

Partial FCC Test Report

Report No.: RF191224C11-1

FCC ID: C3K1900

Test Model: 1900

Contains Wi-Fi

Module Model No.:

Contains FCC ID: C3K1900

Received Date: Dec. 24, 2019

Test Date: Jan. 22, 2020 ~ Apr. 08, 2020

Issued Date: Apr. 13, 2020

Applicant: Microsoft Corporation

Address: One Microsoft Way Redmond, WA 98052-6399, U.S.A

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

FCC Registration /

788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	ease Control Record	. 3
1	Certificate of Conformity	. 4
2	Summary of Test Results	. 5
	.1 Modification Record	. 5
3	General Information	. 6
	1.1 General Description of EUT	. 8 11
4	est Types and Results	16
	1. Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures. 4.1.4 Deviation from Test Standard 4.1.5 Test Setup 4.1.6 EUT Operating Conditions. 4.1.7 Test Results .2 Transmit Power Measurement 4.2.1 Limits of Transmit Power Measurement 4.2.2 Test Setup 4.2.3 Test Instruments 4.2.4 Test Procedure 4.2.5 Deviation from Test Standard 4.2.6 EUT Operating Conditions. 4.2.7 Test Results .3 Conducted Bandedge Measurement 4.3.1 Limits of Conducted Bandedge Measurement 4.3.2 Test Procedure Measurement 4.3.3 Test Setup 4.3.4 Test Instruments 4.3.5 Deviation from Test Standard	16 19 19 20 21 22 38 39 39 40 41 42 42 42
5	4.3.6 EUT Operating Condition	
	-	61

Release Control Record

Issue No.	Description	Date Issued
RF191224C11-1	Original Release	Apr. 13, 2020

1 Certificate of Conformity

Product: Portable Computing Device

Brand: Microsoft

Test Model: 1900

Sample Status: Engineering Sample

Applicant: Microsoft Corporation

Test Date: Jan. 22, 2020 ~ Apr. 08, 2020

Standards: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Rona Chen / Specialist

Approved by : , **Date:** Apr. 13, 2020

Dylan Chiou / Senior Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)				
FCC Test Item		Result	Remarks	
15.407(b)(6)	AC Power Conducted Emissions	N/A	Refer to Note	
15.407(b) Radiated Emissions Measurement		Pass	Meet the requirement of limit. Minimum passing margin is -5.82 dB at 470.8 MHz.	
(1/2/3/4(i/ii)/6)	Conducted Band Edge Measurement	Pass	Meet the requirement of limit.	
15.407(a)(1/2/ 3)	Y Y I Wax Average Transmit Power T		Meet the requirement of limit.	
15.407(a)(1/2/ 3) Peak Power Spectral Density		N/A	Refer to Note	
15.407(e)	6 dB Bandwidth	N/A	Refer to Note	
15.407(g)	Frequency Stability	N/A	Refer to Note	
15.203	Antenna Requirement	N/A	Refer to Note	

Note:

- 1. This report is issued as a partial report. The test item, test mode, and test method are in accordance with client's requirement. Only Radiated Emissions, Max Average Transmit Power and Conducted Band Edge test results were recorded in this report.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Portable Computing Device	
Brand	Microsoft	
Test Model	1900	
FCC ID	C3K1900	
Contains Wi-Fi Module		
Model No.	1900	
Contains FCC ID	C3K1900	
Status of EUT	Engineering Sample	
Power Supply Rating	120 Vac (Adapter)	
	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM	
Modulation Type	1024QAM for OFDMA	
Modulation Technology	OFDM, OFDMA	
	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0 Mbps	
Transfer Dat	802.11n: up to 300 Mbps	
Transfer Rate	802.11ac: up to 1733.3 Mbps	
	802.11ax: up to 2402 Mbps	
Operating Frequency	5180 ~ 5250 MHz, 5250 ~ 5320 MHz, 5500 ~ 5720 MHz,	
Operating Frequency	5745 ~ 5825 MHz	
	5180 ~ 5250 MHz:	
	4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20)	
	2 for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40)	
	1 for 802.11ac (VHT80), 802.11ax (HE80)	
	1 for 802.11ac (VHT160), 802.11ax (HE160)	
	5250 ~ 5320 MHz:	
	4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20)	
	2 for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40)	
	1 for 802.11ac (VHT80), 802.11ax (HE80)	
Number of Channel	1 for 802.11ac (VHT160), 802.11ax (HE160)	
	5500 ~ 5720 MHz:	
	12 for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20)	
	6 for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40)	
	3 for 802.11ac (VHT80), 802.11ax (HE80)	
	1 For 802.11ac (VHT160), 802.11ax (HE160)	
	5745 ~ 5825 MHz:	
	5 for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20)	
	2 for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40)	
	1 for 802.11ac (VHT80), 802.11ax (HE80)	
Output Power	69.909 mW	
Antenna Type	Refer to Note as below	
Antenna Connector	N/A	
Accessory Device Refer to Note as below		
Data Cable Supplied	Refer to Note as below	

Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

Modulation Mode	TX Function
802.11a	1TX (SISO)
802.11n (HT20)	2TX (MIMO)
802.11n (HT40)	2TX (MIMO)
802.11ac (VHT20)	2TX (MIMO)
802.11ac (VHT40)	2TX (MIMO)
802.11ac (VHT80)	2TX (MIMO)
802.11ac (VHT160)	2TX (MIMO)
802.11ax (HE20)	2TX (MIMO)
802.11ax (HE40)	2TX (MIMO)
802.11ax (HE80)	2TX (MIMO)
802.11ax (HE160)	2TX (MIMO)

2. The EUT contains following accessory devices.

the Lett contains to be made in a grade cool of the mode.						
Product Brand		Model Description				
Adapter	Microsoft (Chicony)	1798	I/P: 100-240 Vac, 50-60 Hz, 1.5 A O/P: 15 Vdc, 6.33 A / 5 Vdc, 1.5 A 1.74m power cable w/o core			
Top Battery	Simplo	G3HTA044H	7.5 Vdc			
Base Battery	Simplo	G3HTA065H	11.36 Vdc			

3. The antenna information is listed as below.

				An	tenna Gain (d	Bi)	
Ant. Type	Manufacturer	Parts Number	2.4 GHz	5.15~5.25 GHz	5.25~5.35 GHz	5.47~5.725 GHz	5.725~5.85 GHz
DIEA	FIT	Main Antenna: 1415-07H50QS	1.83	3.17	3.30	3.56	3.02
PIFA		Aux. Antenna: 1415-07H10QS	2.05	3.36	3.25	2.29	2.64

4. Test Cable Loss is listed as below.

Frequency (MHz)	Mini lpx (dB)
5150	-1.36
5200	-1.38
5250	-1.43
5300	-1.54
5350	-1.64
5400	-1.77
5450	-1.83
5500	-1.86
5550	-1.91
5600	-1.98

5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

For 5180 ~ 5250 MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
42	5210

1 channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency (MHz)
50	5250

1 channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency (MHz)
50	5250

For 5250 ~ 5320 MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300
56	5280	64	5320

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	62	5310

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
58	5290

1 channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency (MHz)
50	5250

For 5500 ~ 5720 MHz

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	124	5620
104	5520	128	5640
108	5540	132	5660
112	5560	136	5680
116	5580	140	5700
120	5600	144	5720

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	126	5630
110	5550	134	5670
118	5590	142	5710

3 channels are provided for 802.11ac (VHT80):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530	138	5690
122	5610		

1 channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency (MHz)
114	5570

For 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	161	5805
153	5765	165	5825
157	5785		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
155	5775

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applica	ble To	Description
Mode	RE	APCM	Description
-	\checkmark	√	-

Where

APCM: Antenna Port Conducted Measurement

RE: Radiated Emission

Radiated Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-		802.11ac (VHT80)	42	42	OFDM	BPSK	29.3
-	5400 5050	802.11ac (VHT160)	50	50	OFDM	BPSK	58.5
-	5180-5250	802.11ax (HE80)	42	42	OFDMA	BPSK	MCS0
-		802.11ax (HE160)	50	50	OFDMA	BPSK	MCS0
-		802.11ac (VHT80)	58	58	OFDM	BPSK	29.3
-	5250-5320	802.11ax (HE80)	58	58	OFDMA	BPSK	MCS0
-	5500 5700	802.11ac (VHT160)	114	114	OFDM	BPSK	58.5
-	5500-5720	802.11ax (HE160)	114	114	OFDMA	BPSK	MCS0

^{*} After the pretest, only the worst case channel was presented in the report.

