

FCC Test Report (WLAN)

Report No.: RF200206E02-1

FCC ID: C3K1885

Test Model: 1885

Received Date: Feb. 06, 2020

Test Date: Mar. 23 to May 19, 2020

Issued Date: June 24, 2020

Applicant: Microsoft Corporation

Address: One Microsoft Way, Redmond, Washington 98052-6399, United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwa

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan.

FCC Registration / Designation Number:

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record4					
1	(Certificate of Conformity	5			
2	;	Summary of Test Results	6			
	2.1 2.2	Measurement Uncertainty				
_						
3	(General Information				
	3.1	General Description of EUT (WLAN)				
	3.2	Description of Test Modes				
	3.2.1					
	3.3	Duty Cycle of Test Signal				
	3.4 3.4.1	Description of Support Units Configuration of System under Test				
	3.5	General Description of Applied Standard and References				
		·				
4		Test Types and Results				
	4.1	Radiated Emission and Bandedge Measurement (Radiated Versus Conducted)				
		Limits of Radiated Emission and Bandedge Measurement				
		Test Instruments				
		Test Procedure				
		Test Setup				
		EUT Operating Condition				
		Test Results (Radiated Measurement)				
		Test Results (Conducted Measurement)				
	4.2	Conducted Emission Measurement	61			
		Limits of Conducted Emission Measurement				
		Test Instruments				
		Test Procedure				
		Deviation from Test Standard				
		Test Setup EUT Operating Condition				
		Test Results				
	4.3	Transmit Power Measurement				
	_	Limits of Transmit Power Measurement				
		Test Setup				
		Test Instruments				
		Test Procedure				
		Deviation from Test Standard				
		EUT Operating Condition				
	4.3. <i>1</i> 4.4	Test Results				
	4.4.1	·				
		Test Instruments				
	4.4.3					
	4.4.4					
	4.5	Peak Power Spectral Density Measurement				
	4.5.1	· · · · · · · · · · · · · · · · · · ·				
	4.5.2					
	4.5.3					
	4.5.4 4.5.5	Test Procedure				
		EUT Operating Condition				
		Test Results				
	4.6	Frequency Stability Measurement				

4.6.1	Limits of Frequency Stability Measurement	74			
4.6.2	Test Setup	. 74			
4.6.3	Test Instruments	74			
4.6.4	Test Procedure	. 74			
	Deviation from Test Standard				
4.6.6	EUT Operating Condition	. 74			
4.6.7	Test Results	. 75			
4.7	6dB Bandwidth Measurement	76			
4.7.1	Limits of 6dB Bandwidth Measurement	76			
4.7.2	Test Setup	76			
4.7.3	Test Instruments	76			
4.7.4	Test Procedure	76			
	Deviation from Test Standard				
4.7.6	EUT Operating Condition	76			
4.7.7	Test Results	. 77			
5 F	ictures of Test Arrangements	78			
Append	Appendix – Information of the Testing Laboratories79				

Release Control Record

Issue No.	Description	Date Issued
RF200206E02-1	Original release.	June 24, 2020

1 Certificate of Conformity

Product: Dual-band wireless accessory radio

Brand: Microsoft

Test Model: 1885

Sample Status: ENGINEERING SAMPLE

Applicant: Microsoft Corporation

Test Date: Mar. 23 to May 19, 2020

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Claire Kuan / Specialist

Approved by: , Date: June 24, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart E (Section 15.407)							
FCC Clause	Test Item	Result	Remarks					
15.407(b)(6)	AC Power Conducted Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -21.08dB at 0.73594MHz.					
15.407(b) (1/2/3/4(i/ii)/6)	` ,		Meet the requirement of limit. Minimum passing margin is -4.76dB at 945.8MHz.					
1 1			Meet the requirement of limit.					
	Occupied Bandwidth Measurement	-	Reference only.					
15.407(a)(1/2/ 3)	Peak Power Spectral Density	Pass	Meet the requirement of limit.					
15.407(e)	6dB bandwidth	Pass	Meet the requirement of limit. (U-NII-3 Band only)					
15.407(g)	Frequency Stability	Pass	Meet the requirement of limit.					
15.203	15.203 Antenna Requirement		No antenna connector is used.					

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted Emissions	9kHz ~ 40GHz	2.5 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Madiated Effissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
Natiated Littlesions above 1 GHz	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	Dual-band wireless accessory radio
Brand	Microsoft
Test Model	1885
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.3Vdc from host equipment
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	OFDM
Transfer Rate	802.11n: up to 72.2Mbps
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz
Operating Frequency	5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz
	2.4GHz:
Number of Channel	802.11n (HT20): 11
Number of Chamiler	5GHz:
	802.11n (HT20): 9
	2.4GHz: 95.06 mW
Output Power	5.18 ~ 5.24GHz: 10.328 mW
	5.745 ~ 5.825GHz : 10.495 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Cable Supplied	NA

Note:

1. The antennas provided to the EUT, please refer to the following table:

Antenna No.	Transmitter Circuit	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type	Cable Length
		3.85	2.4 ~ 2.4835GHz	PCB	NA	NA
		5.7	5.15~5.25GHz (5G B1)	PCB	NA	NA
MAIN	0	5.77	5.25~5.35GHz (5G B2)	PCB	NA	NA
		5.52	5.47~5.725GHz (5G B3)	PCB	NA	NA
		5.79	5.725~5.85GHz (5G B4)	PCB	NA	NA
			2.4 ~ 2.4835GHz	PCB	NA	NA
		4.95	5.15~5.25GHz (5G B1)	PCB	NA	NA
DIV	1	5.02	5.25~5.35GHz (5G B2)	PCB	NA	NA
		5.24	5.47~5.725GHz (5G B3)	PCB	NA	NA
		5.39	5.725~5.85GHz (5G B4)	PCB	NA	NA

2. The EUT incorporates function as following.

2.4GHz Band						
MODULATION MODE TX & RX CONFIGURATION						
802.11n (HT20)	1TX (Fixed Chain 0)	1RX				
	5GHz Band					
MODULATION MODE TX & RX CONFIGURATION						
802.11n (HT20)	1TX (Fixed Chain 0)	2RX				

^{3.} The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11n (HT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11n (HT20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		Description	
Mode	RE≥1G	RE<1G	PLC	APCM	Description	
-	√	V	V	√	-	

Where **RE≥1G:** Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane (for below 1GHz) and X-plane (for above 1GHz).

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
000 44 (UT00)	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
802.11n (HT20)	5745-5825	149 to 165	149, 157, 165	OFDM	BPSK	6.5

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ Following channel(s) was (were) selected for the final test as listed below.

	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
Ī	802.11n (HT20)	5180-5240,	36 to 48,	36, 165	OFDM	DDCK	6.5
	002.1111 (11120)	5745-5825	149 to 165	30, 103	OFDIVI	BPSK	6.5

Power Line Conducted Emission Test:

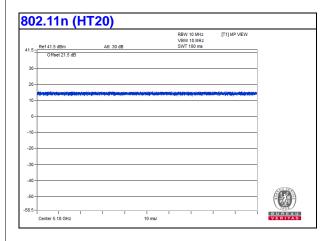
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11n (HT20)	5180-5240,	36 to 48,	165	OFDM	BPSK	6.5
002.1111 (11120)	5745-5825	149 to 165	100	OI DIVI	DI OIX	0.0

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
000 44 - (UT00)	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
802.11n (HT20)	5745-5825	149 to 165	149, 157, 165	OFDM	BPSK	6.5


Test Condition:

Applicable To	Environmental Conditions	Input Power (System)	Tested By
RE≥1G	25deg. C, 75%RH	120Vac, 60Hz	Nelson Teng
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Nelson Teng
PLC	25deg. C, 68%RH	120Vac, 60Hz	Sampson Chen
APCM	26deg. C, 61%RH	120Vac, 60Hz	Jyunchun Lin

3.3 Duty Cycle of Test Signal

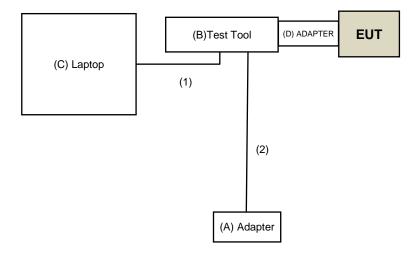
Duty cycle of test signal is 100 %, duty factor is not required.

