

FCC Test Report

Report No.: RF200206E02

FCC ID: C3K1885

Test Model: 1885

Received Date: Feb. 06, 2020

Test Date: Mar. 23 to May 19, 2020

Issued Date: June 24, 2020

Applicant: Microsoft Corporation

Address: One Microsoft Way, Redmond, Washington 98052-6399, United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record4						
1	(Certificate of Conformity	5				
2	;	Summary of Test Results	6				
	2.1 2.2	Measurement Uncertainty					
3		General Information					
J							
	3.1 3.2	General Description of EUT					
	3.2.1	·					
	3.3	Duty Cycle of Test Signal					
	3.4	Description of Support Units					
	3.4.1						
	3.5	General Description of Applied Standards and references	14				
4	•	Test Types and Results	15				
	4.1	Radiated Emission and Bandedge Measurement (Radiated Versus Conducted)	15				
		Limits of Radiated Emission and Bandedge Measurement					
		! Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Setup					
		EUT Operating Conditions Test Results (Radiated Measurement)					
		Test Results (Conducted Measurement)					
	4.2	Conducted Emission Measurement					
		Limits of Conducted Emission Measurement					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Setup					
		EUT Operating Conditions					
		Test Results					
	4.3 4.3.1	6dB Bandwidth MeasurementLimits of 6dB Bandwidth Measurement					
		Test Setup					
		Test Instruments					
		Test Procedure					
	4.3.5	Deviation from Test Standard	44				
		EUT Operating Conditions					
		Test Result					
	4.4	Conducted Output Power Measurement					
		Limits of Conducted Output Power Measurement					
	4.4.2	Test Setup Test Instruments					
		Test Procedures					
	4.4.5						
		EUT Operating Conditions					
		Test Results					
	4.5	Power Spectral Density Measurement	48				
	4.5.1	· · · · · · · · · · · · · · · · · · ·					
	4.5.2						
		Test Instruments					
		Test Procedure					
	4.5.5	Deviation from Test Standard	48				

4.5.6	EUT Operating Condition	48
4.5.7	Test Results	49
	Conducted Out of Band Emission Measurement	
	Limits of Conducted Out of Band Emission Measurement	
4.6.2	Test Setup	50
	Test Instruments	
4.6.4	Test Procedure	50
4.6.5	Deviation from Test Standard	50
4.6.6	EUT Operating Condition	50
4.6.7	Test Results	51
5 F	ictures of Test Arrangements	53
Append	ix – Information of the Testing Laboratories	54

Release Control Record

Issue No.	Description	Date Issued
RF200206E02	Original release.	June 24, 2020

1 Certificate of Conformity

Product: Dual-band wireless accessory radio

Brand: Microsoft

Test Model: 1885

Sample Status: ENGINEERING SAMPLE

Applicant: Microsoft Corporation

Test Date: Mar. 23 to May 19, 2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Claire Kuan / Specialist

Approved by: , Date: June 24, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -21.24dB at 0.73203 MHz.				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -8.7dB at 99.72MHz.				
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted Emissions	9kHz ~ 40GHz	2.5 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Radiated Effissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
Natiated Emissions above 1 GHZ	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Dual-band wireless accessory radio				
Brand	Microsoft				
Test Model	1885				
Status of EUT	ENGINEERING SAMPLE				
Power Supply Rating	3.3Vdc from host equipment				
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM				
Modulation Technology	OFDM				
Transfer Rate	802.11n: up to 72.2 Mbps				
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz				
Operating Frequency	5GHz: 5.18 ~ 5.24 GHz, 5.745 ~ 5.825 GHz				
	2.4GHz:				
Number of Channel	802.11n (HT20): 11				
14diliber of offatilier	5GHz:				
	802.11n (HT20): 9				
	2.4GHz: 95.06 mW				
Output Power	5.18 ~ 5.24GHz : 10.328 mW				
	5.745 ~ 5.825GHz : 10.495 mW				
Antenna Type	Refer to Note				
Antenna Connector	Refer to Note				
Accessory Device	NA				
Data Cable Supplied	NA				

Note:

1. The antennas provided to the EUT, please refer to the following table:

Antenna No.	Transmitter Circuit	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type	Cable Length
		3.85	2.4 ~ 2.4835GHz	PCB	NA	NA
		5.7	5.15~5.25GHz (5G B1)	PCB	NA	NA
MAIN	0	5.77	5.25~5.35GHz (5G B2)	PCB	NA	NA
		5.52	5.47~5.725GHz (5G B3)	PCB	NA	NA
		5.79	5.725~5.85GHz (5G B4)	PCB	NA	NA
			2.4 ~ 2.4835GHz	PCB	NA	NA
		4.95	5.15~5.25GHz (5G B1)	PCB	NA	NA
DIV	1	5.02	5.25~5.35GHz (5G B2)	PCB	NA	NA
		5.24	5.47~5.725GHz (5G B3)	PCB	NA	NA
		5.39	5.725~5.85GHz (5G B4)	PCB	NA	NA