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-		802.11ac (VHT80)	42	42	OFDM	BPSK	29.3
-	5400 5050	802.11ac (VHT160)	50	50	OFDM	BPSK	58.5
-	5180-5250	802.11ax (HE80)	42	42	OFDMA	BPSK	MCS0
-		802.11ax (HE160)	50	50	OFDMA	BPSK	MCS0
-		802.11ac (VHT80)	58	58	OFDM	BPSK	29.3
-	5250-5320	802.11ax (HE80)	58	58	OFDMA	BPSK	MCS0
-	5500 5700	802.11ac (VHT160)	114	114	OFDM	BPSK	58.5
-	5500-5720	802.11ax (HE160)	114	114	OFDMA	BPSK	MCS0

Bandedge Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-		802.11ac (VHT80)	42	42	OFDM	BPSK	29.3
-	5400 5050	802.11ac (VHT160)	50	50	OFDM	BPSK	58.5
-	5180-5250	802.11ax (HE80)	42	42	OFDMA	BPSK	MCS0
-		802.11ax (HE160)	50	50	OFDMA	BPSK	MCS0
-	5050 5000	802.11ac (VHT80)	58	58	OFDM	BPSK	29.3
-	5250-5320	802.11ax (HE80)	58	58	OFDMA	BPSK	MCS0
-	5500 5700	802.11ac (VHT160)	114	114	OFDM	BPSK	58.5
-	5500-5720	802.11ax (HE160)	114	114	OFDMA	BPSK	MCS0

Test Condition:

TOOL CONGINION				
Applicable To	Environmental Conditions	Input Power	Tested by	
APCM	25 deg. C, 65 % RH	120 Vac, 60 Hz	Leo Tsai	
RE	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao	

3.3 Duty Cycle of Test Signal

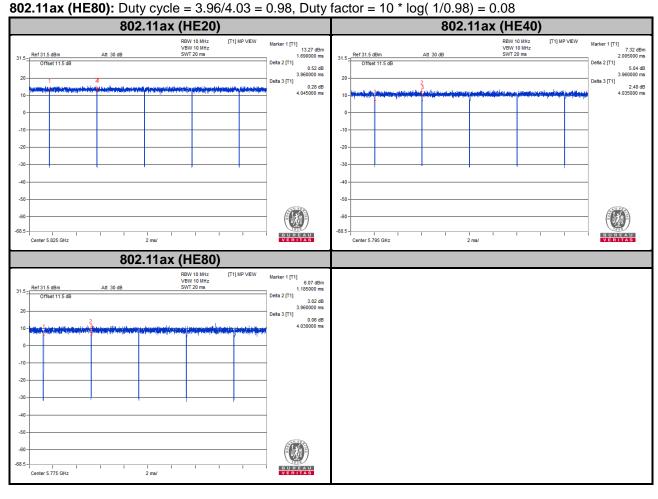
MODULATION TYPE: BPSK

802.11a: Duty cycle = 2.082/2.129 = 0.98, Duty factor = 10 * log(1/0.98) = 0.10


802.11n (HT20): Duty cycle of test signal is > 98 %, duty factor is not required.

802.11n (HT40): Duty cycle of test signal is > 98 %, duty factor is not required.

802.11ac (VHT20): Duty cycle = 3.95/4.015 = 0.98, Duty factor = 10 * log(1/0.98) = 0.07


802.11ac (VHT40): Duty cycle = 3.93/4 = 0.98, Duty factor = 10 * log(1/0.98) = 0.08

802.11ac (VHT80): Duty cycle of test signal is > 98 %, duty factor is not required.

802.11ax (HE20): Duty cycle = 3.96/4.045 = 0.98, Duty factor = $10 * \log(1/0.98) = 0.09$ **802.11ax (HE40):** Duty cycle = 3.96/4.035 = 0.98, Duty factor = $10 * \log(1/0.98) = 0.08$

3.4 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of Unwanted Emission Out of the Restricted Bands

Арі	plicabl	е То	Limit			
789033 D02 General UNII Test Procedures New			Field Strength at 3 m			
Ru	les v02	2r01	PK: 74 (dBµV/m)	AV: 54 (dBμV/m)		
Frequency Band	Applicable To		EIRP Limit	Equivalent Field Strength at 3 m		
5150~5250 MHz	15.407(b)(1)					
5250~5350 MHz	15.407(b)(2) 15.407(b)(3)		PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)		
5470~5725 MHz						
			PK:-27 (dBm/MHz)*1	PK: 68.2 (dBµV/m) *1		
		4E 407(b)(4)(i)	PK:10 (dBm/MHz) *2	PK:105.2 (dBµV/m) *2		
5725~5850 MHz		15.407(b)(4)(i)	PK:15.6 (dBm/MHz) *3	PK: 110.8 (dBµV/m) *3		
			PK:27 (dBm/MHz) *4	PK:122.2 (dBμV/m) *4		
		15.407(b)(4)(ii)	Emission limits in section 15.247(d)			

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Mar. 18, 2020	Mar. 17, 2021
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 12, 2019	Dec. 11, 2020
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100980	Apr. 23, 2019	Apr. 22, 2020
Broadband Horn Antenna SCHWARZBECK	BBHA 9170	148	Nov. 24, 2019	Nov. 23, 2020
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-969	Nov. 24, 2019	Nov. 23, 2020
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Nov. 08, 2019	Nov. 07, 2020
Fixed Attenuator WORKEN	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020
Preamplifier EMCI	EMC001340	980201	Oct. 14, 2019	Oct. 13, 2020
Preamplifier EMCI	EMC 012645	980115	Oct. 08, 2019	Oct. 07, 2020
Preamplifier EMCI	EMC 184045	980116	Oct. 08, 2019	Oct. 07, 2020
Preamplifier EMCI	EMC 330H	980112	Oct. 08, 2019	Oct. 07, 2020
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	Jan. 14, 2020	Jan. 13, 2021
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY55 190004/MY551900 07/MY55210005	Jul. 15, 2019	Jul 14, 2020
RF Coaxial Cable HUBER+SUHNNER	EMC104-SM-SM-8 000&3000	140811+170717	Oct. 08, 2019	Oct. 07, 2020
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM-1 000(140807)	Oct. 08, 2019	Oct. 07, 2020
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Oct. 08, 2019	Oct. 07, 2020
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 10.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

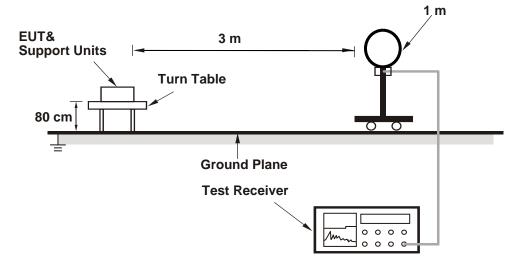
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

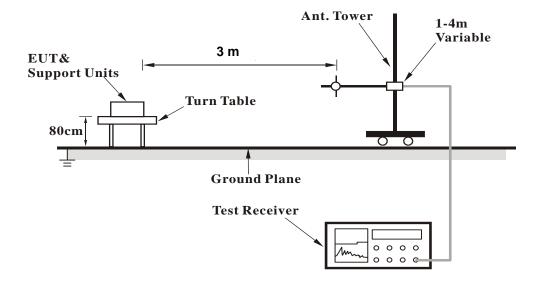
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

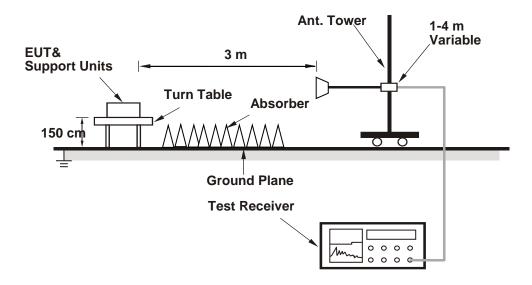

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

<Radiated Emission below 30 MHz>



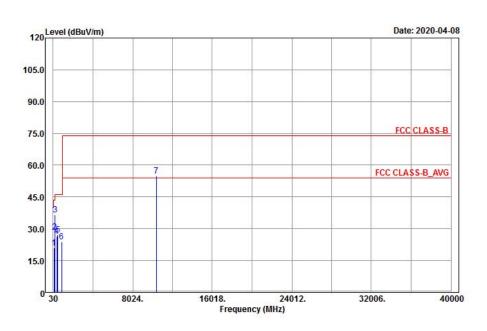
<Radiated Emission 30 MHz to 1 GHz>

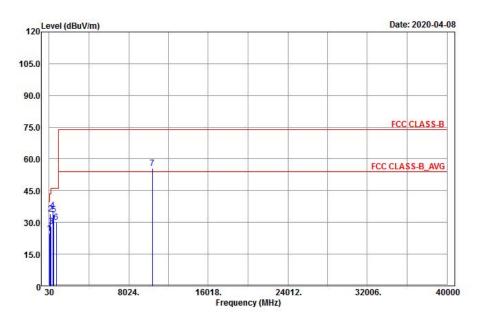
<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.




