

# **CERTIFICATION TEST REPORT**

# **Report Number :** 11882202-E4V2

- Applicant : MICROSOFT CORP ONE MICROSOFT WAY REDMOND, WA 98052, U.S.A.
  - Model : 1832
  - FCC ID : C3K1832
    - IC : 3048A-1832
- EUT Description : PORTABLE COMPUTING DEVICE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS - 247 ISSUE 2

Date Of Issue: September 28, 2017

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

# **Revision History**

| Rev. | lssue<br>Date | Revisions                                                                      | Revised By |
|------|---------------|--------------------------------------------------------------------------------|------------|
| V1   | 09/08/17      | Initial Release                                                                |            |
| V2   | 09/28/17      | - Updated test procedure for sections 7.2.6, 7.2.7, 7.3.1, 7.3.2, 7.4.6, 7.4.7 | C. Susa    |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 93

# TABLE OF CONTENTS

| 1.   | AT                                                           | ESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 5                                                                               |
|------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 2.   | TES                                                          | ST METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 6                                                                               |
| 3.   | FAG                                                          | CILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 6                                                                               |
| 4.   | CAI                                                          | LIBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 7                                                                               |
| 4    | <b>1</b> .1.                                                 | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 7                                                                               |
| 4    | 4.2.                                                         | SAMPLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 7                                                                               |
| 4    | 4.3.                                                         | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 7                                                                               |
| 5.   | EQ                                                           | JIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 8                                                                               |
| 5    | 5.1.                                                         | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| 5    | 5.2.                                                         | MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 8                                                                               |
| 5    | 5.3.                                                         | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 8                                                                               |
| 5    | 5.4.                                                         | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 8                                                                               |
| 5    | 5.5.                                                         | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 9                                                                               |
| 5    | 5.6.                                                         | DESCRIPTION OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                |
| 6.   | TES                                                          | ST AND MEASUREMENT EQUIPMENT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                |
|      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |
| 7.   | AN                                                           | TENNA PORT TEST RESULTS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                |
| ••   | <b>AN<sup>-</sup></b><br>7.1.                                | <b>FENNA PORT TEST RESULTS</b> 1   ON TIME AND DUTY CYCLE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   |
| 7    | 7.1.<br>7.2.                                                 | ON TIME AND DUTY CYCLE<br>BASIC DATA RATE GFSK MODULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>16                                                                          |
| 7    | 7.1.<br>7.2.<br>7.2.                                         | ON TIME AND DUTY CYCLE<br>BASIC DATA RATE GFSK MODULATION<br>1. 20 dB BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15<br>16<br>16                                                                    |
| 7    | 7.1.<br>7.2.                                                 | ON TIME AND DUTY CYCLE 5   BASIC DATA RATE GFSK MODULATION 7   1. 20 dB BANDWIDTH 7   2. 99% BANDWIDTH 7   3. HOPPING FREQUENCY SEPARATION 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15<br>16<br>16<br>19<br>22                                                        |
| 7    | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.                 | ON TIME AND DUTY CYCLE 5   BASIC DATA RATE GFSK MODULATION 5   1. 20 dB BANDWIDTH 1   2. 99% BANDWIDTH 1   3. HOPPING FREQUENCY SEPARATION 2   4. NUMBER OF HOPPING CHANNELS 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>16<br>19<br>22<br>23                                                        |
| 7    | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.                 | ON TIME AND DUTY CYCLE 5   BASIC DATA RATE GFSK MODULATION 7   1. 20 dB BANDWIDTH 7   2. 99% BANDWIDTH 7   3. HOPPING FREQUENCY SEPARATION 7   4. NUMBER OF HOPPING CHANNELS 7   5. AVERAGE TIME OF OCCUPANCY 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15<br>16<br>19<br>22<br>23<br>26                                                  |
| 7    | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE 5   BASIC DATA RATE GFSK MODULATION 6   1. 20 dB BANDWIDTH 7   2. 99% BANDWIDTH 7   3. HOPPING FREQUENCY SEPARATION 7   4. NUMBER OF HOPPING CHANNELS 7   5. AVERAGE TIME OF OCCUPANCY 7   6. OUTPUT POWER 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>16<br>19<br>22<br>23<br>26<br>30<br>31                                      |
| 7    | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE 7   BASIC DATA RATE GFSK MODULATION 7   1. 20 dB BANDWIDTH 7   2. 99% BANDWIDTH 7   3. HOPPING FREQUENCY SEPARATION 7   4. NUMBER OF HOPPING CHANNELS 7   5. AVERAGE TIME OF OCCUPANCY 7   6. OUTPUT POWER 7   7. AVERAGE POWER 7   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>16<br>19<br>22<br>23<br>26<br>30<br>31<br>32                                |
| 7    | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE 5   BASIC DATA RATE GFSK MODULATION 6   1. 20 dB BANDWIDTH 1   2. 99% BANDWIDTH 1   3. HOPPING FREQUENCY SEPARATION 2   4. NUMBER OF HOPPING CHANNELS 2   5. AVERAGE TIME OF OCCUPANCY 2   6. OUTPUT POWER 3   7. AVERAGE POWER 3   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>16<br>19<br>22<br>23<br>26<br>30<br>31<br>32<br>37                          |
| 7    | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE BASIC DATA RATE GFSK MODULATION   1. 20 dB BANDWIDTH 1   2. 99% BANDWIDTH 1   3. HOPPING FREQUENCY SEPARATION 1   4. NUMBER OF HOPPING CHANNELS 2   5. AVERAGE TIME OF OCCUPANCY 2   6. OUTPUT POWER 3   7. AVERAGE POWER 3   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 3   7. OUTPUT POWER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15<br>16<br>19<br>22<br>23<br>26<br>30<br>31<br>32<br>37<br>37                    |
| 7777 | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE. BASIC DATA RATE GFSK MODULATION.   1. 20 dB BANDWIDTH. 1   2. 99% BANDWIDTH. 1   3. HOPPING FREQUENCY SEPARATION 2   4. NUMBER OF HOPPING CHANNELS. 2   5. AVERAGE TIME OF OCCUPANCY 2   6. OUTPUT POWER 3   7. AVERAGE POWER 3   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS. 3   7. AVERAGE POWER 3   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS. 3   2. AVERAGE POWER 3   2. AVERAGE POWER 3   3. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS. 3   5. AVERAGE POWER 3   6. OUTPUT POWER 3   7. AVERAGE POWER 3   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS. 3   6. OUTPUT POWER 3   7. AVERAGE POWER 3   7. AVERAGE POWER 3   7. AVERAGE POWER 3                                                                                                                                                                                       | 15<br>16<br>19<br>22<br>30<br>31<br>32<br>37<br>37<br>38<br>39                    |
| 7777 | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE. Fill   BASIC DATA RATE GFSK MODULATION. 1   1. 20 dB BANDWIDTH. 1   2. 99% BANDWIDTH. 1   3. HOPPING FREQUENCY SEPARATION 1   4. NUMBER OF HOPPING CHANNELS. 1   5. AVERAGE TIME OF OCCUPANCY 1   6. OUTPUT POWER 1   7. AVERAGE POWER 1   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 1   9. OUTPUT POWER 1   2. AVERAGE POWER 1   2. AVERAGE POWER 1   2. AVERAGE POWER 1   3. OUTPUT POWER 1   3. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 1   4. OUTPUT POWER 1   5. AVERAGE POWER 1   5. OUTPUT POWER 1   5. ONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 1   6. OUTPUT POWER 1   7. AVERAGE POWER <td< td=""><td>15<br/>16<br/>19<br/>22<br/>30<br/>31<br/>32<br/>37<br/>37<br/>38<br/>39<br/>39</td></td<> | 15<br>16<br>19<br>22<br>30<br>31<br>32<br>37<br>37<br>38<br>39<br>39              |
| 7777 | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE. BASIC DATA RATE GFSK MODULATION.   1. 20 dB BANDWIDTH. 1   2. 99% BANDWIDTH. 1   3. HOPPING FREQUENCY SEPARATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>16<br>19<br>223<br>26<br>31<br>32<br>37<br>38<br>39<br>39<br>42<br>45       |
| 7777 | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE   BASIC DATA RATE GFSK MODULATION   1. 20 dB BANDWIDTH   2. 99% BANDWIDTH   3. HOPPING FREQUENCY SEPARATION   4. NUMBER OF HOPPING CHANNELS   5. AVERAGE TIME OF OCCUPANCY   6. OUTPUT POWER   7. AVERAGE POWER   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS   9. OUTPUT POWER   1. OUTPUT POWER   2. AVERAGE POWER   2. AVERAGE POWER   3. HOPPING RATE DQPSK MODULATION   1. OUTPUT POWER   2. AVERAGE POWER   3. HOPPING FREQUENCY SEPARATION   4. NUMBER OF HOPPING CHANNELS                                                                                                                                                                                                                                                                                                                                                             | 15<br>16<br>19<br>223<br>26<br>31<br>32<br>37<br>38<br>39<br>39<br>42<br>546      |
| 7777 | 7.1.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2.<br>7.2. | ON TIME AND DUTY CYCLE.   BASIC DATA RATE GFSK MODULATION.   1. 20 dB BANDWIDTH.   2. 99% BANDWIDTH.   3. HOPPING FREQUENCY SEPARATION   4. NUMBER OF HOPPING CHANNELS.   5. AVERAGE TIME OF OCCUPANCY   6. OUTPUT POWER   7. AVERAGE POWER   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS.   9. AVERAGE POWER   2. AVERAGE POWER   2. AVERAGE POWER   2. AVERAGE POWER   2. AVERAGE POWER   3. HOPPING CHANNELS   4. NUMBER OF MODULATION   4. NUMBER OF MODULATION   5. AVERAGE POWER   6. OUTPUT POWER   7. AVERAGE POWER   8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS   9. OUTPUT POWER   2. AVERAGE POWER   3. HOPPING CHANNELS   4. NUMBER OF HOPPING CHANNELS   5. AVERAGE TIME OF OCCUPANCY                                                                                                                                                                 | 15<br>16<br>19<br>223<br>26<br>31<br>32<br>37<br>38<br>39<br>39<br>45<br>46<br>49 |

|     | 7.4.7.<br>7.4.8. | AVERAGE POWER<br>CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS                                                                                      |          |
|-----|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 8.  | RADIAT           | ED TEST RESULTS                                                                                                                                 | 60       |
| 8   | 3.1. LIM         | ITS AND PROCEDURE                                                                                                                               | 60       |
| Ę   | 8.2.1.<br>8.2.2. | SIC DATA RATE GFSK MODULATION<br>RESTRICTED BANDEDGE (LOW CHANNEL)<br>AUTHORIZED BANDEDGE (HIGH CHANNEL)<br>HARMONICS AND SPURIOUS EMISSIONS    | 61<br>63 |
| ε   | 8.3.1.<br>8.3.2. | HANCED DATA RATE 8PSK MODULATION<br>RESTRICTED BANDEDGE (LOW CHANNEL)<br>AUTHORIZED BANDEDGE (HIGH CHANNEL)<br>HARMONICS AND SPURIOUS EMISSIONS | 71<br>73 |
| 8   | 3.4. WO          | RST-CASE BELOW 1 GHz                                                                                                                            | 81       |
| 8   | 3.5. WO          | RST-CASE ABOVE 18 GHz                                                                                                                           | 83       |
| 9.  |                  | VER LINE CONDUCTED EMISSIONS                                                                                                                    | 85       |
| 10. | SETU             | P PHOTOS                                                                                                                                        | 88       |

Page 4 of 93

# **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME:    | MICROSOFT CORP<br>ONE MICROSOFT WAY<br>REDMOND, WA 98052, U.S.A. |              |
|------------------|------------------------------------------------------------------|--------------|
| EUT DESCRIPTION: | PORTABLE COMPUTING DEVICE                                        |              |
| MODEL:           | 1832                                                             |              |
| SERIAL NUMBER:   | Radiated: 012813672657<br>Conducted: 009698372657                |              |
| DATE TESTED:     | AUGUST 11 – AUGUST 24, 2017                                      |              |
|                  | APPLICABLE STANDARDS                                             |              |
| STA              | ANDARD                                                           | TEST RESULTS |
| CFR 47 Pa        | art 15 Subpart C                                                 | Pass         |
| INDUSTRY CAN     | ADA RSS-247 Issue 2                                              | Pass         |
| INDUSTRY CAN     | ADA RSS-GEN Issue 4                                              | Pass         |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

ino de Quela

FRANCISCO DE ANDA WiSE Program Manager UL VERIFICATION SERVICES INC.

Prepared By:

ERIC YU WISE LAB ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 93

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 2.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street   | 47266 Benicia Street   |
|------------------------|------------------------|
| Chamber A(IC: 2324B-1) | Chamber D(IC: 22541-1) |
| Chamber B(IC: 2324B-2) | Chamber E(IC: 22541-2) |
| Chamber C(IC: 2324B-3) | Chamber F(IC: 22541-3) |
|                        | Chamber G(IC: 22541-4) |
|                        | Chamber H(IC: 22541-5) |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

Chambers A through C are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under Industry Canada company address code 22541 with site numbers 22541 -1 through 22541-5, respectively.

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                                           | Uncertainty |
|-----------------------------------------------------|-------------|
| Worst Case Conducted Disturbance, 9KHz to 0.15 MHz  | 3.84 dB     |
| Worst Case Conducted Disturbance, 0.15 to 30 MHz    | 3.65 dB     |
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 3.15 dB     |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 5.36 dB     |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.32 dB     |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.45 dB     |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.24 dB     |

Uncertainty figures are valid to a confidence level of 95%.

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is a portable computing device with 802.11 2x2, a/b/g/n/ac WLAN, Bluetooth, Bluetooth LE.

# 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum <u>peak</u> conducted output power as follows:

| Frequency Range | Mode          | Output Power | Output Power |
|-----------------|---------------|--------------|--------------|
| (MHz)           |               | (dBm)        | (mW)         |
| 2402 - 2480     | Basic GFSK    | 2.27         | 1.69         |
| 2402 - 2480     | DQPSK         | 5.71         | 3.72         |
| 2402 - 2480     | Enhanced 8PSK | 5.99         | 3.97         |

The transmitter has a maximum <u>average</u> conducted output power as follows:

| Frequency Range | Mode          | Output Power | Output Power |
|-----------------|---------------|--------------|--------------|
| (MHz)           |               | (dBm)        | (mW)         |
| 2402 - 2480     | Basic GFSK    | 2.10         | 1.62         |
| 2402 - 2480     | DQPSK         | 3.15         | 2.07         |
| 2402 - 2480     | Enhanced 8PSK | 3.15         | 2.07         |

# 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes integrated antenna, with the maximum gains:

| Frequency Band<br>(GHz) | Antenna Gain (dBi) |
|-------------------------|--------------------|
| 2402-2480               | 3.26               |

# 5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 14.2.201.159

The test utility software used during testing was Wifi tool v2.7.5

# 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated band edge, harmonics, and spurious emissions from 1 GHz to 18GHz were performed with the EUT was set to transmit at the Low/Middle/High channels.

Radiated emission below 30MHz, below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT was set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, & Z, and it was determined that Y-Axis orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y-Axis orientation.