3.4 Description of Support Units

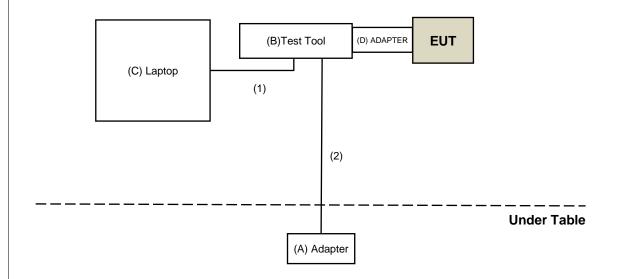
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	PHIHONG	PSC15A-050	NA	NA	Supplied by client
B.	Test Tool	MediaTek Inc.	NA	NA	NA	Supplied by client
C.	Laptop	DELL	E5430	GM1SKV1	FCC DoC	Provided by Lab
D.	ADAPTER	MediaTek Inc.	M1096761-001	NA	NA	Supplied by client

Note:


^{1.} All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type B Cable	1	1.8	Yes	0	Provided by Lab
2.	DC Cable	1	1.5	No	0	Supplied by client



3.4.1 Configuration of System under Test

For AC Power Conducted Emissions Test:

For Radiated Emissions Test:

3.5 General Description of Applied Standard and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedure New Rules v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement (Radiated Versus Conducted)

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applic	able To	Lir	mit
789033 D02 Genera	I UNII Test Procedure	Field Stren	ngth at 3m
New Rul	es v02r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3m
5150~5250 MHz	15.407(b)(1)		
5250~5350 MHz	15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)
5470~5725 MHz	15.407(b)(3)		
5725~5850 MHz	15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBµV/m) *1 PK:105.2 (dBµV/m) *2 PK: 110.8(dBµV/m) *3 PK:122.2 (dBµV/m) *4

 $^{^{\}mbox{\tiny 1}}$ beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF200206E02-1 Page No. 15 / 79 Report Format Version: 6.1.2

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.2 Test Instruments

For radiated emission test:

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	WIODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver	N9038A	MY54450088	July 03, 2019	July 02, 2020
Keysight	11000071	111101100000	Gary 66, 2616	Gary 62, 2626
Pre-Amplifier EMCI	EMC001340	980142	May 30, 2019	May 29, 2020
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
RF Cable	NA	LOOPCAB- 001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB- 002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180601	June 10, 2019	June 09, 2020
RF Cable	EMC104-SM-SM-6000	180602	June 10, 2019	June 09, 2020
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: Mar. 23 to 24, 2020

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10- 01	Apr. 14, 2020	Apr. 13, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

Note:

NOTE:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: May 19, 2020

4.1.3 Test Procedure

Following FCC KDB 789033 D02 General UNII Test Procedures:

Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT.
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.
- d. For all of Radiation emission test

For Radiated emission below 30MHz

- d-1.1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- d-1.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d-1.3. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d-1.4. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d-1.5. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

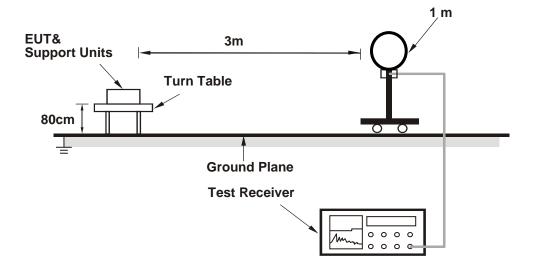
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.
- 2. KDB 414788 OATS and Chamber Correlation Justification
 - -Based on FCC 15.31(f)(2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempts should be made to avoid making measurements in the near field.
 - -OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

For Radiated emission above 30MHz

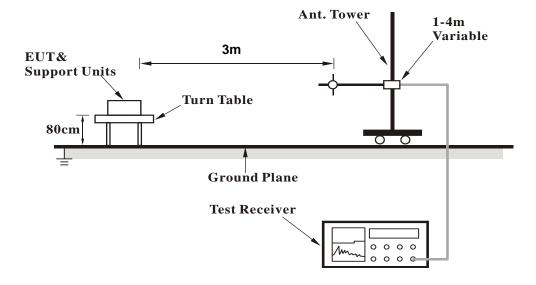
- d-2.1. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- d-2.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d-2.3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d-2.4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d-2.5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- d-2.6. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is
 ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency
 above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

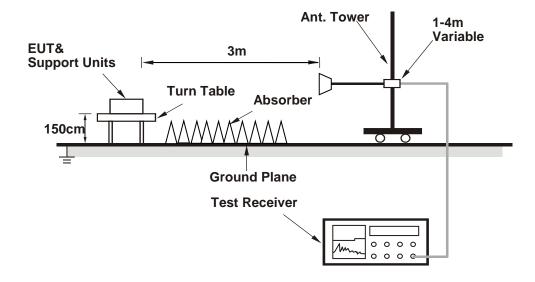

4.1.4	Deviation	from	Test	Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For Conducted Configuration:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

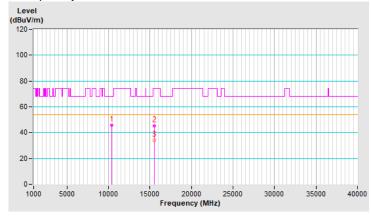
4.1.6 EUT Operating Condition

- a. Connected the EUT with the Laptop which is placed on testing table.
- b. Controlling software (MT7663 QA 0.0.2.6) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results (Radiated Measurement)

Radiated versus Conducted Measurement					
☐ Conducted measurement	□ Radiated measurement				
or Radiated measurement:					
he level of unwanted emissions was measured	when radiated by the cabinet or structure of				
ne equipment with the antenna connector(s) terr	ninated by a specified load (cabinet radiation				
or Conducted measurement:					
he level of unwanted emissions was measured	as their power in a specified load (conduct				
purious emissions).					

Radiated test was done with 50ohm terminator on antenna port

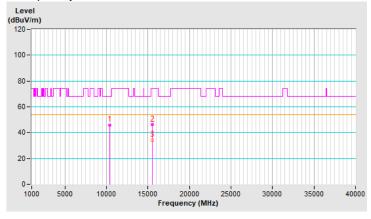

Above 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#10360.00	46.0 PK	68.2	-22.2	1.65 H	323	33.3	12.7	
2	15540.00	45.5 PK	74.0	-28.5	1.33 H	229	32.3	13.2	
3	15540.00	33.9 AV	54.0	-20.1	1.33 H	229	20.7	13.2	

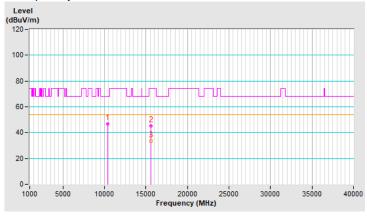
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#10360.00	46.0 PK	68.2	-22.2	2.38 V	168	33.3	12.7	
2	15540.00	46.1 PK	74.0	-27.9	1.54 V	140	32.9	13.2	
3	15540.00	34.2 AV	54.0	-19.8	1.54 V	140	21.0	13.2	