2. The EUT incorporates function as following.

2.4GHz Band							
MODULATION MODE TX & RX CONFIGURATION							
802.11n (HT20)	1RX						
	5GHz Band						
MODULATION MODE	MODULATION MODE TX & RX CONFIGURATION						
802.11n (HT20) 1TX (Fixed Chain 0) 2RX							

^{3.} The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

11 channels are provided for 802.11n (HT20):

Channel	Frequency	Channel	Frequency	
1	2412MHz	7	2442MHz	
2	2417MHz	8	2447MHz	
3	2422MHz	9	2452MHz	
4	2427MHz	10	2457MHz	
5	2432MHz	11	2462MHz	
6	2437MHz			

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
-	V	√	√	V	-

Where

RE≥1G: Radiated Emission above 1GHz &

RE<1G: Radiated Emission below 1GHz

Bandedge Measurement

APCM: Antenna Port Conducted Measurement

PLC: Power Line Conducted Emission Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane (for

below 1GHz) and X-plane (for above 1GHz).

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	Data Rate
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	Data Rate
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	11	OFDM	BPSK	6.5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

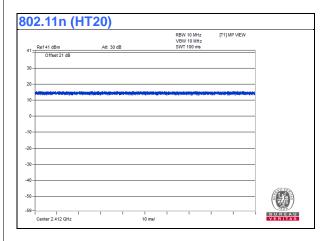
MODE	AVAILABLE	TESTED	MODULATION	MODULATION	Data Rate
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	11	OFDM	BPSK	6.5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	Data Rate
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5


Test Condition:

Applicable To	Environmental Conditions	Input Power (System)	Tested By
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Nelson Teng
RE<1G	25deg. C, 75%RH	120Vac, 60Hz	Nelson Teng
PLC	25deg. C, 68%RH	120Vac, 60Hz	Sampson Chen
APCM	26deg. C, 61%RH	120Vac, 60Hz	Jyunchun Lin

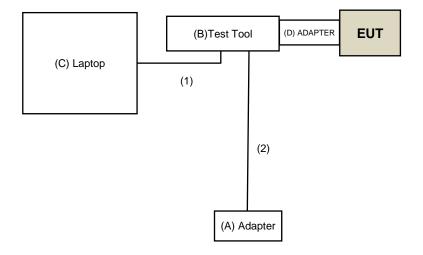
3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

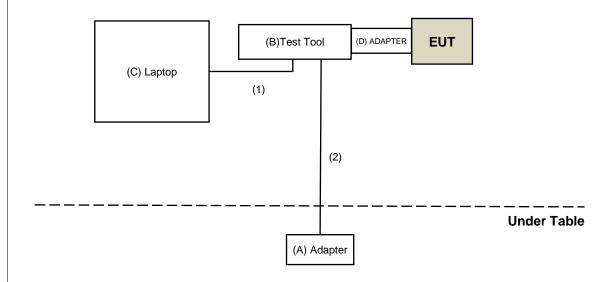
3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	PHIHONG	PSC15A-050	NA	NA	Supplied by client
B.	Test Tool	MediaTek Inc.	NA	NA	NA	Supplied by client
C.	Laptop	DELL	E5430	GM1SKV1	FCC DoC	Provided by Lab
D.	ADAPTER	MediaTek Inc.	M1096761-001	NA	NA	Supplied by client


^{1.} All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type B Cable	1	1.8	Yes	0	Provided by Lab
2.	DC Cable	1	1.5	No	0	Supplied by client



3.4.1 Configuration of System under Test

For AC Power Conducted Emissions Test:

For Radiated Emissions Test:

3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement (Radiated Versus Conducted)

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RF200206E02 Page No. 15 / 54 Report Format Version: 6.1.2

4.1.2 Test Instruments

For radiated emission test:

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	OLIVIAL NO.	DATE	UNTIL
Test Receiver	N9038A	MY54450088	July 03, 2019	July 02, 2020
Keysight	NOOOA	W1134430000	July 03, 2019	July 02, 2020
Pre-Amplifier EMCI	EMC001340	980142	May 30, 2019	May 29, 2020
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
RF Cable	NA	LOOPCAB- 001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB- 002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180601	June 10, 2019	June 09, 2020
RF Cable	EMC104-SM-SM-6000	180602	June 10, 2019	June 09, 2020
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: Mar. 23 to 24, 2020

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10- 01	Apr. 14, 2020	Apr. 13, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

Note:

NOTE:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: May 19, 2020

4.1.3 Test Procedures

Following FCC KDB 558074 D01 DTS Meas Guidance:

Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater
- d. For all of Radiation emission test

For Radiated emission below 30MHz

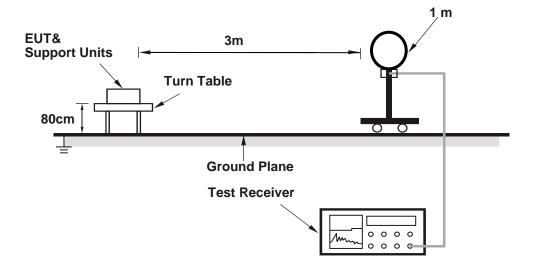
- d-1.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- d-1.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d-1.3. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d-1.4. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d-1.5. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.
- 2. KDB 414788 OATS and Chamber Correlation Justification
 - -Based on FCC 15.31(f)(2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempts should be made to avoid making measurements in the near field.
 - -OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

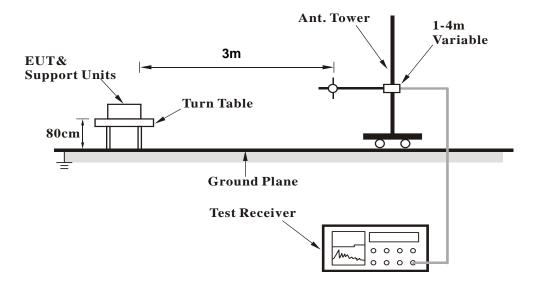
For Radiated emission above 30MHz

- d-2.1. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- d-2.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d-2.3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d-2.4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d-2.5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- d-2.6. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is
 ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency
 above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

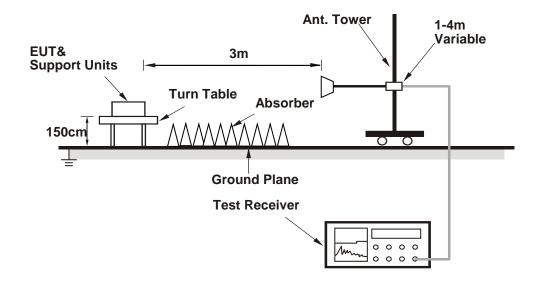

4.1.4	Deviation	from Test	Standard

NIO.	מח	いつけ	ion.
IVU	uc	viai	IUI I.



4.1.5 Test Setup

For Radiated Configuration: For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For Conducted Configuration:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

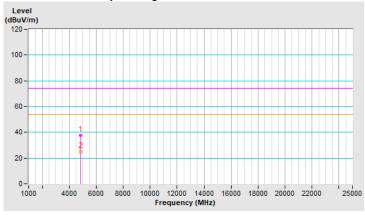
4.1.6 EUT Operating Conditions

- a. Connected the EUT with the Laptop which is placed on testing table.
- b. Controlling software (MT7663 QA 0.0.2.6) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results (Radiated Measurement)

Radiated versus Conducted Measurement					
☐ Conducted measurement	⊠ Rad	diated measurement			
For Radiated measurement:					
The level of unwanted emissions was measured the equipment with the antenna connector(s) term For Conducted measurement:					
The level of unwanted emissions was measured a spurious emissions).	as their power in	a specified load (cond	lucted		

Radiated test was done with 50ohm terminator on antenna port

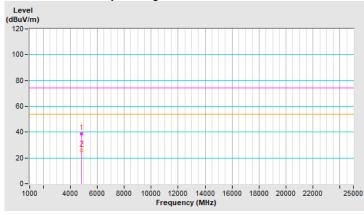

Above 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4824.00	37.6 PK	74.0	-36.4	1.14 H	281	34.7	2.9
2	4824.00	24.8 AV	54.0	-29.2	1.14 H	281	21.9	2.9

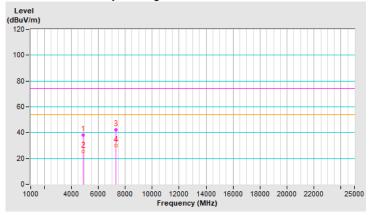
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4824.00	38.5 PK	74.0	-35.5	1.53 V	115	35.6	2.9
2	4824.00	26.0 AV	54.0	-28.0	1.53 V	115	23.1	2.9

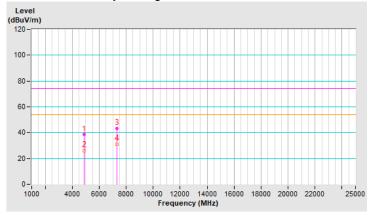
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4874.00	38.3 PK	74.0	-35.7	1.11 H	271	35.5	2.8
2	4874.00	25.6 AV	54.0	-28.4	1.11 H	271	22.8	2.8
3	7311.00	42.2 PK	74.0	-31.8	1.41 H	28	33.3	8.9
4	7311.00	30.1 AV	54.0	-23.9	1.41 H	28	21.2	8.9

