

FCC Test Report (WLAN)

Report No.: RF191227E01B-1

FCC ID: C3K1889

Test Model: 1889

Received Date: June 09, 2020

Test Date: July 09, 2020

Issued Date: Oct. 16, 2020

Applicant: Microsoft Corporation

Address: One Microsoft Way, Redmond, Washington 98052-6399, United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwa

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan.

FCC Registration / Designation Number:

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RF191227E01B-1 Page No. 1 / 39 Report Format Version:6.1.2 Reference No.: 200605E10

Table of Contents

Rel	ease	e Control Record	. 3
1	C	Certificate of Conformity	. 4
2	S	Summary of Test Results	. 5
	.1 .2	Measurement Uncertainty	
3	G	Seneral Information	. 6
3 3 3 3	.1 .2 .2.1 .3 .4 .4.1	General Description of EUT (WLAN) Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standard and References	. 7 . 8 . 9 10
4	Т	est Types and Results	12
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.1.3 .1.4 .1.5 .1.6 .1.7 .2 .2.1 .2.2 .2.3 .2.4 .2.5 .2.6	Radiated Emission and Bandedge Measurement (Conducted Measurement) Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedure Deviation from Test Standard Test Setup EUT Operating Condition Test Results (Conducted Measurement) Transmit Power Measurement Limits of Transmit Power Measurement Test Setup Test Instruments Test Procedure Deviation from Test Standard EUT Operating Condition Test Results	12 13 14 14 14 15 36 36 36 36 36 36 37
_		-	39

Release Control Record

Issue No.	Description	Date Issued
RF191227E01B-1	Original release.	Oct. 16, 2020

Report No.: RF191227E01B-1 Page No. 3 / 39 Report Format Version:6.1.2 Reference No.: 200605E10

1 Certificate of Conformity

Product: Dual-band wireless accessory radio

Brand: Microsoft

Test Model: 1889

Sample Status: ENGINEERING SAMPLE

Applicant: Microsoft Corporation

Test Date: July 09, 2020

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : ________, Date: _________, Oct. 16, 2020

Claire Kuan / Specialist

Approved by : , Date: Oct. 16, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)							
FCC Clause	Test Item	Result	Remarks				
15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -7.25dB at 123.72MHz.				
15.407(a)(1/2/ 3)	Max Average Transmit Power	Pass	Meet the requirement of limit.				

Note:

- 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. This report is prepared for supplementary report.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions	9kHz ~ 40GHz	2.5 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	Dual-band wireless accessory radio
Brand	Microsoft
Test Model	1889
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.3Vdc from host equipment
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	OFDM
Transfer Rate	802.11n: up to 72.2Mbps
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz
Operating Frequency	5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz
	2.4GHz:
Number of Channel	802.11n (HT20): 11
Number of Chamiler	5GHz:
	802.11n (HT20): 9
	2.4GHz : 87.498 mW
Output Power	5.18 ~ 5.24GHz : 10.116 mW
	5.745 ~ 5.825GHz : 10.447 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Cable Supplied	NA

Note:

1. This report is prepared for FCC class II change. The difference compared with the Report No.: RF191227E01-1 as the following:

♦ Modifying antenna's matching circuit and updating antenna gain as follows:

Antenna No.	Transmitter Circuit	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type	Cable Length
		2.88	2.4 ~ 2.4835GHz	PCB	NA	NA
		4.2	5.15~5.25GHz (5G B1)	PCB	NA	NA
MAIN	0	3.64	5.25~5.35GHz (5G B2)	PCB	NA	NA
		4.18	5.47~5.725GHz (5G B3)	PCB	NA	NA
		4.29	5.725~5.85GHz (5G B4)	PCB	NA	NA
			2.4 ~ 2.4835GHz	PCB	NA	NA
		3.64	5.15~5.25GHz (5G B1)	PCB	NA	NA
DIV	1	4.2	5.25~5.35GHz (5G B2)	PCB	NA	NA
		4.09	5.47~5.725GHz (5G B3)	PCB	NA	NA
		3.05	5.725~5.85GHz (5G B4)	PCB	NA	NA

2. According to above conditions, only Radiated Emissions (Conducted Measurement) and conducted power test need to be performed. And all data was verified to meet the requirements.