4.1.7 Test Results

802.11ac (VHT80)

EUT Test Condition		Measurement Detail		
Channel	Channel 42	Frequency Range	30 MHz ~ 40 GHz	
Input Power	ut Power 120 Vac, 60 Hz		Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

Peak

Peak

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
115.32	20.91	39.19	-18.28	43.5	-22.59	153	229	Peak		
190.92	28.55	47.2	-18.65	43.5	-14.95	175	131	Peak		
217.11	36.7	54.62	-17.92	46	-9.3	120	38	Peak		
403.6	26.48	40.35	-13.87	46	-19.52	144	137	Peak		
499.5	27.04	39.35	-12.31	46	-18.96	186	291	Peak		
864.2	23.85	30.34	-6.49	46	-22.15	154	112	Peak		
*10420	54.88	38.72	16.16	68.2	-13.32	204	105	Peak		
		Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m				
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
55.92	24.81	40.44	-15.63	40	-15.19	120	143	Peak		
164.46	34.04	54.53	-20.49	43.5	-9.46	195	128	Peak		
218.46	28.27	46.17	-17.9	46	-17.73	167	154	Peak		
400.1	35.49	49.41	-13.92	46	-10.51	130	88	Peak		
502.3	33.75	46.04	-12.29	46	-12.25	189	235	Peak		

46

68.2

-15.76

-12.65

122

175

45

168

*10420 Remarks:

757.1

Emission Level = Read Level + Factor
 Margin value = Emission level – Limit value

38.57

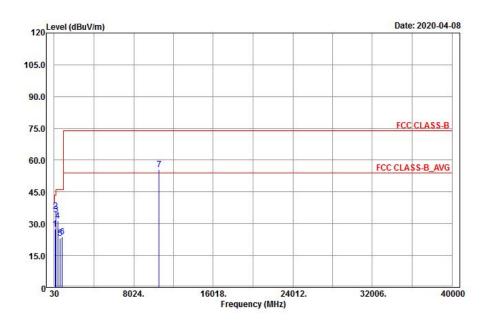
39.39

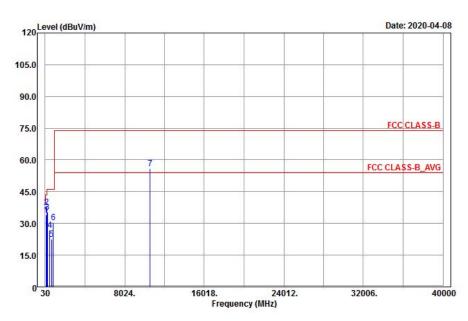
2. *: Out of Restricted Band

30.24

55.55

3. The emission levels of other frequencies were very low against the limit


-8.33


16.16

EUT Test Condition		Measurement Detail		
Channel	Channel 58	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
128.55	27.58	47.97	-20.39	43.5	-15.92	157	155	Peak		
184.98	36.1	55.25	-19.15	43.5	-7.4	168	35	Peak		
228.18	34.35	51.83	-17.48	46	-11.65	104	179	Peak		
406.4	31.53	45.35	-13.82	46	-14.47	128	352	Peak		
639.5	23.13	33.43	-10.3	46	-22.87	177	4	Peak		
860	23.92	30.48	-6.56	46	-22.08	130	58	Peak		
*10580	55.6	39.89	15.71	68.2	-12.6	216	101	Peak		
		Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m				
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
111.54	34.04	51.82	-17.78	43.5	-9.46	148	121	Peak		
198.21	37.62	55.93	-18.31	43.5	-5.88	190	124	Peak		
250.05	35.3	52.13	-16.83	46	-10.7	175	196	Peak		
483.4	26.87	39.52	-12.65	46	-19.13	168	226	Peak		
198.21 250.05	34.04 37.62 35.3	55.93 52.13	-18.31 -16.83	43.5 46	-5.88 -10.7	190 175	124 196	P(

46

46

68.2

-23.37

-15.43

-12.26

150

142

146

143

118

198

Peak

Peak

Peak

*10580 Remarks:

674.5

839.7

Emission Level = Read Level + Factor
 Margin value = Emission level – Limit value

32.21

37.54

40.23

2. *: Out of Restricted Band

22.63

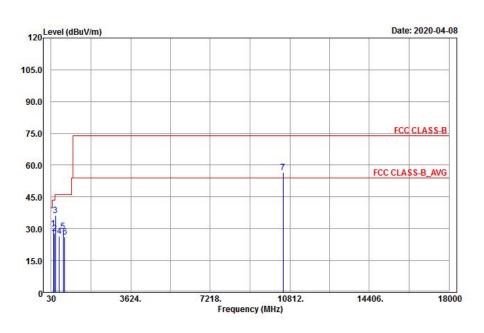
30.57

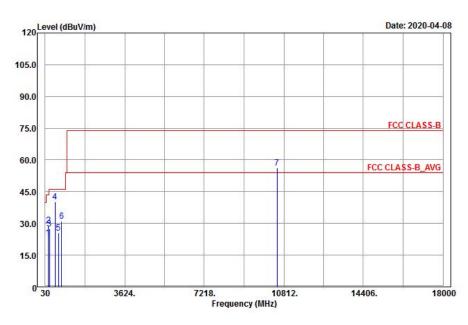
55.94

3. The emission levels of other frequencies were very low against the limit

-9.58

-6.97


15.71



802.11ac (VHT160)

EUT Test Condition		Measurement Detail		
Channel	Channel 50	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

Peak

118

Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
133.41	30.13	50.8	-20.67	43.5	-13.37	162	131	Peak
184.44	27.71	46.95	-19.24	43.5	-15.79	158	172	Peak
218.19	36.42	54.32	-17.9	46	-9.58	120	43	Peak
404.3	26.45	40.3	-13.85	46	-19.55	140	86	Peak
562.5	28.74	40.06	-11.32	46	-17.26	155	172	Peak
640.2	26.18	36.47	-10.29	46	-19.82	189	123	Peak
*10500	56.42	40.59	15.83	68.2	-11.78	168	24	Peak
		Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
•	Level	Read Level						Remark Peak
(MHz)	Level (dBuV/m)	Read Level (dBuV)	(dB/m)	(dBuV/m)	Margin (dB)	Height (cm)	(Degree)	
(MHz) 156.63	Level (dBuV/m) 23.08	Read Level (dBuV)	(dB/m)	(dBuV/m) 43.5	Margin (dB) -20.42	Height (cm)	(Degree)	Peak
(MHz) 156.63 184.71	Level (dBuV/m) 23.08 29.24	Read Level (dBuV) 43.79 48.48	(dB/m) -20.71 -19.24	(dBuV/m) 43.5 43.5	Margin (dB) -20.42 -14.26	Height (cm) 112 169	(Degree) 145 253	Peak Peak
(MHz) 156.63 184.71 224.13	Level (dBuV/m) 23.08 29.24 27.35	Read Level (dBuV) 43.79 48.48 45.01	(dB/m) -20.71 -19.24 -17.66	(dBuV/m) 43.5 43.5 46	Margin (dB) -20.42 -14.26 -18.65	Height (cm) 112 169 122	(Degree) 145 253 107	Peak Peak Peak
(MHz) 156.63 184.71 224.13 470.8	Level (dBuV/m) 23.08 29.24 27.35 40.18	Read Level (dBuV) 43.79 48.48 45.01 53.13	(dB/m) -20.71 -19.24 -17.66 -12.95	(dBuV/m) 43.5 43.5 46 46	-20.42 -14.26 -18.65 -5.82	Height (cm) 112 169 122 125	(Degree) 145 253 107 117	Peak Peak Peak Peak

68.2

-11.95

157

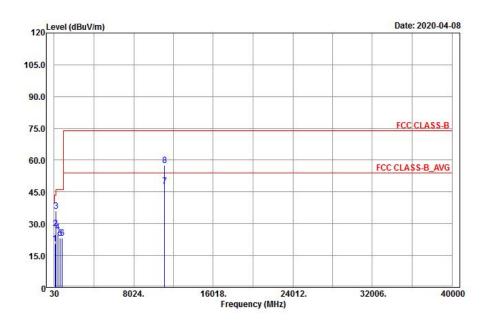
*10500 Remarks:

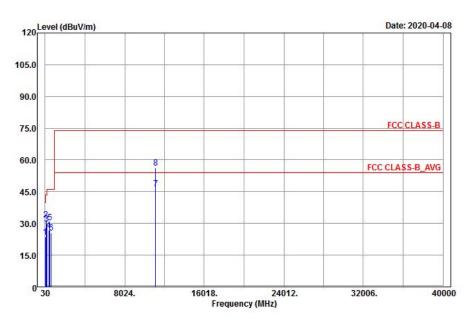
Emission Level = Read Level + Factor
 Margin value = Emission level – Limit value

40.42

2. *: Out of Restricted Band

56.25


3. The emission levels of other frequencies were very low against the limit


15.83

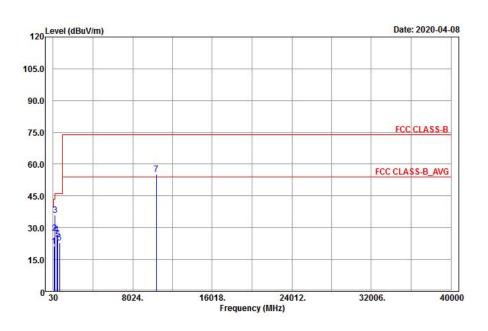
EUT Test Condition		Measurement Detail		
Channel	Channel 114	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