Worst-case data rates were:

GFSK mode: DH5 8PSK mode: 3-DH5

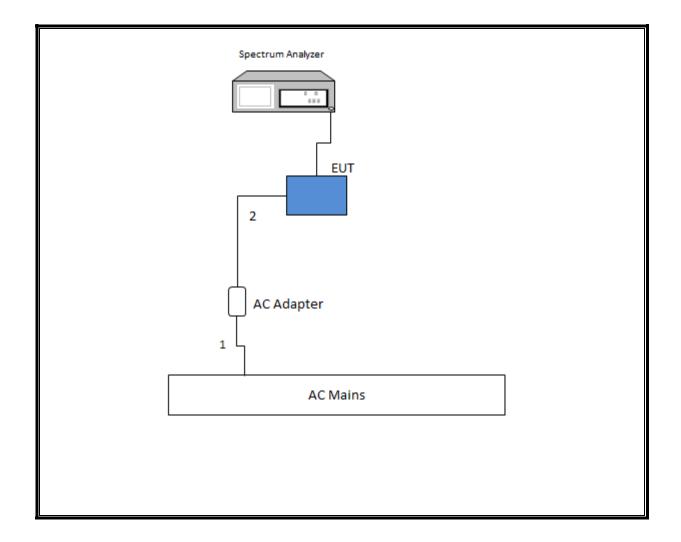
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 9 of 93

# 5.6. DESCRIPTION OF TEST SETUP

# I/O CABLES

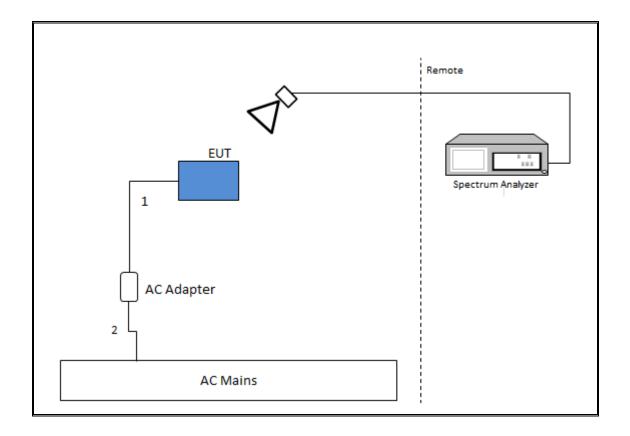
|                                                                          | I/O Cable List |       |             |             |            |  |  |  |
|--------------------------------------------------------------------------|----------------|-------|-------------|-------------|------------|--|--|--|
| Cable   Port   # of identical   Connector   Cable Type   Cable   Remarks |                |       |             | Remarks     |            |  |  |  |
| No                                                                       |                | ports | Туре        |             | Length (m) |  |  |  |
| 1                                                                        | USB            | 1     | USB         | Un-Shielded | 0.17       |  |  |  |
| 2                                                                        | DC             | 1     | Proprietary | Un-Shielded | 1.75       |  |  |  |


### TEST SETUP

Test software is installed on the EUT that exercises the radio. During all tests the EUT is connected to the AC adapter.

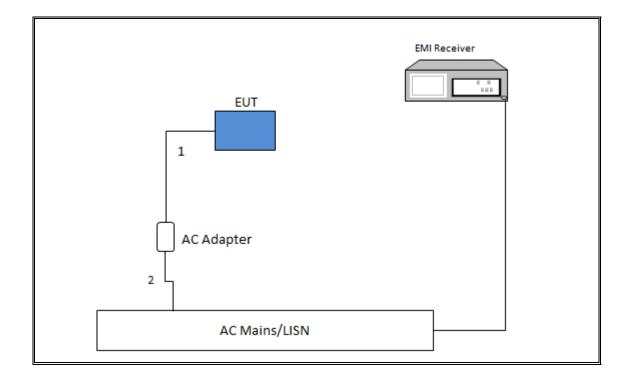
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 10 of 93


### SETUP DIAGRAM FOR ANTENNA PORT CONDUCTED TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 11 of 93

### SETUP DIAGRAM FOR RADIATED TESTS



Page 12 of 93

### SETUP DIAGRAM FOR AC LINE CONDUCTED TESTS



Page 13 of 93

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST           |                                  |                        |       |          |  |  |
|-------------------------------|----------------------------------|------------------------|-------|----------|--|--|
| Description                   | Manufacturer                     | Model                  | Asset | Cal Due  |  |  |
| Spectrum Analyzer             | Keysight                         | N9030A                 | T1210 | 07/17/18 |  |  |
| Spectrum Analyzer             | Keysight                         | N9030A                 | T1466 | 04/11/18 |  |  |
| Antenna, Biconolog, 30-1GHz   | Sunol Sciences                   | JB1                    | T130  | 09/23/17 |  |  |
| RF Preamplifier, 10kHz – 1GHz | Sonoma                           | 310N                   | T300  | 11/10/17 |  |  |
| Antenna, Horn, 1-18GHz        | ETS Lindgren                     | 3117                   | T862  | 06/09/18 |  |  |
| RF Preamplifier, 1-18GHz      | Miteq                            | AFS42-00101800-25-S-42 | T1165 | 06/24/18 |  |  |
| RF Preamplifier, 1-8GHz       | Miteq                            | AMF-4D-01000800-30-29P | T1573 | 06/24/18 |  |  |
| Low Pass Filter, 5GHz         | Micro-Tronics                    | LPS17541               | T481  | 06/24/18 |  |  |
| High Pass Filter, 6GHz        | Micro-Tronics                    | HPS17542               | T484  | 06/24/18 |  |  |
| Spectrum Analyzer             | Keysight                         | N9030A                 | T907  | 01/23/18 |  |  |
| RF Preamplifier, 1-18GHz      | Miteq                            | AFS42-00101800-25-S-42 | T493  | 02/15/18 |  |  |
| RF Preamplifier, 1-8GHz       | Miteq                            | AMF-4D-01000800-30-29P | T1156 | 02/15/18 |  |  |
| Antenna, Horn, 1-18GHz        | ETS Lindgren                     | 3117                   | T863  | 06/09/18 |  |  |
| Low Pass Filter, 5GHz         | Micro-Tronics                    | LPS17541               | T482  | 02/15/18 |  |  |
| High Pass Filter, 6GHz        | Micro-Tronics                    | HPS17542               | T483  | 02/15/18 |  |  |
| Antenna, Horn, 18-26GHz       | ARA                              | MWH-1826/B             | T449  | 06/12/18 |  |  |
| RF Preamplifier, 1-26GHz      | Agilent                          | 8499B                  | T404  | 07/23/18 |  |  |
| Antenna, Horn, 26-40GHz       | ARA                              | MWH-2640               | T90   | 08/25/18 |  |  |
| RF Preamplifier, 26-40GHz     | Miteq                            | NSP4000-SP2            | T88   | 04/29/18 |  |  |
| Spectrum Analyzer             | Keysight                         | N9030A                 | T1454 | 12/15/17 |  |  |
| EMI Receiver                  | Rohde & Schwarz                  | ESR                    | T1436 | 01/06/18 |  |  |
| LISN                          | Fischer Custom<br>Communications | FCC-LSN-50/250-25-2-01 | T1310 | 06/15/18 |  |  |

| Test Software List                     |    |        |               |  |  |
|----------------------------------------|----|--------|---------------|--|--|
| Description Manufacturer Model Version |    |        |               |  |  |
| Radiated Software                      | UL | UL EMC | 9.5, 12/01/16 |  |  |
| Antenna Port Software                  | UL | UL RF  | 7.1, 8/6/17   |  |  |
| Conducted Emissions Software           | UL | UL EMC | 9.5, 5/26/15  |  |  |

# 7. ANTENNA PORT TEST RESULTS

# 7.1. ON TIME AND DUTY CYCLE

### LIMITS

None; for reporting purposes only.

### PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

### ON TIME AND DUTY CYCLE RESULTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | ON TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND DUTY                                                      | CYCLE RES                                                                                     | SULTS                                                                                               |                                                         |                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON Time<br>B<br>(msec)                                  | Period<br>(msec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Duty Cycle<br>x<br>(linear)                                   | Duty<br>Cycle<br>(%)                                                                          | Duty Cycle<br>Correction Factor<br>(dB)                                                             | 1/ <sup>-</sup><br>Minimur<br>(kH                       | n VBW                                                         |
| GFSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.890                                                   | 3.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.771                                                         | 77.07%                                                                                        | 1.13                                                                                                | 0.34                                                    | 16                                                            |
| 8PSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.887                                                   | 3.742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.772                                                         | 77.15%                                                                                        | 1.13                                                                                                | 0.34                                                    | 16                                                            |
| Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GFSK                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DUTY CYCL                                                     | E PLOTS                                                                                       | 8PSK                                                                                                |                                                         |                                                               |
| to dB/div<br>00 B 2000 GHZ<br>PRO: Fast<br>PRO: Fast<br>PGenter Freq 2.402000000 GHZ<br>PRO: Fast<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGentow<br>PGe | SENSE:INT<br>#Avg Typ<br>Trig: Free Run<br>Atten: 10 dB | ALION AUTO 11:30:46 AM Aug 16<br>e: RMS TRACE 1:3<br>TRACE | 2017<br>1456 Frequency<br>MNN<br>Auto Tune                    | 10 dB/div Ref 0.00 dBm                                                                        | SENSE.INT ALLON AU<br>PNO: Fast ++<br>IFGainLow Atten: 10 dB                                        |                                                         | Frequency<br>Auto Tune                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | 2∆1 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Center Freq<br>2.40200000 GHz<br>Start Freq<br>2.40200000 GHz | -100<br>-200<br>-200<br>-400<br>-600                                                          |                                                                                                     |                                                         | Center Freq<br>2.44100000 GHz<br>Start Freq<br>2.44100000 GHz |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stop Freq<br>2.40200000 GHz                                   | 60.0                                                                                          |                                                                                                     |                                                         | Stop Freq<br>2.441000000 GHz                                  |
| Center 2.402000000 GHz   #VBW 5     Res BW 8 MHz   #VBW 5     Image: Second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 MHz<br>-23,47 dBm<br>0.19 dB<br>0.10 dB              | Span (<br>Sweep 5.000 ms (1001<br>KCTION WIDTH FUNCTION VALU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | Center 2.441000000 GHz<br>Res BW 8 MHz<br>1 N 1 t<br>2 Δ1 1 t (Δ)<br>3 Δ1 1 t (Δ)<br>4<br>5 6 | #VBW 50 MHz   Sweep     1.643 ma   20.29 dBm     2.887 ms (Δ)   1.83 dB     3.742 ms (Δ)   -2.56 dB | Span 0 Hz<br>5 8.467 ms (1001 pts)<br>OTH FUNCTIONVALUE | CF Step<br>8.00000 MHz<br>Auto Man<br>Freq Offset<br>0 Hz     |
| 7<br>8<br>9<br>10<br>11<br>*<br>↓File <screen_0006 png=""> saved</screen_0006>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m                                                       | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , Scale Type                                                  | 9<br>9<br>10<br>11                                                                            |                                                                                                     | TATUS                                                   | Scale Type<br>Log <u>Lin</u>                                  |
| NOTE: HOPPING OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FF                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                                                                               |                                                                                                     |                                                         |                                                               |

Page 15 of 93

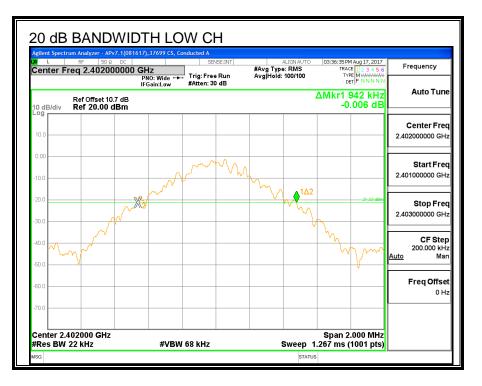
# 7.2. BASIC DATA RATE GFSK MODULATION

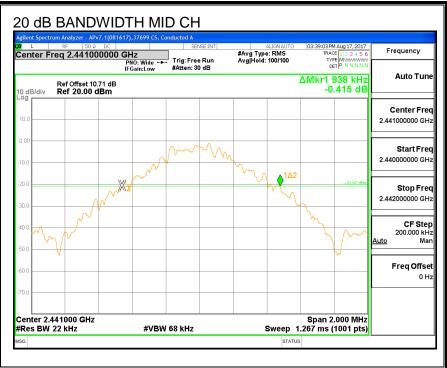
# 7.2.1. 20 dB BANDWIDTH

### <u>LIMITS</u>

None; for reporting purposes only.

### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.


# **RESULTS**

| Channel | Frequency<br>(MHz) | 20 dB<br>Bandwidth<br>(KHz) |
|---------|--------------------|-----------------------------|
| Low     | 2402               | 942                         |
| Middle  | 2441               | 938                         |
| High    | 2480               | 926                         |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 16 of 93





Page 17 of 93

|                  | DOO GHz<br>PNO: Wide ↔                  | Trig: Free Run                         | #Avg Type: RMS<br>Avg Hold: 100/100 | TRACE 1 2 3 4 5 6<br>TYPE MWWWWWW<br>DET P N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency                               |
|------------------|-----------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Ref Offset 10.72 |                                         | #Atten: 30 dB                          |                                     | ΔMkr1 926 kHz<br>0.071 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Auto Tune                               |
| 10.0             |                                         |                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Free<br>2.480000000 GH           |
| .10.0            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Free<br>2.479000000 GH            |
| -20.0            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                        |                                     | -21 97 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop Free<br>2.481000000 GH:            |
| -40.0            |                                         |                                        |                                     | - Marine - M | CF Stej<br>200.000 kH<br><u>Auto</u> Ma |
| -60.0            |                                         |                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offse<br>0 H                       |
| -70.0            |                                         |                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

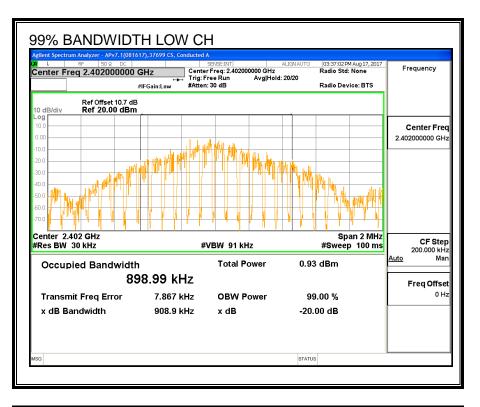
Page 18 of 93

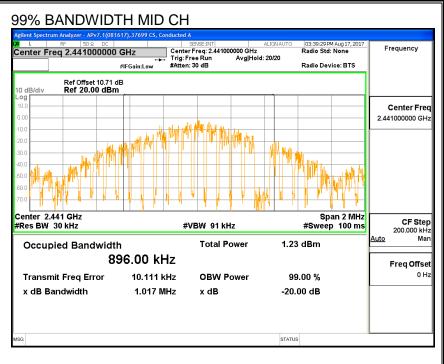
# 7.2.2. 99% BANDWIDTH

#### **LIMITS**

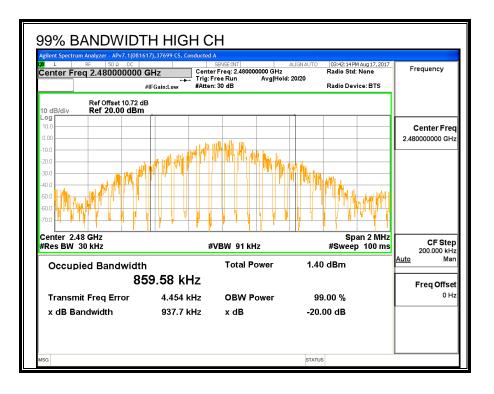
None; for reporting purposes only.

#### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1%-5% the OBW. The VBW is set to  $\geq$  3 times RBW. The sweep time is coupled.


#### **RESULTS**

| Channel | Frequency<br>(MHz) | 99%<br>Bandwidth<br>(KHz) |
|---------|--------------------|---------------------------|
| Low     | 2402               | 898.99                    |
| Middle  | 2441               | 896.00                    |
| High    | 2480               | 859.58                    |


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 93





Page 20 of 93



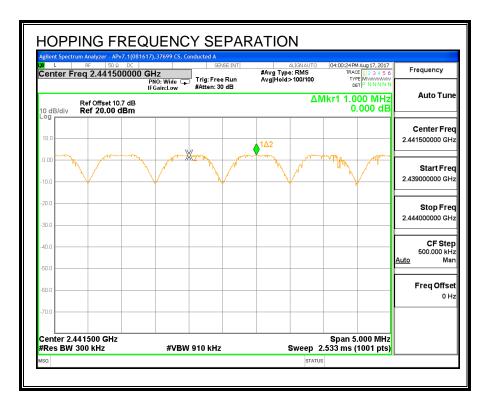
Page 21 of 93

# 7.2.3. HOPPING FREQUENCY SEPARATION

### LIMITS

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (b)


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

#### <u>RESULTS</u>



Page 22 of 93

# 7.2.4. NUMBER OF HOPPING CHANNELS

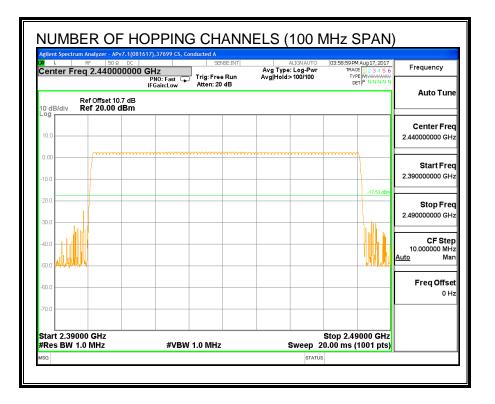
#### LIMITS

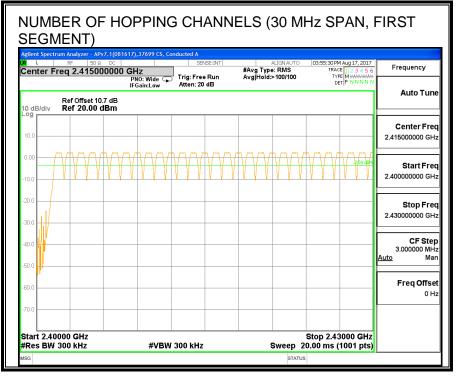
FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (d)

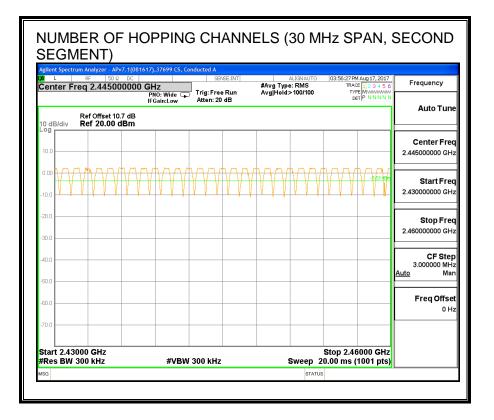
Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

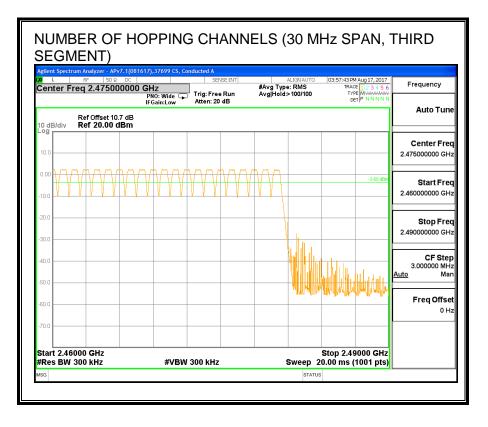
#### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


#### RESULTS

Normal Mode: 79 Channels observed.


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 23 of 93





Page 24 of 93





Page 25 of 93

# 7.2.5. AVERAGE TIME OF OCCUPANCY

### LIMITS

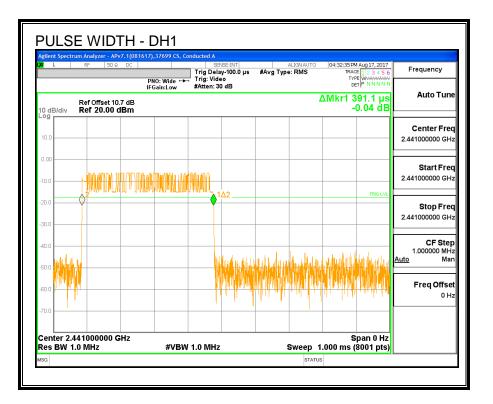
FCC §15.247 (a) (1) (iii)

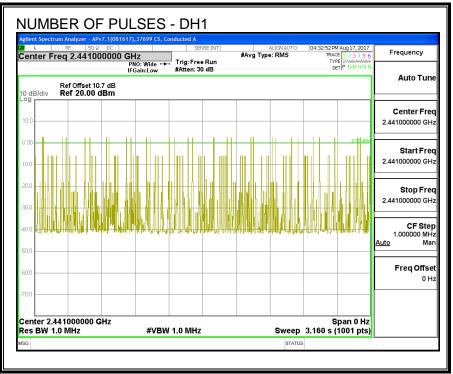
IC RSS-247 (5.1) (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

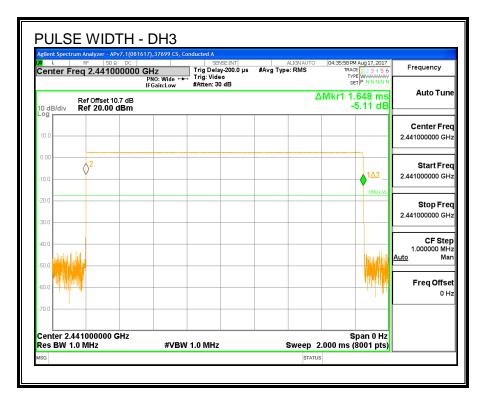
### TEST PROCEDURE

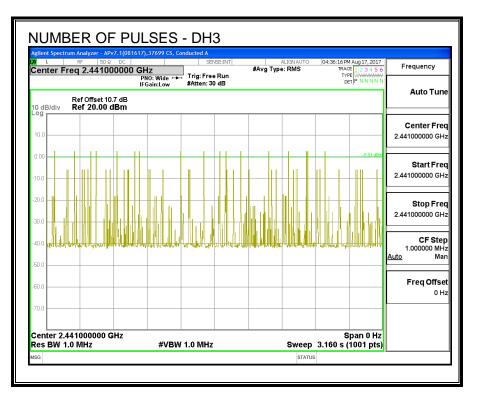
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.


For AFH mode, the average time of occupancy in the specified 8 second period (20 channels \* 0.4 seconds) is equal to 10 \* (# of pulses in 0.8 s) \* pulse width.

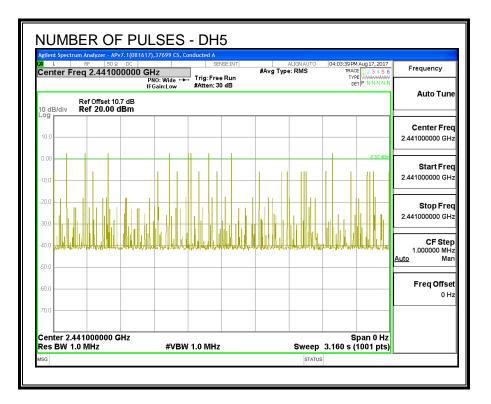
| DH Packet  | Pulse<br>Width<br>(msec) | Number of<br>Pulses in<br>3.16<br>seconds | Average Time<br>of Occupancy<br>(sec) | Limit<br>(sec) | Margin<br>(sec) |
|------------|--------------------------|-------------------------------------------|---------------------------------------|----------------|-----------------|
| GFSK Norma | I Mode                   |                                           |                                       |                |                 |
| DH1        | 0.391                    | 32                                        | 0.1251                                | 0.4            | -0.2749         |
| DH3        | 1.648                    | 17                                        | 0.2802                                | 0.4            | -0.1198         |
| DH5        | 2.896                    | 9                                         | 0.2606                                | 0.4            | -0.1394         |
|            |                          |                                           |                                       |                |                 |
| DH Packet  | Pulse<br>Width<br>(sec)  | Number of<br>Pulses in<br>0.8<br>seconds  | Average Time<br>of Occupancy<br>(sec) | Limit<br>(sec) | Margin<br>(sec) |
| GFSK AFH M | lode                     |                                           |                                       |                |                 |
| DH1        | 0.391                    | 8                                         | 0.03128                               | 0.4            | -0.3687         |
| DH3        | 1.648                    | 4.25                                      | 0.07004                               | 0.4            | -0.3300         |
| DH5        | 2.896                    | 2.25                                      | 0.06516                               | 0.4            | -0.3348         |


### **RESULTS**


Page 26 of 93






Page 27 of 93





Page 28 of 93

| enter Freq 2.441000000 (                     |              | SENSE:INT<br>Frig Delay-400.0 µs<br>Frig: Video | ALIGN AUTO<br>#Avg Type: RMS | 04:05:14 PM Aug 17, 2017<br>TRACE 1 2 3 4 5 6<br>TYPE WWWWWW |                                         |
|----------------------------------------------|--------------|-------------------------------------------------|------------------------------|--------------------------------------------------------------|-----------------------------------------|
| Ref Offset 10.7 dB<br>0 dB/div Ref 20.00 dBm | IFGain:Low 1 | (Atten: 30 dB                                   | ۵                            | Mkr1 2.896 ms<br>-1.48 dB                                    |                                         |
| 0.0                                          |              |                                                 |                              |                                                              | Center Fre<br>2.441000000 GH            |
| 0.00                                         |              |                                                 |                              | 1Δ2                                                          | Start Fre<br>2.441000000 G⊦             |
| 0.0                                          |              |                                                 |                              | TRIG LVL                                                     | Stop Fre<br>2.441000000 G⊦              |
|                                              |              |                                                 |                              | and the state of the                                         | CF Ste<br>1.000000 MH<br><u>Auto</u> Ma |
|                                              |              |                                                 |                              |                                                              | FreqOffso<br>0 ⊦                        |
| enter 2.441000000 GHz                        |              |                                                 |                              | Span 0 Hz                                                    |                                         |



Page 29 of 93

# 7.2.6. OUTPUT POWER

### LIMITS

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

### **RESULTS**

| TEST 37699 | Date: | 08/11/17 |
|------------|-------|----------|
|------------|-------|----------|

| Channel | Frequency<br>(MHz) | Output<br>Power (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|-----------------------|----------------|----------------|
| Low     | 2402               | 2.27                  | 30             | -27.73         |
| Middle  | 2441               | 2.25                  | 30             | -27.75         |
| High    | 2480               | 2.15                  | 30             | -27.85         |

Page 30 of 93

# 7.2.7. AVERAGE POWER

#### LIMITS

None; for reporting purposes only.

### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power.

### **RESULTS**

| TEST<br>ENGINEER: | 37699 | Date: | 08/11/17 |
|-------------------|-------|-------|----------|
|-------------------|-------|-------|----------|

| Channel | Frequency<br>(MHz) | Average<br>Power (dBm) |
|---------|--------------------|------------------------|
| Low     | 2402               | 2.10                   |
| Middle  | 2441               | 2.06                   |
| High    | 2480               | 1.99                   |

Page 31 of 93

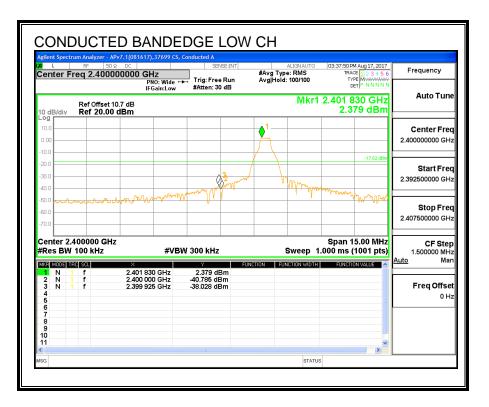
# 7.2.8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

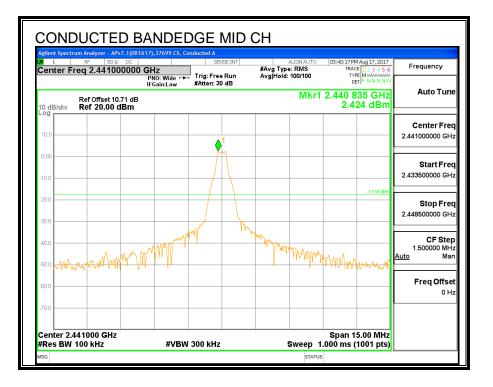
FCC §15.247 (d)

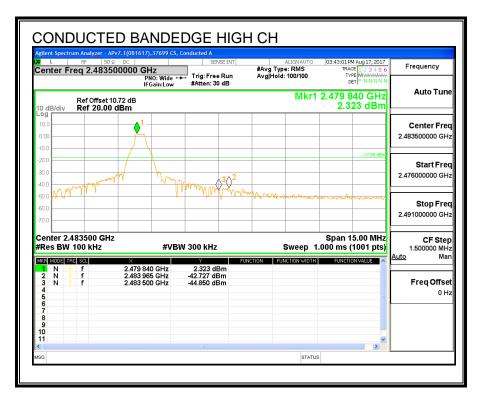
IC RSS-247 5.5

Limit = -20 dBc

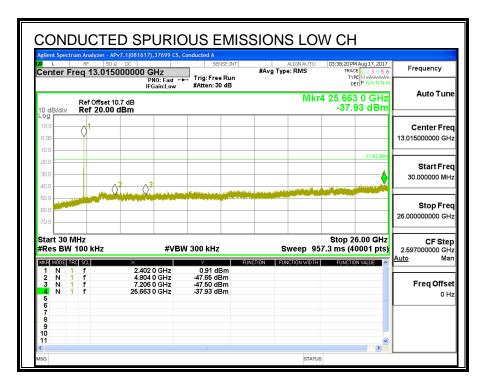

### TEST PROCEDURE

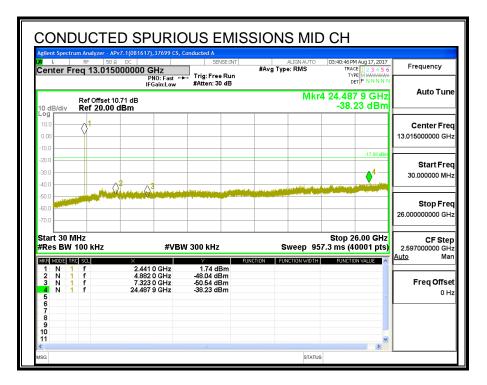
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