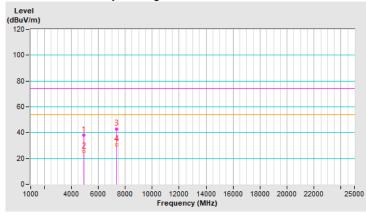
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO. FREQ. LEVEL LIMIT MARGIN HEIGHT ANGLE VALUE FACTO						CORRECTION FACTOR (dB/m)		
1	4874.00	38.4 PK	74.0	-35.6	1.57 V	119	35.6	2.8
2	4874.00	25.8 AV	54.0	-28.2	1.57 V	119	23.0	2.8
3	7311.00	43.3 PK	74.0	-30.7	1.37 V	125	34.4	8.9
4	7311.00	31.0 AV	54.0	-23.0	1.37 V	125	22.1	8.9

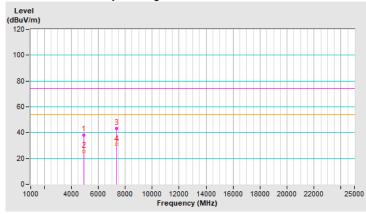
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4924.00	37.9 PK	74.0	-36.1	1.11 H	285	35.2	2.7
2	4924.00	25.2 AV	54.0	-28.8	1.11 H	285	22.5	2.7
3	7386.00	42.6 PK	74.0	-31.4	1.38 H	28	33.6	9.0
4	7386.00	30.4 AV	54.0	-23.6	1.38 H	28	21.4	9.0

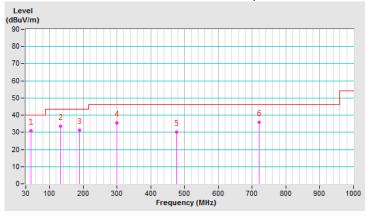
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO. FREQ. LEVEL LIMIT MARGIN HEIGHT ANGLE VALUE FACT						CORRECTION FACTOR (dB/m)		
1	4924.00	38.1 PK	74.0	-35.9	1.57 V	123	35.4	2.7
2	4924.00	25.5 AV	54.0	-28.5	1.57 V	123	22.8	2.7
3	7386.00	43.2 PK	74.0	-30.8	1.32 V	137	34.2	9.0
4	7386.00	30.8 AV	54.0	-23.2	1.32 V	137	21.8	9.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

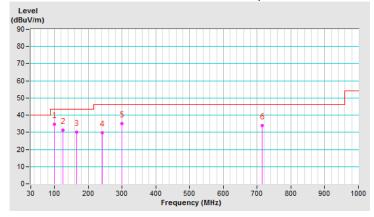

Below 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 11	DETECTOR	Oversi Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	44.70	31.0 QP	40.0	-9.0	2.50 H	279	38.8	-7.8				
2	133.09	33.5 QP	43.5	-10.0	1.50 H	299	41.5	-8.0				
3	189.18	31.1 QP	43.5	-12.4	1.50 H	354	40.8	-9.7				
4	298.74	35.4 QP	46.0	-10.6	1.00 H	210	41.8	-6.4				
5	476.71	30.1 QP	46.0	-15.9	2.00 H	118	32.1	-2.0				
6	720.01	35.8 QP	46.0	-10.2	1.00 H	360	33.0	2.8				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 11	DETECTOR	Oversi Basila (OB)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	99.72	34.8 QP	43.5	-8.7	1.00 V	305	46.6	-11.8				
2	125.01	31.2 QP	43.5	-12.3	1.00 V	108	40.1	-8.9				
3	166.09	30.2 QP	43.5	-13.3	1.00 V	87	37.6	-7.4				
4	241.85	29.7 QP	46.0	-16.3	2.00 V	0	38.3	-8.6				
5	299.32	35.1 QP	46.0	-10.9	2.50 V	109	41.5	-6.4				
6	715.62	34.0 QP	46.0	-12.0	1.50 V	360	31.3	2.7				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

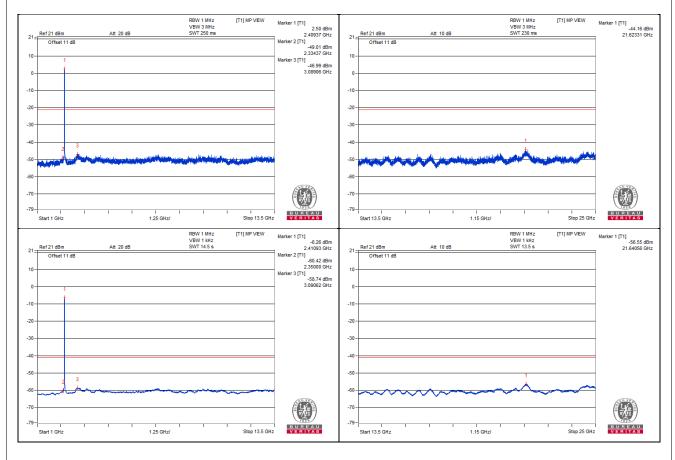
4.1.8 Test Results (Conducted Measurement)

