

TEST REPORT

Report Number. : R13541206-E5

- Applicant : Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399 USA
 - **Model :** 1964
 - FCC ID : C3K1964
 - **IC** : 3048A-1964
- **EUT Description** : Portable Computing Device
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART E ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5 + A2

Date Of Issue:

2021-08-13

Prepared by:

UL LLC 12 Laboratory Dr. Research Triangle Park, NC 27709 U.S.A. TEL: (919) 549-1400

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
v1	2021-05-25	Initial Issue	Niklas Haydon
V2	2021-06-22	Reformatted 802.11a data. This mode does not support 2Tx CDD.	Brian T. Kiewra
V3	2021-08-13	Updated power for 5.2GHz 11a and 5.3GHz 11a Added note in Radiated section regarding below 30MHz & Above 18GHz emisisons	Cristian Melara

Page 2 of 269

TABLE OF CONTENTS

RE	POR	T REVISION HISTORY	2
ТА	BLE	OF CONTENTS	3
1.	AT	ESTATION OF TEST RESULTS	5
2.	TES	ST RESULT SUMMARY	,
3.	TES	ST METHODOLOGY	3
4.	FAC	CILITIES AND ACCREDITATION	3
5.	DEC	CISION RULES AND MEASUREMENT UNCERTAINTY)
5	5.1.	METROLOGICAL TRACEABILITY)
5	5.2.	DECISION RULES	9
5	5.3.	MEASUREMENT UNCERTAINTY	9
5	5.4.	SAMPLE CALCULATION	9
6.	EQ	JIPMENT UNDER TEST10)
6	<i>5.1.</i>	EUT DESCRIPTION)
6	6.2.	MAXIMUM OUTPUT POWER10)
6	6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	3
6	6.4.	SOFTWARE AND FIRMWARE13	3
6	6.5.	WORST-CASE CONFIGURATION AND MODE14	1
6	6.6.	DESCRIPTION OF TEST SETUP19)
7.	ME	ASUREMENT METHOD20)
8.	TES	ST AND MEASUREMENT EQUIPMENT27	I
9.	AN ⁻	FENNA PORT TEST RESULTS	ŀ
g).1.	ON TIME AND DUTY CYCLE	
	9.1.		
g	9.2. 9.2.	26 dB BANDWIDTH	7 7
	9.2.		
	9.2.		
	9.2.		
	9.2. 9.2.	•••••••••••••••••••••••••••••••••••••••	
	9.2.		
	9.2.		
		Page 3 of 269	

12 Laboratory Dr., RTP, NC 27709; USA

	9.2.9.	802.11ac VHT80 MODE IN THE 5.3 GHz BAND	40
9	.3. 999	% BANDWIDTH	41
	9.3.1.	802.11a MODE IN THE 5.2 GHz BAND	
	9.3.2.	802.11n HT20 MODE IN THE 5.2 GHz BAND	44
	9.3.3.	802.11n HT40 MODE IN THE 5.2 GHz BAND	
	9.3.4.	802.11ac VHT80 MODE IN THE 5.2 GHz BAND	
	9.3.5.	802.11ac VHT160 MODE IN THE 5.2/5.3 GHz BAND	-
	9.3.6.	802.11a MODE IN THE 5.3 GHz BAND.	
	9.3.7.	802.11n HT20 MODE IN THE 5.3 GHz BAND	
	9.3.8.	802.11n HT40 MODE IN THE 5.3 GHz BAND	
	9.3.9.	802.11ac VHT80 MODE IN THE 5.3 GHz BAND	-
9		TPUT POWER AND PSD	
	9.4.1.	802.11a MODE IN THE 5.2 GHz BAND	
	9.4.2.	802.11n HT20 MODE IN THE 5.2 GHz BAND	
	9.4.3.	802.11n HT40 MODE IN THE 5.2 GHz BAND	-
	9.4.4.	802.11ac VHT80 MODE IN THE 5.2 GHz BAND	
	9.4.5. 9.4.6.	802.11ac VHT160 MODE IN THE 5.2 GHz BAND 802.11a MODE IN THE 5.3 GHz BAND	
	9.4.0. 9.4.7.	802.11a MODE IN THE 5.3 GHZ BAND	
	9.4.8.	802.11n HT40 MODE IN THE 5.3 GHz BAND	-
	9.4.9.	802.11ac VHT80 MODE IN THE 5.3 GHz BAND	
	9.4.10.		
10.	RADIA	TED TEST RESULTS	164
1	0.1. 7	RANSMITTER ABOVE 1 GHz	165
	10.1.1.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND	165
	10.1.2.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND	175
	10.1.3.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND	-
	10.1.4.	TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.2 GHz BAND	
		TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND	
	10.1.6.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND	
	10.1.7.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND	
		TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.3 GHz BAND	-
	10.1.9.	TX ABOVE 1 GHz 802.11ac VHT160 MODE IN THE 5.2 & 5.3 GHz BAND.	257
11.	SETUP	PHOTOS	269

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399 USA
EUT DESCRIPTION:	Portable Computing Device
MODEL:	1964
SERIAL NUMBER:	0F0002Z211200C (radiated) 0F000AN211200C (radiated) 0F0008Z211200C (radiated) 0F0003K211200C (antenna port conducted) 0F0003W211200C (antenna port conducted) 0F0003V211200C (antenna port conducted)
	2021 04 12

SAMPLE RECEIPT DATE: 2021-04-12

DATE TESTED: 2021-04-13 to 2021-05-04 , 2021-08-10, 2021-08-13

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 Part 15 Subpart E	Complies		
ISED RSS-247 Issue 2	Complies		
ISED RSS-GEN Issue 5 + A2	Complies		

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by or any agency of the U.S. government.

Approved & Released For UL LLC By:

NC

Jeffrey Moser Operations Manager Consumer Technology Division UL LLC

Prepared By:

Niklaz Haudon

Niklas Haydon Operations Leader Consumer Technology Division UL LLC

Michel Cha

Mike Antola Staff Engineer Consumer Technology Division UL LLC

Page 6 of 269

2. TEST RESULT SUMMARY

This report contains data provided by the applicant which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting purposes only	Per ANSI C63.10, Section 12.2.
See Comment	RSS-GEN 6.7	26dB BW/99% OBW	Reporting purposes only	Per ANSI C63.10 Sections 6.9.2 and 6.9.3
15.407 (a) (1-4), (h) (1)	RSS-247 6.2	Output Power	Complies	None.
15.407 (a) (1-3, 5)	RSS-247 6.2	PSD	Complies	None.
15.209, 15.205, 15.407 (b)	RSS-GEN 8.9, 8.10, RSS-247 6.2	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

Page 7 of 269

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with;

- FCC CFR 47 Part 2
- FCC CFR 47 Part 15
- FCC KDB 662911 D01 v02r01,
- FCC KDB 905462 D06 v02
- FCC KDB 789033 D02 v02r01,
- KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013
- RSS-GEN Issue 5 + A2
- RSS-247 Issue 2

4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification #0751.06, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	703469
\boxtimes	Building: 2800 Perimeter Park Dr Morrisville, NC 27560, U.S.A	030067	21000	103409

Page 8 of 269

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radio Frequency (Spectrum Analyzer)	141.2 Hz
Occupied Channel Bandwidth	1.22%
RF output power, conducted	1.3 dB (PK)
RF output power, conducted	0.45 dB (AV)
Power Spectral Density, conducted	2.47 dB
Unwanted Emissions, conducted	1.94 dB
All emissions, radiated	6.01 dB
Conducted Emissions (0.150-30MHz) - LISN	3.40 dB
Temperature	0.57%
Humidity	3.39%
DC Supply voltages	1.70%
Time	3.39%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA Page 9 of 269