3. The EUT incorporates function as following.

2.4GHz Band					
MODULATION MODE TX & RX CONFIGURATION					
802.11n (HT20)	1TX (Fixed Chain 0)	1RX			
	5GHz Band				
MODULATION MODE	TX & RX CONFIGURATION				
802.11n (HT20)	1TX (Fixed Chain 0)	2RX			

- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
- 5. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11n (HT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11n (HT20):

	` '		
Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applicable To	Description	
Mode	RE≥1G	RE<1G	APCM	Description
-	√	$\sqrt{}$	\checkmark	-

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

APCM: Antenna Port Conducted Measurement

Note: In the original test report, the EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane (for below 1GHz) and X-plane (for above 1GHz).

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
000 44 (UT00)	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
802.11n (HT20)	5745-5825	149 to 165	149, 157, 165	OFDM	BPSK	6.5

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

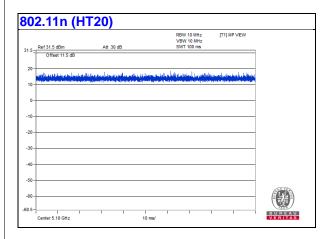
	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
	902 11n (UT20)	5180-5240,	36 to 48,	48. 165	OFDM	DDCK	6.5
802.11n (HT20)	5745-5825	149 to 165	40, 100	OFDM	BPSK	6.5	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
802.11n (HT20)	5745-5825	149 to 165	149, 157, 165	OFDM	BPSK	6.5

Test Condition:


Applicable To	Environmental Conditions	Input Power (System)	Tested By	
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Nelson Teng	
RE<1G	25deg. C, 75%RH	120Vac, 60Hz	Nelson Teng	
APCM	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin	

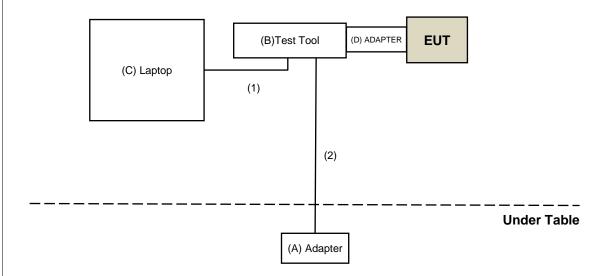
Report No.: RF191227E01B-1 Reference No.: 200605E10 Page No. 8 / 39

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	PHIHONG	PSC15A-050	NA	NA	Supplied by client
B.	Test Tool	MediaTek Inc.	NA	NA	NA	Supplied by client
C.	Laptop	DELL	E5430	GM1SKV1	FCC DoC	Provided by Lab
D.	ADAPTER	MediaTek Inc.	M1096761-001	NA	NA	Supplied by client

Note:

^{1.} All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type B Cable	1	1.8	Yes	0	Provided by Lab
2.	DC Cable	1	1.5	No	0	Supplied by client

3.4.1 Configuration of System under Test

Report No.: RF191227E01B-1 Reference No.: 200605E10 Page No. 10 / 39

3.5 General Description of Applied Standard and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedure New Rules v02r01

All test items have been performed as a reference to the above KDB test guidance.

Report No.: RF191227E01B-1 Reference No.: 200605E10

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement (Conducted Measurement)

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits

specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

initis of unwanted emission out of the restricted bands										
able To	Limit									
I UNII Test Procedure	Field Strength at 3m									
es v02r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)								
Applicable To	EIRP Limit	Equivalent Field Strength at 3m								
15.407(b)(1)										
15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)								
15.407(b)(3)										
15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBµV/m) *1 PK:105.2 (dBµV/m) *2 PK: 110.8(dBµV/m) *3 PK:122.2 (dBµV/m) *4								
	able To I UNII Test Procedure es v02r01 Applicable To 15.407(b)(1) 15.407(b)(2) 15.407(b)(3)	Applicable To Applicable To EIRP Limit 15.407(b)(1) 15.407(b)(3) PK:-27 (dBm/MHz) PK:10 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3								

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF191227E01B-1 Page No. 12 / 39 Report Format Version:6.1.2

Reference No.: 200605E10

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.2 **Test Instruments**

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	WIODEL NO.	SERIAL NO.	DATE	UNTIL
Spectrum Analyzer R&S	FSV40	100964	May 29, 2020	May 28, 2021
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10- 01	Apr. 14, 2020	Apr. 13, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