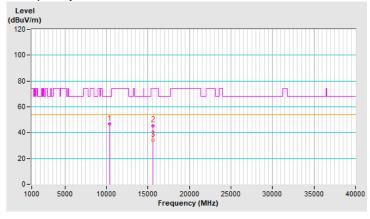
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#10400.00	46.9 PK	68.2	-21.3	1.60 H	319	34.1	12.8	
2	15600.00	45.3 PK	74.0	-28.7	1.32 H	217	31.8	13.5	
3	15600.00	33.8 AV	54.0	-20.2	1.32 H	217	20.3	13.5	

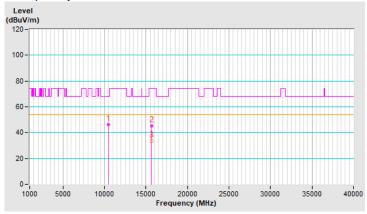
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#10400.00	46.6 PK	68.2	-21.6	2.29 V	149	33.8	12.8	
2	15600.00	45.5 PK	74.0	-28.5	1.45 V	124	32.0	13.5	
3	15600.00	33.9 AV	54.0	-20.1	1.45 V	124	20.4	13.5	

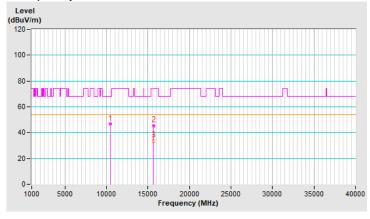
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#10480.00	46.5 PK	68.2	-21.7	1.62 H	318	33.4	13.1	
2	15720.00	45.5 PK	74.0	-28.5	1.34 H	217	31.7	13.8	
3	15720.00	33.7 AV	54.0	-20.3	1.34 H	217	19.9	13.8	

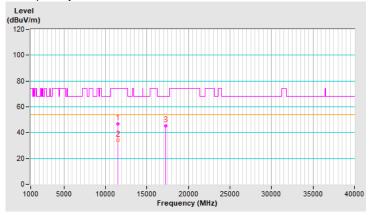
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#10480.00	46.6 PK	68.2	-21.6	2.34 V	165	33.5	13.1	
2	15720.00	45.5 PK	74.0	-28.5	1.50 V	129	31.7	13.8	
3	15720.00	33.8 AV	54.0	-20.2	1.50 V	129	20.0	13.8	

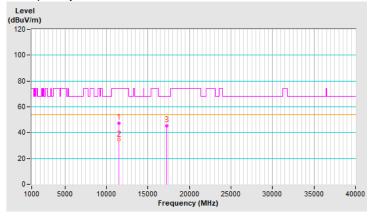
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	11490.00	46.8 PK	74.0	-27.2	1.58 H	326	33.5	13.3	
2	11490.00	34.2 AV	54.0	-19.8	1.58 H	326	20.9	13.3	
3	#17235.00	45.3 PK	68.2	-22.9	1.38 H	219	27.7	17.6	

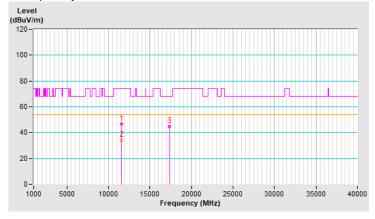
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	11490.00	47.2 PK	74.0	-26.8	2.35 V	172	33.9	13.3	
2	11490.00	34.4 AV	54.0	-19.6	2.35 V	172	21.1	13.3	
3	#17235.00	45.5 PK	68.2	-22.7	1.52 V	140	27.9	17.6	

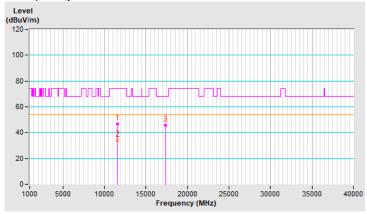
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	11570.00	46.6 PK	74.0	-27.4	1.53 H	316	33.4	13.2	
2	11570.00	34.0 AV	54.0	-20.0	1.53 H	316	20.8	13.2	
3	#17355.00	45.0 PK	68.2	-23.2	1.38 H	216	27.4	17.6	

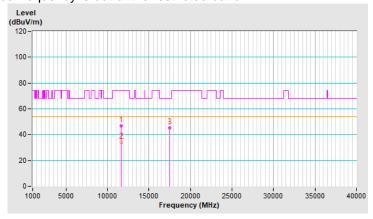
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	11570.00	46.9 PK	74.0	-27.1	2.31 V	163	33.7	13.2	
2	11570.00	34.1 AV	54.0	-19.9	2.31 V	163	20.9	13.2	
3	#17355.00	45.9 PK	68.2	-22.3	1.57 V	151	28.3	17.6	

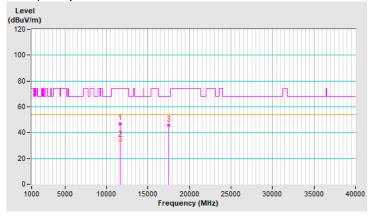
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	11650.00	47.0 PK	74.0	-27.0	1.58 H	316	33.7	13.3	
2	11650.00	34.1 AV	54.0	-19.9	1.58 H	316	20.8	13.3	
3	#17475.00	45.4 PK	68.2	-22.8	1.44 H	223	27.5	17.9	

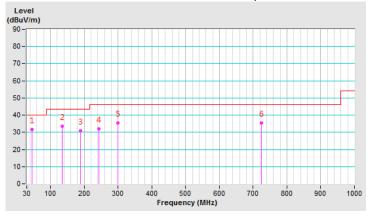
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	11650.00	46.7 PK	74.0	-27.3	2.39 V	186	33.4	13.3	
2	11650.00	34.0 AV	54.0	-20.0	2.39 V	186	20.7	13.3	
3	#17475.00	46.0 PK	68.2	-22.2	1.53 V	148	28.1	17.9	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

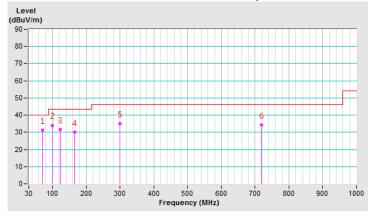

Below 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 36	DETECTOR FUNCTION	Overi Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz		Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	44.70	31.6 QP	40.0	-8.4	1.00 H	321	39.4	-7.8
2	134.11	33.4 QP	43.5	-10.1	2.00 H	303	41.4	-8.0
3	189.42	30.8 QP	43.5	-12.7	1.50 H	347	40.5	-9.7
4	242.94	32.1 QP	46.0	-13.9	1.00 H	306	40.7	-8.6
5	298.74	35.4 QP	46.0	-10.6	1.00 H	213	41.8	-6.4
6	724.03	35.4 QP	46.0	-10.6	1.00 H	32	32.4	3.0

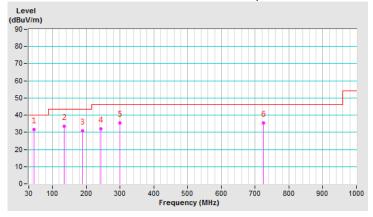
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 36	DETECTOR	Oversi Book (OB)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	70.13	31.4 QP	40.0	-8.6	2.00 V	360	41.6	-10.2
2	99.62	34.1 QP	43.5	-9.4	1.00 V	301	46.0	-11.9
3	122.93	31.7 QP	43.5	-11.8	1.00 V	98	40.9	-9.2
4	166.16	30.1 QP	43.5	-13.4	1.00 V	73	37.5	-7.4
5	299.32	35.0 QP	46.0	-11.0	2.00 V	101	41.4	-6.4
6	718.17	34.4 QP	46.0	-11.6	1.00 V	360	31.8	2.6