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a portable computing device. This report covers the 5.2/5.3 WLAN non-ax radio in the device.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

5.2	GHz	BAND	(FCC)

Frequency Range (MHz)	Mode	Output Power	Output Power (mW)	
		(dBm)		
5.2 GHz band, 1TX,	ANT A			
5180-5240	802.11a	18.71	74.30	
5180-5240	802.11n HT20	18.89	77.45	
5190-5230	802.11n HT40	18.05	63.83	
5210	802.11ac VHT80	14.18	26.18	
5250	802.11ac VHT160	12.25	16.79	
5.2 GHz band, 1TX, ANT B				
5180-5240	802.11a	18.22	66.37	
5180-5240	802.11n HT20	18.94	78.34	
5190-5230	802.11n HT40	18.06	63.97	
5210	802.11ac VHT80	14.30	26.92	
5250	802.11ac VHT160	12.69	18.58	
5.2 GHz band, 2TX				
5180-5240	802.11n HT20 SDM	21.01	126.18	
5190-5230	802.11n HT40 SDM	19.03	79.98	
5210	802.11ac VHT80 SDM	16.17	41.40	

Page 10 of 269

5.2 GHz BAND (IC)

Frequency Range	Mode	Output	Output Power
(MHz)		Power	(mW)
		(dBm)	
5.2 GHz band, 1TX,	ANT A		
5180-5240	802.11a	12.73	18.75
5180-5240	802.11n HT20	12.49	17.74
5190-5230	802.11n HT40	16.07	40.46
5210	802.11ac VHT80	14.18	26.18
5250	802.11ac VHT160	12.25	16.79
5.2 GHz band, 1TX,	ANT B		
5180-5240	802.11a	13.15	20.65
5180-5240	802.11n HT20	12.32	17.06
5190-5230	802.11n HT40	16.07	40.46
5210	802.11ac VHT80	14.30	26.92
5250	802.11ac VHT160	12.69	18.58
5.2 GHz band, 2TX			
5180-5240	802.11n HT20 SDM	13.29	21.33
5190-5230	802.11n HT40 SDM	15.40	34.67
5210	802.11ac VHT80 SDM	16.17	41.40

5.3 GHz BAND (FCC)

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)	
5.3 GHz band, 1TX,	ANT A			
5260 - 5320	802.11a	19.28	84.72	
5260 - 5320	802.11n HT20	19.03	79.98	
5270 - 5310	802.11n HT40	18.13	65.01	
5290	802.11ac VHT80	13.04	20.14	
5250	802.11ac VHT160 SDM	12.25	16.79	
5.3 GHz band, 1TX,	ANT B			
5260 - 5320	802.11a	19.47	88.51	
5260 - 5320	802.11n HT20	19.01	79.62	
5270 - 5310	802.11n HT40	18.21	66.22	
5290	802.11ac VHT80	13.39	21.83	
5250	802.11ac VHT160	12.69	18.58	
5.3 GHz band, 2TX	5.3 GHz band, 2TX			
5260 - 5320	802.11n HT20	20.54	113.24	
5270 - 5310	802.11n HT40 SDM	18.97	78.89	
5290	802.11ac VHT80 SDM	13.96	24.89	
5250	802.11ac VHT160 SDM	13.49	22.34	

Page 11 of 269

5.3 GHz BAND (IC)

Frequency Range (MHz)	Mode	Output Power	Output Power (mW)			
		(dBm)				
5.3 GHz band, 1TX,	ANT A					
5260 - 5320	802.11a	19.28	84.72			
5260 - 5320	802.11n HT20	19.03	79.98			
5270 - 5310	802.11n HT40	18.13	65.01			
5290	802.11ac VHT80	13.04	20.14			
5250	802.11ac VHT160 SDM	12.25	16.79			
5.3 GHz band, 1TX,	ANT B					
5260 - 5320	802.11a	19.47	88.51			
5260 - 5320	802.11n HT20	19.01	79.62			
5270 - 5310	802.11n HT40	18.21	66.22			
5290	802.11ac VHT80	13.39	21.83			
5250	802.11ac VHT160	12.69	18.58			
5.3 GHz band, 2TX	5.3 GHz band, 2TX					
5260 - 5320	802.11n HT20	20.54	113.24			
5270 - 5310	802.11n HT40 SDM	18.97	78.89			
5290	802.11ac VHT80 SDM	13.96	24.89			
5250	802.11ac VHT160 SDM	13.49	22.34			

Page 12 of 269

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

The radio utilizes two PIFA antennas, with the following gains:

Frequency	Antenna A	Antenna B
5150 to 5250MHz	4.5 dBi	3.4 dBi
5250 to 5350MHz	4.6 dBi	4.6 dBi

6.4. SOFTWARE AND FIRMWARE

OS: Windows Build 19041.vb_release 191206-1406 Test tool version 22.35020.0.0-01924 WLAN driver 22.20.0.5 BT driver 22.30.0.4

Page 13 of 269

6.5. WORST-CASE CONFIGURATION AND MODE

The fundamental of the EUT was investigated in the three available configurations (A, B and C as described in the test setup photos) for Antenna A. Where a configuration can be portable it was also investigated in three orthogonal orientations (X, Y, Z) modes. It was determined that C (portable) configuration in Y orientation was the worst-case configuration orientation; therefore, all final radiated testing was performed with the EUT in C (portable) configuration in Y orientation. for Antenna A.

The fundamental of the EUT was investigated in the three available configurations (A, B and C as described in the test setup photos) for Antenna B. Where a configuration can be portable it was also investigated in three orthogonal orientations (X, Y, Z) modes. It was determined that C (portable) configuration in Z orientation was the worst-case configuration orientation; therefore, all final radiated testing was performed with the EUT in C (portable) configuration in Z orientation. for Antenna B.

The fundamental of the EUT was investigated in the three available configurations (A, B and C as described in the test setup photos) for Antenna A + Antenna B. Where a configuration can be portable it was also investigated in three orthogonal orientations (X, Y, Z) modes. It was determined that A configuration was the worst-case configuration orientation; therefore, all final radiated testing was performed with the EUT in configuration A for Antenna A + Antenna B.

All radios that can transmit simultaneously have been evaluated for radiated for all possible combinations of transmission and found to be in compliance.

Note: 802.11a does not support CDD mode, however for radiated testing this mode was tested as ANT A + ANT B using SISO power as worst-case scenario, except if this was non-compliant. In this case 1 Tx mode was tested.

Worst-case data rates as provided by the client were:

802.11a 1Tx mode: 6 Mbps 802.11n HT20 1Tx mode: MCS0 802.11n HT40 1Tx mode: MCS0 802.11ac VHT80 1Tx mode: MCS0 802.11ac VHT160 1Tx mode: MCS0 802.11n HT20 2Tx, SDM mode: MCS8 802.11n HT40 2Tx, SDM mode: MCS8 802.11ac VHT80 2Tx, SDM mode: MCS0 (NSS=2) 802.11ac VHT160 2Tx, SDM mode: MCS0 (NSS=2)

Page 14 of 269

Radiated band edge emissions (FCC settings), output power, average power, and power spectral density were performed with the EUT set to the max power setting of each modulation/channel/mode the EUT will be set at:

Frequency Band				
Dallu	Wi-Fi Channels	802.11n20	Wi-Fi Channels	802.11n40
	36	16	20	14
	40	17	38	14
	44	18	46	16
5150 to	48	18	40	10
5350 MHz	52	17.5	54	16
	56	17.5	54	10
	60	17.5	62	11
	64	13	02	11

Frequency Band	FCC 2Tx SDM			
Banu	Wi-Fi 802,11ac80 Wi-Fi		Wi-Fi Channels	802.11ac160
5150 to	42	13	50	10
5350 MHz	58	11	50	10

