

# **Microsoft Corporation**

# TEST REPORT

SCOPE OF WORK FCC TESTING-1919

**REPORT NUMBER** 190929011SZN-001

#### **ISSUE DATE**

[REVISED DATE]

14 January 2020

[-----]

**PAGES** 50

DOCUMENT CONTROL NUMBER FCC ID 247\_b © 2017 INTERTEK



TEST REPORT

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China

Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 www.intertek.com

Intertek Report No.: 190929011SZN-001

# **Microsoft Corporation**

Application For Certification

# FCC ID: C3K1830

# **Bluetooth Accessory**

# Model: 1919

# 2.4GHz Transceiver

#### Report No.: 190929011SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-18]

Prepared and Checked by:

Rui Zhou Project Engineer

Approved by:

the Tany

Kidd Yang Technical Supervisor Date: 14 January 2020

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

#### Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China. Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751



# **MEASUREMENT/TECHNICAL REPORT**

| This report concerns (cho         | eck one:)      | Original Grant                                                            |                     | Class II Change <u>X</u> |
|-----------------------------------|----------------|---------------------------------------------------------------------------|---------------------|--------------------------|
| Equipment Type: <u>DSS - P</u>    | art 15 Spread  | Spectrum Transmitte                                                       | <u>r</u>            |                          |
| Deferred grant requester          | d per 47 CFR ( | 0.457(d)(1)(ii)?                                                          | Yes                 | No <u>X</u>              |
|                                   |                | If yes,                                                                   | defer until:        | date                     |
| Company Name agrees t             | o notify the C | Commission by:                                                            |                     |                          |
| af the sinterval of data of a     |                |                                                                           | dat                 |                          |
| of the intended date of a         | innouncemer    | it of the product so th                                                   | at the grant can be | issued on that date.     |
| Transition Rules Request          | per 15.37?     |                                                                           | Yes                 | No <u>X</u>              |
| If no, assumed Part 15 provision. | , Subpart C 1  | for intentional radiat                                                    | or – the new 47     | CFR [10-1-18 Edition     |
| Report prepared by:               |                |                                                                           |                     |                          |
|                                   | 101, 201, E    | esting Services Shenzh<br>Building B, No. 308 Wu<br>y, GuanHu Subdistrict | ihe Avenue, Zhangk  | engjing                  |
|                                   | Tel: (86 75    | 5) 8601 6288 Fax: (86                                                     | 755) 8601 6661      |                          |



# **Revision History**

| Report No.       | Version | Description             | Issued Date      |
|------------------|---------|-------------------------|------------------|
| 190929011SZN-001 | Rev.01  | Initial issue of report | 31 December 2019 |
| 190929011SZN-001 | Rev.02  | Update some description | 10 January 2020  |
| 190929011SZN-001 | Rev.03  | Update some description | 14 January 2020  |

Note: This report replaces previous report dated: 10 January 2020.



# **Table of Contents**

| <b>1.0</b> | Summary of Test Results                           | . 4 |
|------------|---------------------------------------------------|-----|
| 2.0        | General Description                               | . 5 |
| 2.1        | Product Description                               | . 5 |
| 2.2        | Related Submittal(s) Grants                       | . 5 |
| 2.3        | Test Methodology                                  | . 5 |
| 2.4        | Test Facility                                     | . 5 |
| 3.0        | System Test Configuration                         | . 6 |
| 3.1        | Justification                                     | . 6 |
| 3.2        | EUT Exercising Software                           | . 6 |
| 3.3        | Special Accessories                               | . 6 |
| 3.4        | Equipment Modification                            | . 7 |
| 3.5        | Measurement Uncertainty                           | . 7 |
| 3.6        | Support Equipment List and Description            | . 7 |
| 4.0        | Test Results                                      | . 8 |
| 4.1        | Radiated Test Result                              | . 8 |
| 4.1.1      | 1 Field Strength Calculation                      | . 8 |
| 4.1.2      | 2 Radiated Emission Configuration Photograph      | . 9 |
| 4.1.3      |                                                   |     |
| 4.1.4      | 4 Transmitter Spurious Emissions (Radiated)       | 12  |
| 4.2        | Conducted Emission at Mains Terminal              | 19  |
| 4.2.3      |                                                   |     |
| 4.2.2      |                                                   |     |
| 4.3        | Peak Power                                        |     |
| 4.4        | 20dB Bandwidth                                    |     |
| 4.5        | Channel Number (Number of Hopping Frequencies)    |     |
| 4.6        | Channel Separation (Carrier Frequency Separation) |     |
| 4.7        | Dwell Time (Time of Occupancy)                    |     |
| 4.8        | Band Edge                                         |     |
| 4.9        | Transmitter Spurious Emission (Conducted)         | 41  |
| 5.0        | Equipment Photographs                             | 45  |
| 6.0        | Product Labelling                                 | 45  |
| 7.0        | Technical Specifications                          | 45  |
| 8.0        | Instruction Manual                                | 45  |
| 9.0        | Miscellaneous Information                         | 46  |
| 9.1        | Discussion of Pulse Desensitization               |     |
| 9.2        | Calculation of Average Factor                     |     |
| 9.3        | Emissions Test Procedures                         |     |
|            |                                                   |     |
| 10.0       | Test Equipment List                               | 49  |