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

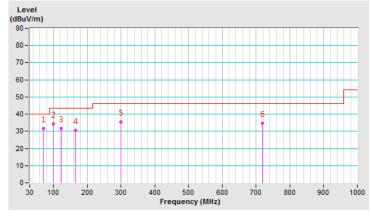


CHANNEL	TX Channel 165	DETECTOR	Oversi Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	44.77	31.8 QP	40.0	-8.2	1.00 H	333	39.6	-7.8				
2	134.19	33.5 QP	43.5	-10.0	2.00 H	316	41.5	-8.0				
3	189.50	31.0 QP	43.5	-12.5	1.50 H	329	40.7	-9.7				
4	243.03	31.9 QP	46.0	-14.1	1.00 H	289	40.5	-8.6				
5	298.84	35.5 QP	46.0	-10.5	1.00 H	224	41.9	-6.4				
6	724.16	35.6 QP	46.0	-10.4	1.00 H	63	32.6	3.0				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 165	DETECTOR	Oversi Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	70.31	31.6 QP	40.0	-8.4	2.00 V	336	41.8	-10.2				
2	99.74	34.3 QP	43.5	-9.2	1.00 V	282	46.1	-11.8				
3	123.06	31.5 QP	43.5	-12.0	1.00 V	115	40.6	-9.1				
4	166.33	30.4 QP	43.5	-13.1	1.00 V	97	37.9	-7.5				
5	299.46	35.3 QP	46.0	-10.7	2.00 V	120	41.7	-6.4				
6	718.29	34.6 QP	46.0	-11.4	1.00 V	346	32.0	2.6				

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.1.8 Test Results (Conducted Measurement)

Radiated versus Conducted Measurement							
□ Conducted measurement	☐ Radiated measurement						
For Radiated measurement:							
The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation)							
For Conducted measurement:							
The level of unwanted emissions was measured spurious emissions).	as their power in a specified load (conducted						
Note: In order to obtain results more easily, chan effect on the result.	ge max hold to view as following. It has no						

Conducted Measurement Factor

The composite gain will be used

(For U-NII-1: Composite gain = 5.79dBi

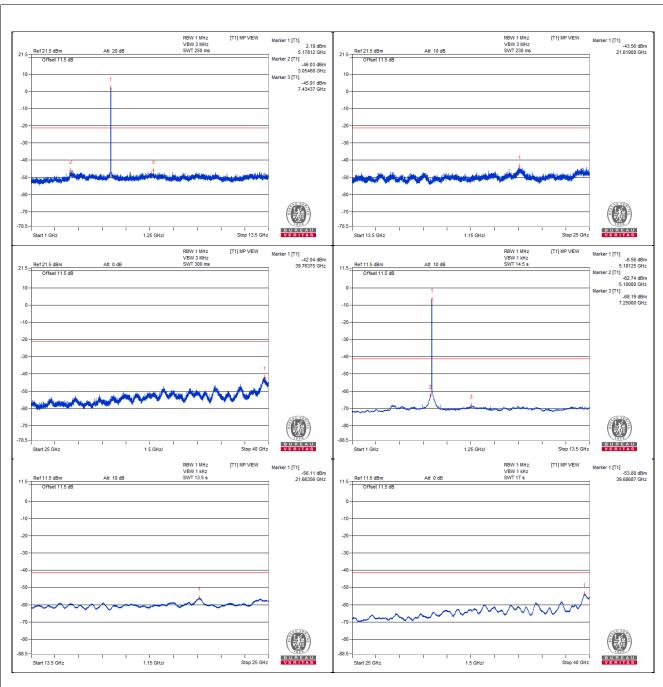
For U-NII-3: Composite gain = 5.79dBi)

- For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
- c. For the band edge the gain for the specific band may have been used.
- d. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:

For f = 30 - 1000 MHz, add 4.7 dB.

Note: The conducted emission test was considered some factor to compute test result.

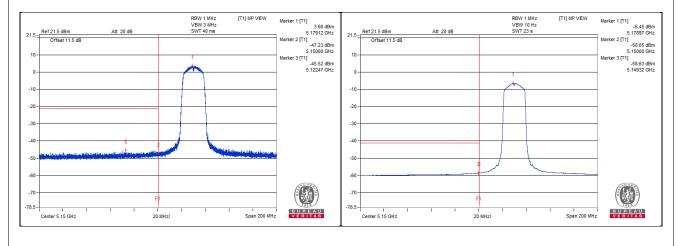
Above 1GHz Data


802.11n (HT20) - Channel 36

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5178.12 PK	103.24	*		2.19	5.79	7.98
2	3054.68 PK	55.02	68.2	-13.18	-46.03	5.79	-40.24
3	7434.37 PK	55.14	74	-18.86	-45.91	5.79	-40.12
4	21619 PK	57.49	68.2	-10.71	-43.56	5.79	-37.77
5	39763.75 PK	59.01	74	-14.99	-42.04	5.79	-36.25
6	5181.25 AV	94.49	*		-6.56	5.79	-0.77
7	5100 AV	38.31	54	-15.69	-62.74	5.79	-56.95
8	7250 AV	32.86	54	-21.14	-68.19	5.79	-62.4
9	21663.56 AV	44.94	#		-56.11	5.79	-50.32
10	39686.87 AV	47.25	54	-6.75	-53.8	5.79	-48.01

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. * : Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

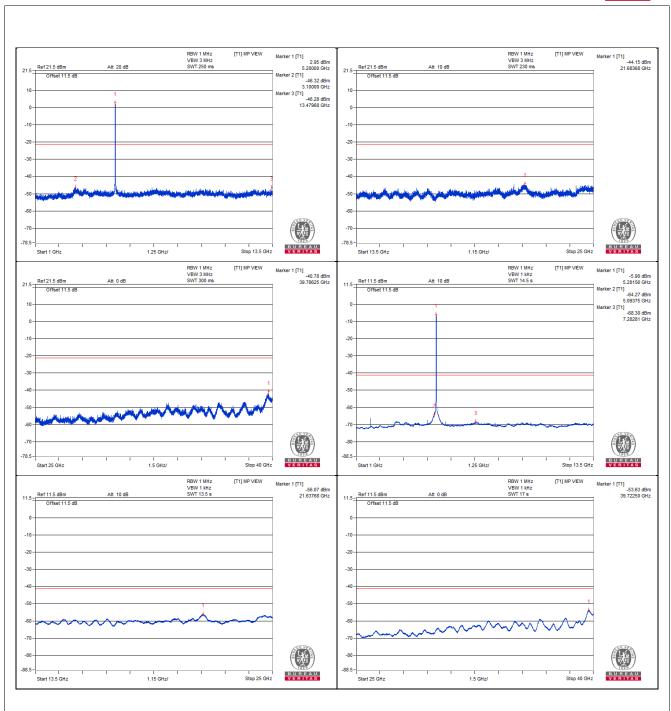


Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5179.12 PK	104.64	*		3.68	5.7	9.38
2	5150 PK	53.73	74	-20.27	-47.23	5.7	-41.53
3	5122.47 PK	55.44	74	-18.56	-45.52	5.7	-39.82
4	5178.97 AV	94.51	*		-6.45	5.7	-0.75
5	5150 AV	42.31	54	-11.69	-58.65	5.7	-52.95
6	5149.32 AV	42.33	54	-11.67	-58.63	5.7	-52.93

Note

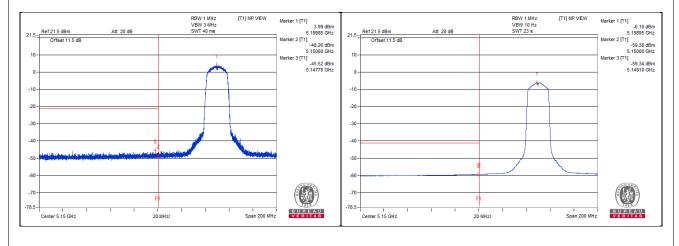
- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.