Radiated versus Conducted Measurement							
□ Conducted measurement	☐ Radiated measurement						
For Radiated measurement:							
The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation) For Conducted measurement:							
The level of unwanted emissions was measured as their power in a specified load (conducted spurious emissions).							
Note: In order to obtain results more easily, chan effect on the result.	ge max hold to view as following. It has no						

Conducted Measurement Factor

- a. The composite gain will be used (Composite gain = 3.85dBi)
- For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
- c. For the band edge the gain for the specific band may have been used.
- d. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:
 For f = 30 1000 MHz, add 4.7 dB.

Note: The conducted emission test was considered some factor to compute test result.

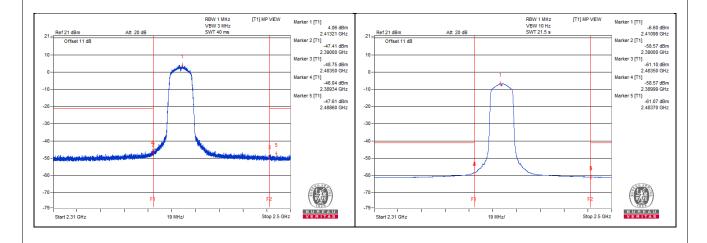


802.11n (HT20) - Channel 1

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2409.37 PK	101.61	*		2.5	3.85	6.35
2	2334.37 PK	50.1	74	-23.9	-49.01	3.85	-45.16
3	3089.06 PK	52.12	#		-46.99	3.85	-43.14
4	21623.31 PK	54.95	#		-44.16	3.85	-40.31
5	2410.93 AV	92.85	*		-6.26	3.85	-2.41
6	2350 AV	38.69	54	-15.31	-60.42	3.85	-56.57
7	3090.62 AV	40.37	#		-58.74	3.85	-54.89
8	21640.56 AV	42.56	#		-56.55	3.85	-52.7

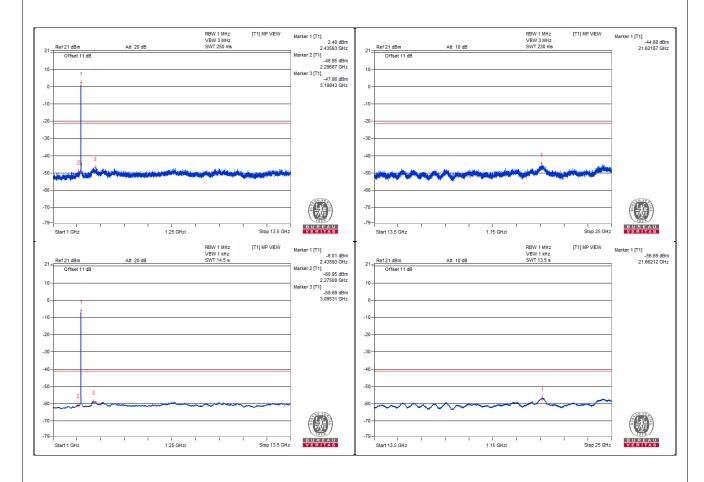
- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8
 - d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, the limit was restricted at the conducted out of band emission.



Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2413.21 PK	103.17	*		4.06	3.85	7.91
2	2390 PK	51.7	74	-22.3	-47.41	3.85	-43.56
3	2483.5 PK	50.36	74	-23.64	-48.75	3.85	-44.9
4	2389.34 PK	53.07	74	-20.93	-46.04	3.85	-42.19
5	2488.6 PK	51.5	74	-22.5	-47.61	3.85	-43.76
6	2410.98 AV	92.51	*		-6.6	3.85	-2.75
7	2390 AV	40.54	54	-13.46	-58.57	3.85	-54.72
8	2483.5 AV	38.01	54	-15.99	-61.1	3.85	-57.25
9	2389.99 AV	40.54	54	-13.46	-58.57	3.85	-54.72
10	2483.7 AV	38.04	54	-15.96	-61.07	3.85	-57.22

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.