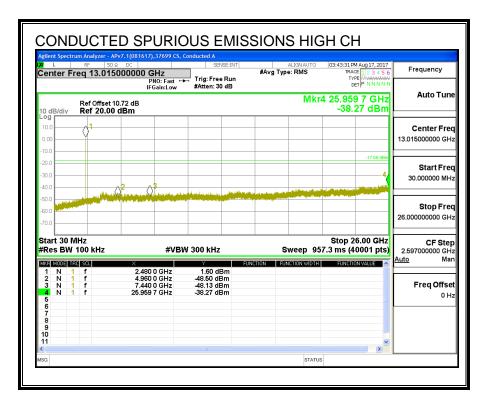

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

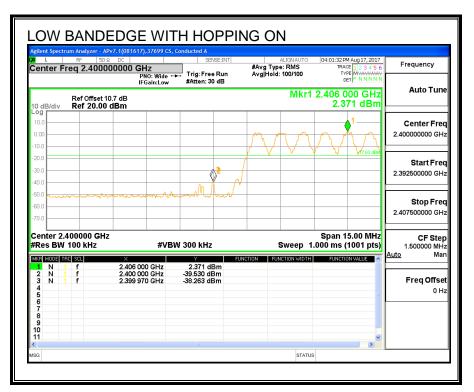
### **RESULTS**





Page 32 of 93







Page 33 of 93





Page 34 of 93





Page 35 of 93

| gilent Spectrum Analyzer - A<br>L RF 50<br>Center Freq 2.4835 | Ω DC 00000 GHz                 | SENSE:INT                | ALIGNAUTO<br>#Avg Type: RMS<br>Avg Hold: 100/100 | 04:02:28 PM Aug 17, 2017<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | Frequency              |
|---------------------------------------------------------------|--------------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------|
|                                                               | PNO: Wide<br>IFGain:Low        | #Atten: 30 dB            | -                                                | DETPNNNN                                                     | Auto Tune              |
| Ref Offset 1<br>0 dB/div Ref 20.00                            |                                |                          | Mkr1                                             | 2.479 015 GHz<br>2.266 dBm                                   | Auto Tune              |
| -og<br>10.0                                                   | 1                              |                          |                                                  |                                                              | Center Free            |
| 0.00 m m                                                      | Å                              |                          |                                                  |                                                              | 2.483500000 GH         |
| 10.0                                                          |                                |                          |                                                  | -17.73 dBm                                                   |                        |
| 20.0                                                          |                                |                          |                                                  |                                                              | Start Free             |
| 40.0                                                          |                                | 43 02                    | 2                                                |                                                              | 2.476000000 GH         |
| 50.0                                                          | · · ·                          | Amerikan Stranger        |                                                  | Martin and the second                                        | Stop Fred              |
| 50.0                                                          |                                |                          |                                                  |                                                              | 2.491000000 GH:        |
| 70.0                                                          |                                |                          |                                                  |                                                              |                        |
| enter 2.483500 GH<br>Res BW 100 kHz                           |                                | W 300 kHz                | Sweep 1                                          | Span 15.00 MHz<br>.000 ms (1001 pts)                         | CF Step<br>1.500000 MH |
| ikr mode trc scl                                              | ×                              |                          | UNCTION FUNCTION WIDTH                           | FUNCTION VALUE                                               | <u>Auto</u> Mai        |
| 1 N 1 f<br>2 N 1 f<br>3 N 1 f                                 | 2.479 015 GHz<br>2.484 385 GHz | 2.266 dBm<br>-45.864 dBm |                                                  |                                                              | Freq Offse             |
| 3 N 1 f<br>4 5                                                | 2.483 500 GHz                  | -50.995 dBm              |                                                  |                                                              | 0 H                    |
| 6                                                             |                                |                          |                                                  |                                                              |                        |
| 8                                                             |                                |                          |                                                  |                                                              |                        |
| 10<br> 1                                                      |                                |                          |                                                  |                                                              |                        |
|                                                               |                                |                          |                                                  | >                                                            |                        |

Page 36 of 93

# 7.3. ENHANCED DATA RATE DQPSK MODULATION

# 7.3.1. OUTPUT POWER

### <u>LIMITS</u>

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | Output<br>Power (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|-----------------------|----------------|----------------|
| Low     | 2402               | 5.71                  | 30             | -24.29         |
| Middle  | 2441               | 5.52                  | 30             | -24.48         |
| High    | 2480               | 5.34                  | 30             | -24.66         |

Page 37 of 93

# 7.3.2. AVERAGE POWER

#### LIMITS

None; for reporting purposes only.

### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | Average<br>Power (dBm) |
|---------|--------------------|------------------------|
| Low     | 2402               | 3.15                   |
| Middle  | 2441               | 2.96                   |
| High    | 2480               | 2.73                   |

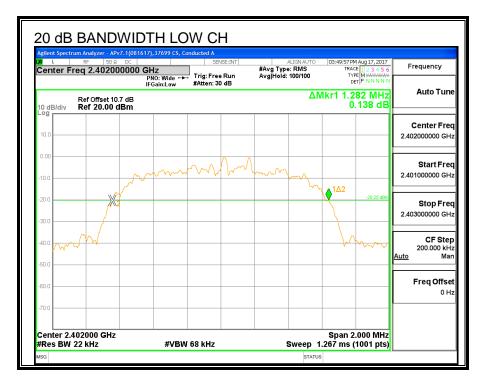
Page 38 of 93

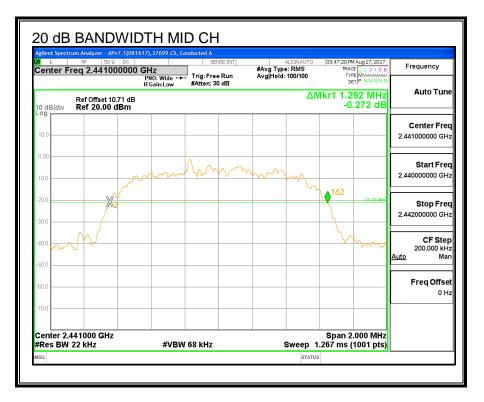
# 7.4. ENHANCED DATA RATE 8PSK MODULATION

# 7.4.1. 20 dB BANDWIDTH

#### LIMITS

None; for reporting purposes only.


### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | 20 dB<br>Bandwidth<br>(MHz) |  |
|---------|--------------------|-----------------------------|--|
| Low     | 2402               | 1.282                       |  |
| Middle  | 2441               | 1.292                       |  |
| High    | 2480               | 1.246                       |  |

Page 39 of 93





Page 40 of 93



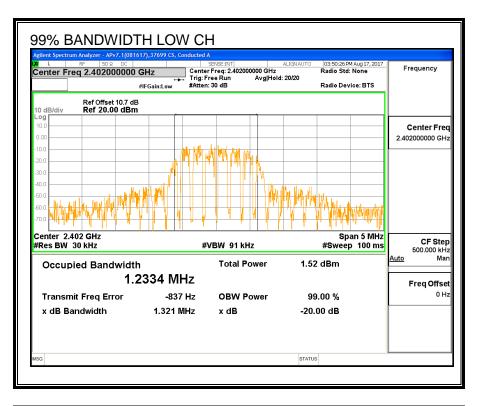
Page 41 of 93

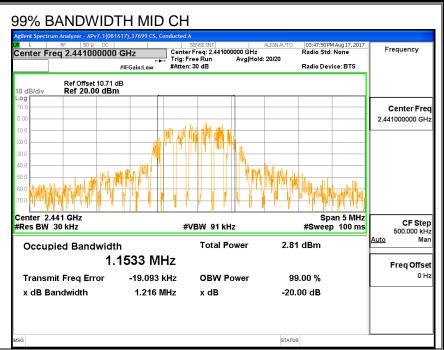
# 7.4.2. 99% BANDWIDTH

### **LIMITS**

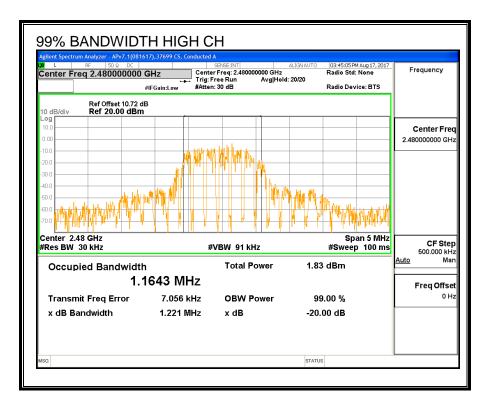
None; for reporting purposes only.

### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1%-5% the OBW. The VBW is set to  $\geq$  3 times RBW. The sweep time is coupled.


#### **RESULTS**

| Channel | Frequency<br>(MHz) | 99%<br>Bandwidth<br>(MHz) |  |
|---------|--------------------|---------------------------|--|
| Low     | 2402               | 1.2334                    |  |
| Middle  | 2441               | 1.1533                    |  |
| High    | 2480               | 1.1643                    |  |


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 42 of 93





Page 43 of 93



Page 44 of 93

# 7.4.3. HOPPING FREQUENCY SEPARATION

### LIMITS

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

#### **RESULTS**

| XÍ L      | trum Analyzer - APv<br>RF 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DC             |                           |                          | ISE:INT         |                        | ALIGN AUTO                |                 | 4 Aug 17, 2017                                 | Frequency                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|--------------------------|-----------------|------------------------|---------------------------|-----------------|------------------------------------------------|------------------------------------|
| Center    | req 2.44150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PN             | Z<br>O: Wide 😱<br>ain:Low | Trig: Free<br>#Atten: 30 | eRun<br>)dB     | #Avg Type<br>Avg Hold: |                           | TY              | 2E 1 2 3 4 5 6<br>PE MWWWWWW<br>ET P N N N N N | Frequency                          |
| 10 dB/div | Ref Offset 10.<br>Ref 20.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                           |                          |                 |                        | ΔN                        |                 | 00 MHz<br>.265 dB                              | Auto Tun                           |
| 10.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                           | // _                     |                 | 1Δ2                    |                           |                 |                                                | Center Fre<br>2.441500000 GH       |
| 0.00      | <u>Naling of the space of the spa</u> | M Welling Inc. | ~1~~1~~~1~)               | (62 Marther Yolger       | proved a former |                        | and and a contract of the | Creamprener (1) | polopersont.                                   | <b>Start Fre</b><br>2.439000000 GH |
| 30.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                           |                          |                 |                        |                           |                 |                                                | <b>Stop Fre</b><br>2.444000000 GH  |
| 40.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                           |                          |                 |                        |                           |                 |                                                | CF Ste<br>500.000 kH<br>Auto Ma    |
| 60.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                           |                          |                 |                        |                           |                 |                                                | Freq Offs                          |
| 70.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                           |                          |                 |                        |                           |                 |                                                |                                    |
|           | .441500 GHz<br>/ 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | #\/B\M                    | 910 kHz                  |                 |                        | Sween 3                   |                 | .000 MHz<br>1001 pts)                          |                                    |

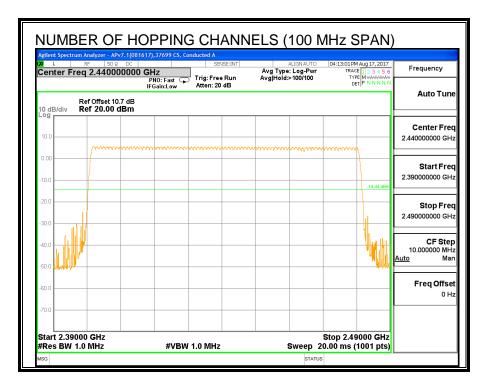
Page 45 of 93

# 7.4.4. NUMBER OF HOPPING CHANNELS

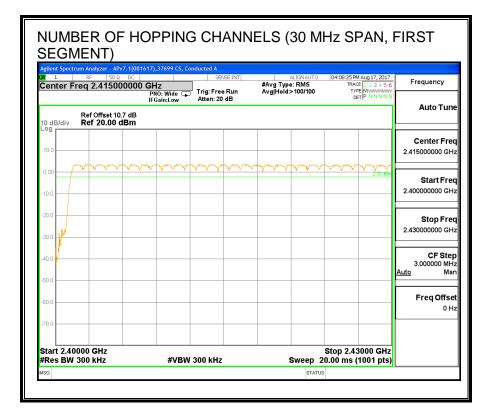
### <u>LIMITS</u>

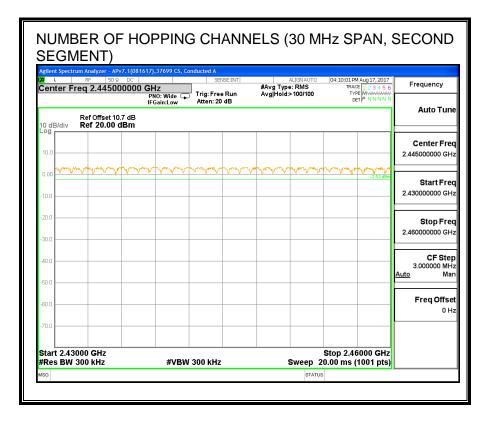
FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (d)

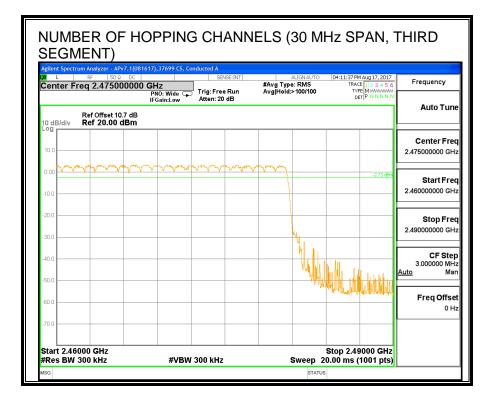

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

#### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


#### RESULTS

Normal Mode: 79 Channels observed.