Frequency Band	FCC 1Tx Antenna A/B				
Bang	Wi-Fi Channels	802.11a	802.11n20	Wi-Fi Channels	802.11n40
	36	18	18	38	16
	40	19	19	50	10
	44	19	-	46	18
5150 to	48	19	19	40	10
5350 MHz	52	19	19	54	18
	56	18	18		10
	60	17	17	62	15
	64	15	15	02	13

Page 15 of 269

Frequency Band	FCC 1Tx Antenna A/B			
Dana	Wi-Fi Channels	802.11ac80	Wi-Fi Channels	802.11ac160
5150 to	42	14	50	12
5350 MHz	58	13	50	12

Frequency Band	IC 2Tx SDM			
Banu	Wi-Fi 802.11n20 Wi-Fi Channels		802.11n40	
	36	11	38	13
	40	11	50	15
	44	11	46	13
5150 to	48	11	40	15
5350 MHz	52	17.5	54	16
	56	17.5	54	10
	60	17.5	62	11
	64	13	02	11

Frequency Band	IC 2Tx SDM			
Band	Wi-Fi Channels	802.11ac80	Wi-Fi Channels	802.11ac160
5150 to	42	13	FO	10
5350 MHz	58	11	50	10

Frequency Band	IC 1Tx Antenna A/B				
Dallu	Wi-Fi Channels	802.11 a	802.11n20	Wi-Fi Channels	802.11n40
	36	13	13	38	16
	40	13	13	20	10
	44	13	13	10	16
5150 to	48	13	13	46	10
5350 MHz	52	19	19	54 62	18
	56	18	18		10
	60	17	17		15
	64	15	15	02	13

Page 16 of 269

UL LLC

12 Laboratory Dr., RTP, NC 27709; USA

TEL: (919) 549-1400

Frequency Band	IC 1Tx Antenna A/B			
Band	Wi-Fi Channels	802.11ac80	Wi-Fi Channels	802.11ac160
5150 to 5350 MHz	42	14	50	12
	58	13		

26dB and 99% bandwidth were performed with the EUT set in 2Tx modes at 1Tx power levels:

Frequency Band		2Tx C	CD/SDM	
Band	Wi-Fi Channels	802.11n20	Wi-Fi Channels	802.11n40
	36	18	38	16
	40	19		10
	44	-		18
5150 to	48	19	40	10
5350 MHz	52	19	54	18
	56	18	54	10
	60	17	62	15
	64	15	02	13

Frequency Band	2Tx CCD/SDM			
Banu	Wi-Fi Channels	802.11ac80	Wi-Fi Channels	802.11ac160
5150 to	42	14	50	11
5350 MHz	58	13	50	11

Page 17 of 269

TEL: (919) 549-1400

Radiated spurious emissions between 1GHz and 18GHz (not including radiated band edge emissions), were performed with the EUT set to transmit on low, middle and high channels on each modulation with the maximum output power settings (note – These are set higher than the final power levels listed above). Testing was performed in 802.11a mode which is considered worst-case power and PSD when set at the max. power settings and yields the worst-case spurious emissions.

Frequency Band		2Tx CCD/SDM					
Danu	Wi-Fi Channels	802.11a	802.11n20	Wi-Fi Channels	802.11n40		
	36	19	-	38			
	40	19	-	50	-		
	44	-	-	46			
5150 to	48	19	-	40	-		
5350 MHz	52	19	-	54			
	56	-	-		-		
	60	19	-	62			
	64	19	-	02	-		

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed in UL LLC report R13541206-E7.

Page 18 of 269

6.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	S	upport Equipment List		
Description	Manufacturer	Model	Serial Number	FCC ID
USB Hub	J5create	JCA374	AY2A1904000477	NA
USB Hub	J5create	JCA374	AY3A2010013253	NA
USB Hub	J5create	JCD383	DL3A1903011541	NA
USB Hub	J5create	JCD383	FY5A2010034764	NA
Earbuds	Sony	MDR-EX14AP	NA	NA
Earbuds	Sony	MDR-EX14AP	NA	NA
Earbuds	JVC	HA-FXL	NA	NA
Power Supply	Microsoft	1706	0D130U0HD210C	NA
Power Supply	Microsoft	1706	0D130U0GX310C	N/A
Power Supply	Microsoft	1706	0D130U0HD710C	N/A
Power Supply	Microsoft	1706	0D130U0GU310C	N/A
Power Supply	Microsoft	1706	0D130U0HDL10C	N/A

I/O CABLES

	I/O Cable List								
	Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
	1	Mains	1	12-pin	Mains	<3	Goes to ac/dc adapter		
ĺ	2	USB-C	2	USB-C	USB	<3	None		

TEST SETUP

Test software on the EUT exercised the radio card.

SETUP DIAGRAMS

Please refer to R13541206-EP2 for setup diagrams.

Page 19 of 269

7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 789033 D02 v02r01, Section B.

26 dB Emission BW: KDB 789033 D02 v02r01, Section C.1

99% Occupied BW: KDB 789033 D02 v02r01, Section D.

Conducted Output Power: KDB 789033 D02 v02r01, Section E.3.b (Method PM-G)

Power Spectral Density: KDB 789033 D02 v02r01, Section F

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v02r01, Sections G.1, G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v02r01, Sections G.2, G.3, G.4, and G.5.

General Radiated Spurious Emissions: ANSI C63.10-2013 Section 6.3-6.6

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA Page 20 of 269

TEL: (919) 549-1400

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 1	Manulacturer		Last Gal.	Next Oal.
SA0025	Spectrum Analyzer	Agilent	N9030A	2021-04-01	2022-04-01
PWM002 (PRE0137344)	RF Power Meter	Keysight Technologies	N1911A	2020-07-31	2021-07-31
PWS001 (PRE0137347)	Peak and Avg Power Sensor, 50MHz to 18GHz	Keysight Technologies	N1921A	2020-05-27	
PWS002 (PRE0137348)	Peak and Avg Power Sensor, 50MHz to 18GHz	Keysight Technologies	N1921A	2020-07-31	2021-07-31
HI0090 (PRE0191271)	Environmental Meter	Fisher Scientific	15-077-963	2020-06-26	2021-06-26
SOFTEMI	Antenna Port Software	UL	Version 2021.04.28	NA	NA
	Conducted Room 2				
SA0027 (PRE0126407)	Spectrum Analyzer	Keysight Technologies	N9030A	2020-06-10	2021-06-10
SA0027 (PRE0126407)	Spectrum Analyzer	Keysight Technologies	N9030A	2021-06-25	2022-06-25
PWM004 (PRE0137346)	RF Power Meter	Keysight Technologies	N1911A	2020-07-31	2021-07-31
PWM004 (PRE0137346)	RF Power Meter	Keysight Technologies	N1911A	2021-07-16	2022-07-16
PWM001 PWS002	RF Power Meter Peak and Avg Power Sensor,	Keysight Technologies	N1912A	2021-07-16	2022-07-16
(PRE0137348)	50MHz to 18GHz	Keysight Technologies	N1921A	2020-08-12	2021-08-12
PWS003	Peak and Avg Power Sensor, 50MHz to 18GHz	Keysight Technologies	E9323A	2021-05-27	2022-05-27
HI0091	Environmental Meter	Fisher Scientific	15-077-963	2020-06-26	2021-06-26
HI0091	Environmental Meter	Fisher Scientific	15-077-963	2021-07-12	2022-07-12
SOFTEMI	Antenna Port Software	UL	Version 2021.4.13, 2021.4.28, 2021.4.29 2021.5.28	NA	NA

Test Equipment Used - Wireless Conducted Measurement Equipment

Page 21 of 269

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - North Chamber)