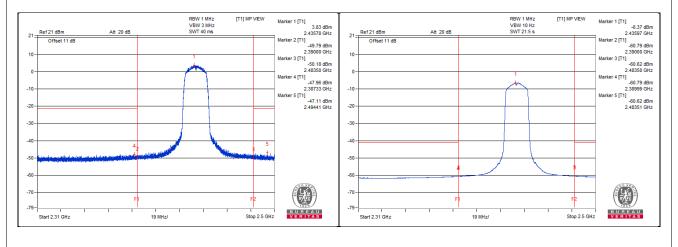


802.11n (HT20) - Channel 6

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2435.93 PK	101.51	*		2.4	3.85	6.25
2	2296.87 PK	50.16	74	-23.84	-48.95	3.85	-45.1
3	3198.43 PK	52.05	#		-47.06	3.85	-43.21
4	21621.87 PK	54.43	#		-44.68	3.85	-40.83
5	2435.93 AV	93.1	*		-6.01	3.85	-2.16
6	2275 AV	38.16	54	-15.84	-60.95	3.85	-57.1
7	3095.31 AV	40.42	#		-58.69	3.85	-54.84
8	21662.12 AV	42.42	#		-56.69	3.85	-52.84

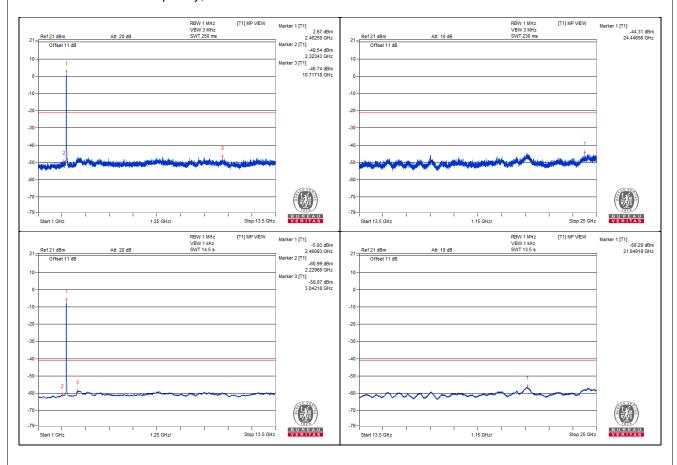
- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8
 - d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, the limit was restricted at the conducted out of band emission.



Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2435.78 PK	102.94	*		3.83	3.85	7.68
2	2390 PK	49.32	74	-24.68	-49.79	3.85	-45.94
3	2483.5 PK	48.93	74	-25.07	-50.18	3.85	-46.33
4	2387.33 PK	51.15	74	-22.85	-47.96	3.85	-44.11
5	2494.41 PK	52	74	-22	-47.11	3.85	-43.26
6	2435.97 AV	92.74	*		-6.37	3.85	-2.52
7	2390 AV	38.32	54	-15.68	-60.79	3.85	-56.94
8	2483.5 AV	38.49	54	-15.51	-60.62	3.85	-56.77
9	2389.99 AV	38.32	54	-15.68	-60.79	3.85	-56.94
10	2483.51 AV	38.49	54	-15.51	-60.62	3.85	-56.77

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.

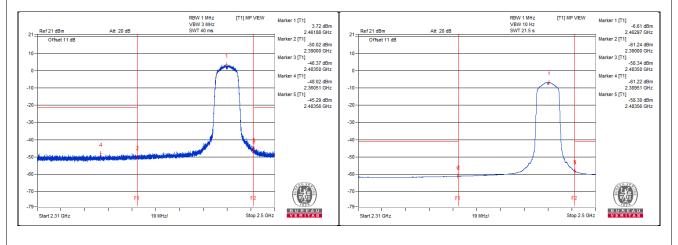


802.11n (HT20) - Channel 11

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2462.5 PK	101.78	*		2.67	3.85	6.52
2	2323.43 PK	49.57	74	-24.43	-49.54	3.85	-45.69
3	10717.18 PK	52.37	74	-21.63	-46.74	3.85	-42.89
4	24446.56 PK	54.8	#		-44.31	3.85	-40.46
5	2460.93 AV	93.18	*		-5.93	3.85	-2.08
6	2229.68 AV	38.12	54	-15.88	-60.99	3.85	-57.14
7	3042.18 AV	40.24	#		-58.87	3.85	-55.02
8	21649.18 AV	42.82	#		-56.29	3.85	-52.44

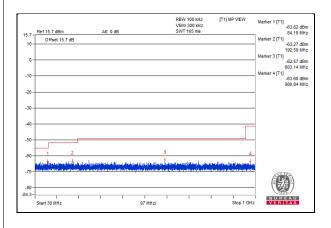
- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8
 - d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, the limit was restricted at the conducted out of band emission.



Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2461.88 PK	102.83	*		3.72	3.85	7.57
2	2390 PK	49.09	74	-24.91	-50.02	3.85	-46.17
3	2483.5 PK	52.74	74	-21.26	-46.37	3.85	-42.52
4	2360.51 PK	51.09	74	-22.91	-48.02	3.85	-44.17
5	2483.56 PK	53.82	74	-20.18	-45.29	3.85	-41.44
6	2462.97 AV	92.5	*		-6.61	3.85	-2.76
7	2390 AV	37.87	54	-16.13	-61.24	3.85	-57.39
8	2483.5 AV	40.77	54	-13.23	-58.34	3.85	-54.49
9	2389.51 AV	37.89	54	-16.11	-61.22	3.85	-57.37
10	2483.56 AV	40.81	54	-13.19	-58.3	3.85	-54.45

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.