#### 1.0 Summary of Test Results

# Applicant: Microsoft Corporation Address: One Microsoft Way Redmond, WA 98052 USA

# Bluetooth Accessory Model: 1919

# FCC ID: C3K1830

| TEST                                   | REFERENCE                                | RESULTS |
|----------------------------------------|------------------------------------------|---------|
| Max. Output power / Max. e.i.r.p.      | FCC 15.247(b)(1)                         | Pass    |
| 20dB Bandwidth                         | FCC 15.247(a)(1)                         | Pass    |
| Channel Separation                     | FCC 15.247(a)(1)                         | Pass    |
| Channel Number                         | FCC 15.247(a)(1) (iii)                   | Pass    |
| Dwell Time                             | FCC 15.247(a)(1)(iii)                    | Pass    |
| Out of Band Antenna Conducted Emission | FCC 15.247(d)                            | Pass    |
| Radiated Emission in Restricted Bands  | FCC 15.247(d), FCC 15.209,<br>FCC 15.205 | Pass    |
| Band Edge                              | FCC 15.247(d), FCC 15.209,<br>FCC 15.205 | Pass    |
| AC Conducted Emission                  | FCC 15.209                               | Pass    |

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.



#### 2.0 General Description

#### 2.1 Product Description

The equipment under test (EUT) is an Bluetooth Accessory with Bluetooth FHSS

technology operating in 2402-2480MHz. The EUT is powered by DC 3.7V from inner

battery or DC 5V from USB port. For more detail information pls. refer to the user manual.

Bluetooth Version: 5.0 Antenna Type: Integral antenna Antenna Gain: 2.5 dBi Modulation Type: GFSK,  $\pi/4$ -DQPSK and 8-DPSK

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

#### 2.2 Related Submittal(s) Grants

This is an application for certification of transceiver for the Bluetooth Accessory which has Bluetooth function, (classic Bluetooth mode), and for the BLE mode was tested and demonstrated in report 190929011SZN-002. Other digital functions were reported in the SDOC report:190929014SZN-001.

#### 2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

#### 2.4 Test Facility

The Semi-anechoic chamber and shielding room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen. This test facility and site measurement data have been fully placed on file with File Number: CN1188.



#### 3.0 System Test Configuration

#### 3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

All packets DH1, DH3 & DH5 mode in modulation type GFSK,  $\pi/4$ -DQPSK and 8-DPSK were tested and only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The unit was placed at the center of turntable and the rear of unit was flushed with the rear of the styrene table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

#### 3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing.

#### The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

#### 3.3 Special Accessories No special accessory attached.



#### 3.4 Equipment Modification

Any modifications installed previous to testing by Microsoft Corporation will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

#### 3.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

| Measurement Uncertainty        | Uncertainty |
|--------------------------------|-------------|
| Occupied Channel Bandwidth     | ±5%         |
| RF Output Power                | ±1.5dB      |
| Conducted Unwanted Emission    | ±3.0dB      |
| Spurious emission (Above 1GHz) | ±6.0dB      |
| Radiated emission (Up to 1GHz) | ±4.8dB      |
| AC Conducted emission          | ±3.6 dB     |
| Temperature                    | ±1°C        |
| Humidity                       | ±5%         |

#### 3.6 Support Equipment List and Description

| Description                              | Manufacturer  | Model No.       |
|------------------------------------------|---------------|-----------------|
| Laptop PC<br>(Provided by Intertek)      | DELL          | 3450            |
| USB A-C Cable<br>(Provided by Applicant) | N/A           | Shielded, 135cm |
| AC Adaptor<br>(Provided by Intertek)     | HMD Global Oy | FC0200          |

Intertek Report No.: 190929011SZN-001



#### 4.0 <u>Test Results</u>

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

WhereFS = Field Strength in dBμV/mRA = Receiver Amplitude (including preamplifier) in dBμVCF = Cable Attenuation Factor in dBAF = Antenna Factor in dBAG = Amplifier Gain in dBPD = Pulse Desensitization in dBAV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