Equip. ID	Description	Manufacturer/Brand	Model Number	Last Cal.	Next Cal.
	1-18 GHz				
AT0072	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2020-04-27	2021-04-27
	Gain-Loss Chains				
N-SAC03	Gain-loss string: 1-18GHz	Various	Various	2020-07-28	2021-07-28
	Receiver & Software				
197954	Spectrum Analyzer	Rohde & Schwarz	ESW44	2021-03-30	2022-03-30
SOFTEMI	EMI Software	UL	Version 9).5 (04 Mar 2	021)
	Additional Equipment used				
s/n 181474341	Environmental Meter	Fisher Scientific	15-077-963	2020-08-06	2021-08-06

Page 22 of 269

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville - South Chamber)

Equip. ID	Description	Manufacturer/Brand	Model Number	Last Cal.	Next Cal.
	1-18 GHz				
AT0067	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2020-04-28	2021-04-28
AT0069	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2020-05-26	2021-05-26
	Gain-Loss Chains				
S-SAC03	Gain-loss string: 1-18GHz	Various	Various	2020-07-06	2021-07-06
	Receiver & Software				
197955	Spectrum Analyzer	Rohde & Schwarz	ESW44	2021-03-10	2022-03-10
SOFTEMI	EMI Software	UL	Version	9.5 (04 Mar 2	021)
	Additional Equipment used				
s/n 200037635	Environmental Meter	Fisher Scientific	06-662-4	2020-01-22	2022-01-22

Test Equipment Used - Radiated Disturbance Emissions (E-field) - Chamber C

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	1-18 GHz				
AT0062	HORN Antenna	ETS-Lindgren	3117	2021-02-03	2022-02-03
	Gain-Loss Chains				
C-SAC02	Gain-loss string: 1-18GHz	Various	Various	2021-04-15	2022-04-15
C-SAC02 Path 7	Gain-loss string 1-7GHz	Various	Various	2021-04-15	2022-04-15
	Receiver & Software				
206496	Spectrum Analyzer	Rohde & Schwarz	ESW44	2020-03-09	2022-03-09
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
HI0085	Temp/Humid/Pressure Meter	EXTECH	SD700	2020-04-20	2021-04-30

NOTES:

- 1. For equipment listed above that was calibrated during the testing period, please note the equipment was used for testing after calibration.
- 2. For equipment listed above that has a calibration due date during the testing period, the testing was completed before the equipment expiration date.

Page 23 of 269

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

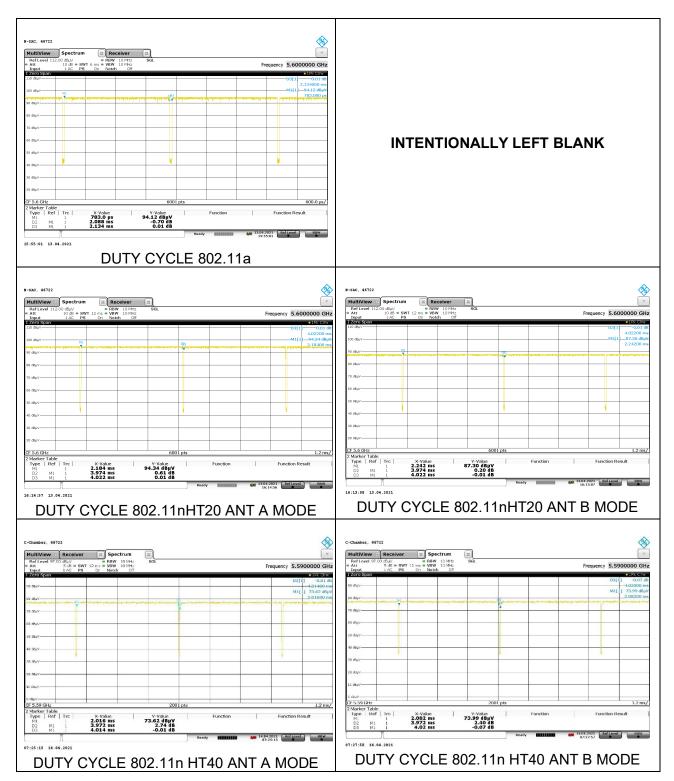
9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

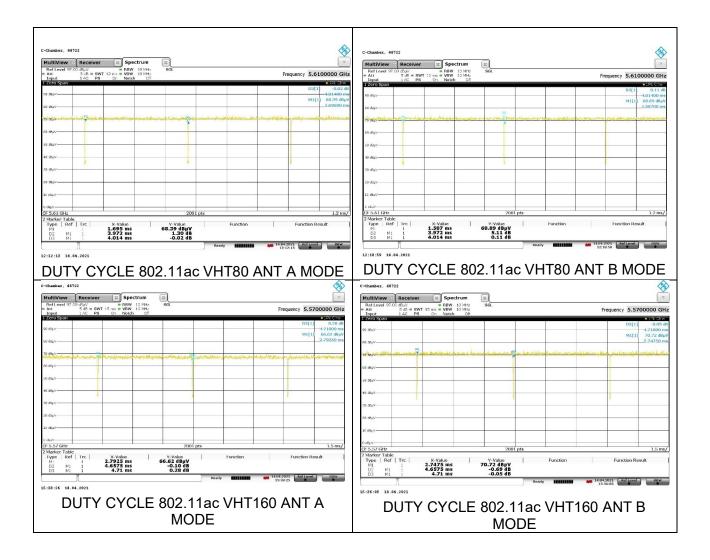
LIMITS

None; for reporting purposes only.

PROCEDURE


KDB 558074 Zero-Span Spectrum Analyzer Method.

9.1.1. ON TIME AND DUTY CYCLE RESULTS


Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	Duty Cycle	1/B
					Correction -	Correction -	Minimum
	В		x	Cycle	RMS	Voltage	VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(dB)	(kHz)
802.11a	2.088	2.134	0.978	97.84%	0.09	0.19	0.479
802.11n HT20 Ant A	3.974	4.022	0.988	98.81%	0.00	0.00	0.010
802.11n HT20 Ant B	3.974	4.022	0.988	98.81%	0.00	0.00	0.010
802.11n HT40 Ant A	3.972	4.014	0.990	98.95%	0.00	0.00	0.010
802.11n HT40 Ant B	3.972	4.020	0.988	98.81%	0.00	0.00	0.010
802.11ac VHT80 Ant A	3.972	4.014	0.990	98.95%	0.00	0.00	0.010
802.11ac VHT80 Ant B	3.972	4.014	0.990	98.95%	0.00	0.00	0.010
802.11ac VHT160 Ant A	4.658	4.710	0.989	98.89%	0.00	0.00	0.010
802.11ac VHT160 Ant B	4.658	4.710	0.989	98.89%	0.00	0.00	0.010

Page 24 of 269

DUTY CYCLE PLOTS

Page 25 of 269

Page 26 of 269

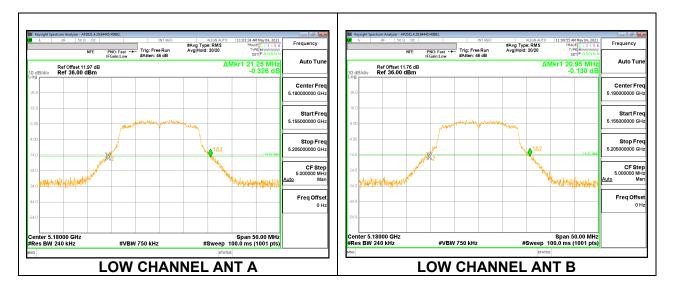
TEL: (919) 549-1400

9.2. 26 dB BANDWIDTH

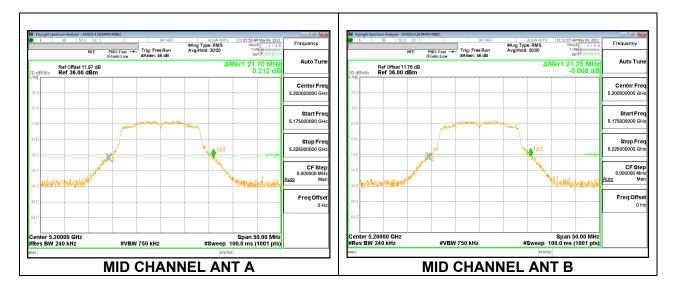
LIMITS

None; for reporting purposes only.