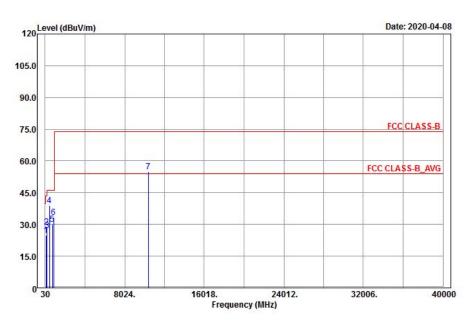
Horizontal

	Antenna Polarity & Test Distance: Horizontal at 3 m							
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
113.7	20.47	38.5	-18.03	43.5	-23.03	174	154	Peak
196.05	27.75	46.11	-18.36	43.5	-15.75	165	283	Peak
217.65	35.87	53.79	-17.92	46	-10.13	122	54	Peak
403.6	26.07	39.94	-13.87	46	-19.93	137	68	Peak
639.5	23.28	33.58	-10.3	46	-22.72	166	85	Peak
835.5	23.2	30.21	-7.01	46	-22.8	170	154	Peak
11140	47.84	31.5	16.34	54	-6.16	136	291	Average
11140	57.48	41.14	16.34	74	-16.52	136	291	Peak
		Antonn	a Polarity 8	Toot Dictor	nco: Vortica	lat 3 m		

	Antenna Polarity & Test Distance: Vertical at 3 m							
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
55.92	23.61	39.24	-15.63	40	-16.39	165	104	Peak
115.32	31.65	49.93	-18.28	43.5	-11.85	198	215	Peak
184.44	29.67	48.91	-19.24	43.5	-13.83	115	46	Peak
405.7	26.9	40.74	-13.84	46	-19.1	168	259	Peak
498.1	30.41	42.74	-12.33	46	-15.59	134	115	Peak
644.4	25.53	35.74	-10.21	46	-20.47	140	225	Peak
11140	46.49	30.15	16.34	54	-7.51	175	128	Average
11140	56.08	39.74	16.34	74	-17.92	175	128	Peak

Remarks:


- Emission Level = Read Level + Factor
 Margin value = Emission level Limit value
- 2. *: Out of Restricted Band
- 3. The emission levels of other frequencies were very low against the limit



802.11ax (HE80)

EUT Test Condition		Measurement Detail		
Channel	Channel 42	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

230

156

154

Peak

Peak

Peak

169

121

169

	Antenna Polarity & Test Distance: Horizontal at 3 m							
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
115.05	21.36	39.64	-18.28	43.5	-22.14	172	115	Peak
183.63	27.4	46.74	-19.34	43.5	-16.1	189	235	Peak
222.51	35.87	53.63	-17.76	46	-10.13	175	114	Peak
405	26.96	40.8	-13.84	46	-19.04	101	43	Peak
483.4	24.44	37.09	-12.65	46	-21.56	186	235	Peak
672.4	22.95	32.56	-9.61	46	-23.05	175	134	Peak
*10420	55.38	39.22	16.16	68.2	-12.82	209	104	Peak
		Antenna	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
107.22	24.89	42.26	-17.37	43.5	-18.61	138	26	Peak
183.9	28.79	48.03	-19.24	43.5	-14.71	177	154	Peak
217.65	27.3	45.22	-17.92	46	-18.7	186	235	Peak
463.8	39.06	52.13	-13.07	46	-6.94	148	117	Peak

46

46

68.2

-15.89

-12.79

-13.13

*10420 Remarks:

731.2

893.6

Emission Level = Read Level + Factor
 Margin value = Emission level – Limit value

38.77

39.22

38.91

2. *: Out of Restricted Band

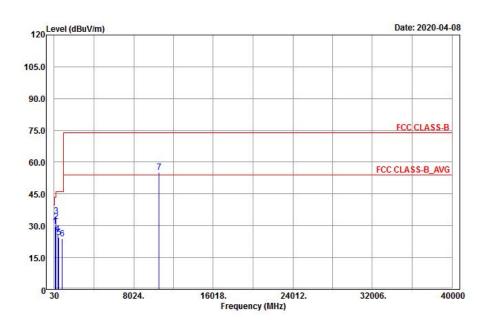
30.11

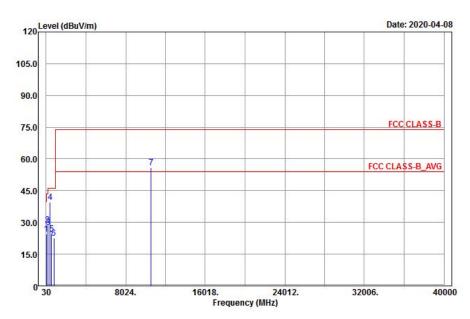
33.21

55.07

3. The emission levels of other frequencies were very low against the limit

-8.66


-6.01


16.16

EUT Test Condition		Measurement Detail		
Channel	Channel 58	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

Antenna Polarity & Test Distance: Horizontal at 3 m							
Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
29.7	50.2	-20.5	43.5	-13.8	148	112	Peak
32.15	50.3	-18.15	43.5	-11.35	179	36	Peak
34.72	52.34	-17.62	46	-11.28	150	143	Peak
26.27	40.11	-13.84	46	-19.73	186	229	Peak
24.48	36.77	-12.29	46	-21.52	188	134	Peak
23.9	30.77	-6.87	46	-22.1	127	154	Peak
55.17	39.46	15.71	68.2	-13.03	146	135	Peak
	Antenna	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
24.62	40.11	-15.49	40	-15.38	102	341	Peak
28.74	47.98	-19.24	43.5	-14.76	167	265	Peak
27.64	45.45	-17.81	46	-18.36	121	132	Peak
39.6	53.12	-13.52	46	-6.4	166	87	Peak
	Level (dBuV/m) 29.7 32.15 34.72 26.27 24.48 23.9 55.17 Emission Level (dBuV/m) 24.62 28.74 27.64	Emission Level (dBuV/m) Read Level (dBuV) 29.7 50.2 32.15 50.3 34.72 52.34 26.27 40.11 24.48 36.77 23.9 30.77 55.17 39.46 Antenna Emission Level (dBuV/m) Read Level (dBuV) 24.62 40.11 28.74 47.98 27.64 45.45	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) 29.7 50.2 -20.5 32.15 50.3 -18.15 34.72 52.34 -17.62 26.27 40.11 -13.84 24.48 36.77 -12.29 23.9 30.77 -6.87 55.17 39.46 15.71 Antenna Polarity & Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) 24.62 40.11 -15.49 28.74 47.98 -19.24 27.64 45.45 -17.81	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) 29.7 50.2 -20.5 43.5 32.15 50.3 -18.15 43.5 34.72 52.34 -17.62 46 26.27 40.11 -13.84 46 24.48 36.77 -12.29 46 23.9 30.77 -6.87 46 55.17 39.46 15.71 68.2 Antenna Polarity & Test Distant (dBuV/m) Emission Level (dBuV) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) 24.62 40.11 -15.49 40 28.74 47.98 -19.24 43.5 27.64 45.45 -17.81 46	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) Margin (dB) 29.7 50.2 -20.5 43.5 -13.8 32.15 50.3 -18.15 43.5 -11.35 34.72 52.34 -17.62 46 -11.28 26.27 40.11 -13.84 46 -19.73 24.48 36.77 -12.29 46 -21.52 23.9 30.77 -6.87 46 -22.1 55.17 39.46 15.71 68.2 -13.03 Antenna Polarity & Test Distance: Vertica Emission Level (dBuV/m) Read Level (dBuV) Limit (dBuV/m) Margin (dB) 24.62 40.11 -15.49 40 -15.38 28.74 47.98 -19.24 43.5 -14.76 27.64 45.45 -17.81 46 -18.36	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) Margin (dB) Antenna Height (cm) 29.7 50.2 -20.5 43.5 -13.8 148 32.15 50.3 -18.15 43.5 -11.35 179 34.72 52.34 -17.62 46 -11.28 150 26.27 40.11 -13.84 46 -19.73 186 24.48 36.77 -12.29 46 -21.52 188 23.9 30.77 -6.87 46 -22.1 127 55.17 39.46 15.71 68.2 -13.03 146 Antenna Polarity & Test Distance: Vertical at 3 m Emission Level (dBuV/m) Read Level (dBuV) Limit (dBuV/m) Margin (dB) Antenna Height (cm) 24.62 40.11 -15.49 40 -15.38 102 28.74 47.98 -19.24 43.5 -14.76 167 27.64 45.45 -17.81 46 -18.36 121	Emission Level (dBuV/m) Read Level (dBuV/m) Factor (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (cm) Table Angle (Degree) 29.7 50.2 -20.5 43.5 -13.8 148 112 32.15 50.3 -18.15 43.5 -11.35 179 36 34.72 52.34 -17.62 46 -11.28 150 143 26.27 40.11 -13.84 46 -19.73 186 229 24.48 36.77 -12.29 46 -21.52 188 134 23.9 30.77 -6.87 46 -22.1 127 154 55.17 39.46 15.71 68.2 -13.03 146 135 Antenna Polarity & Test Distance: Vertical at 3 m Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (cm) Table Angle (Degree) 24.62 40.11 -15.49 40 -15.38 102 341 28.74 47.98 </td

46

46

68.2

-21.33

-23.34

-12.43

143

150

166

251

72

195

Peak

Peak

Peak

*10580 Remarks:

554.1

806.1

Emission Level = Read Level + Factor
 Margin value = Emission level – Limit value