RA =  $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dBCF = 1.6 dBAG = 29.0 dBPD = 0 dBAV = -10 dBFS =  $62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$ 

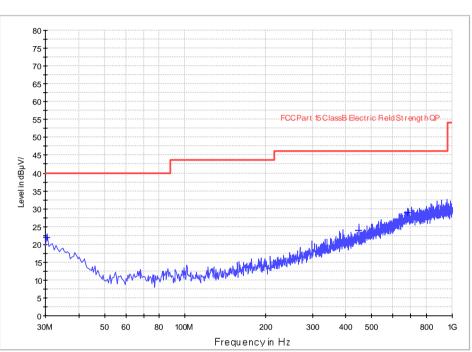
Level in  $\mu$ V/m = Common Antilogarithm [(32 dB $\mu$ V/m)/20] = 39.8  $\mu$ V/m



Intertek Report No.: 190929011SZN-001

#### 4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.


4.1.3 Radiated Emissions- FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.



Applicant: Microsoft Corporation Date of Test: October 28, 2019 Model:1919 Worst-case operating Mode: Transmitting(2402MHz) Worst-case Modulation type: GFSK

#### ANT Polarity: Horizontal



FCC Part 15

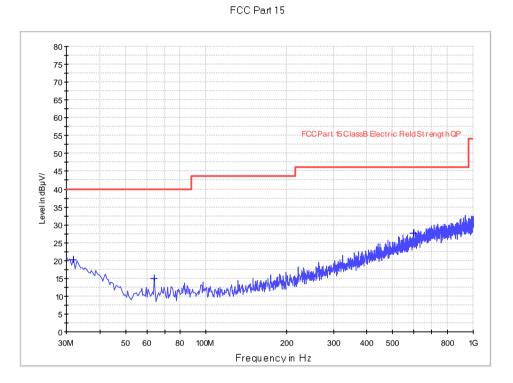
| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Corr.<br>(dB) | Margin -<br>QPK | Limit - QPK<br>(dBuV/m) |
|--------------------|-----------------------|---------------|--------------------|----------------|--------------|---------------|-----------------|-------------------------|
|                    |                       | (ms)          |                    |                |              |               | (dB)            |                         |
| 30.486000          | 21.9                  | 1000.0        | 120.000            | 0.0            | Н            | 17.8          | -18.1           | 40.0                    |
| 447.585000         | 23.8                  | 1000.0        | 120.000            | 0.0            | н            | 20.0          | -22.2           | 46.0                    |
| 679.900000         | 28.8                  | 1000.0        | 120.000            | 0.0            | Н            | 25.0          | -17.2           | 46.0                    |

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

NOTES:


- 1. Quasi-Peak detector is used for frequency below 1GHz.
  - 2. All measurements were made at 3 meters.
  - 3. Negative value in the margin column shows emission below limit.
  - 4. All emissions are below the QP limit.
  - 5. The spurious emissions were very low against the limit in the frequency range 9KHz to 30MHz. The amplitude of spurious emissions that is attenuated by more than 20dB below the permissible limit has no need to be reported.





Applicant: Microsoft Corporation Date of Test: October 28, 2019 Model: 1919 Worst-case operating Mode: Transmitting(2402MHz) Worst-case Modulation type: GFSK

#### ANT Polarity: Vertical



| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit - QPK<br>(dBuV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|---------------|-------------------------|-------------------------|
| 31.930000          | 20.2                  | 1000.0                | 120.000            | 0.0            | v            | 17.1          | -19.8                   | 40.0                    |
| 63.950000          | 14.9                  | 1000.0                | 120.000            | 0.0            | v            | 8.0           | -25.1                   | 40.0                    |
| 598.420000         | 27.6                  | 1000.0                | 120.000            | 0.0            | v            | 23.2          | -18.4                   | 46.0                    |

Remark:

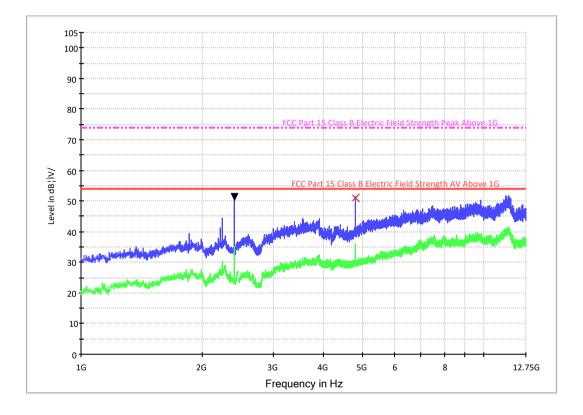
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

NOTES:

- 1. Quasi-Peak detector is used for frequency below 1GHz.
- 2. All measurements were made at 3 meters.
- 6. Negative value in the margin column shows emission below limit.
- 7. All emissions are below the QP limit.
- 8. The spurious emissions were very low against the limit in the frequency range 9KHz to 30MHz. The amplitude of spurious emissions that is attenuated by more than 20dB below the permissible limit has no need to be reported.