RESULTS

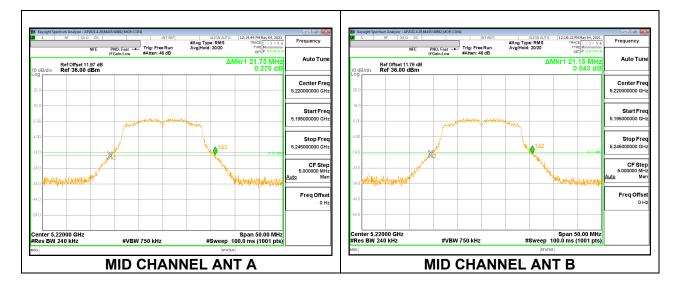

9.2.1. 802.11a MODE IN THE 5.2 GHz BAND

1Tx Antenna A and 1Tx Antenna B Mode

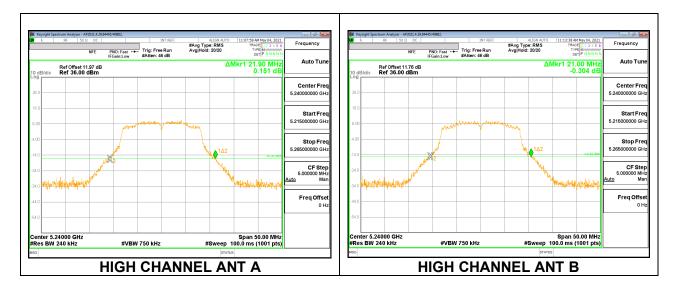

Channe	l Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5180	21.25	20.95
Mid	5200	21.70	21.25
Mid	5220	21.75	21.15
High	5240	21.90	21.00

Page 27 of 269

LOW CHANNEL



MID CHANNEL

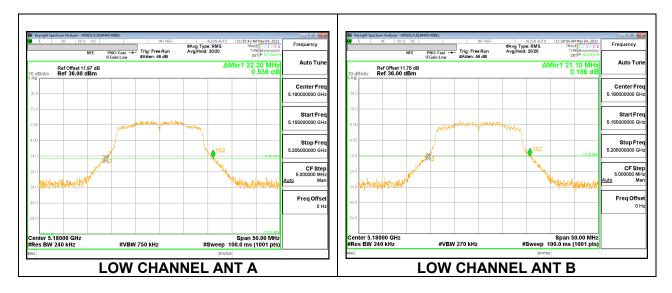


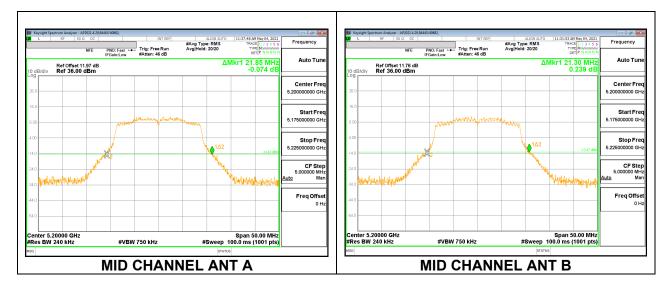
Page 28 of 269

MID CHANNEL

HIGH CHANNEL

Page 29 of 269

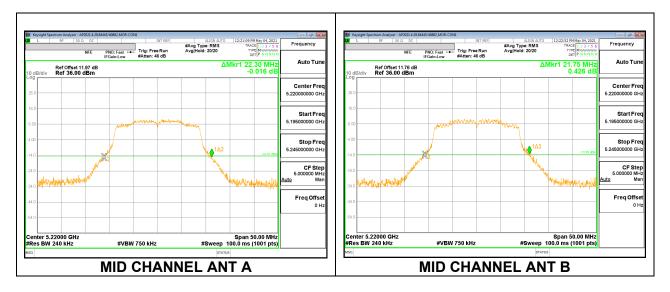

TEL: (919) 549-1400


9.2.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

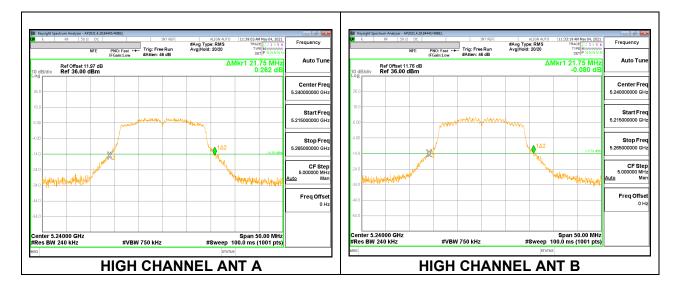
2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5180	22.20	21.10
Mid	5200	21.85	21.30
Mid	5220	22.30	21.75
High	5240	21.75	21.75

LOW CHANNEL

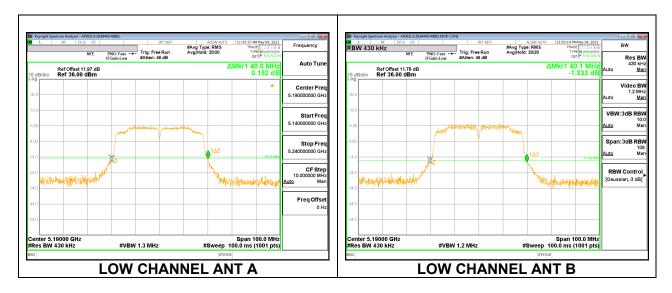

MID CHANNEL

Page 30 of 269

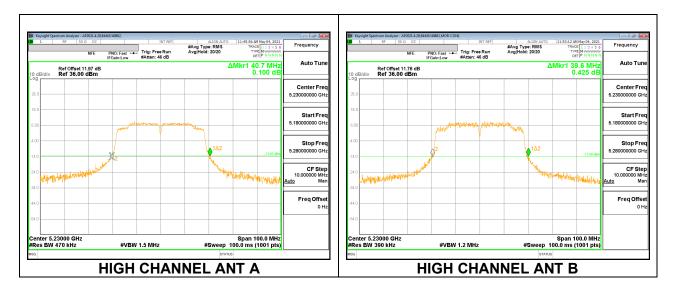

UL LLC

12 Laboratory Dr., RTP, NC 27709; USA

HIGH CHANNEL


Page 31 of 269

9.2.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND


2TX Antenna A + Antenna B SDM MODE

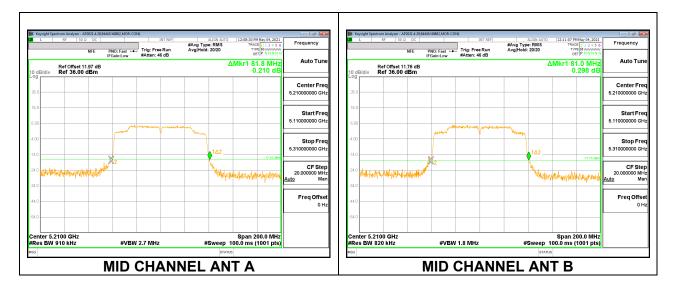
Channel Frequency		26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5190	40.00	40.10
High	5230	40.70	39.60