36.18

30.18

40.06

2. *: Out of Restricted Band

24.67

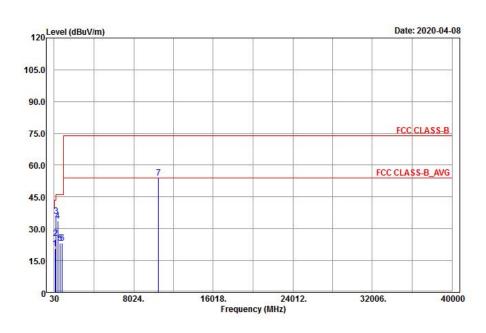
22.66

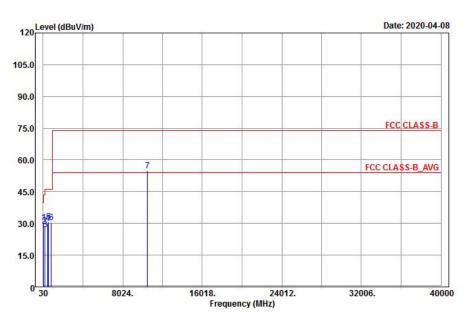
55.77

3. The emission levels of other frequencies were very low against the limit

-11.51

-7.52


15.71



802.11ax (HE160)

EUT Test Condition		Measurement Detail		
Channel	Channel 50	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

	Antenna	Polarity & 7	Test Distand	ce: Horizont	tal at 3 m		
Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
20.73	38.64	-17.91	43.5	-22.77	145	117	Peak
25.61	45.44	-19.83	43.5	-17.89	163	226	Peak
35.84	53.72	-17.88	46	-10.16	120	173	Peak
33.62	47.44	-13.82	46	-12.38	165	121	Peak
23.27	33.57	-10.3	46	-22.73	130	25	Peak
23.06	30.07	-7.01	46	-22.94	145	188	Peak
54.06	38.23	15.83	68.2	-14.14	159	204	Peak
	Antenn	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
30.37	47.88	-17.51	40	-9.63	130	87	Peak
28.67	47.91	-19.24	43.5	-14.83	174	156	Peak
27.16	44.87	-17.71	46	-18.84	165	297	Peak
29.96	42.45	-12.49	46	-16.04	161	76	Peak
	Level (dBuV/m) 20.73 25.61 35.84 33.62 23.27 23.06 54.06 Emission Level (dBuV/m) 30.37 28.67 27.16	Emission Level (dBuV/m) Read Level (dBuV) 20.73 38.64 25.61 45.44 35.84 53.72 33.62 47.44 23.27 33.57 23.06 30.07 54.06 38.23 Antennament Emission Level (dBuV/m) Read Level (dBuV) 30.37 47.88 28.67 47.91 27.16 44.87	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) 20.73 38.64 -17.91 25.61 45.44 -19.83 35.84 53.72 -17.88 33.62 47.44 -13.82 23.27 33.57 -10.3 23.06 30.07 -7.01 54.06 38.23 15.83 Antenna Polarity & Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) 30.37 47.88 -17.51 28.67 47.91 -19.24 27.16 44.87 -17.71	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) 20.73 38.64 -17.91 43.5 25.61 45.44 -19.83 43.5 35.84 53.72 -17.88 46 33.62 47.44 -13.82 46 23.27 33.57 -10.3 46 23.06 30.07 -7.01 46 54.06 38.23 15.83 68.2 Antenna Polarity & Test Distant (dBuV/m) Emission Level (dBuV) Read Level (dBuV) Limit (dBuV/m) 30.37 47.88 -17.51 40 28.67 47.91 -19.24 43.5 27.16 44.87 -17.71 46	Emission Level (dBuV/m) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) Margin (dB) 20.73 38.64 -17.91 43.5 -22.77 25.61 45.44 -19.83 43.5 -17.89 35.84 53.72 -17.88 46 -10.16 33.62 47.44 -13.82 46 -12.38 23.27 33.57 -10.3 46 -22.73 23.06 30.07 -7.01 46 -22.94 54.06 38.23 15.83 68.2 -14.14 Antenna Polarity & Test Distance: Vertica Emission Level (dBuV/m) Read Level (dBuV) Limit (dBuV/m) Margin (dB) 30.37 47.88 -17.51 40 -9.63 28.67 47.91 -19.24 43.5 -14.83 27.16 44.87 -17.71 46 -18.84	Level (dBuV/m) Read Level (dBuV) Factor (dB/m) Limit (dBuV/m) Margin (dB) Antenna Height (cm) 20.73 38.64 -17.91 43.5 -22.77 145 25.61 45.44 -19.83 43.5 -17.89 163 35.84 53.72 -17.88 46 -10.16 120 33.62 47.44 -13.82 46 -12.38 165 23.27 33.57 -10.3 46 -22.73 130 23.06 30.07 -7.01 46 -22.94 145 54.06 38.23 15.83 68.2 -14.14 159 Antenna Polarity & Test Distance: Vertical at 3 m Emission Level (dBuV/m) Read Level (dBm) Limit (dBuV/m) Margin (dB) Antenna Height (cm) 30.37 47.88 -17.51 40 -9.63 130 28.67 47.91 -19.24 43.5 -14.83 174 27.16 44.87 -17.71 46 -18.84 165 <	Emission Level (dBuV/m) Read Level (dBuV/m) Factor (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (cm) Table Angle (Degree) 20.73 38.64 -17.91 43.5 -22.77 145 117 25.61 45.44 -19.83 43.5 -17.89 163 226 35.84 53.72 -17.88 46 -10.16 120 173 33.62 47.44 -13.82 46 -12.38 165 121 23.27 33.57 -10.3 46 -22.73 130 25 23.06 30.07 -7.01 46 -22.94 145 188 54.06 38.23 15.83 68.2 -14.14 159 204 Emission Level (dBuV/m) Kead Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (cm) Table Angle (Degree) 30.37 47.88 -17.51 40 -9.63 130 87 28.67 47.91 -19.24 43.5 -14.83

46

46

68.2

-15.27

-15.59

-13.31

100

121

142

105

134

171

Peak

Peak

Peak

*10500 Remarks:

552 843.9

Emission Level = Read Level + Factor
 Margin value = Emission level – Limit value

42.27

37.31

39.06

2. *: Out of Restricted Band

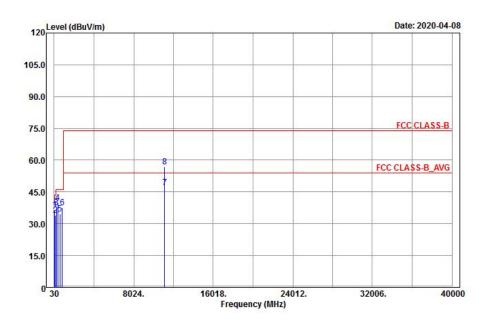
30.73

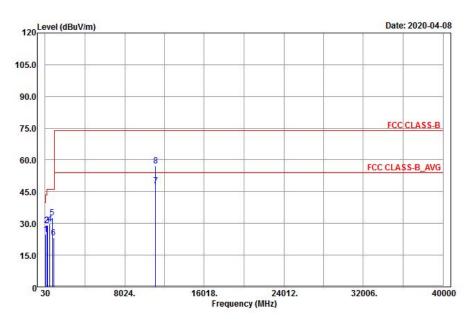
30.41

54.89

3. The emission levels of other frequencies were very low against the limit

-11.54


-6.9


15.83

EUT Test Condition		Measurement Detail		
Channel	Channel 114	Frequency Range	30 MHz ~ 40 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Margin (dB)		Antenna Height (cm)	Table Angle (Degree)	Remark	
93.18	36.74	55.05	-18.31	43.5	-6.76	120	76	Peak	
165.27	33.94	54.39	-20.45	43.5	-9.56	195	243	Peak	
250.32	37.49	54.32	-16.83	46	-8.51	154	112	Peak	
396.6	40.01	54.02	-14.01	46	-5.99	145	112	Peak	
603.1	34.7	45.22	-10.52	46	-11.3	184	356	Peak	
848.8	37.73	44.56	-6.83	46	-8.27	120	142	Peak	
11140	47.21	30.87	16.34	54	-6.79	124	166	Average	
11140	56.77	40.43	16.34	74	-17.23	124	166	Peak	
Antenna Polarity & Test Distance: Vertical at 3 m									

Antenna Polarity & Test Distance: Vertical at 3 m **Emission** Frequency Read Level Factor Limit Antenna **Table Angle** Level Margin (dB) Remark (dBuV) (dB/m) (dBuV/m) Height (cm) (MHz) (Degree) (dBuV/m) 74.01 24.85 129 45.73 -20.88 163 40 -15.15 Peak 184.44 29.04 48.28 -19.24 43.5 -14.46 149 124 Peak 29.26 -17.05 -16.74 239.52 46.31 46 115 181 Peak 46 -16.12 177 482.7 29.88 42.53 -12.65 125 Peak 743.1 32.69 41.23 -8.54 46 -13.31 164 128 Peak 864.2 23.06 29.55 -6.49 46 -22.94 155 87 Peak 11140 47.68 31.34 16.34 54 -6.32 27 161 Average 74 27 11140 57.14 16.34 -16.86 161 Peak 40.8

Remarks:

- Emission Level = Read Level + Factor
 Margin value = Emission level Limit value
- 2. *: Out of Restricted Band
- 3. The emission levels of other frequencies were very low against the limit

4.2 Transmit Power Measurement

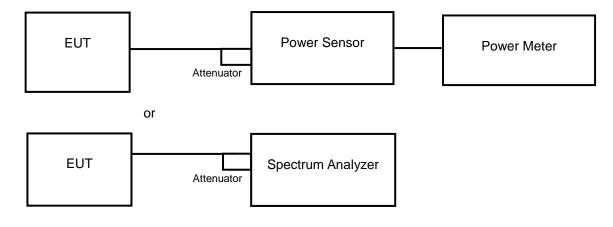
4.2.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit			
U-NII-1		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≤ 125 mW (21 dBm) at any elevation angle above 30 degrees as measured from the horizon)			
0-1111-1		Fixed point-to-point Access Point	1 Watt (30 dBm)			
		Indoor Access Point	1 Watt (30 dBm)			
	\checkmark	Mobile and Portable client device	250 mW (24 dBm)			
U-NII-2A	√		250 mW (24 dBm) or 11 dBm + 10 log B*			
U-NII-2C	√		250 mW (24 dBm) or 11 dBm + 10 log B*			
U-NII-3		V	1 Watt (30 dBm)			

^{*}B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;


Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20 MHz channel widths with N_{ANT} ≥ 5.