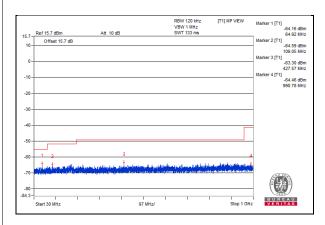

Below 1GHz Data

802.11n (HT20) - Channel 11

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	84.19	35.49	#		-63.62	3.85	-59.77
2	192.59	35.84	#		-63.27	3.85	-59.42
3	603.14	36.54	#		-62.57	3.85	-58.72
4	980.84	35.51	54	-18.49	-63.6	3.85	-59.75

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. #: Non-restricted frequency, the limit was restricted at the conducted out of band emission.


Note: Choose worse case from above and set RBW/VBW=120kHz/1MHz to verification.

802.11n (HT20) - Channel 11

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	64.92	34.95	#		-64.16	3.85	-60.31
2	109.05	34.52	43.5	-8.98	-64.59	3.85	-60.74
3	427.57	35.81	#		-63.3	3.85	-59.45
4	990.78	34.65	54	-19.35	-64.46	3.85	-60.61

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8
 - d = measurement distance in 3 meters.
- 2. #: Non-restricted frequency, the limit was restricted at the conducted out of band emission.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

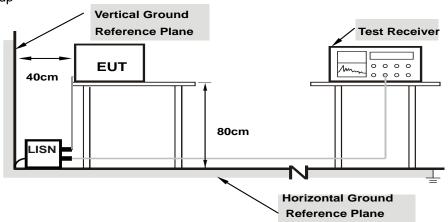
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: Apr. 16, 2020

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
Filase	Line (L)	Detector Function	Average (AV)

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		Reading Value (dBuV)		on Level uV)		nit uV)	Maı (d	gin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	9.99	25.20	10.34	35.19	20.33	65.58	55.58	-30.39	-35.25
2	0.23203	9.99	18.63	6.12	28.62	16.11	62.38	52.38	-33.76	-36.27
3	0.73594	10.03	24.31	11.66	34.34	21.69	56.00	46.00	-21.66	-24.31
4	0.99766	10.05	11.75	1.36	21.80	11.41	56.00	46.00	-34.20	-34.59
5	2.56641	10.16	14.34	7.49	24.50	17.65	56.00	46.00	-31.50	-28.35
6	17.25391	11.18	12.51	7.09	23.69	18.27	60.00	50.00	-36.31	-31.73

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		Reading Value (dBuV)		on Level uV)		nit uV)	Maı (d	gin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.99	26.22	12.23	36.21	22.22	66.00	56.00	-29.79	-33.78
2	0.23594	9.99	19.09	5.57	29.08	15.56	62.24	52.24	-33.16	-36.68
3	0.73203	10.03	24.73	12.04	34.76	22.07	56.00	46.00	-21.24	-23.93
4	1.13281	10.06	12.29	0.26	22.35	10.32	56.00	46.00	-33.65	-35.68
5	2.51172	10.15	14.44	6.76	24.59	16.91	56.00	46.00	-31.41	-29.09
6	17.75391	10.99	13.25	7.76	24.24	18.75	60.00	50.00	-35.76	-31.25

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

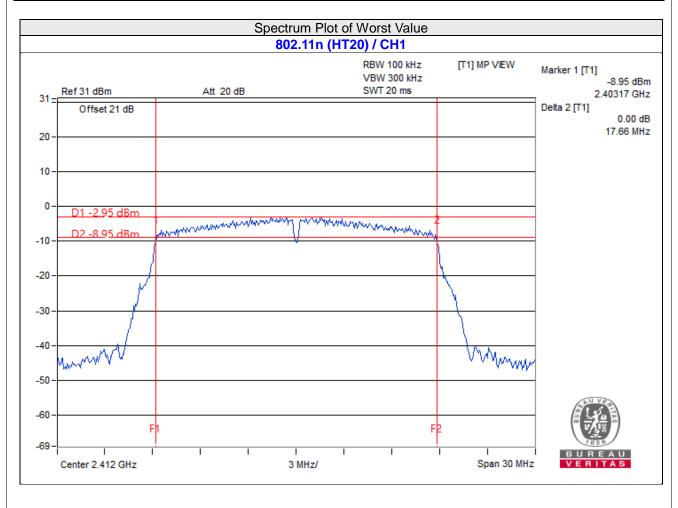
- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

In order to obtain results more easily, change max hold to view as following. It has no effect on the result.