LOW CHANNEL

HIGH CHANNEL

Page 32 of 269

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

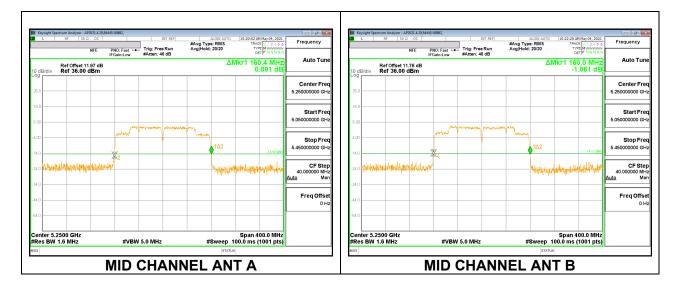

TEL: (919) 549-1400

9.2.4. 802.11ac VHT80 MODE IN THE 5.2 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel Frequency		26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Mid	5210	81.80	81.00

MID CHANNEL

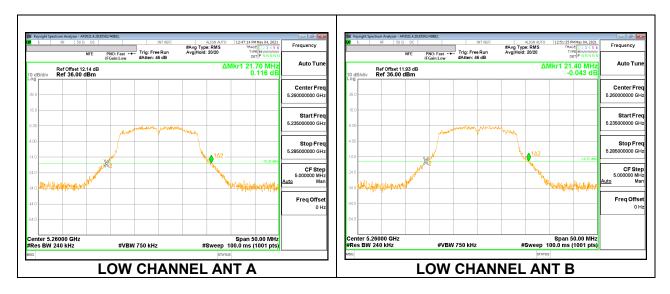

Page 33 of 269

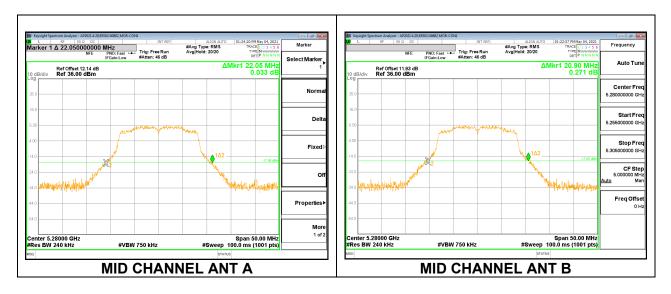
9.2.5. 802.11ac VHT160 MODE IN THE 5.2/5.3 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Mid	5250	160.40	160.00

MID CHANNEL

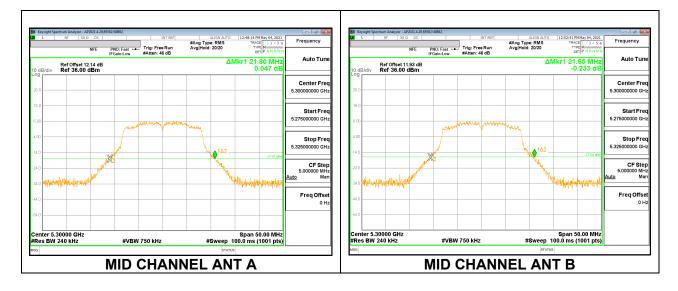

Page 34 of 269


9.2.6. 802.11a MODE IN THE 5.3 GHz BAND

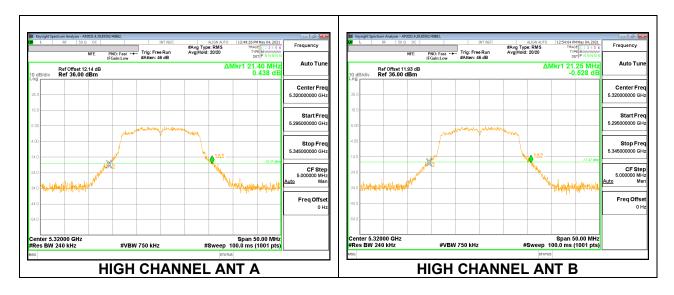
1TX Antenna A and 1Tx Antenna B Mode

Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5260	21.70	21.40
Mid	5280	22.05	20.90
Mid	5300	21.80	21.65
High	5320	21.40	21.25

LOW CHANNEL


MID CHANNEL

Page 35 of 269

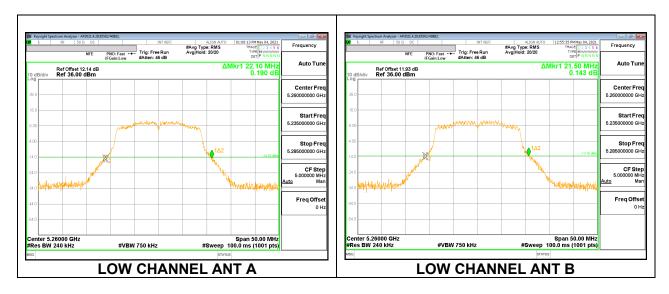

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

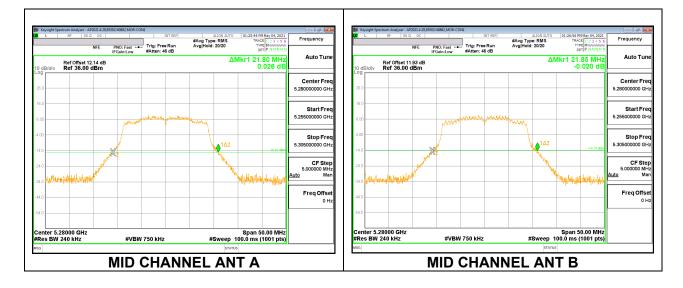
TEL: (919) 549-1400

MID CHANNEL

HIGH CHANNEL

Page 36 of 269

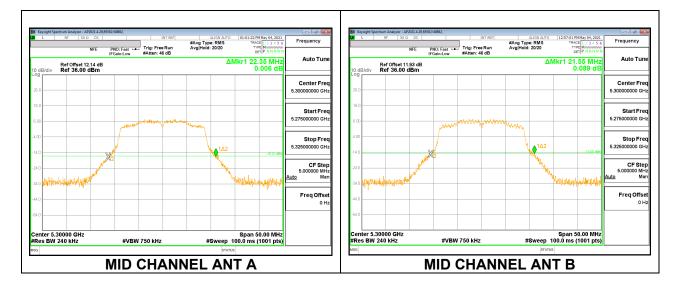

TEL: (919) 549-1400

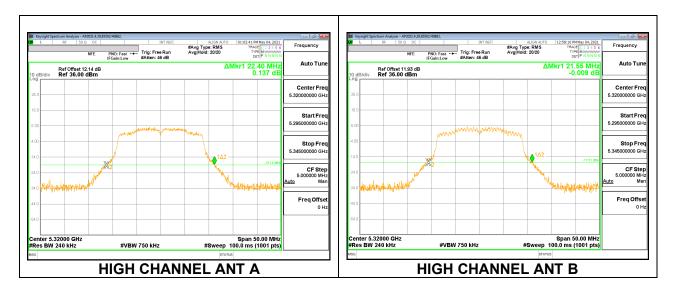

9.2.7. 802.11n HT20 MODE IN THE 5.3 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5260	22.10	21.50
Mid	5280	21.80	21.85
Mid	5300	22.35	21.55
High	5320	22.40	21.55

