	V	117	315	9.51	1/0	15.20	24.71	0.296	33.01	-8.30
2	16-QAM	2593.0	V	103	318	9.46	1 / 99	17.05	26.51	0.448	33.01	-6.50
N		2503.5	V	104	316	9.54	75 / 0	14.87	24.41	0.276	33.01	-8.60
H	QPSK	2593.0	V	103	318	9.46	75 / 0	16.25	25.72	0.373	33.01	-7.29
5		2682.5	V	117	315	9.51	1/0	15.20	24.71	0.296	33.01	-8.30
~	16-QAM	2593.0	V	103	318	9.46	1/0	17.04	26.50	0.447	33.01	-6.51
N		2501.0	V	104	316	9.55	50 / 0	14.90	24.44	0.278	33.01	-8.57
H	QPSK	2593.0	V	103	318	9.46	50 / 0	16.25	25.72	0.373	33.01	-7.29
0		2685.0	V	117	315	9.52	1 / 25	15.35	24.87	0.307	33.01	-8.14
~	16-QAM	2593.0	V	103	318	9.46	1 / 25	17.14	26.60	0.457	33.01	-6.41
N		2498.5	V	104	316	9.53	25 / 0	14.88	24.41	0.276	33.01	-8.60
불	QPSK	2593.0	V	103	318	9.46	25 / 0	16.23	25.70	0.371	33.01	-7.31
2		2687.5	V	117	315	9.52	1 / 12	15.24	24.76	0.299	33.01	-8.25
ý	16-QAM	2593.0	V	103	318	9.46	1 / 12	17.14	26.60	0.457	33.01	-6.41
20 MHz	QPSK(Opposite Pol.)	2593.0	Н	150	55	9.46	1/0	14.98	24.44	0.278	33.01	-8.57
	QPSK (FLAT)	2593.0	V	108	302	9.46	1/0	15.66	25.12	0.325	33.01	-7.89

Table 7-14. EIRP Data (LTE Band 41(PC2) – South)

FCC ID: C3K1995	PCTEST: Proct to be part of @elecand	PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 115 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 115 01 105
© 2021 PCTEST				V2 3/28/2021