Note:

NOTE:

- The test was performed in Oven room 2.
 The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: July 09, 2020

Report No.: RF191227E01B-1 Reference No.: 200605E10

4.1.3 Test Procedure

Following FCC KDB 789033 D02 General UNII Test Procedures:

Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT.
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Condition

- a. Connected the EUT with the Laptop which is placed on testing table.
- b. Controlling software (MT7663 QA 0.0.2.6) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF191227E01B-1 Page No. 14 / 39 Report Format Version:6.1.2

Reference No.: 200605E10

4.1.7 Test Results (Conducted Measurement)

Radiated versus Conducted Measurement								
□ Conducted measurement	☐ Radiated measurement							
For Radiated measurement:								
The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation)								
For Conducted measurement:								
The level of unwanted emissions was measured spurious emissions).	as their power in a specified load (conducted							
Note: In order to obtain results more easily, chan effect on the result.	ge max hold to view as following. It has no							

Conducted Measurement Factor

The composite gain will be used

(For U-NII-1: Composite gain = 4.2dBi

For U-NII-3: Composite gain = 4.29dBi)

- For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
- c. For the band edge the gain for the specific band may have been used.
- d. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:

For f = 30 - 1000 MHz, add 4.7 dB.

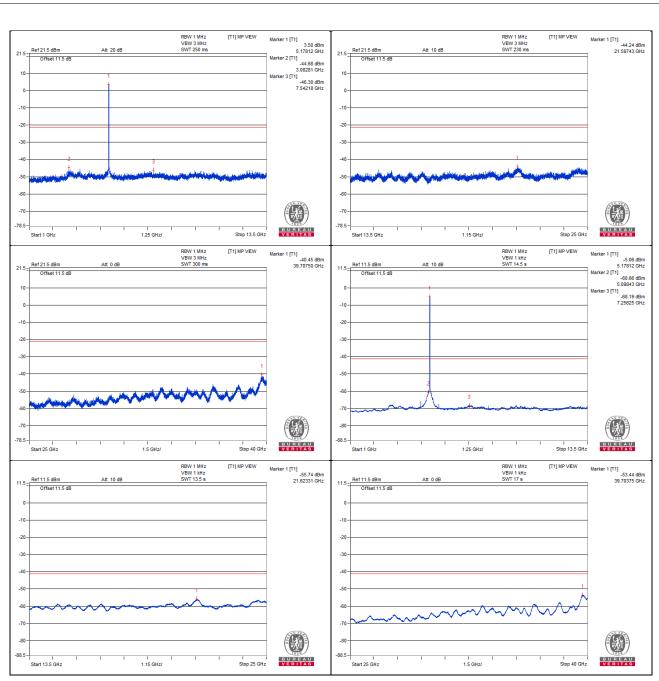
Note: The conducted emission test was considered some factor to compute test result.

Report No.: RF191227E01B-1 Page No. 15 / 39 Report Format Version:6.1.2 Reference No.: 200605E10

Above 1GHz Data

802.11n (HT20) - Channel 36

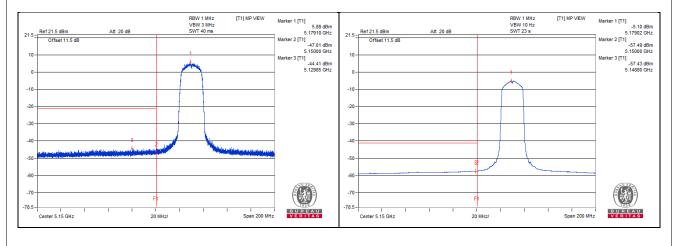
Conducted spurious emission table


No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5178.12 PK	103.05	*		3.5	4.29	7.79
2	3082.81 PK	54.87	68.2	-13.33	-44.68	4.29	-40.39
3	7542.18 PK	53.25	74	-20.75	-46.3	4.29	-42.01
4	21597.43 PK	55.31	68.2	-12.89	-44.24	4.29	-39.95
5	39707.5 PK	59.1	74	-14.9	-40.45	4.29	-36.16
6	5178.12 AV	94.49	*		-5.06	4.29	-0.77
7	5098.43 AV	38.89	54	-15.11	-60.66	4.29	-56.37
8	7256.25 AV	31.36	54	-22.64	-68.19	4.29	-63.9
9	21623.31 AV	43.81	#		-55.74	4.29	-51.45
10	39703.75 AV	46.11	54	-7.89	-53.44	4.29	-49.15