LOW CHANNEL



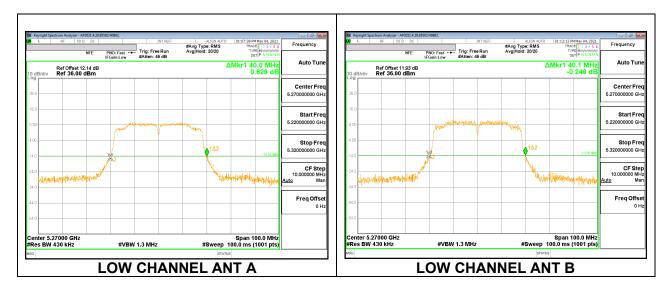

MID CHANNEL

Page 37 of 269

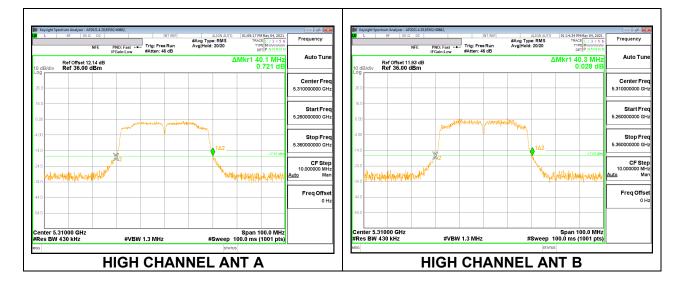
UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

HIGH CHANNEL

Page 38 of 269


TEL: (919) 549-1400

9.2.8. 802.11n HT40 MODE IN THE 5.3 GHz BAND


2TX Antenna A + Antenna B SDM MODE

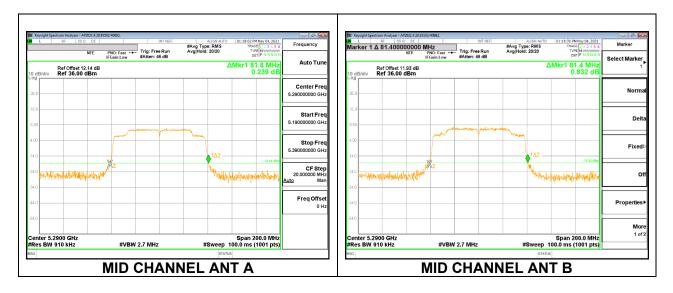
Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5270	40.00	40.10
High	5310	40.10	40.30

LOW CHANNEL

HIGH CHANNEL

Page 39 of 269

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA


TEL: (919) 549-1400

9.2.9. 802.11ac VHT80 MODE IN THE 5.3 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Mid	5290	81.80	81.40

MID CHANNEL

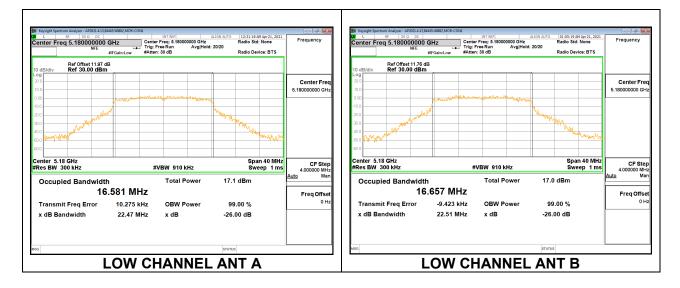
Page 40 of 269

9.3. 99% **BANDWIDTH**

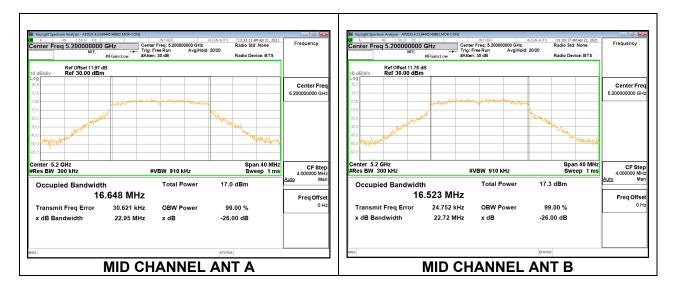
LIMITS

None; for reporting purposes only.

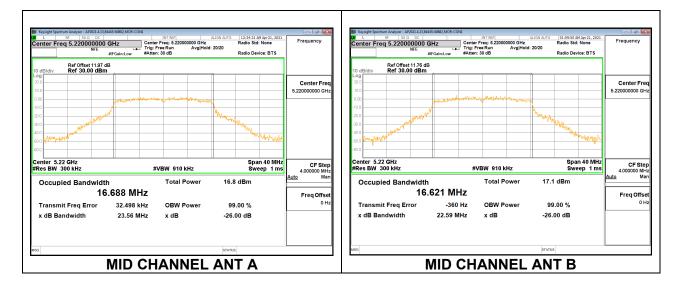
RESULTS

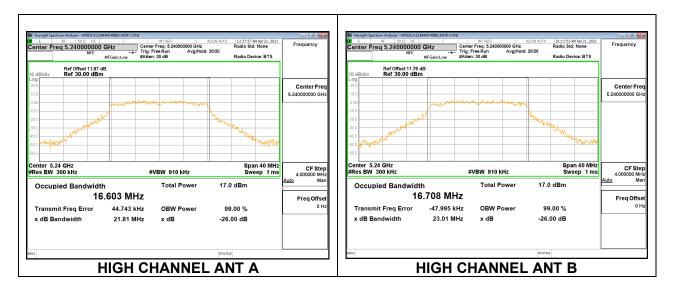

9.3.1.802.11a MODE IN THE 5.2 GHz BAND

1Tx Antenna A and 1Tx Antenna B Mode


Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5180	16.5810	16.6570
Mid	5200	16.6480	16.5230
Mid	5220	16.6880	16.6210
High	5240	16.6030	16.7080

Page 41 of 269

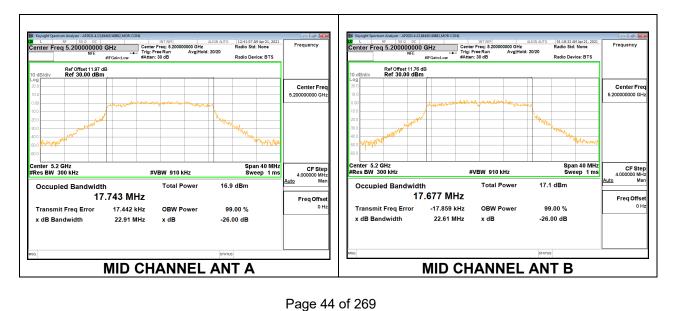

LOW CHANNEL


MID CHANNEL

Page 42 of 269

HIGH CHANNEL

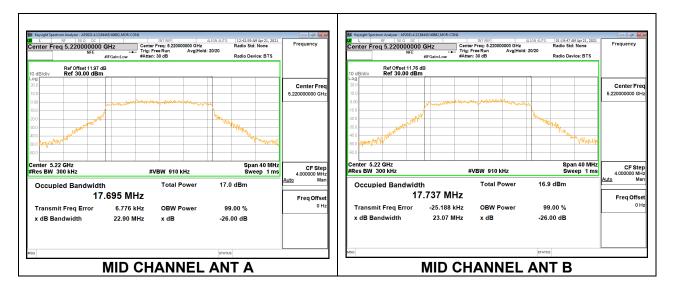
Page 43 of 269

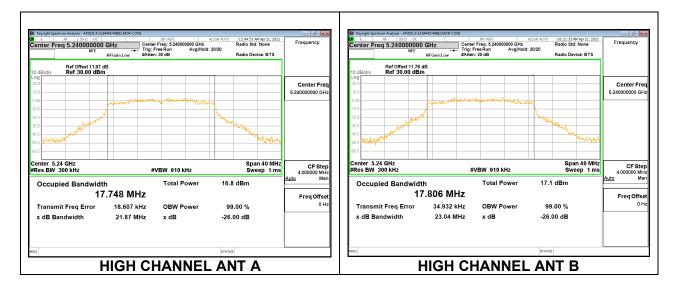

9.3.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5180	17.7670	17.7300
Mid	5200	17.7430	17.6770
Mid	5220	17.6950	17.7370
High	5240	17.7480	17.8060