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
		2546.0	V	152	89	9.40	1 / 204	11.99	21.39	0.138	33.01	-11.62
2	π/2 BPSK	2593.0	V	150	87	9.46	1/68	12.09	21.55	0.143	33.01	-11.46
HW		2640.0	V	155	93	9.50	1/136	10.60	20.10	0.102	33.01	-12.91
8	OPSK	2540.0	V	152	87	9.40	1/68	12.10	21.30	0.137	33.01	-11.05
÷	QI OK	2640.0	V	155	93	9.40	1/136	10.56	20.06	0.143	33.01	-12.95
	16-QAM	2593.0	V	150	87	9.46	1/68	11.12	20.58	0.114	33.01	-12.43
		2541.0	V	152	89	9.46	1 / 183	12.01	21.46	0.140	33.01	-11.55
	π/2 BPSK	2593.0	V	150	87	9.46	1 / 122	12.20	21.66	0.147	33.01	-11.35
Ŧ		2645.0	V	155	93	9.51	1 / 183	10.57	20.08	0.102	33.01	-12.93
E E		2541.0	V	152	89	9.46	1 / 183	11.97	21.42	0.139	33.01	-11.59
06	QPSK	2593.0	V	150	87	9.46	1 / 122	11.50	20.96	0.125	33.01	-12.05
		2645.0	V	155	93	9.51	1 / 183	10.68	20.19	0.105	33.01	-12.82
	16-QAM	2541.0	V	152	89	9.46	1 / 183	10.97	20.42	0.110	33.01	-12.59
		2536.0	V	152	89	9.49	1 / 108	11.91	21.40	0.138	33.01	-11.61
	π/2 BPSK	2593.0	V	150	87	9.46	1 / 108	12.17	21.63	0.146	33.01	-11.38
H2		2650.0	V	155	93	9.52	1 / 162	10.55	20.06	0.101	33.01	-12.95
2 0	ODOK	2536.0	V	152	89	9.49	1 / 108	11.88	21.37	0.137	33.01	-11.64
8	QPSK	2593.0	V	100	87	9.40	1/108	11.01	20.47	0.111	33.01	-12.04
	16 OAM	2030.0	V	150	93	9.52	1 / 102	10.40	20.62	0.099	33.01	-13.04
	10-QAW	2526.0	V	152	89	9.49	1/40	12.23	20.02	0.113	33.01	-12.33
	π/2 BPSK	2593.0	v	150	87	9.46	1/40	12.20	21.87	0.143	33.01	-11 14
7	In 2 Bron	2660.0	v	155	93	9.50	1/121	10.78	20.28	0.107	33.01	-12 73
MF		2526.0	V	152	89	9.52	1 / 40	11.09	20.61	0.115	33.01	-12.40
60	QPSK	2593.0	V	150	87	9.46	1 / 40	11.37	20.83	0.121	33.01	-12.18
		2660.0	V	155	93	9.50	1 / 121	10.55	20.05	0.101	33.01	-12.96
	16-QAM	2593.0	V	150	87	9.46	1 / 40	10.06	19.52	0.090	33.01	-13.49
		2521.0	V	152	89	9.51	1 / 99	12.33	21.84	0.153	33.01	-11.17
	π/2 BPSK	2593.0	V	150	87	9.46	1 / 33	11.73	21.19	0.131	33.01	-11.82
H		2665.0	V	155	93	9.51	1 / 99	10.56	20.07	0.102	33.01	-12.94
N N N		2521.0	V	152	89	9.51	1 / 99	12.15	21.66	0.147	33.01	-11.35
2(QPSK	2593.0	V	150	87	9.46	1/33	10.82	20.28	0.107	33.01	-12.73
	40.0414	2665.0	V	155	93	9.51	1/99	10.40	19.91	0.098	33.01	-13.10
	16-QAM	2521.0	V	152	89	9.51	1/99	10.67	20.18	0.104	33.01	-12.83
	TT/2 BDSK	2510.0	V	152	09 97	9.52	1/79	12.35	21.8/	0.134	33.01	-11.14
N	II/2 DF3K	2595.0	V	155	07	9.40	1/53	10.65	21.23	0.133	33.01	-12.84
H		2516.0	V	152	89	9.52	1/79	11.65	21.17	0.104	33.01	-11.84
40	QPSK	2593.0	v	150	87	9.46	1/26	10.73	20.19	0.104	33.01	-12.82
		2670.0	V	155	93	9.52	1 / 53	10.31	19.83	0.096	33.01	-13.18
	16-QAM	2516.0	V	152	89	9.52	1 / 79	10.08	19.60	0.091	33.01	-13.41
		2511.0	V	152	89	9.54	1 / 58	12.07	21.61	0.145	33.01	-11.40
	π/2 BPSK	2593.0	V	150	87	9.46	1 / 19	11.90	21.37	0.137	33.01	-11.64
Hz		2675.0	V	155	93	9.52	1 / 39	10.77	20.28	0.107	33.01	-12.73
N N N		2511.0	V	152	89	9.54	1 / 58	11.26	20.80	0.120	33.01	-12.21
30	QPSK	2593.0	V	150	87	9.46	1 / 19	10.85	20.31	0.107	33.01	-12.70
		2675.0	V	155	93	9.52	1 / 39	10.50	20.01	0.100	33.01	-13.00
	16-QAM	2511.0	V	152	89	9.54	1 / 58	9.80	19.34	0.086	33.01	-13.67
		2506.0	V	152	89	9.54	1/37	11.79	21.34	0.136	33.01	-11.67
N	TT/2 BPSK	2593.0	V	150	8/	9.46	1/13	11.78	21.25	0.133	33.01	-11.76
H		2000.0	V	100	93	9.51	1/25	10.83	20.34	0.108	33.01	-12.07
0	OPSK	2500.0	V V	150	87	9.04	1/12	10.91	20.40	0.111	33.01	-12.00
		2680.0	v	155	93	9.51	1/25	10.51	20.22	0.100	33.01	-12 99
	16-0AM	2680.0	V	155	93	9.51	1/25	9.66	19.17	0.083	33.01	-13.84
	QPSK (CP-OFDM)	2593.0	V	152	88	9,46	1/68	10.23	19.69	0.093	33.01	-13 32
100 MHz	QPSK (Opposite Pol.)	2593.0	H	174	9	9.49	1 / 68	11.83	21.32	0.136	33.01	-11.69
	QPSK (Half)	2593.0	V	117	83	9.46	1 / 68	11.21	20.67	0.117	33.01	-12.34

Table 7-15. EIRP Data (NR Band n41 – North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 116 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	rtable Handset		Page 116 01 165
© 2021 PCTEST				\/2 3/28/2021