#### 4.1.4 Transmitter Spurious Emissions (Radiated) - FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.



Intertek Report No.: 190929011SZN-001

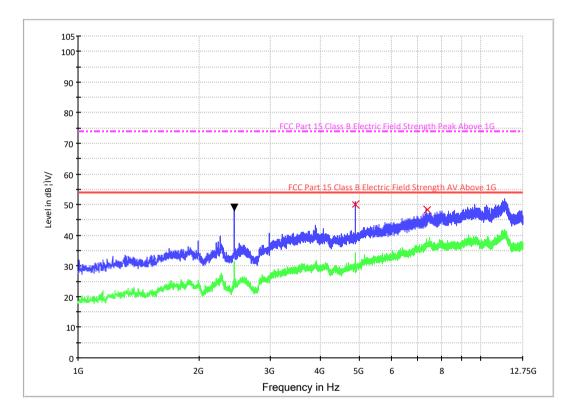
Applicant: Microsoft Corporation Date of Test: November 25, 2019 Model: 1919 Worst-case operating Mode: Transmit (2402MHz) Worst-case modulation type: GFSK



# Radiated Emissions (2402MHz)

| Polarization | Frequency<br>(MHz) | Reading<br>(dBμV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |        |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|---------------------------------|----------------|--------|
| Horizontal   | **2402.000         | 107.4             | 36.7                        | 28.1                      | 98.8                     |                                 |                |        |
| Horizontal   | *4804.000          | 54.0              | 36.7                        | 33.5                      | 50.8                     | 74.0                            | -23.2          |        |
|              |                    |                   |                             |                           |                          |                                 |                |        |
| Polarization | Frequency          | Reading           | Pre-                        | Antenna                   | Average                  | Net                             | Average        | Margin |
|              | (MHz)              | (dBµV)            | Amp                         | Factor                    | Factor                   | at 3m                           | Limit          | (dB)   |
|              |                    |                   | Gain                        | (dB)                      | (-dB)                    | (dBµV/m)                        | at 3m          |        |
|              |                    |                   | (dB)                        |                           |                          |                                 | (dBµV/m)       |        |
| Horizontal   | **2402.000         | 107.4             | 36.7                        | 28.1                      | 22.5                     | 76.3                            |                |        |
| Horizontal   | *4804.000          | 54.0              | 36.7                        | 33.5                      | 22.5                     | 28.3                            | 54.0           | -25.7  |




#### NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- \* Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- \*\* Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.



Intertek Report No.: 190929011SZN-001

Applicant: Microsoft Corporation Date of Test: November 25, 2019 Model: 1919 Worst-case operating Mode: Transmit (2441MHz) Worst-case modulation type: GFSK

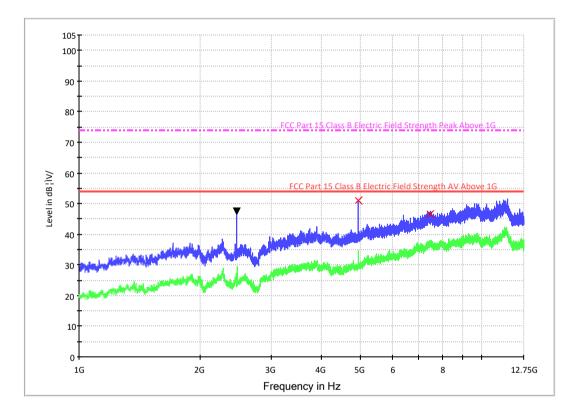


Radiated Emissions (2441MHz)

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|---------------------------------|----------------|
| Horizontal   | *4882.000          | 53.7              | 36.7                        | 33.5                      | 50.5                     | 74.0                            | -23.5          |
| Horizontal   | *7323.000          | 46.1              | 36.1                        | 37.2                      | 47.2                     | 74.0                            | -26.8          |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Average<br>Factor<br>(-dB) | Net<br>at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|----------------------------|--------------------------|---------------------------------------|----------------|
| Horizontal   | *4882.000          | 53.7              | 36.7                        | 33.5                      | 22.5                       | 28.0                     | 54.0                                  | -26.0          |
| Horizontal   | *7323.000          | 46.1              | 36.1                        | 37.2                      | 22.5                       | 24.7                     | 54.0                                  | -29.3          |




#### NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- \* Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.



Intertek Report No.: 190929011SZN-001

Applicant: Microsoft Corporation Date of Test: November 25, 2019 Model: 1919 Worst-case operating Mode: Transmit (2480MHz) Worst-case modulation type: GFSK



Radiated Emissions (2480MHz)

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|---------------------------------|----------------|
| Horizontal   | **2480.000         | 107.1             | 36.7                        | 28.1                      | 98.5                     |                                 |                |
| Horizontal   | *4960.000          | 54.6              | 36.7                        | 33.3                      | 51.2                     | 74.0                            | -22.8          |
| Horizontal   | *7440.000          | 45.7              | 36.1                        | 36.7                      | 46.3                     | 74.0                            | -27.7          |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBμV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Average<br>Factor<br>(-dB) | Net<br>at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|----------------------------|--------------------------|---------------------------------------|----------------|
| Horizontal   | **2480.000         | 107.1             | 36.7                        | 28.1                      | 22.5                       | 76.0                     |                                       |                |
| Horizontal   | *4960.000          | 54.6              | 36.7                        | 33.3                      | 22.5                       | 28.7                     | 54.0                                  | -25.3          |
| Horizontal   | *7440.000          | 45.7              | 36.1                        | 36.7                      | 22.5                       | 23.8                     | 54.0                                  | -30.2          |

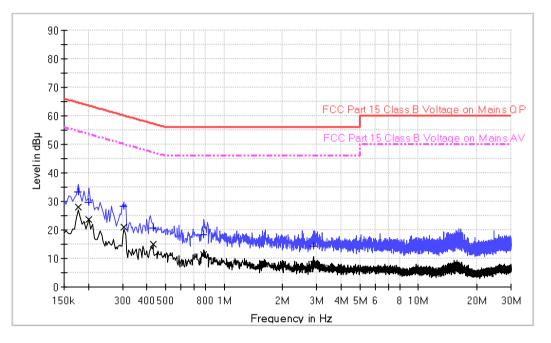


#### NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- \* Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- \*\* Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.



Intertek Report No.: 190929011SZN-001


- 4.2 Conducted Emission at Mains Terminal
- 4.2.1 Conducted Emissions Configuration Photograph

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.



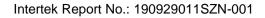
#### 4.2.2 Conducted Emissions

Applicant: Microsoft Corporation Date of Test: December 20, 2019 Model: 1919 Worst Case Operating Mode: BT Link Phase: Live



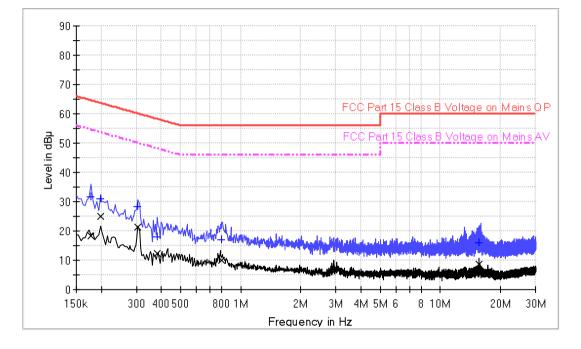
# **Conducted Emission Test**

# **Result Table QP**


| Frequency | QuasiPeak | Line | Corr. | Margin | Limit  |
|-----------|-----------|------|-------|--------|--------|
| (MHz)     | (dBµV)    |      | (dB)  | (dB)   | (dBµV) |
| 0.178000  | 33.5      | L    | 9.6   | -31.1  | 64.6   |
| 0.202000  | 29.7      | L    | 9.7   | -33.8  | 63.5   |
| 0.306000  | 28.2      | L    | 9.7   | -31.9  | 60.1   |
| 0.430000  | 20.6      | L    | 9.7   | -36.7  | 57.3   |
| 0.786000  | 18.2      | L    | 9.7   | -37.8  | 56.0   |
| 2.878000  | 14.3      | L    | 10.1  | -41.7  | 56.0   |