LOW CHANNEL

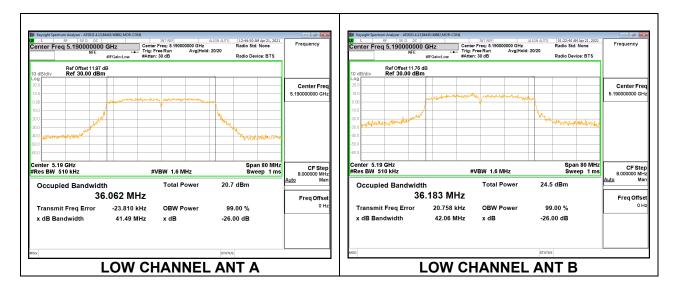



MID CHANNEL

12 Laboratory Dr., RTP, NC 27709; USA

UL LLC

HIGH CHANNEL


Page 45 of 269

9.3.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

2TX Antenna A + Antenna B SDM MODE

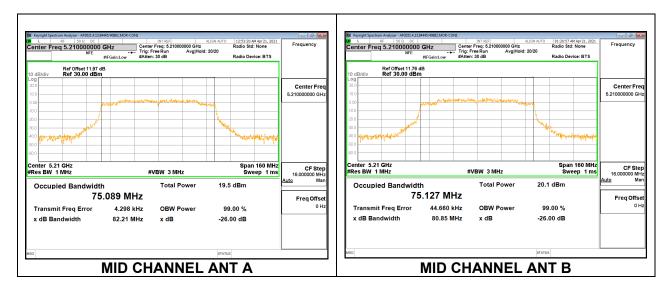
Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5190	36.0620	36.1830
High	5230	35.9680	36.0900

LOW CHANNEL

HIGH CHANNEL

Page 46 of 269

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

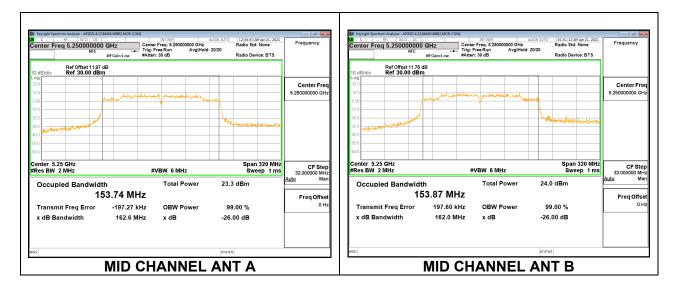

TEL: (919) 549-1400

9.3.4. 802.11ac VHT80 MODE IN THE 5.2 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Mid	5210	75.0890	75.1270

MID CHANNEL

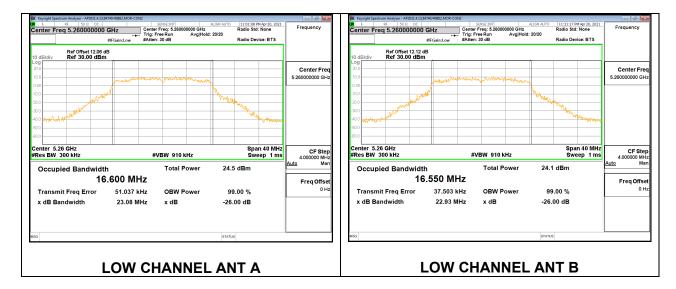

Page 47 of 269

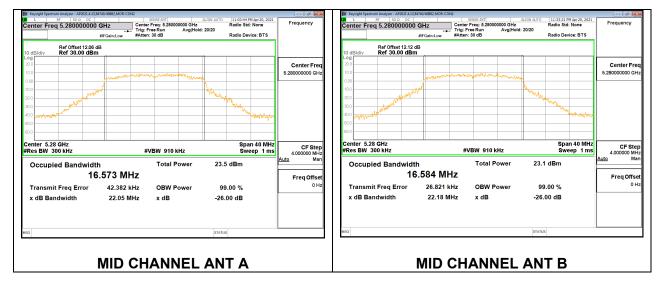
9.3.5. 802.11ac VHT160 MODE IN THE 5.2/5.3 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Mid	5250	153.7400	153.8700

MID CHANNEL

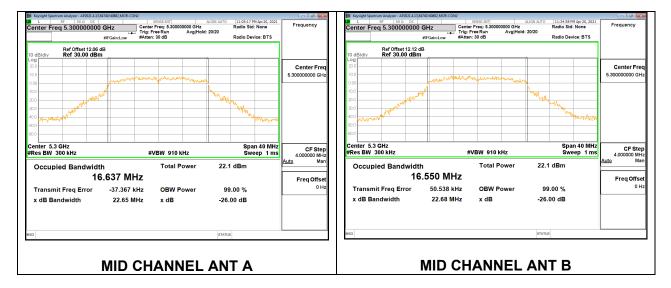

Page 48 of 269


9.3.6. 802.11a MODE IN THE 5.3 GHz BAND

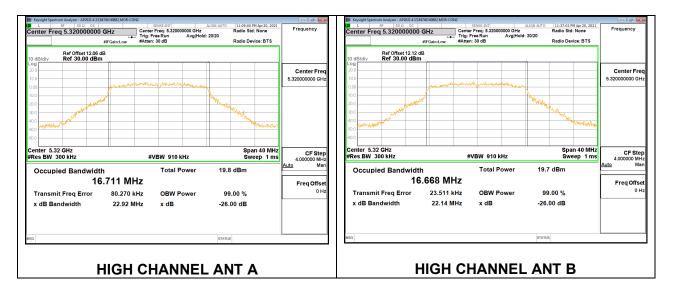
1Tx Antenna A and 1Tx Antenna B Mode

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5260	16.6000	16.5500
Mid	5280	16.5730	16.5840
Mid	5300	16.6370	16.5500
High	5320	16.7110	16.6680

LOW CHANNEL



MID CHANNEL

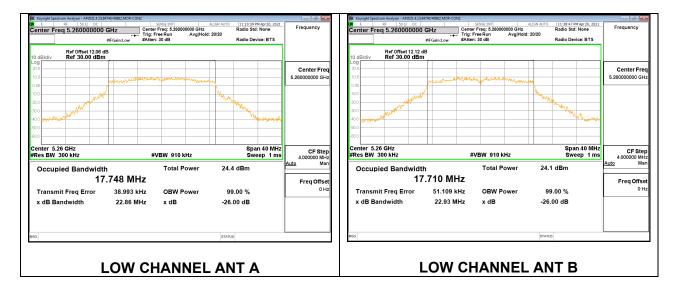

Page 49 of 269

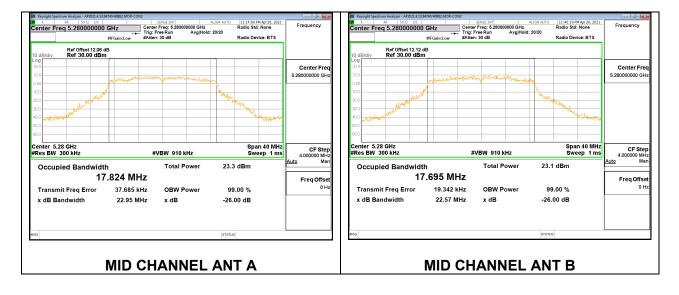
UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

TEL: (919) 549-1400

HIGH CHANNEL

Page 50 of 269


TEL: (919) 549-1400


9.3.7. 802.11n HT20 MODE IN THE 5.3 GHz BAND

2TX Antenna A + Antenna B SDM MODE

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna A	Antenna B
	(MHz)	(MHz)	(MHz)
Low	5260	17.7480	17.7100
Mid	5280	17.8240	17.6950
Mid	5300	17.7070	17.7310
High	5320	17.7150	17.7550

LOW CHANNEL

MID CHANNEL

Page 51 of 269

UL LLC 12 Laboratory Dr., RTP, NC 27709; USA

TEL: (919) 549-1400