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
		2546.0	Н	149	41	9.40	1 / 136	12.38	21.78	0.151	33.01	-11.23
N	π/2 BPSK	2593.0	н	147	41	9.46	1 / 136	13.64	23.10	0.204	33.01	-9.91
₩		2546.0	н	140	40	9.50	1 / 136	12.10	21.00	0.147	33.01	-11.30
00	QPSK	2593.0	н	143	41	9.46	1 / 136	13 69	23.15	0.100	33.01	-9.86
-	2	2640.0	Н	140	40	9.50	1 / 136	12.21	21.71	0.148	33.01	-11.30
	16-QAM	2593.0	Н	147	41	9.46	1 / 136	12.48	21.94	0.156	33.01	-11.07
		2541.0	Н	149	41	9.46	1 / 122	12.36	21.81	0.152	33.01	-11.20
	π/2 BPSK	2593.0	Н	147	41	9.46	1 / 61	13.57	23.03	0.201	33.01	-9.98
E F		2645.0	Н	140	40	9.51	1 / 122	12.16	21.67	0.147	33.01	-11.34
N O	0.001/	2541.0	н	149	41	9.46	1 / 122	12.53	21.99	0.158	33.01	-11.02
6	QPSK	2593.0	н	14/	41	9.46	1/61	13.75	23.21	0.210	33.01	-9.80
	16 OAM	2040.0	н	140	40	9.51	1/122	12.30	21.80	0.152	33.01	-11.21
		2536.0	Н	147	41	9.40	1 / 162	12.01	21.84	0.101	33.01	-10.35
	π/2 BPSK	2593.0	н	147	41	9.46	1/54	13.61	23.07	0.203	33.01	-9.94
우		2650.0	H	140	40	9.52	1 / 108	12.15	21.66	0.147	33.01	-11.35
M N		2536.0	н	149	41	9.49	1 / 162	12.40	21.89	0.155	33.01	-11.12
80	QPSK	2593.0	Н	147	41	9.46	1 / 54	13.79	23.25	0.212	33.01	-9.76
		2650.0	Н	140	40	9.52	1 / 108	12.62	22.14	0.164	33.01	-10.87
	16-QAM	2593.0	Н	147	41	9.46	1 / 54	12.74	22.20	0.166	33.01	-10.81
		2526.0	Н	149	41	9.52	1 / 121	12.71	22.22	0.167	33.01	-10.79
N	π/2 BPSK	2593.0	H	147	41	9.46	162 / 0	14.00	23.47	0.222	33.01	-9.54
UH2		2660.0	Н	140	40	9.50	1 / 40	12.41	21.91	0.155	33.01	-11.10
0	0001/	2526.0	н	149	41	9.52	1/121	12.91	22.42	0.175	33.01	-10.59
9	QPON	2595.0	п	147	41	9.40	1/40	13.40	22.94	0.197	33.01	-10.07
	16-OAM	2593.0	н	140	40	9.50	162/0	12.20	20.98	0.130	33.01	-12.03
	10 00 101	2521.0	Н	149	41	9.51	1/99	12 69	22.20	0.126	33.01	-10.81
	π/2 BPSK	2593.0	Н	147	41	9.46	133 / 0	13.96	23.42	0.220	33.01	-9.59
ᅯ		2665.0	Н	140	40	9.51	1 / 33	12.52	22.03	0.160	33.01	-10.98
E E		2521.0	Н	149	41	9.51	1 / 99	12.88	22.39	0.173	33.01	-10.62
50	QPSK	2593.0	Н	147	41	9.46	133 / 0	14.00	23.46	0.222	33.01	-9.55
		2665.0	Н	140	40	9.51	1 / 33	12.81	22.32	0.171	33.01	-10.69
	16-QAM	2593.0	Н	147	41	9.46	133 / 0	12.07	21.53	0.142	33.01	-11.48
	(0.000)/	2516.0	н	149	41	9.52	1/79	12.82	22.34	0.171	33.01	-10.67
N	TT/2 BPSK	2593.0	н	147	41	9.46	1/26	14.03	23.50	0.224	33.01	-9.51
HW		2516.0	п	140	40	9.52	1/20	12.39	22.11	0.103	33.01	-10.90
0	OPSK	2593.0	н	149	41	9.52	1/26	14 13	22.50	0.170	33.01	-9.42
7	d. on	2670.0	н	140	40	9.52	1/26	12.63	22.15	0.164	33.01	-10.86
	16-QAM	2593.0	Н	147	41	9.46	1 / 26	12.69	22.15	0.164	33.01	-10.86
		2511.0	Н	149	41	9.54	1 / 58	12.73	22.28	0.169	33.01	-10.74
	π/2 BPSK	2593.0	Н	147	41	9.46	1 / 19	14.14	23.60	0.229	33.01	-9.41
H		2675.0	Н	140	40	9.52	1 / 58	12.60	22.12	0.163	33.01	-10.89
N N N		2511.0	Н	149	41	9.54	1 / 58	12.72	22.26	0.168	33.01	-10.75
30	QPSK	2593.0	H	147	41	9.46	1 / 19	14.04	23.50	0.224	33.01	-9.51
	40.0414	2675.0	н	140	40	9.52	1/58	13.11	22.62	0.183	33.01	-10.39
	16-QAM	2593.0	H	147	41	9.46	1/19	12.77	22.23	0.167	33.01	-10.78
		2503.0	н	149	41	9.04	1/3/	14.06	22.10	0.104	33.01	-10.00
N	II/2 DI OIX	2680.0	н	140	40	9.51	1/13	12 49	22.00	0.225	33.01	-11 01
M		2506.0	Н	149	41	9.54	1/37	12.38	21.92	0.156	33.01	-11.09
50	QPSK	2593.0	H	147	41	9.46	1 / 13	14.01	23.47	0.222	33.01	-9.54
		2680.0	Н	140	40	9.51	1 / 13	12.97	22.48	0.177	33.01	-10.53
	16-QAM	2593.0	Н	147	41	9.46	1 / 13	12.46	21.92	0.156	33.01	-11.09
	QPSK (CP-OFDM)	2593.0	Н	149	37	9.46	1 / 68	11.98	21.44	0.139	33.01	-11.57
100 MHz	QPSK (Opposite Pol.)	2593.0	V	258	274	9.46	1 / 136	12.50	21.96	0.157	33.01	-11.05
100 11112	QPSK (Opposite Pol.)	2593.0	V	107	304	9.46	1 / 68	13.25	22.71	0.187	33.01	-10.30
	QPSK (Open)	2593.0	Н	103	119	9.46	1 / 136	13.48	22.94	0.197	33.01	-10.07