For power measurements on all other devices: Array Gain = 10 log(N_{ANT}/N_{SS}) dB.

4.2.2 Test Setup

<Power Output Measurement>

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

Average Power Measurement

<802.11a, 802.11n (HT20), 802.11n (HT40), 802.11ac (VHT80), 802.11HE (VHT160)>

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.2.5 Deviation from Test Standard

No deviation.

4.2.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Results

Power Output:

802.11ac (VHT80)

Channel	Frequency (MHz)		Conducted (dBm)	Total Power	Total Power	Power Limit	Pass / Fail	
	(IVITIZ)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)		
42	5210	15.44	15.37	69.43	18.42	24	Pass	
58	5290	13.94	13.99	49.835	16.98	24	Pass	

802.11ac (VHT160)

Channel	Frequency (MHz)		Conducted (dBm)	Total Power	Total Power	Power Limit	Pass / Fail	
	(IVITIZ)	Chain 0 Chain 1		(mW)	(dBm)	(dBm)		
50	5250	12.18	12.17	33.001	15.19	24	Pass	
114	5570	12.69	12.73	37.328	15.72	24	Pass	

802.11ax (HE80)

Channel	Frequency (MHz)		Conducted (dBm)	Total Power	Total Power	Power Limit	Pass / Fail	
	(IVI (Z)	Chain 0 Chain 1		(mW)	(dBm)	(dBm)		
42	5210	15.42	15.45	69.909	18.45	24	Pass	
58	5290	13.78	13.96	48.767	16.88	24	Pass	

802.11ax (HE160)

Channel	Frequency (MHz)		Conducted (dBm)	Total Power	Total Power	Power Limit	Pass / Fail	
	(IVITIZ)	Chain 0 Chain		(mW)	(dBm)	(dBm)		
50	5250	12.17	12.04	32.477	15.12	24	Pass	
114	5570	12.69	12.61	36.817	15.66	24	Pass	

4.3 Conducted Bandedge Measurement

4.3.1 Limits of Conducted Bandedge Measurement

Radiated versus Conducted Measurement								
□ Conducted measurement	Radiated measurement							
For Radiated measurement:								
The level of unwanted emissions was measured the equipment with the antenna connector(s) term	•							
For Conducted measurement:								
The level of unwanted emissions was measured spurious emissions).	as their power in a specified load (conducted							

Conducted Measurement Factor

- The composite gain will be used when signal support the correlated signal.
 (Composite gain = 3.62dBi + 10log(2) = 6.63dBi)
- For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
- c. For the band edge the gain for the specific band may have been used.
- In restricted bands below 1000 MHz, add upper bound on ground plane reflection:
 For f = 30 1000 MHz, add 4.7 dB.

Note: The conducted emission test was considered some factor to compute test result.

4.3.2 Test Procedure Measurement

Following FCC KDB 558074 D01 DTS Meas. Guidance:

Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

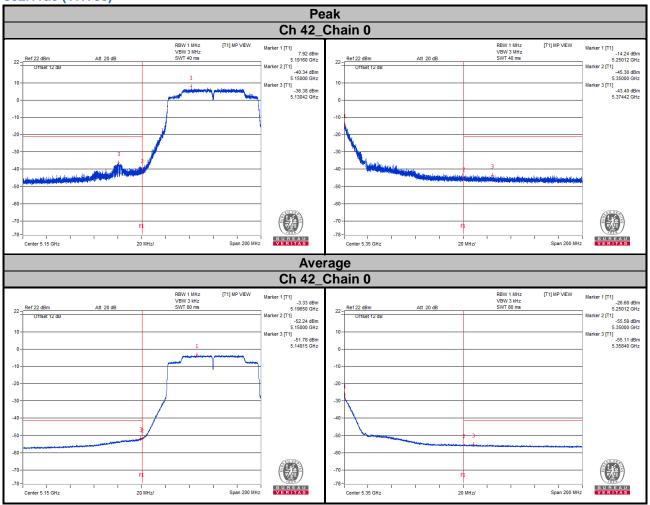
- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater
- d. EIRP adjustments for multiple outputs. (Follow the procedures specified in FCC KDB Publication 662911)

4.3.3 Test Setup

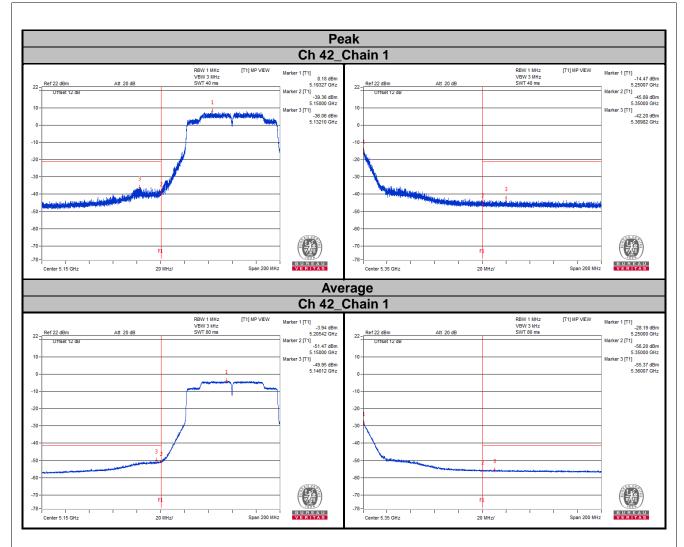
4.3.4 Test Instruments

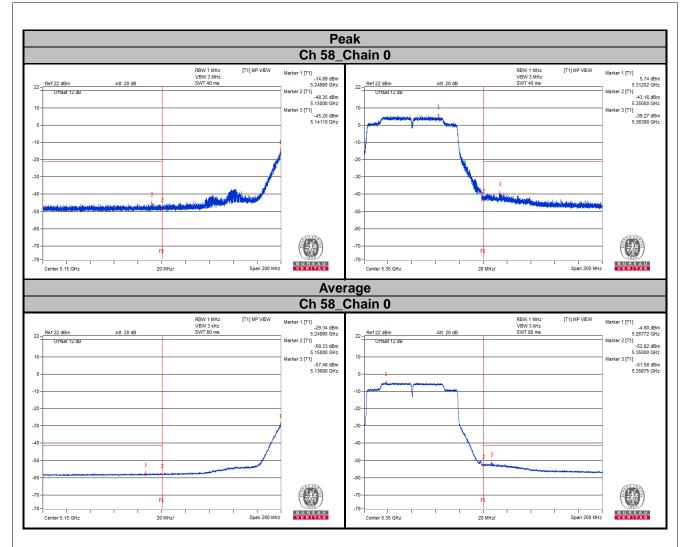
Refer to section 4.1.2 to get information of above instrument.