802.11n (HT20) - Channel 40

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5200 PK	104	*		2.95	5.79	8.74
2	3100 PK	54.73	68.2	-13.47	-46.32	5.79	-40.53
3	13479.68 PK	54.77	68.2	-13.43	-46.28	5.79	-40.49
4	21683.68 PK	56.9	68.2	-11.3	-44.15	5.79	-38.36
5	39786.25 PK	60.27	74	-13.73	-40.78	5.79	-34.99
6	5201.56 AV	95.15	*		-5.9	5.79	-0.11
7	5093.75 AV	36.78	54	-17.22	-64.27	5.79	-58.48
8	7282.81 AV	32.75	54	-21.25	-68.3	5.79	-62.51
9	21637.68 AV	44.98	#		-56.07	5.79	-50.28
10	39722.5 AV	47.42	54	-6.58	-53.63	5.79	-47.84

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

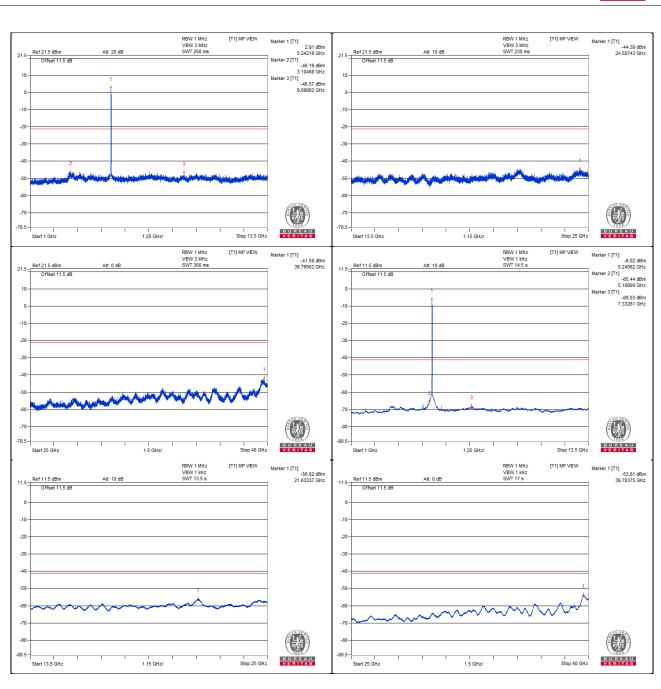


Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5199.85 PK	104.95	*		3.99	5.7	9.69
2	5150 PK	52.7	74	-21.3	-48.26	5.7	-42.56
3	5147.7 PK	55.44	74	-18.56	-45.52	5.7	-39.82
4	5198.95 AV	94.86	*		-6.1	5.7	-0.4
5	5150 AV	41.58	54	-12.42	-59.38	5.7	-53.68
6	5149.1 AV	41.62	54	-12.38	-59.34	5.7	-53.64

Note

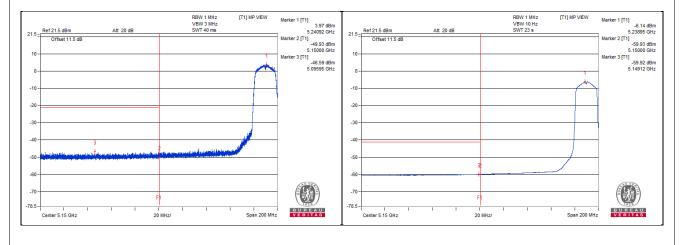
- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.


802.11n (HT20) - Channel 48

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5242.18 PK	103.96	*		2.91	5.79	8.7
2	3104.68 PK	54.86	68.2	-13.34	-46.19	5.79	-40.4
3	9090.62 PK	54.48	74	-19.52	-46.57	5.79	-40.78
4	24587.43 PK	56.66	68.2	-11.54	-44.39	5.79	-38.6
5	39795.62 PK	59.47	74	-14.53	-41.58	5.79	-35.79
6	5240.62 AV	95.03	*		-6.02	5.79	-0.23
7	5100 AV	35.61	54	-18.39	-65.44	5.79	-59.65
8	7332.81 AV	33.02	54	-20.98	-68.03	5.79	-62.24
9	21633.37 AV	45.03	#		-56.02	5.79	-50.23
10	39703.75 AV	47.24	54	-6.76	-53.81	5.79	-48.02

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.



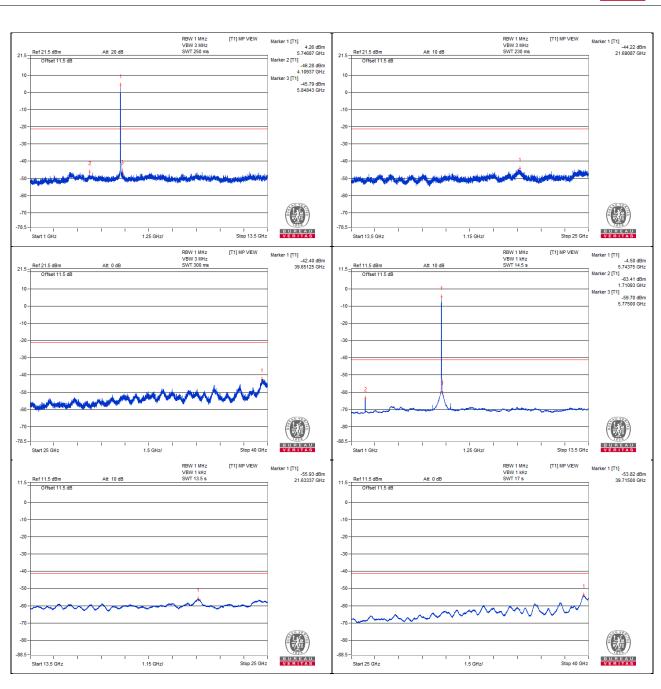
Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5240.92 PK	104.93	*		3.97	5.7	9.67
2	5150 PK	51.03	74	-22.97	-49.93	5.7	-44.23
3	5095.95 PK	54.37	74	-19.63	-46.59	5.7	-40.89
4	5238.95 AV	94.82	*		-6.14	5.7	-0.44
5	5150 AV	41.03	54	-12.97	-59.93	5.7	-54.23
6	5149.12 AV	41.04	54	-12.96	-59.92	5.7	-54.22

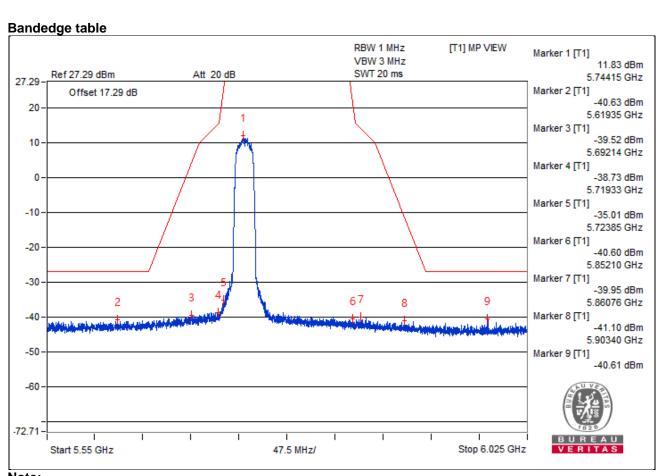
Note

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.