Table 7-16. EIRP Data (NR Band n41 - South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	able Handset		Page 117 of 163	
© 2021 PCTEST				V/2 3/28/2021	

7.8 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in KDB 971168 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 110 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	ortable Handset		Page 118 of 163	
© 2021 PCTEST				V/2 3/28/2021	

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-8. Test Instrument & Measurement Setup >1 GHz

FCC ID: C3K1995	PCTEST: Pout to be put d @vienned	PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 119 01 103
© 2021 PCTEST				V2 3/28/2021

- Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
 a) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
 b) EIRP (dBm) = E(dBµV/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 7) ULCA spurious emissions measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 8) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 9) Spurious emissions shown in this section are measured while operating in EN-DC mode with Sub 6GHz NR carrier as well as an LTE carrier (anchor). Spurious emissions from the NR carrier device, is subject to the rules under which the NR carrier operates. Spurious emission caused by the LTE carrier must meet the requirements of the rules under which the LTE carrier operates.

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset	Page 120 of 163	
© 2021 PCTEST				V2 3/28/2021

LTE Band 30 - North

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 121 of 163	
© 2021 PCTEST				\/2 3/28/2021	

Bandwidth (MHz):	10
Frequency (MHz):	2310.0
RB / Offset:	1 / 25

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
4620.0	V	130	323	-75.16	4.99	36.83	-58.43	-40.00	-18.43
6930.0	V	303	142	-71.32	7.57	43.25	-52.00	-40.00	-12.00
9240.0	V	-	-	-79.77	9.13	36.36	-58.90	-40.00	-18.90
11550.0	V	-	-	-81.41	14.13	39.72	-55.54	-40.00	-15.54
13860.0	V	-	-	-81.21	14.67	40.46	-54.80	-40.00	-14.80

Table 7-17. Radiated Spurious Data (LTE Band 30 – Mid Channel – North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 160
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 122 01 103
© 2021 PCTEST				V2 3/28/2021

LTE Band 30 - South

1/ 231 1 /	0 0.0 25							
Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
Н	247	16	-77.64	4.99	34.35	-60.91	-40.00	-20.91
Н	160	106	-68.17	7.57	46.40	-48.85	-40.00	- <mark>8.8</mark> 5
Н	-	-	-79.72	9.13	36.41	-58.85	-40.00	-18.85
Н	-	-	-80.88	14.13	40.25	-55.01	-40.00	-15.01
Н	-	-	-81.11	14.67	40.56	-54.70	-40.00	-14.70
	1 231 1/ Ant. Pol. [H/V] H H H H H H H	10 2310.0 1/25 Ant. Pol. [H/V] Antenna Height [cm] H 247 H 160 H - H - H - H - H - H -	10 2310.0 1/25 Ant. Pol. Antenna Height [cm] Turntable Azimuth [degree] H 247 16 H 160 106 H - - H - - H - - H - - H - - H - - Table Z Bediated Service Service	10 2310.0 1/25 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] H 247 16 -77.64 H 160 106 -68.17 H - - -79.72 H - - -80.88 H - - -80.48 Table 7 48 Bediate - - - -	10 2310.0 1/25 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] H 247 16 -77.64 4.99 H 160 106 -68.17 7.57 H - - -79.72 9.13 H - - -80.88 14.13 H - - - 81.11 14.62	10 2310.0 1/25 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµV/m] H 247 16 -77.64 4.99 34.35 H 160 106 -68.17 7.57 46.40 H - - -79.72 9.13 36.41 H - - -80.88 14.13 40.25 Table 7 48 Endited Spurious Date (J. TE Pand 20) Mid Chempend	10 2310.0 1/25 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµV/m] EIRP Spurious Emission Level [dBm] H 247 16 -77.64 4.99 34.35 -60.91 H 160 106 -68.17 7.57 46.40 -48.85 H - - -79.72 9.13 36.41 -58.85 H - - -80.88 14.13 40.25 -55.01 Table 7 48 Bediated Sauria Date (11 E Band 20 Mid Channel Sauth) -54.70 -54.70 -54.70	10 Antenna Turntable Analyzer AFCL Field EIRP Spurious Limit Idem I/25 Ant. Pol. Antenna Height Azimuth Idegree] AFCL Idegree] EIRP Spurious Limit Idegree] Idegree]