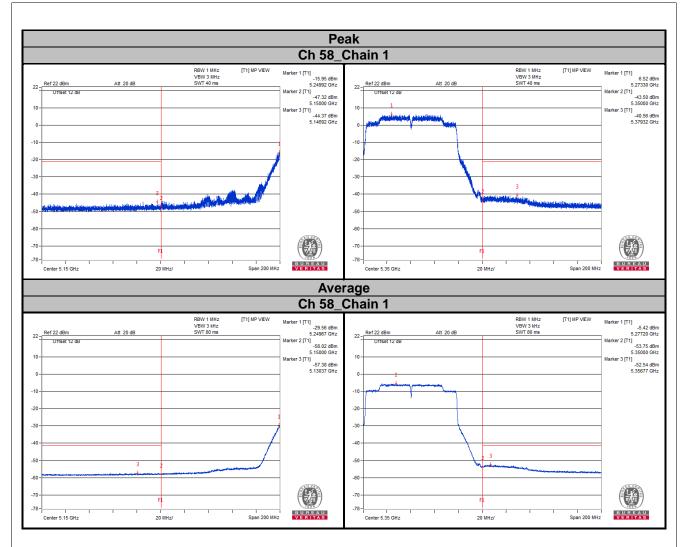
4.3.5 Deviation from Test Standard

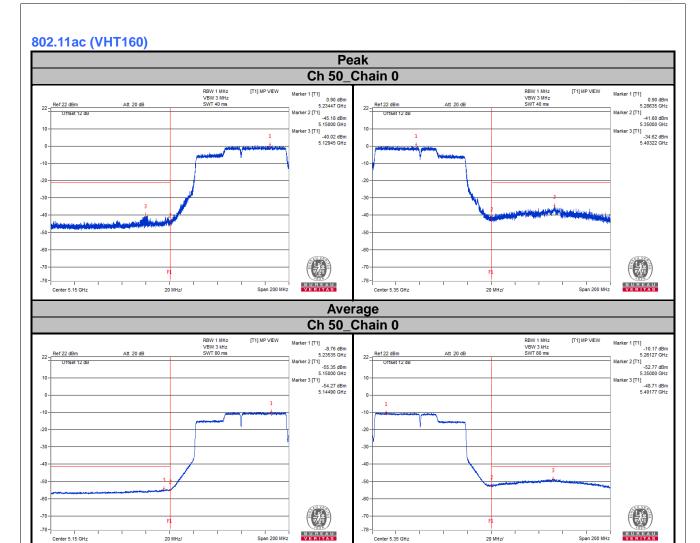

No deviation.