802.11n (HT20) - Channel 149


Conducted spurious emission table

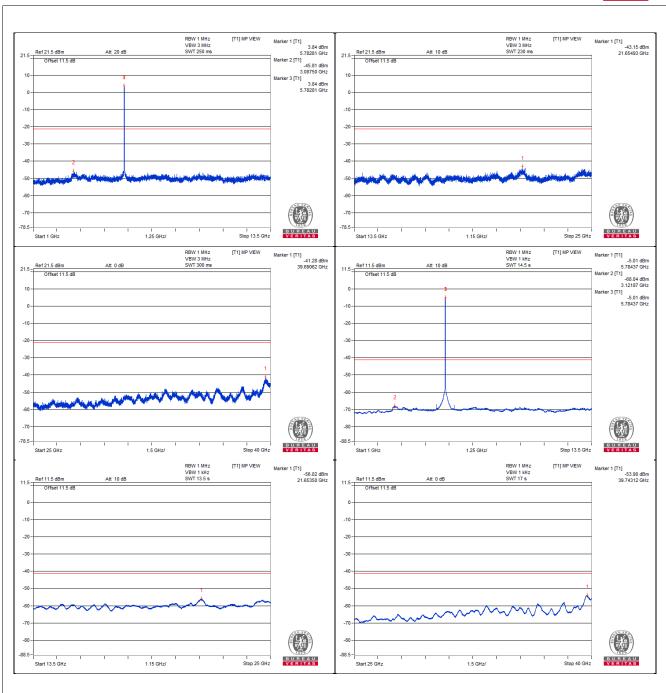
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5746.87 PK	105.31	*		4.26	5.79	10.05
2	4109.37 PK	54.77	74	-19.23	-46.28	5.79	-40.49
3	5848.43 PK	55.26	68.2	-12.94	-45.79	5.79	-40
4	21690.87 PK	56.83	68.2	-11.37	-44.22	5.79	-38.43
5	39651.25 PK	58.65	74	-15.35	-42.4	5.79	-36.61
6	5743.75 AV	96.55	*		-4.5	5.79	1.29
7	1710.93 AV	37.64	54	-16.36	-63.41	5.79	-57.62
8	5775 AV	41.35	#		-59.7	5.79	-53.91
9	21633.37 AV	45.12	#		-55.93	5.79	-50.14
10	39715 AV	47.23	54	-6.77	-53.82	5.79	-48.03


Note

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

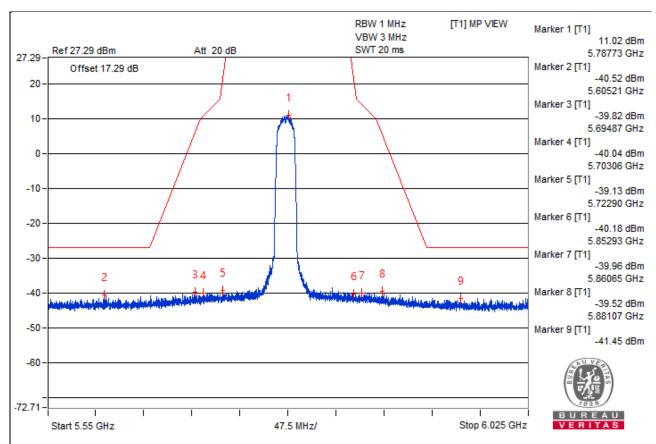
- 1. The offset including attenuator (10dB), cable loss (1.5 dB) and antenna gain (5.79 dBi).
- 2. The test results were EIRP.

802.11n (HT20) - Channel 157


Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5782.81 PK	104.89	*		3.84	5.79	9.63
2	3087.5 PK	55.24	68.2	-12.96	-45.81	5.79	-40.02
3	5782.81 PK	104.89	*		3.84	5.79	9.63
4	21654.93 PK	57.9	68.2	-10.3	-43.15	5.79	-37.36
5	39690.62 PK	59.77	74	-14.23	-41.28	5.79	-35.49
6	5784.37 AV	96.04	*		-5.01	5.79	0.78
7	3121.87 AV	33.01	#		-68.04	5.79	-62.25
8	5784.37 AV	96.04	*		-5.01	5.79	0.78
9	21653.5 AV	45.03	#		-56.02	5.79	-50.23
10	39743.12 AV	47.15	54	-6.85	-53.9	5.79	-48.11

Note


- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

Bandedge table

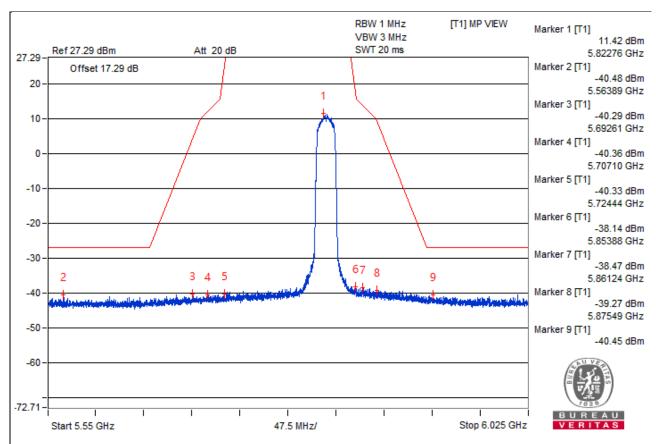
- 1. The offset including attenuator (10dB), cable loss (1.5 dB) and antenna gain (5.79 dBi).
- 2. The test results were EIRP.

802.11n (HT20) - Channel 165


Conducted spurious emission table

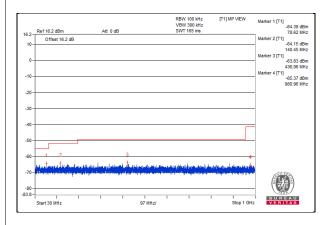
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	5823.43 PK	105.35	*		4.3	5.79	10.09
2	3168.75 PK	55.72	68.2	-12.48	-45.33	5.79	-39.54
3	5823.43 PK	105.35	*		4.3	5.79	10.09
4	21565.81 PK	56.66	68.2	-11.54	-44.39	5.79	-38.6
5	39720.62 PK	59.06	74	-14.94	-41.99	5.79	-36.2
6	5823.43 AV	96.41	*		-4.64	5.79	1.15
7	3103.12 AV	32.79	#		-68.26	5.79	-62.47
8	5823.43 AV	96.41	*		-4.64	5.79	1.15
9	21659.25 AV	45.04	#		-56.01	5.79	-50.22
10	39745 AV	47.2	54	-6.8	-53.85	5.79	-48.06

Note


- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. *: Fundamental frequency, the limit was restricted at the output power.
- 3. #: Non-restricted frequency, no limit for average emission.

Bandedge table

- 1. The offset including attenuator (10dB), cable loss (1.5 dB) and antenna gain (5.79 dBi).
- 2. The test results were EIRP.

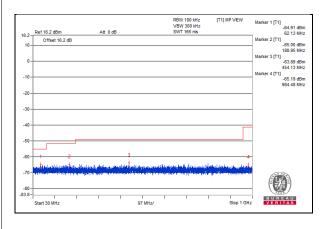

Below 1GHz Data

802.11n (HT20) - Channel 36

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	78.62	36.67	#		-64.38	5.79	-58.59
2	140.45	36.9	#		-64.15	5.79	-58.36
3	436.06	37.22	#		-63.83	5.79	-58.04
4	980.96	35.68	54	-18.32	-65.37	5.79	-59.58

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. # : Non-restricted frequency, no limit for average emission.

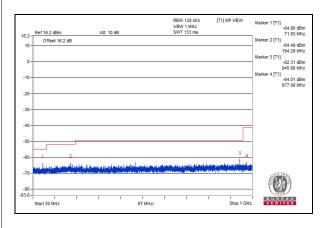


802.11n (HT20) - Channel 165

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	62.13	36.14	#		-64.91	5.79	-59.12
2	188.95	36.05	#		-65	5.79	-59.21
3	454.13	37.16	#		-63.89	5.79	-58.1
4	984.48	35.86	54	-18.14	-65.19	5.79	-59.4

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. #: Non-restricted frequency, no limit for average emission.