Note:

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. * : Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

Report No.: RF191227E01B-1 Reference No.: 200605E10



Bandedge table

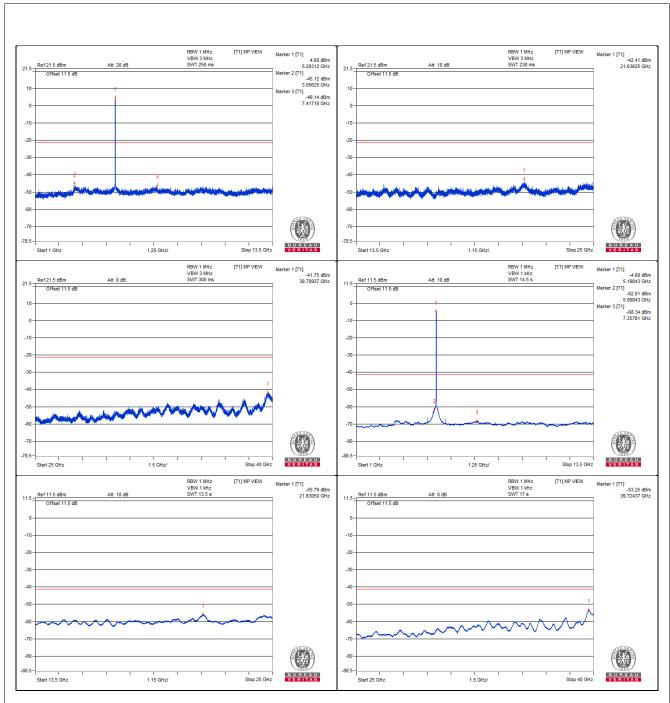
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5179.1 PK	105.35	*		5.89	4.2	10.09
2	5150 PK	52.45	74	-21.55	-47.01	4.2	-42.81
3	5129.85 PK	55.05	74	-18.95	-44.41	4.2	-40.21
4	5179.02 AV	94.36	*		-5.1	4.2	-0.9
5	5150 AV	41.97	54	-12.03	-57.49	4.2	-53.29
6	5148.8 AV	42.03	54	-11.97	-57.43	4.2	-53.23

Note

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.

802.11n (HT20) - Channel 40

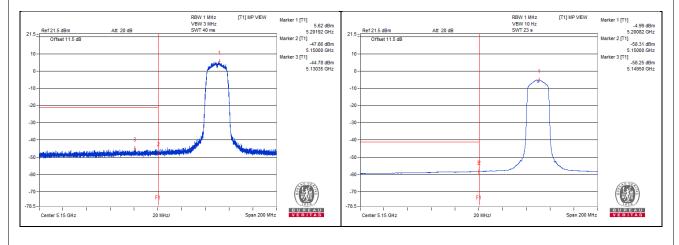
Conducted spurious emission table


No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5203.12 PK	104.15	*		4.6	4.29	8.89
2	3056.25 PK	54.43	68.2	-13.77	-45.12	4.29	-40.83
3	7417.18 PK	53.41	74	-20.59	-46.14	4.29	-41.85
4	21636.25 PK	57.14	68.2	-11.06	-42.41	4.29	-38.12
5	39709.37 PK	57.8	74	-16.2	-41.75	4.29	-37.46
6	5198.43 AV	94.95	*		-4.6	4.29	-0.31
7	5098.43 AV	37.54	54	-16.46	-62.01	4.29	-57.72
8	7357.81 AV	31.21	54	-22.79	-68.34	4.29	-64.05
9	21630.5 AV	43.76	#		-55.79	4.29	-51.5
10	39724.37 AV	46.3	54	-7.7	-53.25	4.29	-48.96

Note:

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

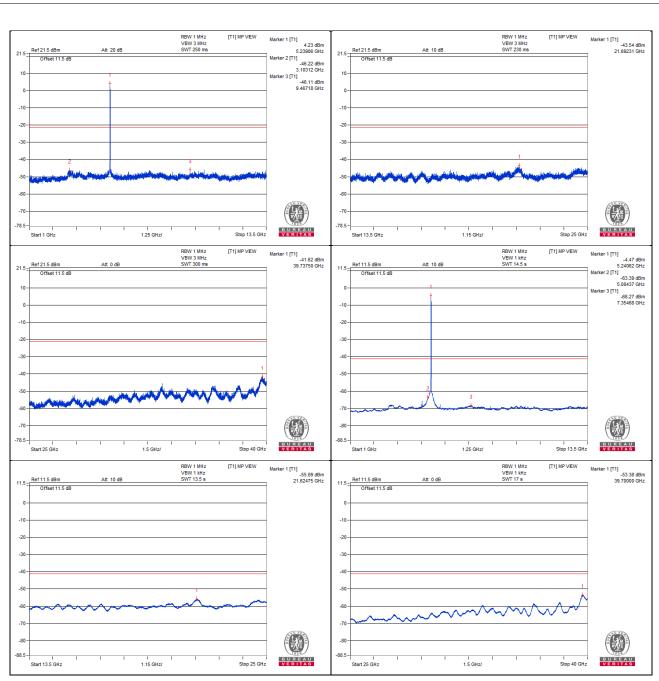
Report No.: RF191227E01B-1 Reference No.: 200605E10



Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5201.92 PK	105.08	*		5.62	4.2	9.82
2	5150 PK	51.8	74	-22.2	-47.66	4.2	-43.46
3	5130.35 PK	54.68	74	-19.32	-44.78	4.2	-40.58
4	5200.82 AV	94.47	*		-4.99	4.2	-0.79
5	5150 AV	41.15	54	-12.85	-58.31	4.2	-54.11
6	5149.5 AV	41.21	54	-12.79	-58.25	4.2	-54.05

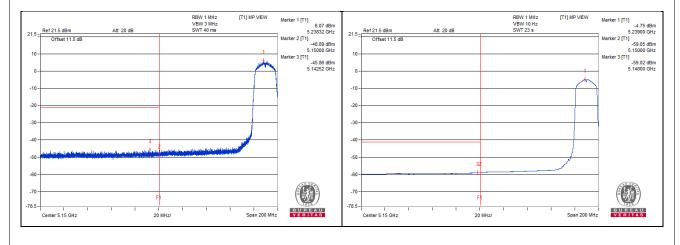
- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.


802.11n (HT20) - Channel 48

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5239.06 PK	103.78	*		4.23	4.29	8.52
2	3103.12 PK	53.33	68.2	-14.87	-46.22	4.29	-41.93
3	9467.18 PK	53.44	74	-20.56	-46.11	4.29	-41.82
4	21692.31 PK	56.01	68.2	-12.19	-43.54	4.29	-39.25
5	39737.5 PK	57.93	74	-16.07	-41.62	4.29	-37.33
6	5240.62 AV	95.08	*		-4.47	4.29	-0.18
7	5084.37 AV	36.16	54	-17.84	-63.39	4.29	-59.1
8	7354.68 AV	31.28	54	-22.72	-68.27	4.29	-63.98
9	21624.75 AV	43.66	#		-55.89	4.29	-51.6
10	39700 AV	46.17	54	-7.83	-53.38	4.29	-49.09

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.



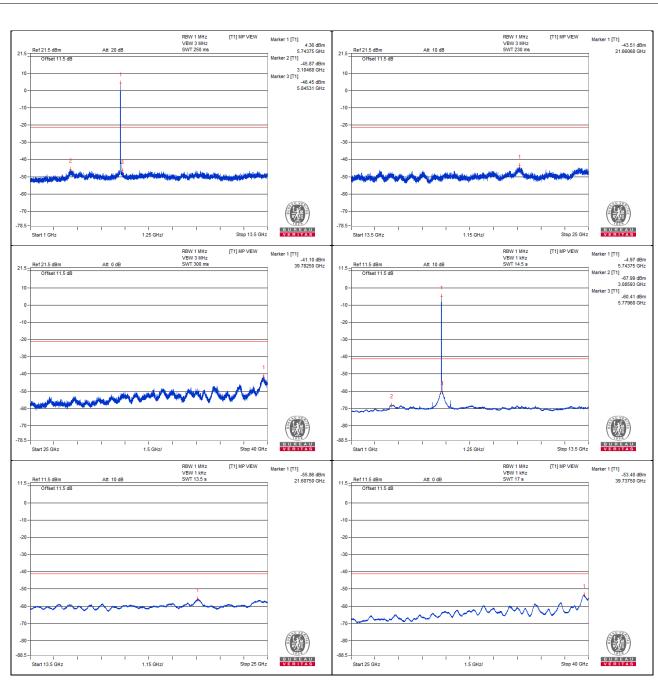
Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5238.32 PK	105.53	*		6.07	4.2	10.27
2	5150 PK	50.57	74	-23.43	-48.89	4.2	-44.69
3	5142.52 PK	53.6	74	-20.4	-45.86	4.2	-41.66
4	5239 AV	94.71	*		-4.75	4.2	-0.55
5	5150 AV	40.41	54	-13.59	-59.05	4.2	-54.85
6	5148 AV	40.44	54	-13.56	-59.02	4.2	-54.82