# **Result Table AV**

| Frequency | Average | Line | Corr. | Margin | Limit  |
|-----------|---------|------|-------|--------|--------|
| (MHz)     | (dBµV)  |      | (dB)  | (dB)   | (dBµV) |
| 0.178000  | 28.1    | L    | 9.6   | -26.5  | 54.6   |
| 0.202000  | 23.6    | L    | 9.7   | -29.9  | 53.5   |
| 0.306000  | 21.1    | L    | 9.7   | -29.0  | 50.1   |
| 0.430000  | 15.1    | L    | 9.7   | -32.2  | 47.3   |
| 0.786000  | 11.3    | L    | 9.7   | -34.7  | 46.0   |
| 2.878000  | 8.1     | L    | 10.1  | -37.9  | 46.0   |


Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dB $\mu$ V) Limit (dB $\mu$ V)





Applicant: Microsoft Corporation Date of Test: December 20, 2019 Model: 1919 Worst Case Operating Mode: BT Link Phase: Neutral



# **Conducted Emission Test**

# **Result Table QP**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|------|---------------|----------------|-----------------|
|                    |                     |      | . ,           | . ,            | ,               |
| 0.178000           | 31.7                | N    | 9.7           | -32.9          | 64.6            |
| 0.198000           | 30.9                | N    | 9.7           | -32.8          | 63.7            |
| 0.306000           | 28.4                | N    | 9.7           | -31.7          | 60.1            |
| 0.382000           | 18.1                | N    | 9.7           | -40.1          | 58.2            |
| 0.806000           | 16.9                | N    | 9.7           | -39.1          | 56.0            |
| 15.646000          | 16.1                | Ν    | 10.2          | -43.9          | 60.0            |

# **Result Table AV**

| Frequency | Average | Line | Corr. | Margin | Limit  |
|-----------|---------|------|-------|--------|--------|
| (MHz)     | (dBµV)  |      | (dB)  | (dB)   | (dBµV) |
| 0.178000  | 18.2    | N    | 9.7   | -36.4  | 54.6   |
| 0.198000  | 25.0    | N    | 9.7   | -28.7  | 53.7   |
| 0.306000  | 21.2    | N    | 9.7   | -28.9  | 50.1   |
| 0.382000  | 12.2    | N    | 9.7   | -36.0  | 48.2   |
| 0.806000  | 9.9     | N    | 9.7   | -36.1  | 46.0   |
| 15.646000 | 8.7     | Ν    | 10.2  | -41.3  | 50.0   |

#### Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) = Level (dB $\mu$ V) – Limit (dB $\mu$ V)





#### 4.3 Peak Power

Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1). The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm.

For antenna with gains of 6dBi or less, and frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, the systems operate with an output power no greater than 125 mW.

| Antenna Gain = 2.5 dBi |                    |                                         |                      |  |  |
|------------------------|--------------------|-----------------------------------------|----------------------|--|--|
| Modulation Type        | Frequency<br>(MHz) | Output Power<br>(Peak Reading)<br>(dBm) | Output Power<br>(mW) |  |  |
|                        | 2402               | 1.72                                    | 1.486                |  |  |
| GFSK                   | 2441               | 3.82                                    | 2.410                |  |  |
|                        | 2480               | 3.52                                    | 2.249                |  |  |

Cable loss, external attenuation has been included in OFFSET function.



Intertek Report No.: 190929011SZN-001

# Test Date: 30 December 2019 Worst Case Modulation Type: GFSK

#### CH00

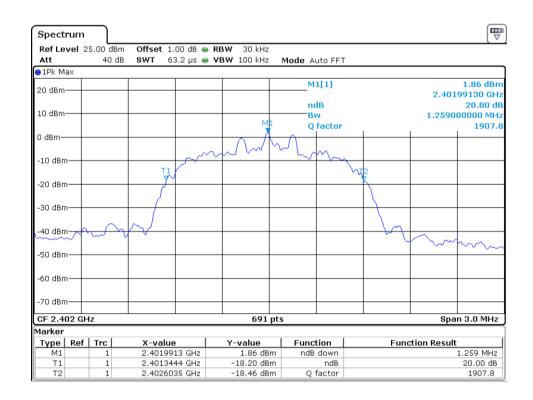
| Spectrum                        |                                        |         |         |                            |
|---------------------------------|----------------------------------------|---------|---------|----------------------------|
| Ref Level 25.00 dBm   Att 40 dB | Offset 1.00 dB 👄 RBV<br>SWT 1 ms 👄 VBV |         | o Sweep |                            |
| ●1Pk Max                        |                                        |         |         |                            |
| 20 dBm                          |                                        | M:      | 1[1]    | 1.72 dBm<br>2.40221710 GHz |
| 10 dBm                          |                                        |         |         |                            |
|                                 |                                        | M1      |         |                            |
| 0 dBm                           |                                        |         | ·       |                            |
| -10 dBm                         |                                        |         |         |                            |
| -20 dBm                         |                                        |         |         |                            |
| -30 dBm                         |                                        |         |         |                            |
| -40 dBm                         |                                        |         |         |                            |
| -50 dBm                         |                                        |         |         |                            |
| -60 dBm                         |                                        |         |         |                            |
| -70 dBm                         |                                        |         |         |                            |
| CF 2.402 GHz                    | I I                                    | 691 pts |         | Span 5.0 MHz               |