Table 7-18. Radiated Spurious Data (LTE Band 30 – Mid Channel – South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset	Page 123 of 163	
© 2021 PCTEST				V2 3/28/2021

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 124 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 124 of 163	
© 2021 PCTEST		•		V2 3/28/2021	

Plot 7-183. Radiated Spurious Plot (LTE Band 7 - North) - Open

Bandwidth (MHz):	20
Frequency (MHz):	2510.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5020.0	Н	163	292	-73.93	5.86	38.93	-56.33	-25.00	-31.33
7530.0	Н	149	349	-77.13	7.95	37.82	-57.43	-25.00	-32.43
10040.0	Н	-	-	-80.06	11.10	38.04	-57.21	-25.00	-32.21
12550.0	Н	-	-	-81.98	14.35	39.37	-55.89	-25.00	-30.89
	Table 7	10 Padiat	od Spuriou	e Data (I T	E Band 7 _	Low Chan	nol – North)		

le 7-19. Radiated Spurious Data (LTE Band 7 – Low Channel – North)

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5070.0	Н	157	292	-72.63	5.42	39.79	-55.47	-25.00	-30.47
7605.0	Н	113	281	-76.46	7.60	38.14	-57.12	-25.00	-32.12
10140.0	Н	-	-	-81.06	11.29	37.23	-58.03	-25.00	-33.03
12675.0	Н	-	-	-81.96	14.43	39.47	-55.79	-25.00	-30.79

Table 7-20. Radiated Spurious Data (LTE Band 7 – Mid Channel – North)

2	0							
256	0.0							
1 /	50							
Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
Н	313	344	-75.07	5.82	37.75	-57.51	-25.00	-32.51
Н	-	-	-79.69	8.65	35.96	-59.29	-25.00	-34.29
Н	-	-	-81.20	11.34	37.14	-58.11	-25.00	-33.11
Н	-	-	-81.83	14.82	39.99	-55.27	-25.00	-30.27
	2 256 1/ Ant. Pol. [H/V] H H H H	20 2560.0 1/50 Ant. Pol. [H/V] Antenna Height [cm] Ant 313 (H 313 (H - 1) (H - 1)((H - 1))((H - 1))((H - 1))((H - 1))((H - 1))((H - 1))((H - 1)((H - 1))((H - 1))((H - 1))((H - 1))((H - 1))((H - 1)((H - 1))((H - 1))((H - 1))((H - 1)((H - 1))((H - 1))((H - 1)((H - 1))((H - 1)((H - 1))((H - 1)((H - 1))((H - 1)((H - 1))((H - 1)((H - 1))((H - 1)((H - 1)((H - 1)((H - 1)((H - 1)((H - 1)((H - 1)	2500 2500 1/50 Ant.Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] H 313 344 H - - H - - H - - H - - H - - H - - H - - H - -	20 2560.0 1/50 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] H 313 344 -75.07 H 313 344 -75.07 H - - -79.69 H - - 81.20 H - - 81.83	20 Antenna Turntable Analyzer AFCL I/50 Ant. Pol. Height Level Level AFCL [dBm] AFCL [dB/m] I/50 I/	20 Antenna Turntable Analyzer AFCL Field Strength I/50 Field Strength I/50 Field Strength I/50 Strength I/60 Strength </td <td>20 2560.0 1/50 1/50 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµV/m] EIRP Spurious Emission Level [dBm] H 313 344 -75.07 5.82 37.75 -57.51 H - - -79.69 8.65 35.96 -59.29 H - - -81.20 11.34 37.14 -58.11 H - - -81.83 14.82 39.99 -55.27</td> <td>20 2560.0 1/50 Antenna Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµ//m] EIRP Spurious Emission Level [dBm] Limit [dBm] H 313 344 -75.07 5.82 37.75 -57.51 -25.00 H -79.69 8.65 35.96 -59.29 -25.00 H -81.20 11.34 37.14 -58.11 -25.00 H - 81.83 14.82 39.99 -55.27 -25.00</td>	20 2560.0 1/50 1/50 Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµV/m] EIRP Spurious Emission Level [dBm] H 313 344 -75.07 5.82 37.75 -57.51 H - - -79.69 8.65 35.96 -59.29 H - - -81.20 11.34 37.14 -58.11 H - - -81.83 14.82 39.99 -55.27	20 2560.0 1/50 Antenna Ant. Pol. [H/V] Antenna Height [cm] Turntable Azimuth [degree] Analyzer Level [dBm] AFCL [dB/m] Field Strength [dBµ//m] EIRP Spurious Emission Level [dBm] Limit [dBm] H 313 344 -75.07 5.82 37.75 -57.51 -25.00 H -79.69 8.65 35.96 -59.29 -25.00 H -81.20 11.34 37.14 -58.11 -25.00 H - 81.83 14.82 39.99 -55.27 -25.00