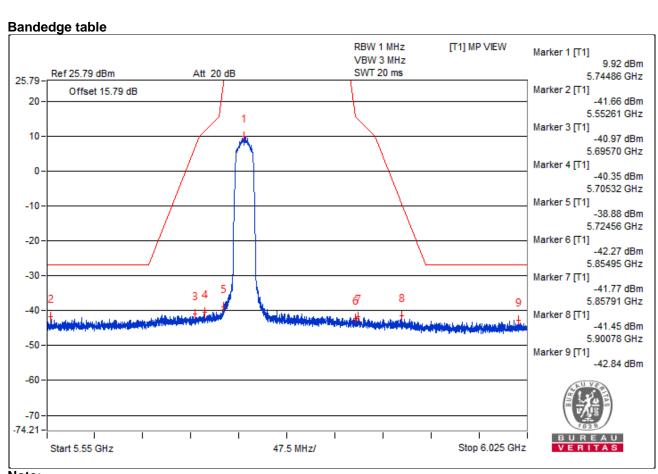
Note

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.

802.11n (HT20) - Channel 149


Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5743.75 PK	103.91	*		4.36	4.29	8.65
2	3104.68 PK	53.68	68.2	-14.52	-45.87	4.29	-41.58
3	5845.31 PK	53.1	68.2	-15.1	-46.45	4.29	-42.16
4	21660.68 PK	56.04	68.2	-12.16	-43.51	4.29	-39.22
5	39782.5 PK	58.45	74	-15.55	-41.1	4.29	-36.81
6	5743.75 AV	94.58	*		-4.97	4.29	-0.68
7	3085.93 AV	31.56	#		-67.99	4.29	-63.7
8	5779.68 AV	39.14	#		-60.41	4.29	-56.12
9	21607.5 AV	43.69	#		-55.86	4.29	-51.57
10	39737.5 AV	46.15	54	-7.85	-53.4	4.29	-49.11

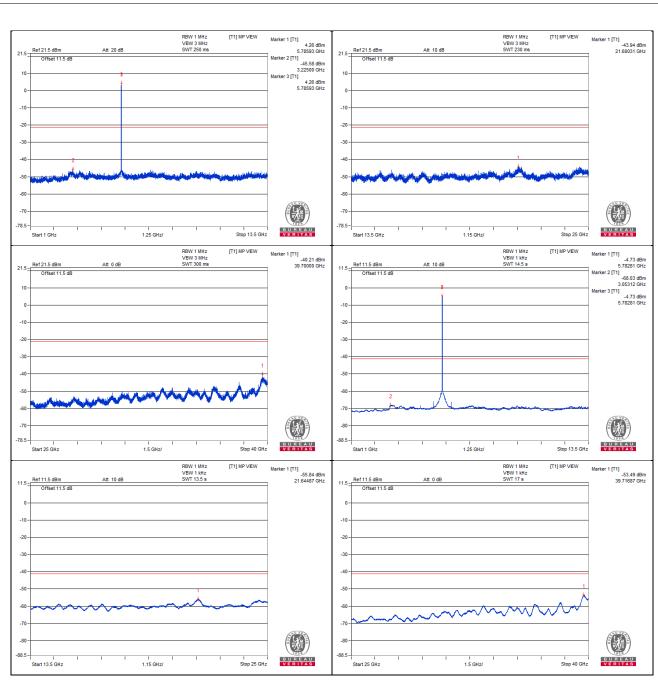

Note

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

- 1. The offset including attenuator (10dB), cable loss (1.5 dB) and antenna gain (4.29 dBi).
- 2. The test results were EIRP.