Page 46 of 93





Page 47 of 93



Page 48 of 93

# 7.4.5. AVERAGE TIME OF OCCUPANCY

### <u>LIMITS</u>

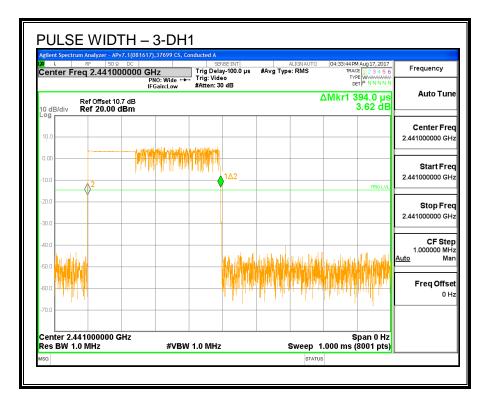
FCC §15.247 (a) (1) (iii)

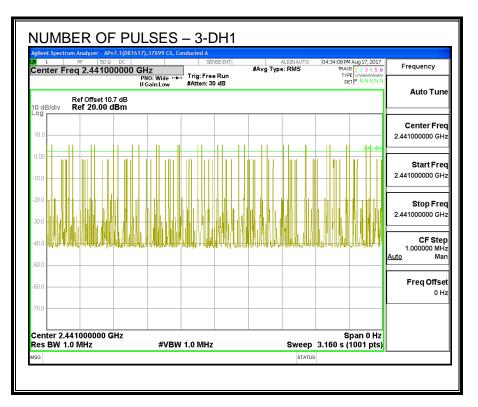
IC RSS-247 (5.1) (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

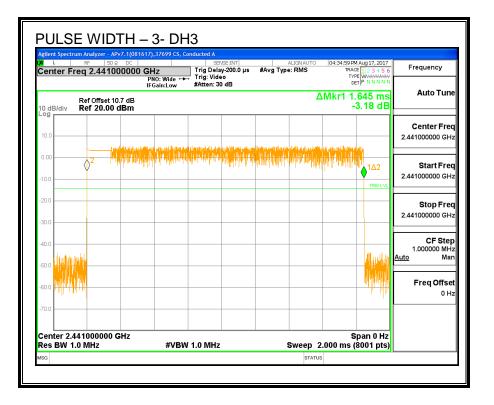
#### TEST PROCEDURE

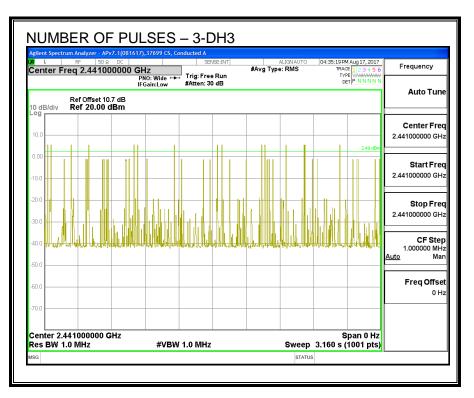
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.


For AFH mode, the average time of occupancy in the specified 8 second period (20 channels \* 0.4 seconds) is equal to 10 \* (# of pulses in 0.8 s) \* pulse width.

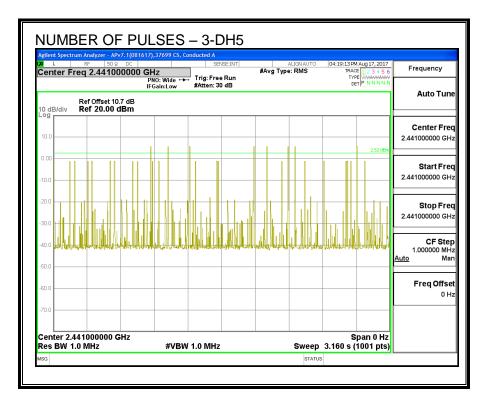
| DH Packet     | Pulse<br>Width<br>(msec) | Number of<br>Pulses in<br>3.16<br>seconds | OF OCCUPANC<br>Average Time<br>of Occupancy<br>(sec) | Limit<br>(sec) | Margin<br>(sec) |  |  |
|---------------|--------------------------|-------------------------------------------|------------------------------------------------------|----------------|-----------------|--|--|
| 8PSK Norma    | l Mode                   |                                           |                                                      |                |                 |  |  |
| 3-DH1         | 0.394                    | 32                                        | 0.1261                                               | 0.4            | -0.2739         |  |  |
| 3-DH3         | 1.644                    | 15                                        | 0.2466                                               | 0.4            | -0.1534         |  |  |
| 3-DH5         | 0.399                    | 8                                         | 0.0319                                               | 0.4            | -0.3681         |  |  |
|               |                          |                                           |                                                      |                |                 |  |  |
| DH Packet     | Pulse<br>Width<br>(sec)  | Number of<br>Pulses in<br>0.8<br>seconds  | Average Time<br>of Occupancy<br>(sec)                | Limit<br>(sec) | Margin<br>(sec) |  |  |
| 8PSK AFH Mode |                          |                                           |                                                      |                |                 |  |  |
| 3-DH1         | 0.394                    | 8                                         | 0.03152                                              | 0.4            | -0.3685         |  |  |
| 3-DH3         | 1.644                    | 3.75                                      | 0.06165                                              | 0.4            | -0.3384         |  |  |
|               |                          |                                           | 0.00798                                              | 0.4            | -0.3920         |  |  |


### **RESULTS**


Page 49 of 93






Page 50 of 93





Page 51 of 93

| Agilent Spectrum          | RF 50 Ω                     |    | 5707703, 00           | SEI     | vse:INT  | #Avg Type                              | ALIGN AUTO        | TRA        | M Aug 17, 2017<br>CE 1 2 3 4 5 6 | Frequency                                  |
|---------------------------|-----------------------------|----|-----------------------|---------|----------|----------------------------------------|-------------------|------------|----------------------------------|--------------------------------------------|
|                           |                             |    | O: Wide 🔸<br>Jain:Low |         | 0        |                                        |                   | T\<br>C    | PE WWWWWWWWW                     |                                            |
| 10 dB/div                 | ef Offset 10.<br>ef 20.00 d |    |                       |         |          |                                        |                   |            | 399.5 μs<br>.18 dBm              | Auto Tune                                  |
| 10.0                      |                             |    |                       |         |          |                                        |                   |            |                                  | Center Fred                                |
|                           | 2-                          |    |                       |         |          | allan ay addings<br>And an addingstate | na selfano las de | Pol .      |                                  | 2.441000000 GH:                            |
| -10.0                     | •                           |    |                       |         |          |                                        | L C. And D. D. D. | 1Δ2        | TRIG LVL                         | Start Fred<br>2.441000000 GH:              |
| -20.0                     |                             |    |                       |         |          |                                        |                   |            |                                  | Stop Fred<br>2.441000000 GH;               |
| -40.0                     |                             |    |                       |         |          |                                        |                   | HUMAN      | n de la politika.                | CF Step<br>1.000000 MH;<br><u>Auto</u> Mar |
| -60.0                     | l                           |    |                       |         |          |                                        |                   | lin hyddir | Atopha dalah                     | Freq Offse<br>0 H:                         |
| -70.0                     |                             |    |                       |         |          |                                        |                   |            |                                  |                                            |
| Center 2.44<br>Res BW 1.0 |                             | Hz | #VBW                  | 1.0 MHz | <u> </u> |                                        | Sweep 4.          |            | Span 0 Hz<br>(8001 pts)          |                                            |



Page 52 of 93

# 7.4.6. OUTPUT POWER

## LIMITS

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

#### **RESULTS**

| TEST<br>ENGINEER: | 37699 | Date: | 08/11/17 |
|-------------------|-------|-------|----------|
|-------------------|-------|-------|----------|

| Channel | Frequency<br>(MHz) | Output<br>Power (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|-----------------------|----------------|----------------|
| Low     | 2402               | 5.99                  | 30             | -24.01         |
| Middle  | 2441               | 5.84                  | 30             | -24.16         |
| High    | 2480               | 5.62                  | 30             | -24.38         |

# 7.4.7. AVERAGE POWER

### LIMITS

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power.

### **RESULTS**

| TEST<br>ENGINEER: | 37699 | Date: | 08/11/17 |
|-------------------|-------|-------|----------|
|-------------------|-------|-------|----------|

| Channel | Frequency<br>(MHz) | Average<br>Power (dBm) |
|---------|--------------------|------------------------|
| Low     | 2402               | 3.15                   |
| Middle  | 2441               | 2.96                   |
| High    | 2480               | 2.73                   |

Page 54 of 93

# 7.4.8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

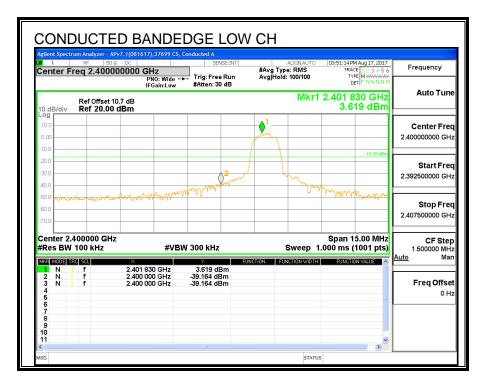
#### **LIMITS**

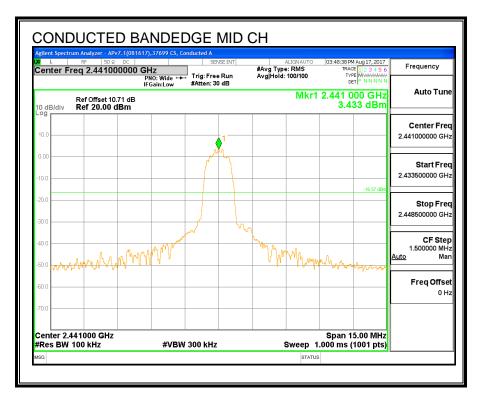
FCC §15.247 (d)

IC RSS-247 5.5

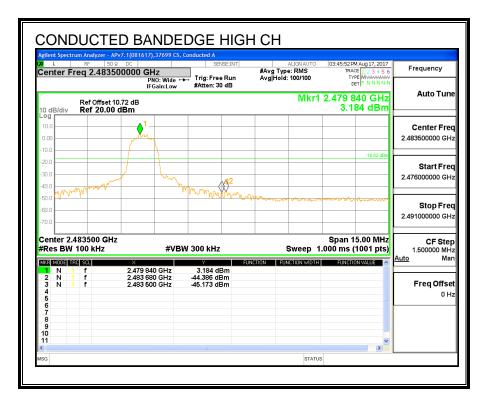
Limit = -20 dBc

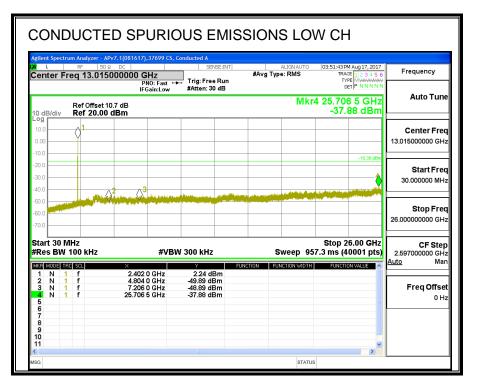
### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

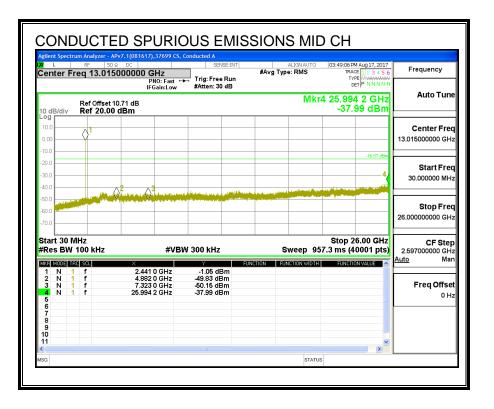

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

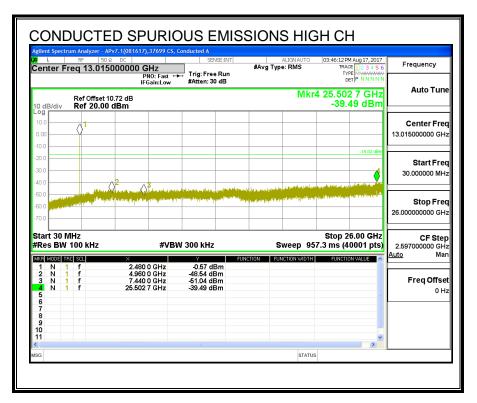
The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.


### <u>RESULTS</u>

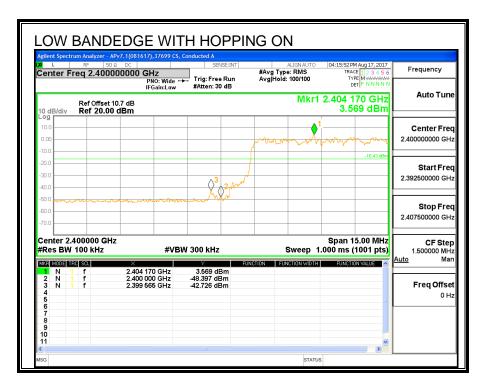

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

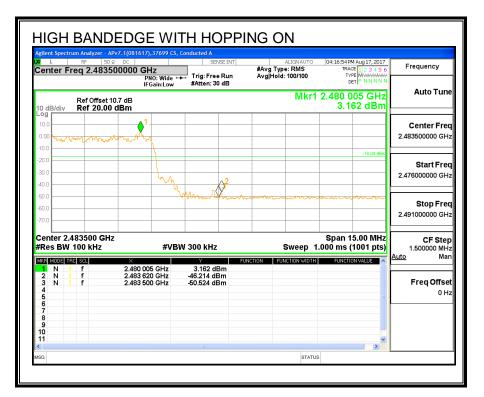






Page 56 of 93







Page 57 of 93





Page 58 of 93





Page 59 of 93

# 8. RADIATED TEST RESULTS

# 8.1. LIMITS AND PROCEDURE

### <u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 0.009-0.490              | 2400/F(kHz) @ 300 m                   | -                                       |
| 0.490-1.705              | 24000/F(kHz) @ 30 m                   | -                                       |
| 1.705 - 30               | 30 @ 30m                              | -                                       |
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

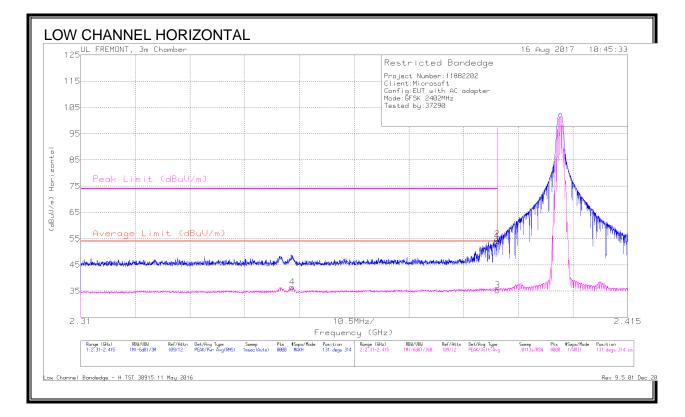
### TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T (360 Hz) video bandwidth with peak detector for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