Table 7-21. Radiated Spurious Data (LTE Band 7 – High Channel – North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 125 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 125 01 105
© 2021 PCTEST				V2 3/28/2021

Plot 7-185. Radiated Spurious Plot (LTE Band 7 - South) - Closed

Bandwidth (MHz): Frequency (MHz):	2	20							
RB / Offset:	1/	50							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5020.0	V	394	1	-73.69	5.86	39.17	-56.09	-25.00	-31.09
7530.0	V	370	278	-71.38	7.95	43.57	-51.68	-25.00	-26.68
10040.0	V	-	-	-80.24	11.10	37.86	-57.39	-25.00	-32.39
12550.0	V	-	-	-82.03	14.35	39.32	-55.94	-25.00	-30.94

Table 7-22. Radiated Spurious Data (LTE Band 7 – Low Channel – South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 126 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 120 01 103
© 2021 PCTEST				V2 3/28/2021

Bandwidth (MHz):	20
Frequency (MHz):	2535.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5070.0	V	324	348	-75.01	5.42	37.41	-57.85	-25.00	-32.85
7605.0	V	232	335	-74.93	7.60	39.67	-55.59	-25.00	-30.59
10140.0	V	-	-	-81.09	11.29	37.20	-58.06	-25.00	-33.06
12675.0	V	-	-	-81.70	14.43	39.73	-55.53	-25.00	-30.53

Table 7-23. Radiated Spurious Data (LTE Band 7 – Mid Channel – South)

Bandwidth (MHz):	20
Frequency (MHz):	2560.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5120.00	V	164	79	-78.66	5.82	34.16	-61.10	-25.00	-36.10
7680.00	V	382	265	-74.31	8.65	41.34	-53.91	-25.00	-28.91
10240.00	V	-	-	-81.37	11.34	36.97	-58.28	-25.00	-33.28
12800.00	V	-	-	-82.27	14.82	39.55	-55.71	-25.00	-30.71

Table 7-24. Radiated Spurious Data (LTE Band 7 – High Channel – South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 127 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 127 01 103
© 2021 PCTEST				V2 3/28/2021

LTE Band 41(PC2) – North

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 129 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 126 01 165
© 2021 PCTEST				V2 3/28/2021

Bandwidth (MHz):	20
Frequency (MHz):	2506.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.0	Н	233	216	-77.14	7.36	37.22	-58.04	-25.00	-33.04
7518.0	Н	235	244	-68.71	12.75	51.04	-44.22	-25.00	-19.22
10024.0	Н	-	-	-79.70	15.19	42.49	-52.77	-25.00	-27 .77
12530.0	Н	-	-	-79.96	18.72	45.76	-49.50	-25.00	-24.50
15036.0	Н	-	-	-80.10	22.22	49.12	-46.13	-25.00	-21.13

Table 7-25. Radiated Spurious Data (LTE Band 41(PC2) – Low Channel – North)

Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.0	Н	218	282	-74.33	7.32	39.99	-55.27	-25.00	-30.27
7779.0	Н	289	281	-65.54	12.58	54.04	-41.22	-25.00	-16.22
10372.0	Н	-	-	-79.52	15.75	43.23	-52.03	-25.00	-27.03
12965.0	Н	-	-	-80.30	18.98	45.68	-49.58	-25.00	-24.58
15558.0	Н	-	-	-80.69	22.69	49.00	-46.25	-25.00	-21.25

Table 7-26. Radiated Spurious Data (LTE Band 41(PC2) – Mid Channel – North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 129 01 103
© 2021 PCTEST				\/2 3/28/2021

Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.0	Н	133	341	-76.24	8.14	38.90	-56.36	-25.00	-31.36
8040.0	Н	133	69	-70.54	12.93	49.39	-45.87	-25.00	-20.87
10720.0	Н	-	-	-80.06	16.12	43.06	-52.20	-25.00	-27.20
13400.0	Н	-	-	-80.73	19.75	46.02	-49.24	-25.00	-24.24
16080.0	Н	-	-	-81.36	23.25	48.89	-46.37	-25.00	-21.37

Table 7-27. Radiated Spurious Data (LTE Band 41(PC2) – High Channel – North)

FCC ID: C3K1995	PCTEST Proud to be part of (® elencond	PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 120 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 150 01 105
© 2021 PCTEST				1/2 3/28/2021