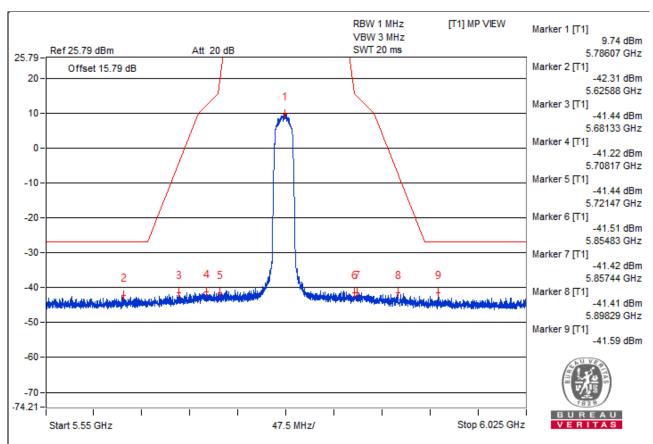
802.11n (HT20) - Channel 157

Conducted spurious emission table


No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5785.93 PK	103.81	*		4.26	4.29	8.55
2	3225 PK	53.97	68.2	-14.23	-45.58	4.29	-41.29
3	5785.93 PK	103.81	*		4.26	4.29	8.55
4	21600.31 PK	55.61	68.2	-12.59	-43.94	4.29	-39.65
5	39700 PK	59.34	74	-14.66	-40.21	4.29	-35.92
6	5782.81 AV	94.82	*		-4.73	4.29	-0.44
7	3053.12 AV	31.52	#		-68.03	4.29	-63.74
8	5782.81 AV	94.82	*		-4.73	4.29	-0.44
9	21644.87 AV	43.71	#		-55.84	4.29	-51.55
10	39716.87 AV	46.06	54	-7.94	-53.49	4.29	-49.2

Note

Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters.

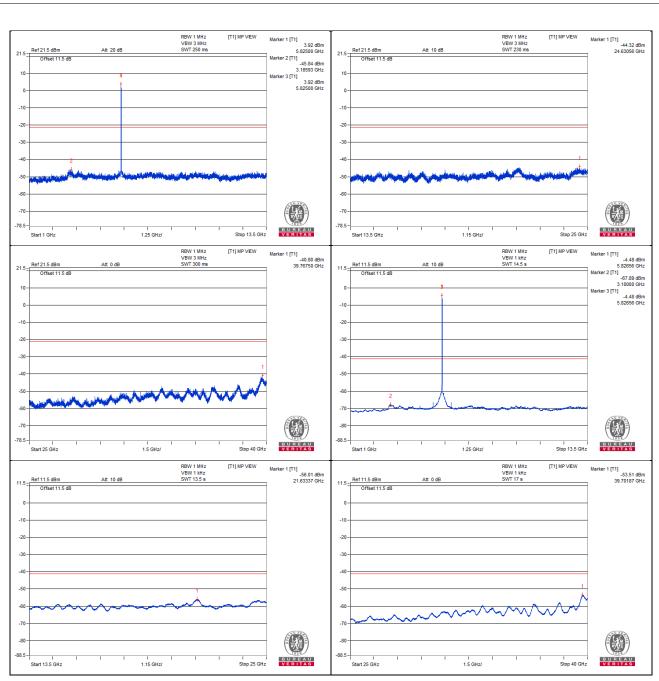

^{2. *:} Fundamental frequency, the limit was restricted at the output power.

Bandedge table

- 1. The offset including attenuator (10dB), cable loss (1.5 dB) and antenna gain (4.29 dBi).
- 2. The test results were EIRP.