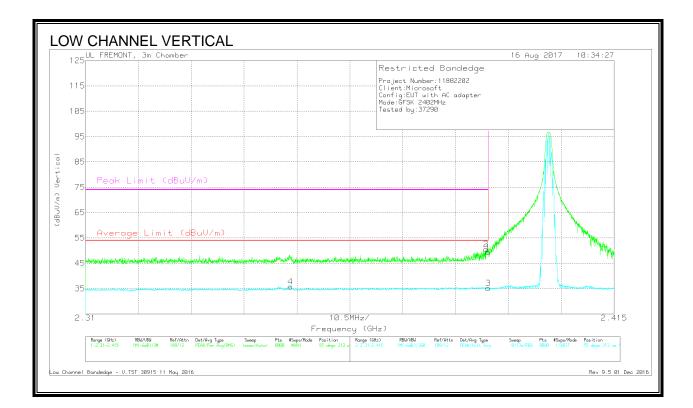

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 60 of 93

#### **RESULTS**

# 8.2. BASIC DATA RATE GFSK MODULATION

# 8.2.1. RESTRICTED BANDEDGE (LOW CHANNEL)



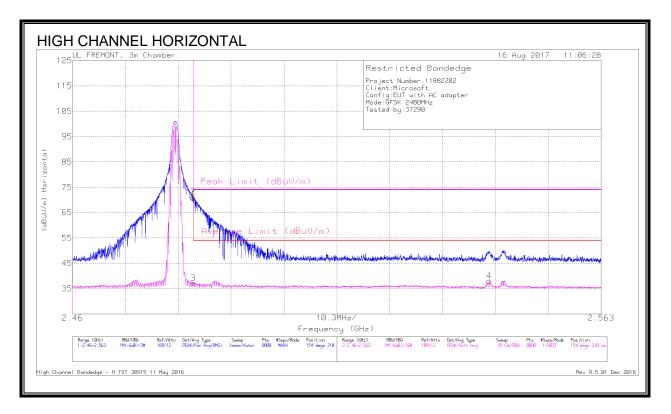

#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T712 (dB/m) | Amp/Cbl/Fltr/Pad | Corrected | Average Limit | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|----------------|------------------|-----------|---------------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      |                | (dB)             | Reading   | (dBuV/m)      | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |                |                  | (dBuV/m)  |               |        |            |           |         |        |          |
| 4      | 2.351     | 27.23   | VA1T | 31.9           | -22.6            | 36.53     | 54            | -17.47 | -          | -         | 131     | 314    | н        |
| 1      | 2.39      | 44.72   | Pk   | 31.9           | -22.6            | 54.02     | -             | -      | 74         | -19.98    | 131     | 314    | н        |
| 2      | 2.39      | 45.41   | Pk   | 31.9           | -22.6            | 54.71     | -             | -      | 74         | -19.29    | 131     | 314    | н        |
| 3      | 2.39      | 25.98   | VA1T | 31.9           | -22.6            | 35.28     | 54            | -18.72 | -          | -         | 131     | 314    | Н        |

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration




### Trace Markers

| Marker | Frequency | Meter   | Det  | AF T712 (dB/m) | Amp/Cbl/Fltr/Pa | Corrected | Average Limit | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|----------------|-----------------|-----------|---------------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      |                | d (dB)          | Reading   | (dBuV/m)      | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |                |                 | (dBuV/m)  |               |        |            |           |         |        |          |
| 4      | 2.351     | 26.45   | VA1T | 31.9           | -22.6           | 35.75     | 54            | -18.25 | -          | -         | 55      | 313    | V        |
| 1      | 2.39      | 39.99   | Pk   | 31.9           | -22.6           | 49.29     | -             | -      | 74         | -24.71    | 55      | 313    | V        |
| 2      | 2.39      | 41.1    | Pk   | 31.9           | -22.5           | 50.5      | -             | -      | 74         | -23.5     | 55      | 313    | V        |
| 3      | 2.39      | 25.9    | VA1T | 31.9           | -22.6           | 35.2      | 54            | -18.8  | -          | -         | 55      | 313    | V        |

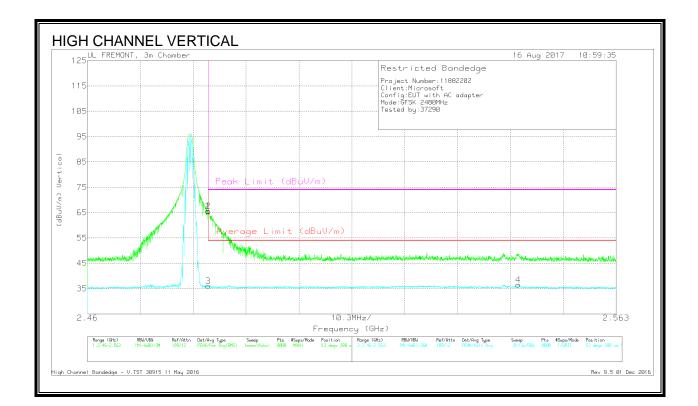
Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 62 of 93



# 8.2.2. AUTHORIZED BANDEDGE (HIGH CHANNEL)


# Trace Markers

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T712 (dB/m) | Amp/Cbl/Fitr/Pa<br>d (dB) | Corrected<br>Reading<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|---------------------------|----------------------------------|---------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | 2.484              | 60.98                      | Pk   | 32.4           | -22.7                     | 70.68                            | -                         | -              | 74                     | -3.32             | 154               | 310            | н        |
| 2      | 2.484              | 61.45                      | Pk   | 32.4           | -22.7                     | 71.15                            | -                         | -              | 74                     | -2.85             | 154               | 310            | н        |
| 3      | 2.484              | 27.49                      | VA1T | 32.4           | -22.7                     | 37.19                            | 54                        | -16.81         | -                      | -                 | 154               | 310            | н        |
| 4      | 2.541              | 28.23                      | VA1T | 32.4           | -22.5                     | 38.13                            | 54                        | -15.87         | -                      | -                 | 154               | 310            | н        |

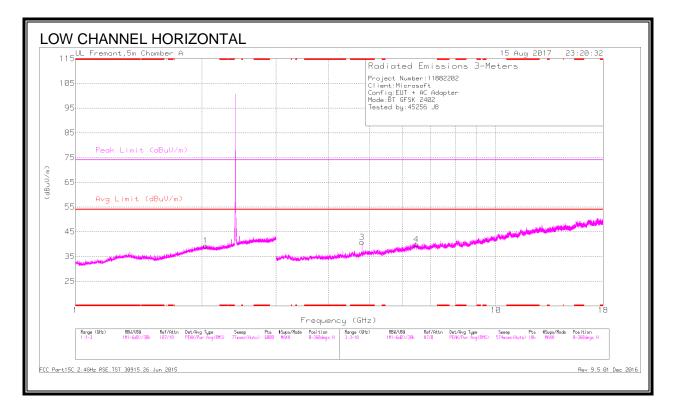
Pk - Peak detector

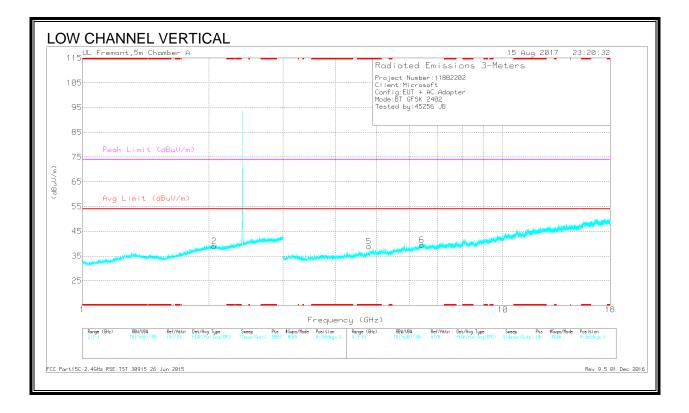
VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 63 of 93



## **Trace Markers**


| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T712 (dB/m) | Amp/Cbi/Fitr/Pa<br>d (dB) | Corrected<br>Reading<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|---------------------------|----------------------------------|---------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | 2.484              | 55.76                      | Pk   | 32.4           | -22.7                     | 65.46                            | -                         | -              | 74                     | -8.54             | 53                | 390            | V        |
| 2      | 2.484              | 55.89                      | Pk   | 32.4           | -22.7                     | 65.59                            | -                         | -              | 74                     | -8.41             | 53                | 390            | V        |
| 3      | 2.484              | 26.26                      | VA1T | 32.4           | -22.7                     | 35.96                            | 54                        | -18.04         | -                      | -                 | 53                | 390            | V        |
| 4      | 2.544              | 26.65                      | VA1T | 32.4           | -22.5                     | 36.55                            | 54                        | -17.45         | -                      | -                 | 53                | 390            | V        |


Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 64 of 93



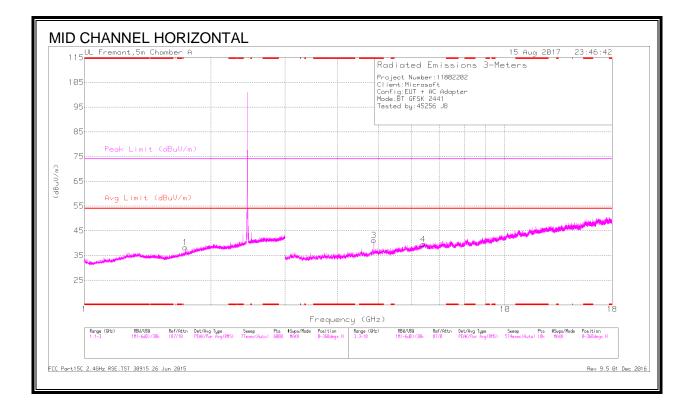


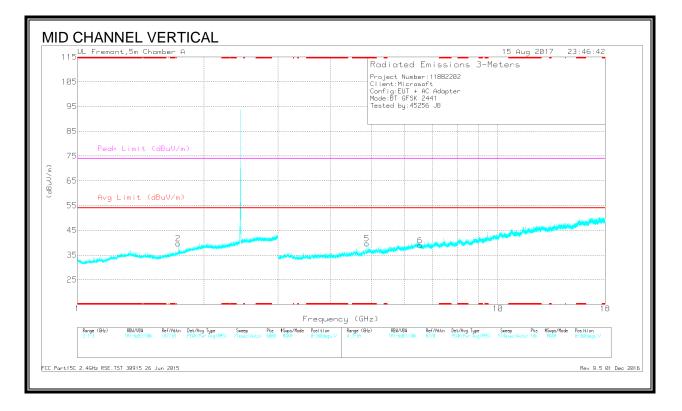


Page 65 of 93

#### **Radiated Emissions**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/P<br>ad (dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|---------------------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 3      | * 4.804            | 38.23                      | PKFH | 34.2           | -27.7                     | 44.73                            | -                     | -              | 74                     | -29.27            | 252               | 219            | н        |
|        | * 4.804            | 30.85                      | VA1T | 34.2           | -27.7                     | 37.35                            | 54                    | -16.65         | -                      | -                 | 252               | 219            | н        |
| 5      | * 4.804            | 38.17                      | PKFH | 34.2           | -27.7                     | 44.67                            | -                     | -              | 74                     | -29.33            | 121               | 243            | V        |
|        | * 4.804            | 29.84                      | VA1T | 34.2           | -27.7                     | 36.34                            | 54                    | -17.66         | -                      | -                 | 121               | 243            | V        |
| 1      | 2.042              | 30.94                      | PKFH | 31.4           | -23                       | 39.34                            | -                     | -              | -                      | -                 | 0                 | 199            | н        |
| 2      | 2.06               | 30.75                      | PKFH | 31.3           | -23.1                     | 38.95                            | -                     | -              | -                      | -                 | 0                 | 101            | V        |
| 6      | 6.413              | 28.4                       | PKFH | 35.8           | -24.7                     | 39.5                             | -                     | -              | -                      | -                 | 0                 | 200            | V        |
| 4      | 6.465              | 28.09                      | PKFH | 35.7           | -23.9                     | 39.89                            | -                     | -              | -                      | -                 | 0                 | 199            | Н        |


\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 66 of 93

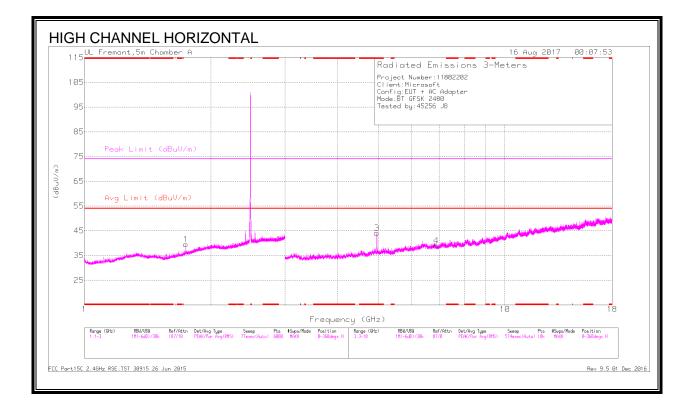


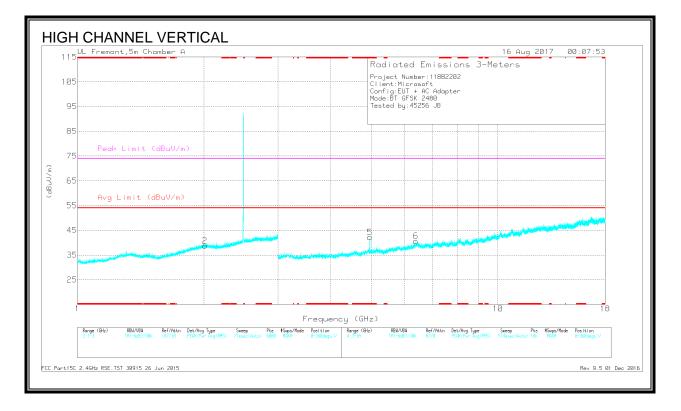


Page 67 of 93

#### **Radiated Emissions**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/P<br>ad (dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|---------------------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 3      | * 4.882            | 39.59                      | PKFH | 34.1           | -27.3                     | 46.39                            | -                     | -              | 74                     | -27.61            | 135               | 176            | н        |
|        | * 4.882            | 33.1                       | VA1T | 34.1           | -27.3                     | 39.9                             | 54                    | -14.1          | -                      | -                 | 135               | 176            | н        |
| 5      | * 4.882            | 38.04                      | PKFH | 34.1           | -27.3                     | 44.84                            | -                     | -              | 74                     | -29.16            | 127               | 214            | V        |
|        | * 4.882            | 30.82                      | VA1T | 34.1           | -27.3                     | 37.62                            | 54                    | -16.38         | -                      | -                 | 127               | 214            | V        |
| 1      | 1.737              | 31.99                      | PKFH | 29.6           | -23.3                     | 38.29                            | -                     | -              | -                      | -                 | 0                 | 199            | н        |
| 2      | 1.737              | 33.38                      | PKFH | 29.6           | -23.3                     | 39.68                            | -                     | -              | -                      | -                 | 0                 | 200            | V        |
| 4      | 6.395              | 28.26                      | PKFH | 35.8           | -24.5                     | 39.56                            | -                     | -              | -                      | -                 | 0                 | 199            | Н        |
| 6      | 6.541              | 27.78                      | PKFH | 35.7           | -24.6                     | 38.88                            | -                     | -              | -                      | -                 | 0                 | 101            | V        |