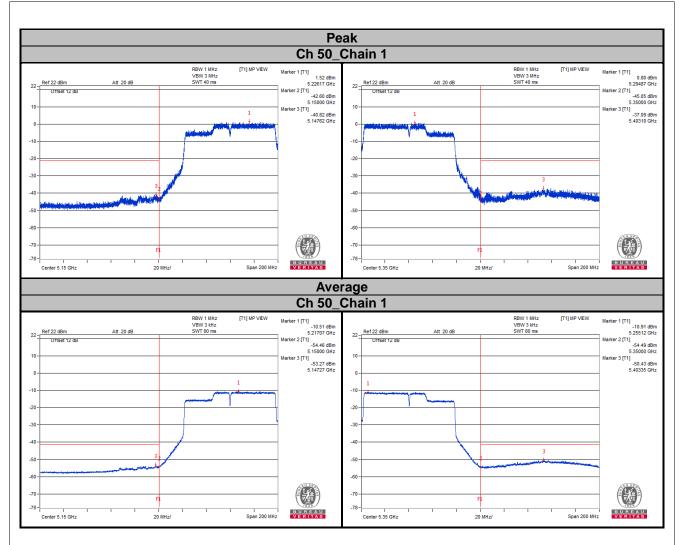
4.3.6 EUT Operating Condition

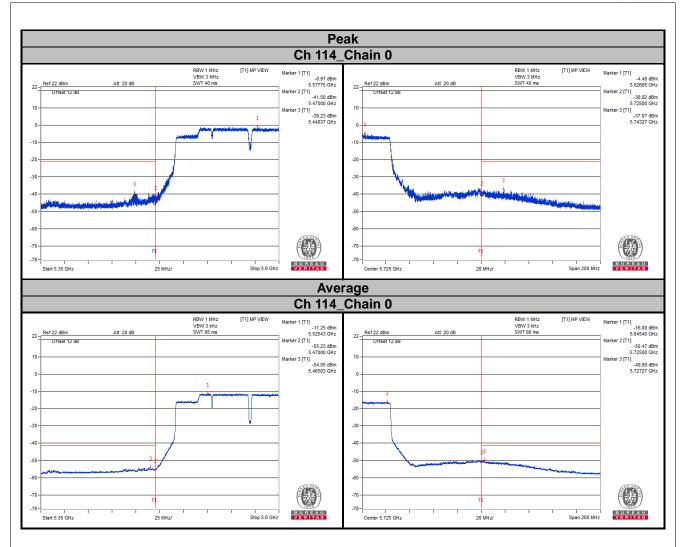

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

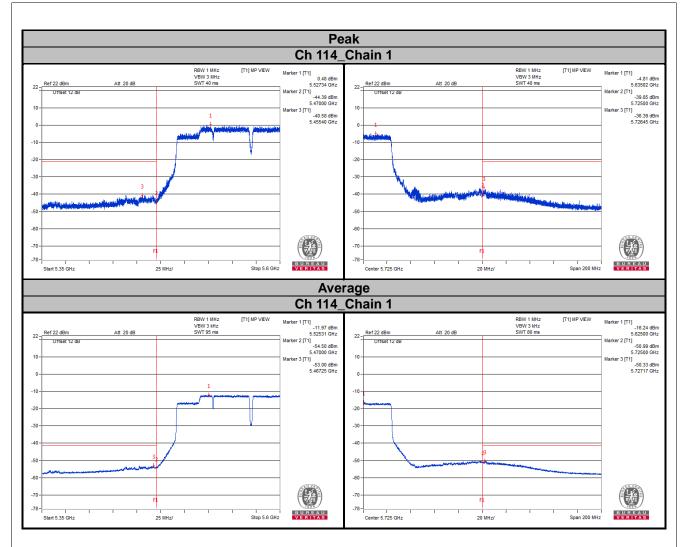


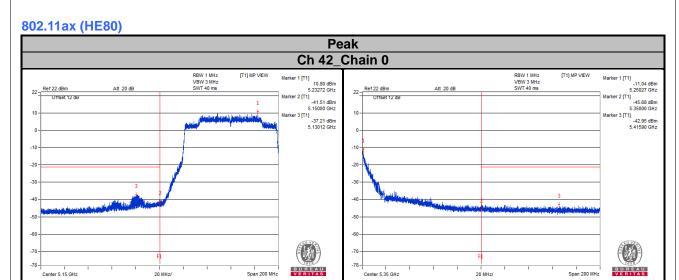


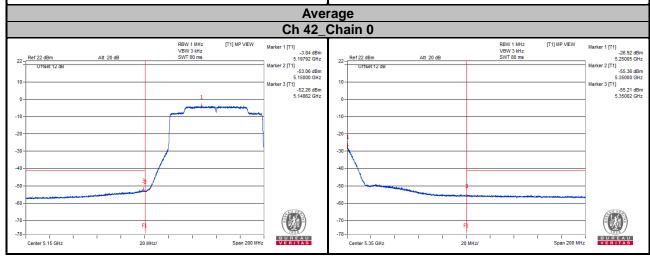


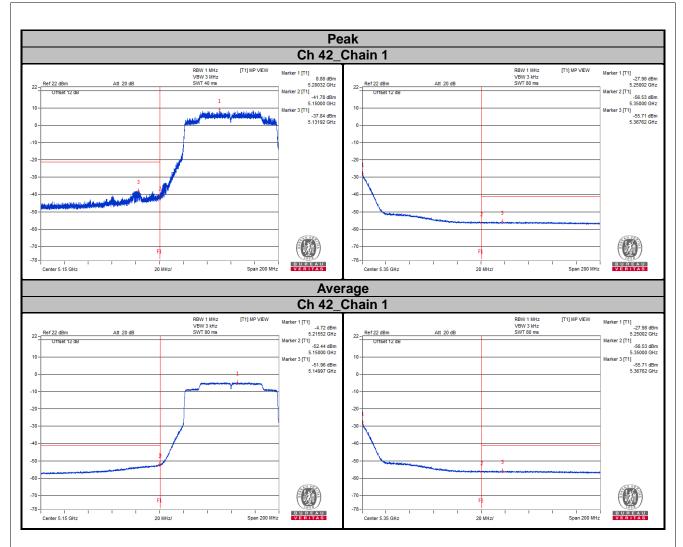


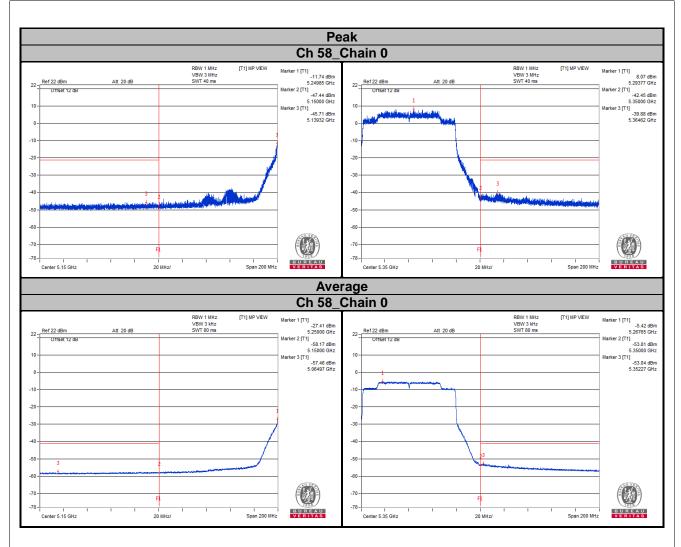


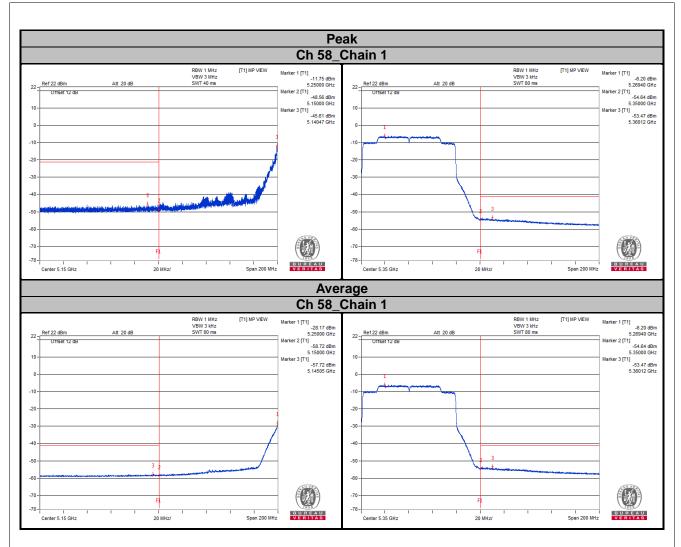


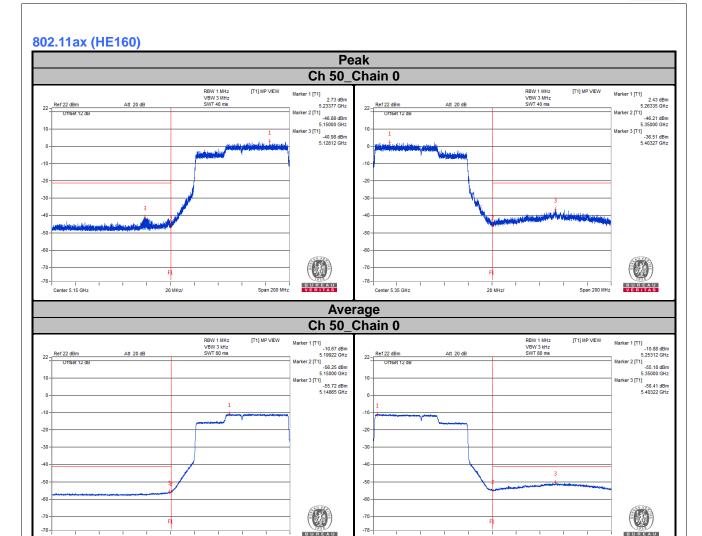


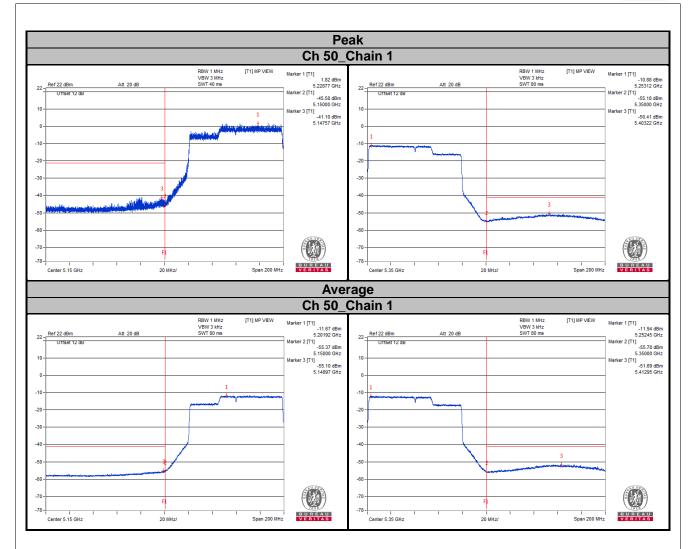


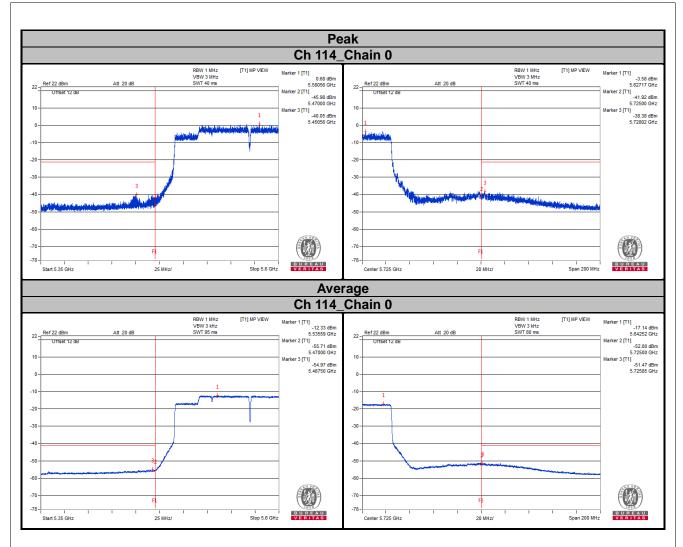


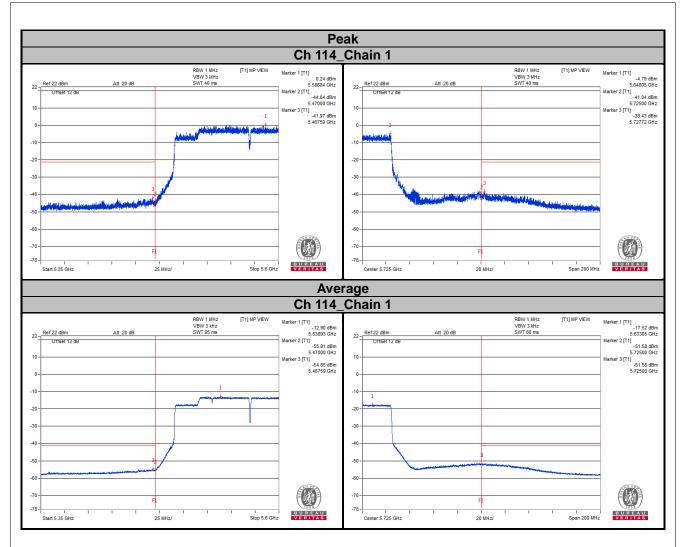












Band edge		Mada					Conducted Bandedge		Caravel Antenna Peak Gain (dBi)		(dBm)	EIRP (10^-5 *mW)		EIRP EIRP					Conversion	Field Strength	Limit	
Frequency (MHz)	Channel	Mode	BW	Chain A (dBm)	Chain B (dBm)	Chain (A)	Chain (B)	Chain (A)	Chain (B)	Chain (A)	Chain (B)	Combine (10^-5 *mW)	Combine (dBm)	Factor	Combine (dBuV/m)	(dBuV/m)	Margin (dB)					
2462	11F	11n_HT0	40	-53.54	-53.81	2.12	2.26	-51.42	-51.55	0.72	0.70	1.42	-48.47	95.20	46.73	54.00	-7.27					
2462	11	11ax_MCS0	20	-57.07	-57.1	2.12	2.26	-54.95	-54.84	0.32	0.33	0.65	-51.88	95.20	43.32	54.00	-10.68					
2467	12	11ax_MCS0	20	-51.26	-50.19	2.12	2.26	-49.14	-47.93	1.22	1.61	2.83	-45.48	95.20	49.72	54.00	-4.28					
2472	13	11ax_MCS0	20	-48.66	-49.18	2.12	2.26	-46.54	-46.92	2.22	2.03	4.25	-43.72	95.20	51.48	54.00	-2.52					
2462	11F	11ax_MCS0	40	-53.22	-53.75	2.12	2.26	-51.1	-51.49	0.78	0.71	1.49	-48.28	95.20	46.92	54.00	-7.08					
5210	42	11ac_VHT0	80	-51.78	-49.95	3.34	3.36	-48.44	-46.59	1.43	2.19	3.62	-44.41	95.20	50.79	54.00	-3.21					
5290	58	11ac_VHT0	80	-51.58	-52.54	3.34	3.31	-48.24	-49.23	1.50	1.19	2.69	-45.70	95.20	49.50	54.00	-4.50					
5250	50	11ac_VHT0	160	-48.71	-50.43	3.34	3.36	-45.37	-47.07	2.90	1.96	4.87	-43.13	95.20	52.07	54.00	-1.93					
5570	114	11ac_VHT0	160	-49.8	-50.33	3.12	3.47	-46.68	-46.86	2.15	2.06	4.21	-43.76	95.20	51.44	54.00	-2.56					
5210	42	11ax_MCS0	80	-52.26	-51.96	3.34	3.36	-48.92	-48.6	1.28	1.38	2.66	-45.75	95.20	49.45	54.00	-4.55					
5290	58	11ax_MCS0	80	-53.04	-53.47	3.34	3.31	-49.7	-50.16	1.07	0.96	2.04	-46.91	95.20	48.29	54.00	-5.71					
5250	50	11ax_MCS0	160	-50.41	-51.69	3.34	3.36	-47.07	-48.33	1.96	1.47	3.43	-44.64	95.20	50.56	54.00	-3.44					
5570	114	11ax_MCS0	160	-51.47	-51.58	3.12	3.47	-48.35	-48.11	1.46	1.55	3.01	-45.22	95.20	49.98	54.00	-4.02					

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).
Trodoc for to the diagoned me (foot octup finoto).

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---