| Spectrum                        |                |         |                            |
|---------------------------------|----------------|---------|----------------------------|
| Ref Level 25.00 dBm   Att 40 dB | Offset 1.00 dB |         | ×                          |
| ●1Pk Max                        |                |         |                            |
| 20 dBm                          |                | M1[1]   | 3.82 dBm<br>2.44079740 GHz |
| 10 dBm                          |                |         |                            |
|                                 | M              |         |                            |
| 0 dBm                           |                |         |                            |
| -10 dBm                         |                |         |                            |
| -20 dBm                         |                |         |                            |
| -30 dBm                         |                |         |                            |
| -40 dBm                         |                |         |                            |
| -50 dBm                         |                |         |                            |
| -60 dBm                         |                |         |                            |
| -70 dBm                         |                |         |                            |
| CF 2.441 GHz                    |                | 691 pts | Span 5.0 MHz               |



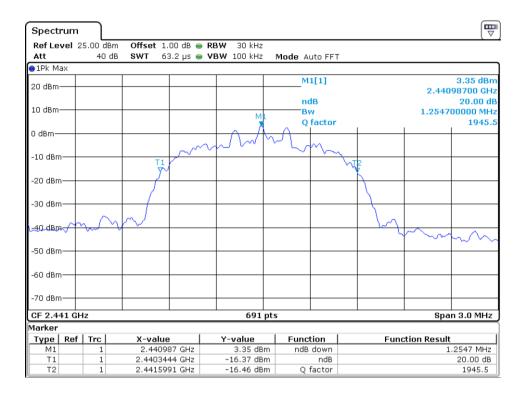
| Spectrum                         |                                                    |                 |                            |
|----------------------------------|----------------------------------------------------|-----------------|----------------------------|
| Ref Level 25.00 dBm<br>Att 40 dB | Offset 1.00 dB ● RBW 3 MHz<br>SWT 1 ms ● VBW 3 MHz | Mode Auto Sweep |                            |
| • 1Pk Max                        |                                                    |                 |                            |
| 20 dBm                           |                                                    | M1[1]           | 3.52 dBm<br>2.48002890 GHz |
| 10 dBm                           |                                                    |                 |                            |
| 0 dBm                            |                                                    |                 |                            |
| 0 dBill                          |                                                    |                 |                            |
| -10 dBm                          |                                                    |                 |                            |
| -20 dBm                          |                                                    |                 |                            |
| -30 dBm                          |                                                    |                 |                            |
| -40 dBm                          |                                                    |                 |                            |
| -50 dBm                          |                                                    |                 |                            |
| -30 ubiii                        |                                                    |                 |                            |
| -60 dBm                          |                                                    |                 |                            |
| -70 dBm                          |                                                    |                 |                            |
| CF 2.48 GHz                      | 693                                                | L pts           | Span 5.0 MHz               |

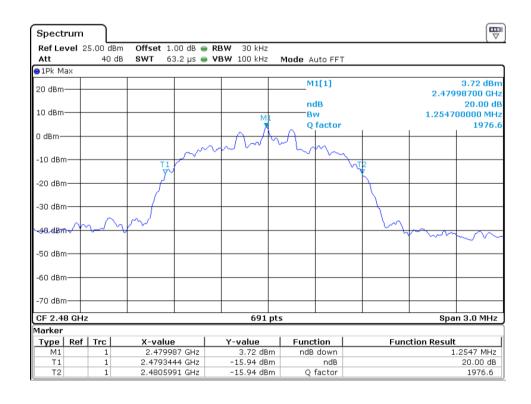



#### 4.4 20dB Bandwidth

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a) (1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.


| Frequency (MHz) | 20 dB Bandwidth (MHz) |
|-----------------|-----------------------|
| 2402            | 1.259                 |
| 2441            | 1.255                 |
| 2480            | 1.255                 |