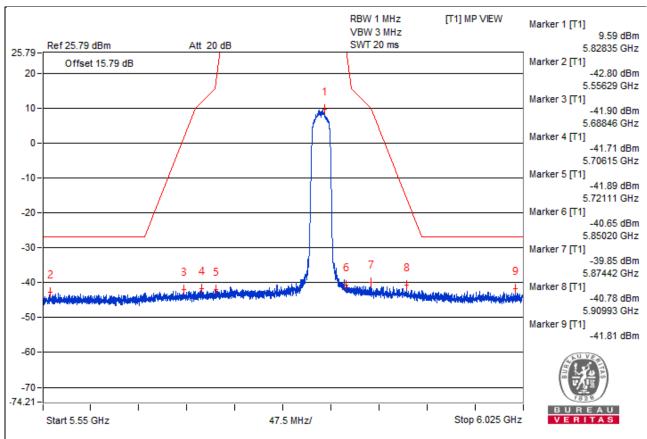
802.11n (HT20) - Channel 165

Conducted spurious emission table


No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5825 PK	103.47	*		3.92	4.29	8.21
2	3185.93 PK	53.71	68.2	-14.49	-45.84	4.29	-41.55
3	5825 PK	103.47	*		3.92	4.29	8.21
4	24630.56 PK	55.23	68.2	-12.97	-44.32	4.29	-40.03
5	39767.5 PK	58.75	74	-15.25	-40.8	4.29	-36.51
6	5826.56 AV	95.07	*		-4.48	4.29	-0.19
7	3100 AV	31.66	#		-67.89	4.29	-63.6
8	5826.56 AV	95.07	*		-4.48	4.29	-0.19
9	21633.37 AV	43.54	#		-56.01	4.29	-51.72
10	39701.87 AV	46.04	54	-7.96	-53.51	4.29	-49.22

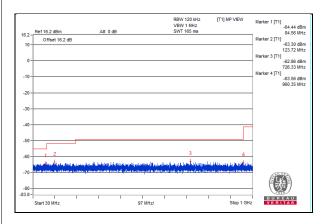
Note

Emission Level (dBuV/m) = EIRP Level (dBm) – 20log(d) + 104.8 d = measurement distance in 3 meters.


^{2. *:} Fundamental frequency, the limit was restricted at the output power.

Bandedge table

- 1. The offset including attenuator (10dB), cable loss (1.5 dB) and antenna gain (4.29 dBi).
- 2. The test results were EIRP.

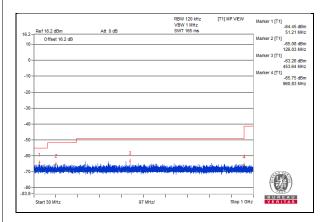

Below 1GHz Data

802.11n (HT20) - Channel 48

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	84.56	35.11	68.2	-33.09	-64.44	4.29	-60.15
2	123.72	36.25	43.5	-7.25	-63.3	4.29	-59.01
3	726.33	36.69	68.2	-31.51	-62.86	4.29	-58.57
4	960.35	35.99	46	-10.01	-63.56	4.29	-59.27

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. # : Non-restricted frequency, no limit for average emission.
- 3. The emission level was including the the appropriate maximum ground reflection factor 4.7dB.



802.11n (HT20) - Channel 165

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	51.21	35.1	68.2	-33.1	-64.45	4.29	-60.16
2	126.03	34.47	43.5	-9.03	-65.08	4.29	-60.79
3	453.64	36.29	68.2	-31.91	-63.26	4.29	-58.97
4	960.83	33.8	46	-12.2	-65.75	4.29	-61.46

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. #: Non-restricted frequency, no limit for average emission.
- 3. The emission level was including the the appropriate maximum ground reflection factor 4.7dB.

4.2 Transmit Power Measurement

4.2.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit		
U-NII-1		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)		
0-1411-1		Fixed point-to-point Access Point	1 Watt (30 dBm)		
	√	Indoor Access Point	1 Watt (30 dBm)		
		Client device	250mW (24 dBm)		
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-3	V		1 Watt (30 dBm)		

^{*}B is the 26 dB emission bandwidth in megahertz

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.2.5 Deviation from Test Standard

No deviation.

4.2.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF191227E01B-1 Page No. 36 / 39 Reference No.: 200605E10

4.2.7 Test Results

802.11n (HT20)

Channel	Channel Frequency (MHz)	Maximum Conducted Power (mW)	Maximum Conducted Power (dBm)	Power Limit (dBm)	Pass/Fail
36	5180	10.069	10.03	30	Pass
40	5200	10.046	10.02	30	Pass
48	5240	10.116	10.05	30	Pass
149	5745	10.046	10.02	30	Pass
157	5785	10.186	10.08	30	Pass
165	5825	10.447	10.19	30	Pass

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Report No.: RF191227E01B-1 Reference No.: 200605E10

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF191227E01B-1 Reference No.: 200605E10