\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 68 of 93



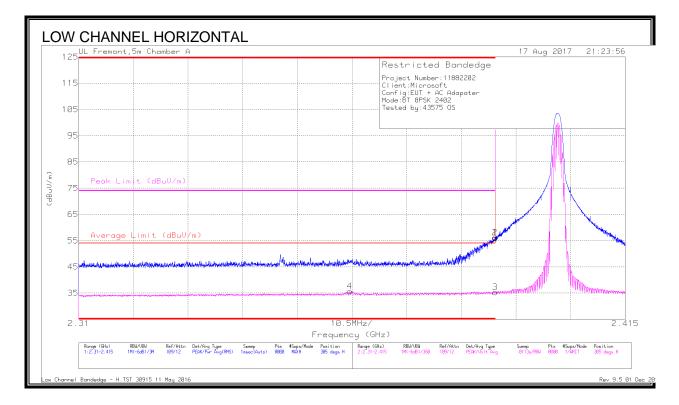


Page 69 of 93

#### Radiated Emissions

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/P<br>ad (dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|---------------------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 3      | * 4.96             | 42.09                      | PKFH | 34.2           | -27.9                     | 48.39                            | -                     | -              | 74                     | -25.61            | 249               | 131            | Н        |
|        | * 4.96             | 37.62                      | VA1T | 34.2           | -27.9                     | 43.92                            | 54                    | -10.08         | -                      | -                 | 249               | 131            | Н        |
| 5      | * 4.96             | 40.34                      | PKFH | 34.2           | -27.9                     | 46.64                            | -                     | -              | 74                     | -27.36            | 117               | 210            | V        |
|        | * 4.96             | 34.49                      | VA1T | 34.2           | -27.9                     | 40.79                            | 54                    | -13.21         | -                      | -                 | 117               | 210            | V        |
| 1      | 1.742              | 33.22                      | PKFH | 29.6           | -23.3                     | 39.52                            | -                     | -              | -                      | -                 | 0                 | 199            | Н        |
| 2      | 2.011              | 30.5                       | PKFH | 31.4           | -23.1                     | 38.8                             | -                     | -              | -                      | -                 | 0                 | 200            | V        |
| 6      | 6.381              | 29.57                      | PKFH | 35.8           | -24.7                     | 40.67                            | -                     | -              | -                      | -                 | 0                 | 101            | V        |
| 4      | 6.868              | 27.46                      | PKFH | 35.6           | -24.1                     | 38.96                            | -                     | -              | -                      | -                 | 0                 | 101            | Н        |

\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band


PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

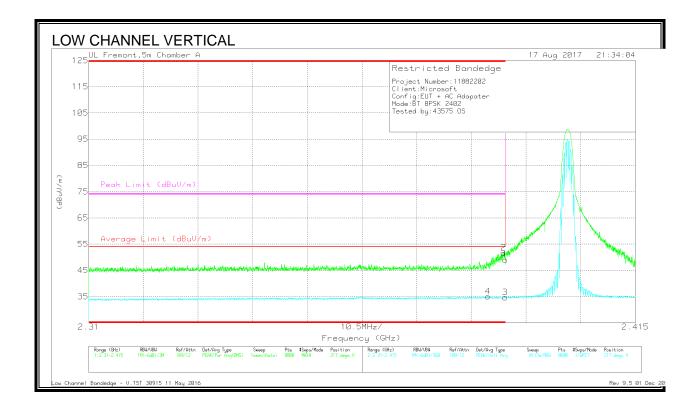
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 70 of 93

# 8.3. ENHANCED DATA RATE 8PSK MODULATION



# 8.3.1. RESTRICTED BANDEDGE (LOW CHANNEL)


## Trace Markers

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|--------------------------|----------------------------------|---------------------------|----------------|------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.39             | 47.45                      | Pk   | 31.8           | -23.2                    | 56.05                            | -                         | -              | 74                     | -17.95               | 305               | 269            | Н        |
| 2      | * 2.39             | 47.55                      | Pk   | 31.8           | -23.2                    | 56.15                            | -                         | -              | 74                     | -17.85               | 305               | 269            | Н        |
| 3      | * 2.39             | 26.7                       | VA1T | 31.8           | -23.2                    | 35.3                             | 54                        | -18.7          | -                      | -                    | 305               | 269            | Н        |
| 4      | * 2.362            | 27.22                      | VA1T | 31.6           | -23.2                    | 35.62                            | 54                        | -18.38         | -                      | -                    | 305               | 269            | Н        |

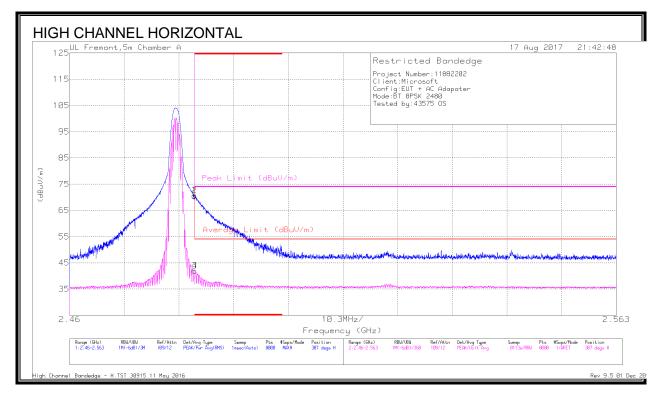
\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration



#### Trace Markers


| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|--------------------------|----------------------------------|---------------------------|----------------|------------------------|----------------------|-------------------|----------------|----------|
| 4      | * 2.387            | 26.47                      | VA1T | 31.8           | -23.2                    | 35.07                            | 54                        | -18.93         | -                      | -                    | 217               | 270            | V        |
| 1      | * 2.39             | 40.43                      | Pk   | 31.8           | -23.2                    | 49.03                            | -                         | -              | 74                     | -24.97               | 217               | 270            | V        |
| 2      | * 2.39             | 43.01                      | Pk   | 31.8           | -23.2                    | 51.61                            | -                         | -              | 74                     | -22.39               | 217               | 270            | V        |
| 3      | * 2.39             | 26.09                      | VA1T | 31.8           | -23.2                    | 34.69                            | 54                        | -19.31         | -                      | -                    | 217               | 270            | V        |

\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

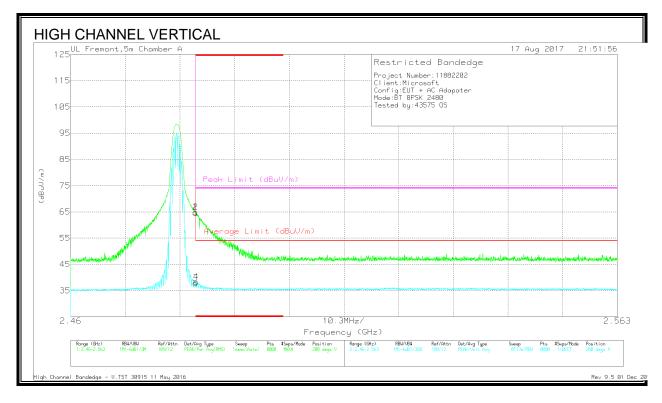
VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 72 of 93



# 8.3.2. AUTHORIZED BANDEDGE (HIGH CHANNEL)

## Trace Markers


| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|--------------------------|----------------------------------|---------------------------|----------------|------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 61.37                      | Pk   | 32.3           | -23.1                    | 70.57                            | -                         | -              | 74                     | -3.43                | 307               | 274            | н        |
| 2      | * 2.484            | 61.46                      | Pk   | 32.3           | -23.1                    | 70.66                            | -                         | -              | 74                     | -3.34                | 307               | 274            | Н        |
| 3      | * 2.484            | 32.72                      | VA1T | 32.3           | -23.1                    | 41.92                            | 54                        | -12.08         | -                      | -                    | 307               | 274            | Н        |
| 4      | * 2.484            | 32.77                      | VA1T | 32.3           | -23.1                    | 41.97                            | 54                        | -12.03         | -                      | -                    | 307               | 274            | Н        |

\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

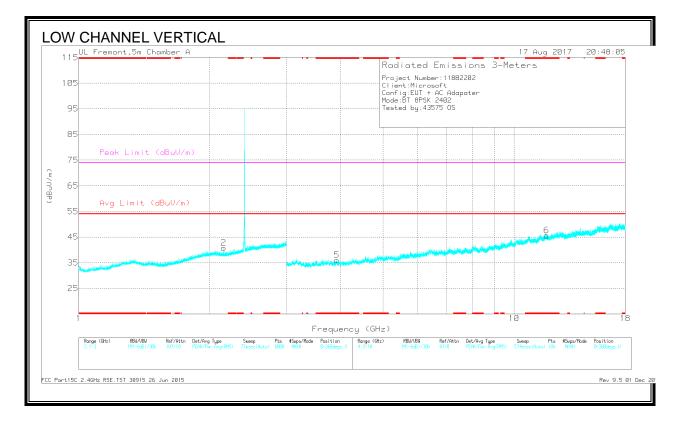
VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 73 of 93



Trace Markers

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|--------------------------|----------------------------------|---------------------------|----------------|------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 55.48                      | Pk   | 32.3           | -23.1                    | 64.68                            | -                         | -              | 74                     | -9.32                | 200               | 278            | V        |
| 2      | * 2.484            | 55.59                      | Pk   | 32.3           | -23.1                    | 64.79                            | -                         | -              | 74                     | -9.21                | 200               | 278            | V        |
| 3      | * 2.484            | 28.61                      | VA1T | 32.3           | -23.1                    | 37.81                            | 54                        | -16.19         | -                      | -                    | 200               | 278            | V        |
| 4      | * 2.484            | 29.02                      | VA1T | 32.3           | -23.1                    | 38.22                            | 54                        | -15.78         | -                      | -                    | 200               | 278            | V        |


\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

## 8.3.3. HARMONICS AND SPURIOUS EMISSIONS

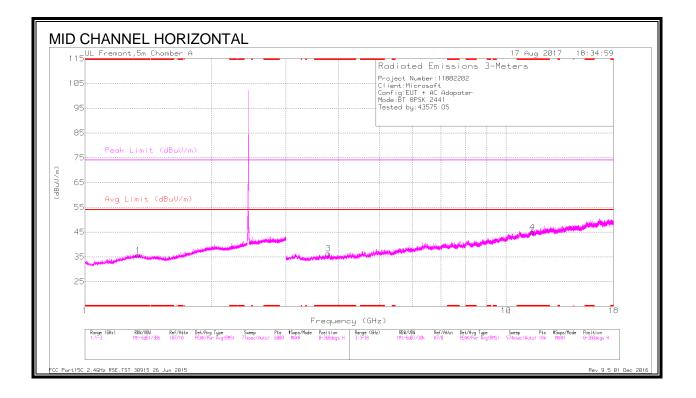


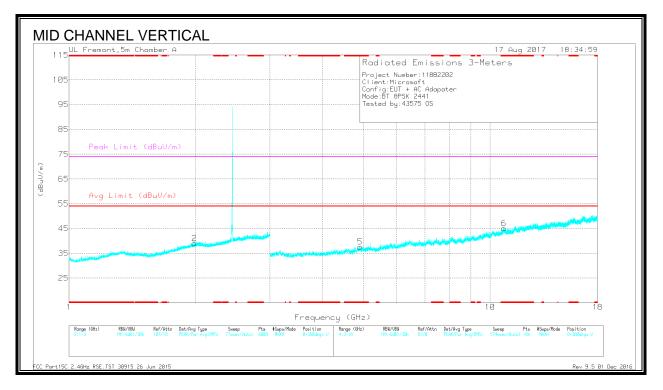


#### Page 75 of 93

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 FAX: (510) 661-0888

### **Radiated Emissions**


| Marker | Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|------------------|------|----------------|--------------------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|        | (GHZ)              | (dBuV)           |      |                | (ub)                     | (dBuV/m)             | (ubuv/iii)            | (ub)           | (ubuv/iii)             | (ub)              | (Degs)            | (ciii)         |          |
| 1      | * 1.237            | 33.8             | PKFH | 28.9           | -23.7                    | 39                   | -                     | -              | 74                     | -35               | 261               | 152            | Н        |
|        | * 1.237            | 23.32            | VA1T | 28.9           | -23.7                    | 28.52                | 54                    | -25.48         | -                      | -                 | 261               | 152            | Н        |
| 3      | * 4.249            | 36.57            | PKFH | 33.5           | -28.3                    | 41.77                | -                     | -              | 74                     | -32.23            | 231               | 124            | Н        |
|        | * 4.248            | 24.99            | VA1T | 33.5           | -28.3                    | 30.19                | 54                    | -23.81         | -                      | -                 | 231               | 124            | н        |
| 4      | * 11.432           | 30.51            | PKFH | 38.2           | -18.9                    | 49.81                | -                     | -              | 74                     | -24.19            | 5                 | 362            | н        |
|        | * 11.431           | 19.58            | VA1T | 38.2           | -18.9                    | 38.88                | 54                    | -15.12         | -                      | -                 | 5                 | 362            | н        |
| 5      | * 3.916            | 36.03            | PKFH | 33.2           | -29.2                    | 40.03                | -                     | -              | 74                     | -33.97            | 301               | 256            | V        |
|        | * 3.917            | 25.65            | VA1T | 33.2           | -29.2                    | 29.65                | 54                    | -24.35         | -                      | -                 | 301               | 256            | V        |
| 6      | * 11.87            | 30.79            | PKFH | 38.8           | -19                      | 50.59                | -                     | -              | 74                     | -23.41            | 316               | 227            | V        |
|        | * 11.868           | 19.58            | VA1T | 38.8           | -19                      | 39.38                | 54                    | -14.62         | -                      | -                 | 316               | 227            | V        |
| 2      | 2.155              | 35.93            | PKFH | 31.1           | -23.4                    | 43.63                | -                     | -              | -                      | -                 | 101               | 237            | V        |