LTE Band 41(PC2) – South

Bandwidth (MHz): Frequency (MHz):	2 250	20 06.0							
RB / Offset:	1 /	50							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.0	Н	331	128	-73.55	4.26	37.71	-57.55	-25.00	-32.55
7518.0	Н	361	53	-70.10	8.86	45.76	-49.49	-25.00	-24.49
10024.0	Н	-	-	-78.43	11.20	39.77	-55.49	-25.00	-30.49
12530.0	Н	-	-	-80.36	13.60	40.24	-55.02	-25.00	-30.02
15036.0	Н	-	-	-80.10	15.67	42.57	-52.69	-25.00	-27.69

Table 7-28. Radiated Spurious Data (LTE Band 41(PC2) – Low Channel – South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 121 of 162
1M2105200048-05-R1.C3K	2105200048-05-R1.C3K 5/25/2021 - 9/2/2021 Portable Handset			Page 131 01 163
© 2021 PCTEST				V2 3/28/2021

Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.0	Н	380	21	-75.14	5.13	36.99	-58.27	-25.00	-33.27
7779.0	Н	202	317	-68.77	8.69	46.92	-48.34	-25.00	-23.34
10372.0	Н	-	-	-79.47	11.80	39.33	-55.92	-25.00	-30.92
12965.0	Н	224	287	-77.78	13.80	43.02	-52.23	-25.00	-27.23
15558.0	Н	-	-	-79.54	13.06	40.52	-54.74	-25.00	-29.74

Table 7-29. Radiated Spurious Data (LTE Band 41(PC2) – Mid Channel – South)

20
2680.0
1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.0	Н	398	210	-76.48	5.05	35.57	-59.69	-25.00	-34.69
8040.0	Н	359	333	-73.72	9.72	43.00	-52.26	-25.00	-27.26
10720.0	Н	-	-	-80.25	12.69	39.44	-55.81	-25.00	-30.81
13400.0	Н	-	-	-79.73	14.86	42.13	-53.13	-25.00	-28.13
16080.0	Н	-	-	-80.38	13.47	40.09	-55.17	-25.00	-30.17

Table 7-30. Radiated Spurious Data (LTE Band 41(PC2) – High Channel – South)

FCC ID: C3K1995	PCTEST: Proud to be post of @ritement	PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 122 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Fage 152 01 105
© 2021 PCTEST				V2 3/28/2021

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 122 of 162
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 155 01 165
© 2021 PCTEST				V2 3/28/2021

Plot 7-195. Radiated Spurious Plot (NR Band n41 - North) - Closed

Bandwidth (MHz):	100
Frequency (MHz):	2546.0
RB / Offset:	1 / 136
Mode:	SA

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5092.0	V	-	-	-79.50	5.30	32.80	-62.46	-25.00	-37.46
7638.0	V	-	-	-80.58	8.63	35.05	-60.21	-25.00	-35.21
10184.0	V	-	-	-81.49	11.33	36.84	-58.42	-25.00	-33.42

Table 7-31. Radiated Spurious Data (NR Band n41 – Low Channel – North)

Bandwidth (MHz):	100
Frequency (MHz):	2593.0
RB / Offset:	1 / 136
Mode:	SA
RB / Offset: Mode:	1 / 136 SA

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.0	V	-	-	-79.71	6.27	33.56	-61.70	-25.00	-36.70
7779.0	V	-	-	-80.06	7.64	34.58	-60.68	-25.00	-35.68
10372.0	V	-	-	-81.59	11.99	37.40	-57.86	-25.00	-32.86

Table 7-32. Radiated Spurious Data (NR Band n41 - Mid Channel - North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 124 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 134 of 163	
© 2021 PCTEST				V2 3/28/2021	

Bandwidth (MHz):	100
Frequency (MHz):	2640.0
RB / Offset:	1 / 136
Mode:	SA

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5280.0	V	-	-	-79.03	5.34	33.31	-61.95	-25.00	-36.95
7920.0	V	-	-	-80.54	8.73	35.19	-60.07	-25.00	-35.07
10560.0	V	-	-	-82.38	11.65	36.27	-58.99	-25.00	-33.99

Table 7-33. Radiated Spurious Data (NR Band n41 – High Channel – North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 125 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 135 of 163	
© 2021 PCTEST				V2 3/28/2021	

NR Band n41 – South

Bandwidth (MHz):	100
Frequency (MHz):	2546.0
RB / Offset:	1 / 136
Mode:	SA

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5092.0	Н	-	-	-79.51	5.30	32.79	-62.47	-25.00	-37.47
7638.0	Н	344	4	-77.63	8.63	38.00	-57.26	-25.00	-32.26
10184.0	Н	-	-	-81.66	11.33	36.67	-58.59	-25.00	-33.59
12730.0	Н	244	346	-79.45	14.87	42.42	-52.84	-25.00	-27.84
15276.0	Н	-	-	-82.35	17.12	41.77	-53.49	-25.00	-28.49
17822.0	Н	-	-	-83.22	19.41	43.19	-52.07	-25.00	-27.07