4.3.5 Deviation from Test Standard

No deviation.

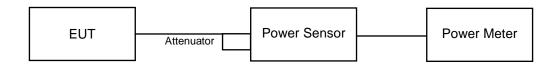
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

802.11n (HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2412	17.66	0.5	Pass
6	2437	17.66	0.5	Pass
11	2462	17.66	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

802.11n (HT20)

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2412	91.411	19.61	30	Pass
6	2437	87.096	19.40	30	Pass
11	2462	95.06	19.78	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2412	10.495	10.21
6	2437	10.447	10.19
11	2462	10.715	10.30

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

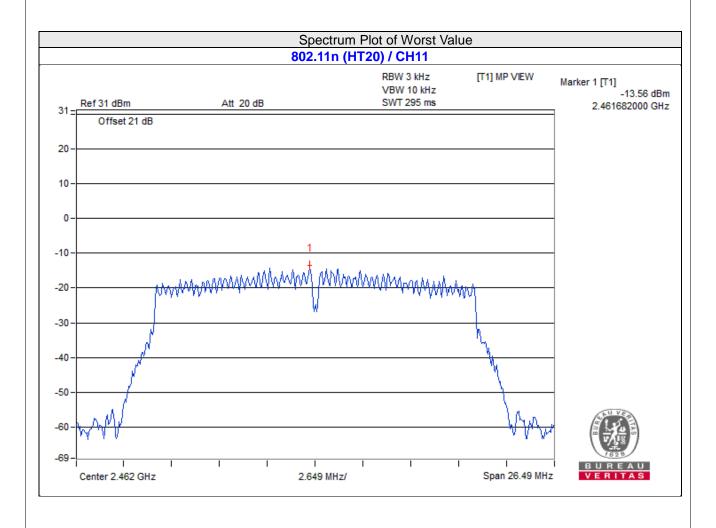
- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = \max_{i} hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

 In order to obtain results more easily, change max hold to view as following. It has no effect on the result.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


Same as Item 4.3.6

4.5.7 Test Results

802.11n (HT20)

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2412	-13.69	8	Pass
6	2437	-14.57	8	Pass
11	2462	-13.56	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = \max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. In order to obtain results more easily, change max hold to view as following. It has no effect on the result.

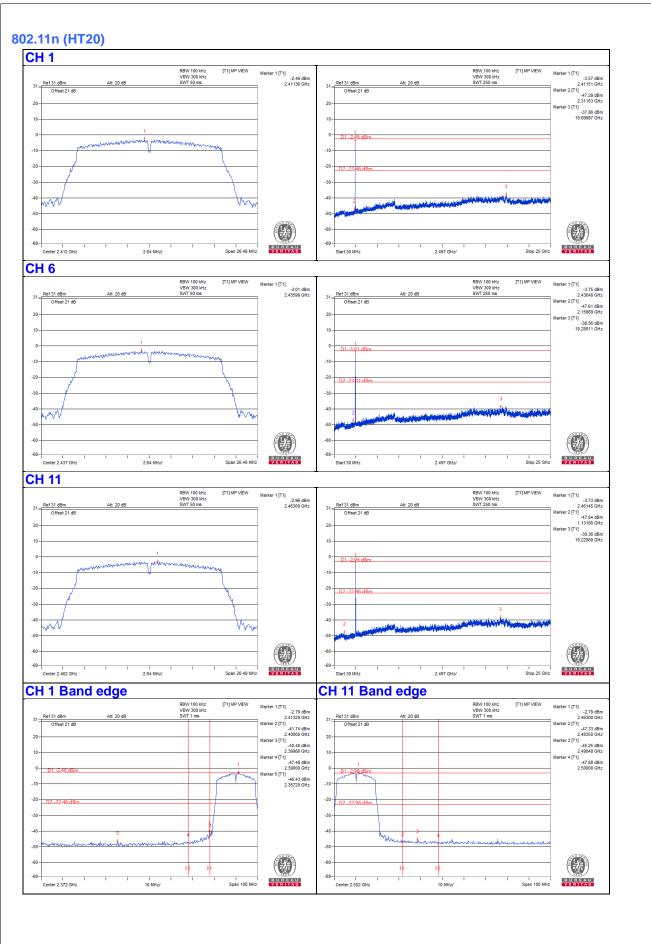
MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

 In order to obtain results more easily, change max hold to view as following. It has no effect on the result.

4.6.5 Deviation from Test Standard No deviation.

4.6.6 EUT Operating Condition


Same as Item 4.3.6

4.6.7 Test Results					
The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.					

 Report No.: RF200206E02
 Page No. 51 / 54
 Report Format Version: 6.1.2

5 Pictures of Test Arrangements					
Please refer to the attached file (Test Setup Photo).					

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---