Note: Choose worse case from above and set RBW/VBW=120kHz/1MHz to verification.

802.11n (HT20) - Channel 165

Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	71.83	36.25	#		-64.8	5.79	-59.01
2	194.29	36.56	#		-64.49	5.79	-58.7
3	945.8	38.74	43.5	-4.76	-62.31	5.79	-56.52
4	977.08	37.04	54	-16.96	-64.01	5.79	-58.22

- 1. Emission Level (dBuV/m) = EIRP Level (dBm) 20log(d) + 104.8 d = measurement distance in 3 meters.
- 2. # : Non-restricted frequency, no limit for average emission.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

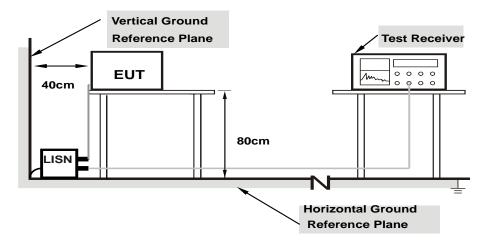
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION &	MODEL NO	CEDIAL NO	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: Apr. 16, 2020

4.2.3 Test Procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	I DETECTOR FUNCTION	Quasi-Peak (QP) /
Tildee	2 (2)		Average (AV)

	Corr.		Readin	g Value	Emissio	n Level	Lir	mit	Mar	Margin	
No	Freq.	Factor	[dB	(uV)]	[dB (uV)]		[dB (uV)]		(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	9.99	25.85	10.98	35.84	20.97	65.79	55.79	-29.95	-34.82	
2	0.24375	9.99	20.36	6.85	30.35	16.84	61.97	51.97	-31.62	-35.13	
3	0.73984	10.03	24.00	11.54	34.03	21.57	56.00	46.00	-21.97	-24.43	
4	0.99375	10.05	11.53	1.28	21.58	11.33	56.00	46.00	-34.42	-34.67	
5	2.67578	10.17	15.68	7.14	25.85	17.31	56.00	46.00	-30.15	-28.69	
6	17.98047	11.23	13.16	7.23	24.39	18.46	60.00	50.00	-35.61	-31.54	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	LI JETECTOL FILINCTION	Quasi-Peak (QP) /
	()		Average (AV)

	Corr.		Readin	g Value	Emissio	n Level	Limit N			gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.99	26.36	11.81	36.35	21.80	66.00	56.00	-29.65	-34.20
2	0.22422	9.99	19.97	6.51	29.96	16.50	62.66	52.66	-32.70	-36.16
3	0.73594	10.03	24.89	12.30	34.92	22.33	56.00	46.00	-21.08	-23.67
4	2.53906	10.15	14.84	8.03	24.99	18.18	56.00	46.00	-31.01	-27.82
5	3.74219	10.21	11.32	0.70	21.53	10.91	56.00	46.00	-34.47	-35.09
6	17.64063	10.99	13.33	7.88	24.32	18.87	60.00	50.00	-35.68	-31.13

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Transmit Power Measurement

4.3.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit			
U-NII-1		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)			
0-1411-1		Fixed point-to-point Access Point	1 Watt (30 dBm)			
	√	Indoor Access Point	1 Watt (30 dBm)			
		Client device	250mW (24 dBm)			
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*			
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B*			
U-NII-3			1 Watt (30 dBm)			

^{*}B is the 26 dB emission bandwidth in megahertz

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results


802.11n (HT20)

Channel	Channel Frequency (MHz)	Maximum Conducted Power (mW)	Maximum Conducted Power (dBm)	Power Limit (dBm)	Pass/Fail
36	5180	10.328	10.14	30	Pass
40	5200	10.162	10.07	30	Pass
48	5240	10.023	10.01	30	Pass
149	5745	10.28	10.12	30	Pass
157	5785	10.399	10.17	30	Pass
165	5825	10.495	10.21	30	Pass

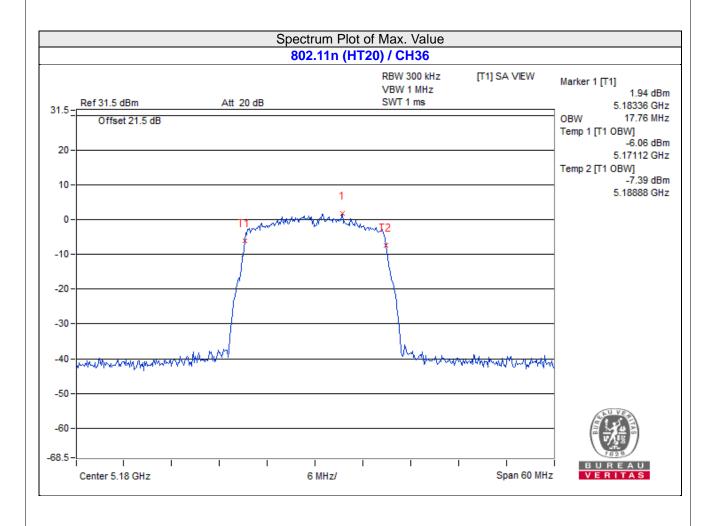
4.4 Occupied Bandwidth Measurement

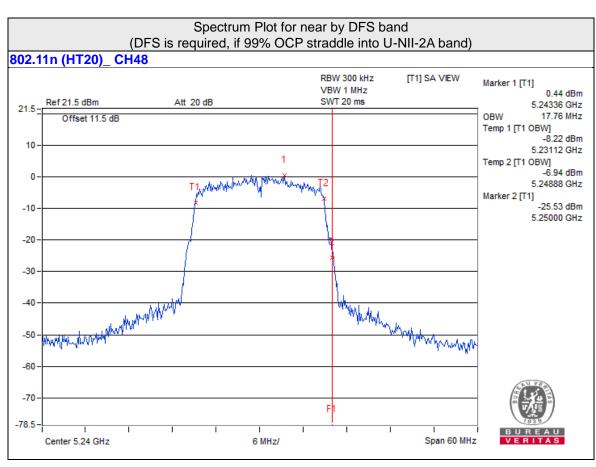
4.4.1 Test Setup

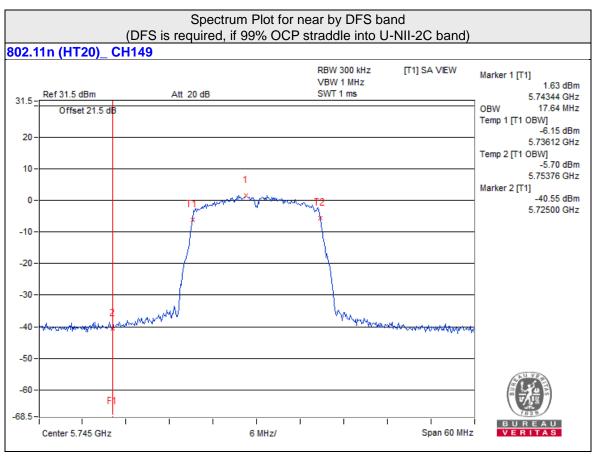
4.4.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.3 Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to SAMPLE. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean power of a given emission.