Table 7-34. Radiated Spurious Data (NR Band n41 – Low Channel – South)

FCC ID: C3K1995		PCTEST: Port bis pet d @ measer PART 27 MEASUREMENT REPORT Microsoft		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 126 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 136 of 163	
© 2021 PCTEST				V2 3/28/2021	

Bandwidth (MHz):	100
Frequency (MHz):	2593.0
RB / Offset:	1 / 136
Mode:	SA

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.0	Н	-	-	-79.69	6.27	33.58	-61.68	-25.00	-36.68
7779.0	Н	273	38	-74.66	7.64	39.98	-55.28	-25.00	-30.28
10372.0	Н	-	-	-81.86	11.99	37.13	-58.13	-25.00	-33.13
12965.0	Н	218	358	-80.70	15.05	41.35	-53.90	-25.00	-28.90
15558.0	Н	-	-	-82.04	17.37	42.33	-52.92	-25.00	-27.92

Table 7-35. Radiated Spurious Data (NR Band n41 – Mid Channel – South)

Bandwidth (MHz):	100
Frequency (MHz):	2640.0
RB / Offset:	1 / 136
Mode:	SA

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5280.0	Н	-	-	-79.47	5.34	32.87	-62.39	-25.00	-37.39
7920.0	Н	333	9	-74.10	8.73	41.63	-53.63	-25.00	-28.63
10560.0	Н	-	-	-82.65	11.65	36.00	-59.26	-25.00	-34.26
13200.0	Н	-	-	-82.17	14.93	39.76	-55.50	-25.00	-30.50
15840.0	Н	-	-	-83.27	18.69	42.42	-52.83	-25.00	-27.83

Table 7-36. Radiated Spurious Data (NR Band n41 – High Channel – South)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 127 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 137 of 163	
© 2021 PCTEST				V2 3/28/2021	

Plot 7-200. Radiated Spurious Plot (ULCA LTE B7 - High Channel - North) - Open

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 129 of 162
1M2105200048-05-R1.C3K 5/25/2021 - 9/2/2021 Portable Handset		Portable Handset		Page 136 01 163
© 2021 PCTEST				1/2 3/28/2021

Plot 7-203. Radiated Spurious Plot (ULCA LTE B7 - High Channel - North) - Half

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 139 01 163	
© 2021 PCTEST				V2 3/28/2021	

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2510.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2529.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5039.8	Н	175	18	-71.38	5.89	41.51	-53.74	-25.00	-28.74
7559.7	Н	229	0	-65.86	8.59	49.73	-45.53	-25.00	-20.53
10079.6	Н	-	-	-80.16	12.15	38.99	-56.26	-25.00	-31.26
12599.5	Н	-	-	-80.47	14.07	40.60	-54.66	-25.00	-29.66
15119.4	Н	-	-	-81.21	17.65	43.44	-51.82	-25.00	-26.82

Table 7-37. Radiated Spurious Data (ULCA LTE B7 – Low Channel – North)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2535.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2554.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5089.8	Н	149	27	-72.25	5.41	40.16	-55.09	-25.00	-30.09
7634.7	Н	234	6	-65.72	8.63	49.91	-45.35	-25.00	-20.35
10179.6	Н	-	-	-80.32	11.33	38.01	-57.25	-25.00	-32.25
12724.5	Н	-	-	-80.51	14.56	41.05	-54.21	-25.00	-29.21
15269.4	Н	-	-	-80.85	17.11	43.26	-52.00	-25.00	-27.00

Table 7-38. Radiated Spurious Data (ULCA LTE B7 – Mid Channel – North)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2560.0
PCC RB / Offset:	1/0
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2540.2
SCC RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5100.2	Н	235	20	-75.43	5.15	36.72	-58.54	-25.00	-33.54
7650.3	Н	199	18	-71.98	8.64	43.66	-51.60	-25.00	-26.60
10200.4	Н	-	-	-80.46	11.34	37.88	-57.38	-25.00	-32.38
12750.5	Н	-	-	-80.80	14.28	40.48	-54.78	-25.00	-29.78
15300.6	Н	-	-	-81.02	17.16	43.14	-52.12	-25.00	-27.12

Table 7-39. Radiated Spurious Data (ULCA LTE B7 – High Channel – North)

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 140 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 140 01 165	
© 2021 PCTEST				V2 3/28/2021	

FCC ID: C3K1995		PART 27 MEASUREMENT REPORT	Microsoft	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 141 of 162	
1M2105200048-05-R1.C3K	5/25/2021 - 9/2/2021	Portable Handset		Page 141 01 105	
© 2021 PCTEST				V/2 3/28/2021	