\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

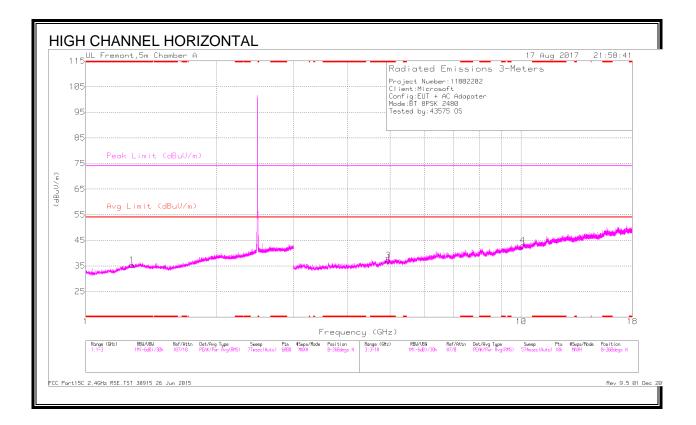
Page 76 of 93

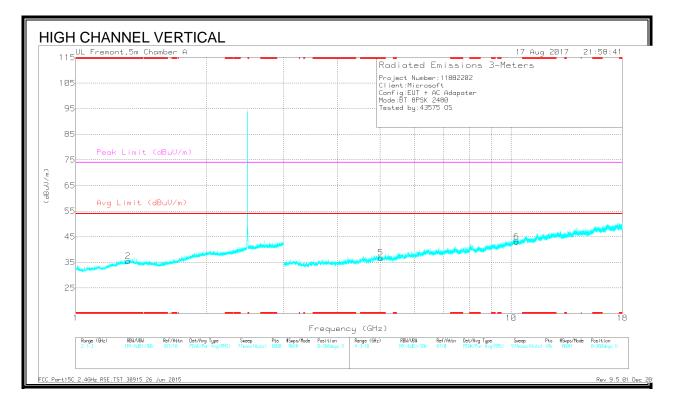




Page 77 of 93

#### **Radiated Emissions**


| Marker | Frequency | Meter   | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/P | Corrected | Avg Limit | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|----------------|----------------|-----------|-----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      |                | ad (dB)        | Reading   | (dBuV/m)  | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   | 1        |
|        |           | (dBuV)  |      |                |                | (dBuV/m)  |           |        |            |           |         |        | I        |
| 1      | * 1.336   | 35.18   | PKFH | 29.5           | -23.5          | 41.18     | -         | -      | 74         | -32.82    | 45      | 287    | н        |
|        | * 1.337   | 23.31   | VA1T | 29.5           | -23.5          | 29.31     | 54        | -24.69 | -          | -         | 45      | 287    | Н        |
| 3      | * 3.783   | 36.84   | PKFH | 33.2           | -29.5          | 40.54     | -         | -      | 74         | -33.46    | 248     | 319    | Н        |
|        | * 3.782   | 25.65   | VA1T | 33.2           | -29.6          | 29.25     | 54        | -24.75 | -          | -         | 248     | 319    | Н        |
| 4      | * 11.553  | 31.09   | PKFH | 38.4           | -19.2          | 50.29     | -         | -      | 74         | -23.71    | 311     | 271    | н        |
|        | * 11.553  | 19.73   | VA1T | 38.4           | -19.2          | 38.93     | 54        | -15.07 | -          | -         | 311     | 271    | Н        |
| 5      | * 4.913   | 35.23   | PKFH | 34.1           | -26.9          | 42.43     | -         | -      | 74         | -31.57    | 169     | 114    | V        |
|        | * 4.912   | 24.25   | VA1T | 34.1           | -26.9          | 31.45     | 54        | -22.55 | -          | -         | 169     | 114    | V        |
| 6      | * 10.783  | 31.26   | PKFH | 37.8           | -18.7          | 50.36     | -         | -      | 74         | -23.64    | 102     | 104    | V        |
|        | * 10.783  | 19.69   | VA1T | 37.8           | -18.7          | 38.79     | 54        | -15.21 | -          | -         | 102     | 104    | V        |
| 2      | 1.985     | 34.72   | PKFH | 31.4           | -23            | 43.12     | -         | -      | -          | -         | 48      | 166    | V        |


\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 78 of 93

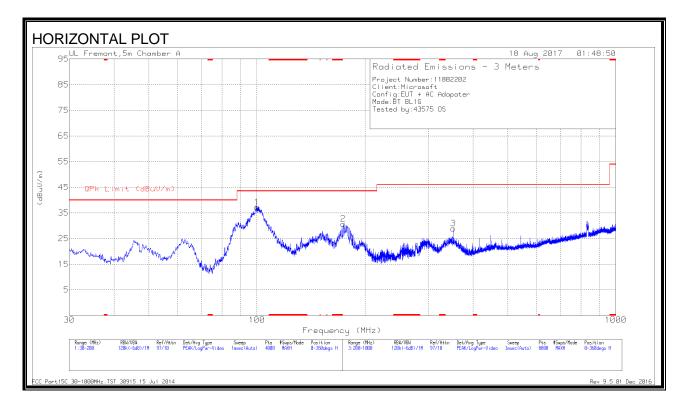




Page 79 of 93

### **Radiated Emissions**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T862 (dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|----------------|--------------------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 1.277            | 34.02                      | PKFH | 29.3           | -23.5                    | 39.82                            | -                     | -              | 74                     | -34.18            | 320               | 180            | Н        |
|        | * 1.274            | 23.18                      | VA1T | 29.3           | -23.5                    | 28.98                            | 54                    | -25.02         | -                      | -                 | 320               | 180            | Н        |
| 2      | * 1.319            | 34.3                       | PKFH | 29.5           | -23.6                    | 40.2                             | -                     | -              | 74                     | -33.8             | 165               | 226            | V        |
|        | * 1.319            | 23.31                      | VA1T | 29.5           | -23.6                    | 29.21                            | 54                    | -24.79         | -                      | -                 | 165               | 226            | V        |
| 3      | * 4.95             | 37.15                      | PKFH | 34.2           | -27.9                    | 43.45                            | -                     | -              | 74                     | -30.55            | 213               | 383            | Н        |
|        | * 4.949            | 25.04                      | VA1T | 34.2           | -27.8                    | 31.44                            | 54                    | -22.56         | -                      | -                 | 213               | 383            | Н        |
| 5      | * 5.017            | 35.25                      | PKFH | 34.3           | -28.4                    | 41.15                            | -                     | -              | 74                     | -32.85            | 325               | 234            | V        |
|        | * 5.019            | 24.61                      | VA1T | 34.3           | -28.3                    | 30.61                            | 54                    | -23.39         | -                      | -                 | 325               | 234            | V        |
| 4      | 10.087             | 30.71                      | PKFH | 37.4           | -20.5                    | 47.61                            | -                     | -              | -                      | -                 | 324               | 119            | Н        |
| 6      | 10.294             | 31.55                      | PKFH | 37.5           | -20.5                    | 48.55                            | -                     | -              | -                      | -                 | 272               | 118            | V        |


\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 80 of 93

# 8.4. WORST-CASE BELOW 1 GHz

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)



Page 81 of 93



## <u>DATA</u>

#### **Trace Markers**

| Marker | Frequency | Meter   | Det | AF T130 (dB/m) | Amp/Cbl (dB/m) | Corrected | QPk Limit (dBuV/m) | Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|----------------|-----------|--------------------|--------|---------|--------|----------|
|        | (MHz)     | Reading |     |                |                | Reading   |                    | (dB)   | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |                | (dBuV/m)  |                    |        |         |        |          |
| 4      | 45.8566   | 43.74   | Pk  | 13.6           | -31            | 26.34     | 40                 | -13.66 | 0-360   | 100    | V        |
| 1      | 99.9306   | 53.61   | Pk  | 14.2           | -30.6          | 37.21     | 43.52              | -6.31  | 0-360   | 200    | Н        |
| 5      | 102.0561  | 52.82   | Pk  | 14.7           | -30.5          | 37.02     | 43.52              | -6.5   | 0-360   | 100    | V        |
| 2      | 174.1761  | 45.25   | Pk  | 15.5           | -30.1          | 30.65     | 43.52              | -12.87 | 0-360   | 101    | Н        |
| 3      | 352.0198  | 39.69   | Pk  | 18.4           | -29.2          | 28.89     | 46.02              | -17.13 | 0-360   | 101    | Н        |
| 6      | 835.5826  | 32.44   | Pk  | 25.7           | -27.8          | 30.34     | 46.02              | -15.68 | 0-360   | 200    | V        |

#### Pk - Peak detector

#### **Radiated Emissions**

| Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T130 (dB/m) | Amp/Cbl (dB/m) | Corrected<br>Reading<br>(dBuV/m) | QPk Limit (dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|----------------------------|-----|----------------|----------------|----------------------------------|--------------------|----------------|-------------------|----------------|----------|
| 99.8826            | 48.54                      | Qp  | 14.2           | -30.6          | 32.14                            | 43.52              | -11.38         | 356               | 141            | Н        |

Qp - Quasi-Peak detector

Page 82 of 93

## 8.5. WORST-CASE ABOVE 18 GHz

#### SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)

| _UL_EMC                                                                                                         | 24 Aug 2017 17:35:19                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 | RF Emissions                                                                                                               |
| 5                                                                                                               | Order Number:11882282<br>Client:WICRSOFT<br>Configuration:EUT + AC Adapter<br>Mode:0T_Worst-case<br>Tested By / SN:0E43578 |
| 5                                                                                                               |                                                                                                                            |
| Peak Limit (dBuV/m)                                                                                             |                                                                                                                            |
| 5                                                                                                               |                                                                                                                            |
| Avg Limit (dBuV/m)                                                                                              |                                                                                                                            |
|                                                                                                                 |                                                                                                                            |
| 5                                                                                                               |                                                                                                                            |
|                                                                                                                 |                                                                                                                            |
| a des des also de la companya de la  |                                                                                                                            |
| n den sener kommen en den sekteren i kan en in nom sint föllt är den stad föllt fölge beskelde i den som sint s |                                                                                                                            |
|                                                                                                                 |                                                                                                                            |
| 5                                                                                                               |                                                                                                                            |
|                                                                                                                 |                                                                                                                            |
|                                                                                                                 |                                                                                                                            |
|                                                                                                                 | 26                                                                                                                         |
| 8                                                                                                               | 26<br>Frequency (GHz)                                                                                                      |
| 8                                                                                                               | 26<br>Frequency (GHz)                                                                                                      |

Page 83 of 93

| EMC                                                              | 24 Aug 2017 17:35:19                                                                                                                                                      |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | RF Emissions                                                                                                                                                              |
|                                                                  | Order Number:11882202<br>Client:NCROSOFT<br>Configuration:EUT + AC Adapter<br>Mode:BT Worst-case<br>Tested By / SN:GE43570                                                |
|                                                                  | Tested by / SN:6E43578                                                                                                                                                    |
| aak Limit (dBuV∕m)                                               |                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                           |
| g Limit (dBuU/m)                                                 |                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                           |
| 4<br>Martha hadren and an allow for itemidant and had in a state |                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                           |
|                                                                  |                                                                                                                                                                           |
|                                                                  | 26                                                                                                                                                                        |
|                                                                  | Frequency (GHz)                                                                                                                                                           |
| e (GHz) RBW/UBW Ref/Attn Det/Avg Type Sweep Pts                  | s #Swps/Micde Label Ronge (GHz) BBW/BBU Ref/RLtn. Det/Ang-Type Sweep PLs #Swps/Micde Label<br>2:15-25. 114(-345)/314 87/8 PER/Log/wr-Video 14waec/Auto 9881 NAAH Uertical |
| T 30915 6 Jan 2015                                               | Rev 9.5 19 Oct 201                                                                                                                                                        |

### <u>Data</u>

**Trace Markers** 

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | T449 AF (dB/m) | Amp/Cbl (dB) | Dist Corr (dB) | Corrected<br>Reading<br>(dBuVolts) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) |
|--------|--------------------|----------------------------|-----|----------------|--------------|----------------|------------------------------------|-----------------------|----------------|------------------------|-------------------|
| 1      | 19.166             | 38.01                      | Pk  | 32.6           | -21.7        | -9.5           | 39.41                              | 54                    | -14.59         | 74                     | -34.59            |
| 2      | 21.65              | 38.2                       | Pk  | 33.2           | -21.3        | -9.5           | 40.6                               | 54                    | -13.4          | 74                     | -33.4             |
| 3      | 25.444             | 39.98                      | Pk  | 34.4           | -20.2        | -9.5           | 44.68                              | 54                    | -9.32          | 74                     | -29.32            |
| 4      | 19.435             | 38.28                      | Pk  | 32.7           | -21.8        | -9.5           | 39.68                              | 54                    | -14.32         | 74                     | -34.32            |
| 5      | 22.161             | 38.64                      | Pk  | 33.4           | -20.6        | -9.5           | 41.94                              | 54                    | -12.06         | 74                     | -32.06            |
| 6      | 24.609             | 38.9                       | Pk  | 34.1           | -20.3        | -9.5           | 43.2                               | 54                    | -10.8          | 74                     | -30.8             |

Pk - Peak detector

Page 84 of 93

# 9. AC POWER LINE CONDUCTED EMISSIONS

## LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

| Frequency of Emission (MHz) | Conducted  | l Limit (dBμV) |
|-----------------------------|------------|----------------|
| Frequency of Emission (MHz) | Quasi-peak | Average        |
| 0.15-0.5                    | 66 to 56 * | 56 to 46 *     |
| 0.5-5                       | 56         | 46             |
| 5-30                        | 60         | 50             |

\*Decreases with the logarithm of the frequency.

## TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

## <u>RESULTS</u>

Page 85 of 93

#### LINE 1 RESULTS



#### WORST EMISSIONS

| Range 1: Line-L1 .15 - 30MHz |  |
|------------------------------|--|
|------------------------------|--|

| Marker | Frequency | Meter   | Det | LISN L1 | LC Cables | Limiter | Corrected | CFR 47     | QP Margin | CFR 47      | Av(CISPR) |
|--------|-----------|---------|-----|---------|-----------|---------|-----------|------------|-----------|-------------|-----------|
|        | (MHz)     | Reading |     |         | C1&C3     | (dB)    | Reading   | Part 15    | (dB)      | Part 15     | Margin    |
|        |           | (dBuV)  |     |         |           |         | dBuV      | Class B QP |           | Class B Avg | (dB)      |
| 1      | .15225    | 41.98   | Qp  | .1      | .1        | 10.1    | 52.28     | 65.88      | -13.6     | -           | -         |
| 2      | .15225    | 24.78   | Ca  | .1      | .1        | 10.1    | 35.08     | -          | -         | 55.88       | -20.8     |
| 3      | .6675     | 24.16   | Qp  | 0       | .1        | 10.1    | 34.36     | 56         | -21.64    | -           | -         |
| 4      | .6675     | 20.02   | Ca  | 0       | .1        | 10.1    | 30.22     | -          | -         | 46          | -15.78    |
| 5      | 2.98275   | 14.66   | Qp  | 0       | .1        | 10.1    | 24.86     | 56         | -31.14    | -           | -         |
| 6      | 2.98275   | 5.45    | Ca  | 0       | .1        | 10.1    | 15.65     | -          | -         | 46          | -30.35    |

#### **Qp** - Quasi-Peak detector

Ca - CISPR average detection

Page 86 of 93

#### LINE 2 RESULTS



#### WORST EMISSIONS

Range 2: Line-L2 .15 - 30MHz

| Marker | Frequency | Meter   | Det | LISN L2 | LC Cables | Limiter | Corrected | CFR 47     | QP Margin | CFR 47      | Av(CISPR) |
|--------|-----------|---------|-----|---------|-----------|---------|-----------|------------|-----------|-------------|-----------|
|        | (MHz)     | Reading |     |         | C2&C3     | (dB)    | Reading   | Part 15    | (dB)      | Part 15     | Margin    |
|        |           | (dBuV)  |     |         |           |         | dBuV      | Class B QP |           | Class B Avg | (dB)      |
| 7      | .15225    | 40.86   | Qp  | 0       | 0         | 10.1    | 50.96     | 65.88      | -14.92    | -           | -         |
| 8      | .15225    | 23.31   | Ca  | 0       | 0         | 10.1    | 33.41     | -          | -         | 55.88       | -22.47    |
| 9      | .6675     | 24.32   | Qp  | 0       | .1        | 10.1    | 34.52     | 56         | -21.48    | -           | -         |
| 10     | .6675     | 20.3    | Ca  | 0       | .1        | 10.1    | 30.5      | -          | -         | 46          | -15.5     |
| 11     | 2.9805    | 12.37   | Qp  | 0       | .1        | 10.1    | 22.57     | 56         | -33.43    | -           | -         |
| 12     | 2.9805    | 5.12    | Ca  | 0       | .1        | 10.1    | 15.32     | -          | -         | 46          | -30.68    |

#### **Qp** - Quasi-Peak detector

Ca - CISPR average detection