4.4.4 Test Results


802.11n (HT20)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	17.76
40	5200	17.64
48	5240	17.76
149	5745	17.64
157	5785	17.64
165	5825	17.64

4.5 Peak Power Spectral Density Measurement

4.5.1 Limits of Peak Power Spectral Density Measurement

Operation Band	EUT Category		Limit
		Outdoor Access Point	
U-NII-1		Fixed point-to-point Access Point	17dBm/ MHz
	\checkmark	Indoor Access Point	
		Client device	11dBm/ MHz
U-NII-2A			11dBm/ MHz
U-NII-2C			11dBm/ MHz
U-NII-3	V		30dBm/ 500kHz

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

For U-NII-1 band:

Using method SA-1

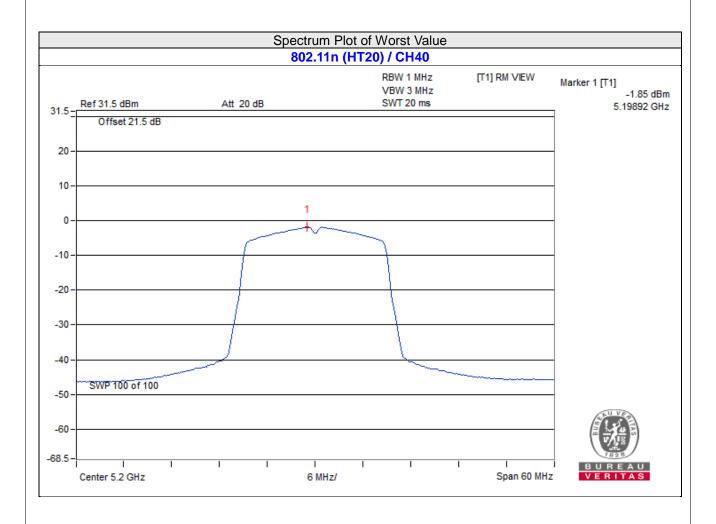
- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3. Sweep time = auto, trigger set to "free run".
- Trace average at least 100 traces in power averaging mode.
 In order to obtain results more easily, change max hold to view as following. It has no effect on the result.
- 5. Record the max value

For U-NII-3 band:

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz, Set VBW ≥ 1 MHz, Detector = RMS
- 3. Use the peak marker function to determine the maximum power level in any 300 kHz band segment within the fundamental EBW.
- 4. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz)
- 5. Sweep time = auto, trigger set to "free run".
- Trace average at least 100 traces in power averaging mode.
 In order to obtain results more easily, change max hold to view as following. It has no effect on the result.
- 7. Record the max value and add 10 log (1/duty cycle)

4.5.5 Deviation from Test Standard	
No deviation.	
4.5.6 EUT Operating Condition	
Same as Item 4.3.6.	

Report No.: RF200206E02-1 Page No. 71 / 79 Report Format Version:6.1.2

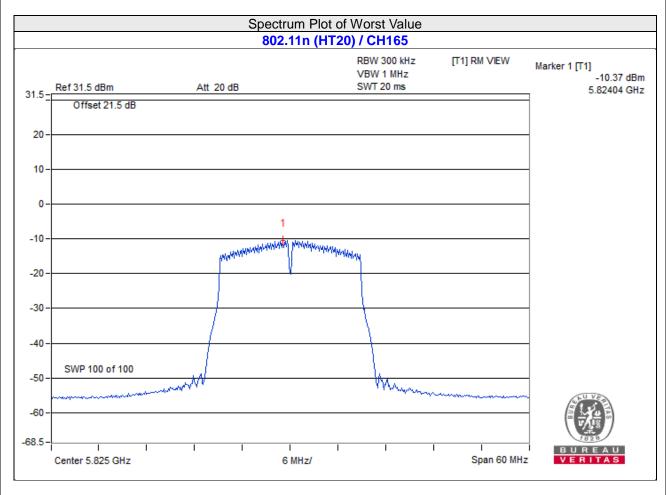


4.5.7 Test Results

For U-NII-1:

802.11n (HT20)

Chan.	Chan. Freq. (MHz)	PSD (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	-2.03	17	Pass
40	5200	-1.85	17	Pass
48	5240	-1.86	17	Pass



For U-NII-3:

802.11n (HT20)

Chan.	Freq. (MHz)	PSD (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
149	5745	-10.45	-8.23	30.00	Pass
157	5785	-10.44	-8.22	30.00	Pass
165	5825	-10.37	-8.15	30.00	Pass



4.6 Frequency Stability Measurement

4.6.1 Limits of Frequency Stability Measurement

The frequency of the carrier signal shall be maintained within band of operation

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Set the EUT transmit at un-modulation mode to test frequency stability.

4.6.7 Test Results

Frequency Stability Versus Temp.										
	Operating Frequency: 5180 MHz									
	Power	0 Mi	nute	2 Mir	nutes	5 Mir	nutes	10 Mi	nutes	
TEMP. (℃)	Supply (Vdc)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	
60	3.3	5179.993	PASS	5179.9937	PASS	5179.9934	PASS	5179.9978	PASS	
50	3.3	5179.9942	PASS	5179.9972	PASS	5179.9974	PASS	5179.9945	PASS	
40	3.3	5180.0007	PASS	5179.9979	PASS	5179.9999	PASS	5179.9983	PASS	
30	3.3	5179.9766	PASS	5179.9764	PASS	5179.9768	PASS	5179.9735	PASS	
20	3.3	5179.979	PASS	5179.976	PASS	5179.9791	PASS	5179.9802	PASS	
10	3.3	5179.9921	PASS	5179.9899	PASS	5179.9924	PASS	5179.9921	PASS	
0	3.3	5180.0187	PASS	5180.0188	PASS	5180.0195	PASS	5180.0206	PASS	
-10	3.3	5180.0071	PASS	5180.0082	PASS	5180.0082	PASS	5180.006	PASS	

	Frequency Stability Versus Voltage								
	Operating Frequency: 5180 MHz								
	0 Minute 2 Minutes 5 Minutes 10 Minutes						nutes		
TEMP . (°C)	Power Supply (Vdc)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail
	3.795	5179.9793	PASS	5179.9766	PASS	5179.9794	PASS	5179.9809	PASS
20	3.3	5179.979	PASS	5179.976	PASS	5179.9791	PASS	5179.9802	PASS
	2.805	5179.978	PASS	5179.9757	PASS	5179.9792	PASS	5179.9795	PASS

4.7 6dB Bandwidth Measurement

4.7.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5MHz.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

MEASUREMENT PROCEDURE REF

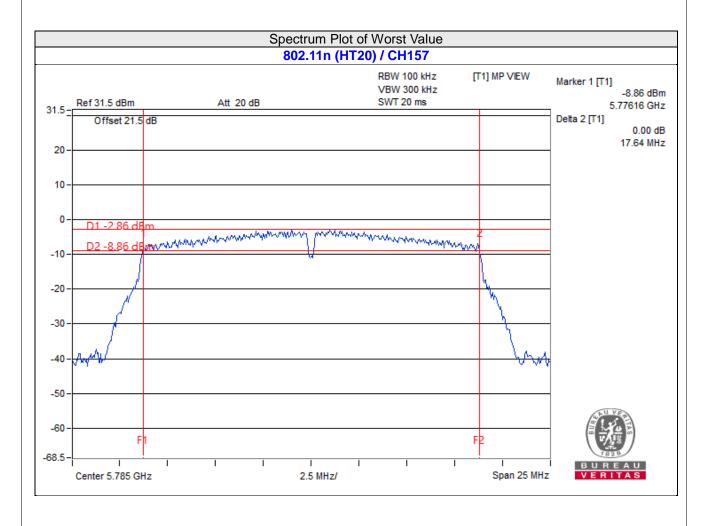
- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

In order to obtain results more easily, change max hold to view as following. It has no effect on the result.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

802.11n (HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
149	5745	17.66	0.5	PASS
157	5785	17.64	0.5	PASS
165	5825	17.65	0.5	PASS

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---