# Test Date: 30 December 2019 Worst Case Modulation Type: 8DPSK





#### CH39







#### 4.5 Channel Number (Number of Hopping Frequencies)

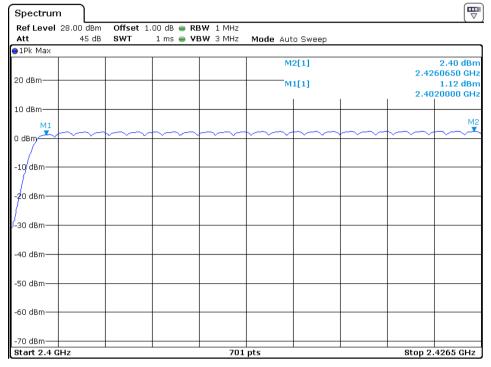
Minimum Number of Hopping Frequencies, FCC Rule 15.247(a) (1) (iii):

The RF passband of the EUT was divided into 3 approximately equal bands. With the analyzer set to MAX HOLD readings were taken for 2-3 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

| Number of hopping channels =                          | 79                                                  |
|-------------------------------------------------------|-----------------------------------------------------|
| Note: In AFH mode, this device operates using 20 chan | nels and it's satisfied the requirement of limit of |

Note: In AFH mode, this device operates using 20 channels and it's satisfied the requirement of limit of minimum of 15 hopping channels.

#### Worst Case Modulation Type: GFSK


#### CH00-CH78

| Spectrum                        |                                      |         |                                                                                                                 |
|---------------------------------|--------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level 28.00 dBm   Att 45 dB | Offset 1.00 dB 👄 RB<br>SWT 1 ms 👄 VB |         |                                                                                                                 |
| ●1Pk Max                        |                                      | MO[1]   | 2.72 dBm                                                                                                        |
| 20 dBm                          |                                      | M2[1]   | 2.42 UBM<br>2.48020 GHz<br>1.29 dBm<br>2.402120 GHz                                                             |
| 10 dBm                          |                                      |         |                                                                                                                 |
| 0/dBm                           |                                      |         | The second se |
| -10 dBm                         |                                      |         |                                                                                                                 |
| -20 dBm                         |                                      |         |                                                                                                                 |
| -30 dBm                         |                                      |         |                                                                                                                 |
| -40 dBm                         |                                      |         |                                                                                                                 |
| -50 dBm                         |                                      |         |                                                                                                                 |
| -60 dBm                         |                                      |         |                                                                                                                 |
| -70 dBm                         |                                      | 701 pts | Stop 2.4835 GHz                                                                                                 |

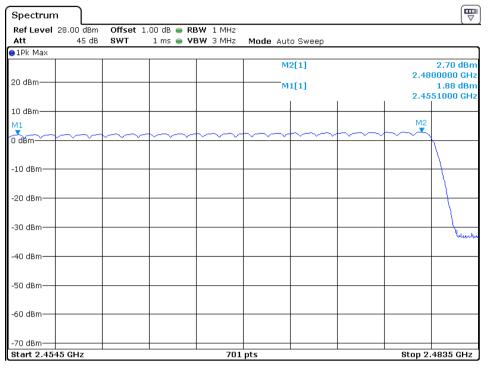
Date: 5 NOV 2019 13:49:48



#### CH00-CH24



Date: 5.NOV.2019 13:48:26


#### CH25-CH52

| Ref Level<br>Att | 28.00 dBm<br>45 dB | Offset<br>SWT | 1.00 dB 👄 R | BW 1 MHz<br>BW 3 MHz | Mode Aut       | e Gween  |                                                      |   |
|------------------|--------------------|---------------|-------------|----------------------|----------------|----------|------------------------------------------------------|---|
| ●1Pk Max         | 40 GD              | 3111          | 1 1115 🖶 🕇  | DW JIMIZ             | HOUE AU        | io aweeb |                                                      |   |
| 20 dBm           |                    |               |             |                      | M2[1]<br>M1[1] |          | 1.78 dBr<br>2.4540810 GH<br>2.42 dBr<br>2.4271190 GH |   |
| 10 dBm           |                    |               | _           |                      |                |          | <br>                                                 |   |
| M1               |                    |               |             |                      |                |          |                                                      | M |
| 0 dBm            | ·····              |               |             |                      |                | ~~~~     | $\vdash \sim$                                        |   |
| -10 dBm          |                    |               |             |                      |                |          |                                                      |   |
| -20 dBm          |                    |               |             |                      |                |          |                                                      |   |
| -30 dBm          |                    |               |             |                      |                |          |                                                      |   |
| -40 dBm          |                    |               |             |                      |                |          |                                                      |   |
| -50 dBm          |                    |               |             |                      |                |          |                                                      |   |
| -60 dBm          |                    |               |             |                      |                |          |                                                      |   |
| -70 dBm          |                    |               |             |                      |                |          |                                                      |   |

Date: 5NOV 2019 13:47:24



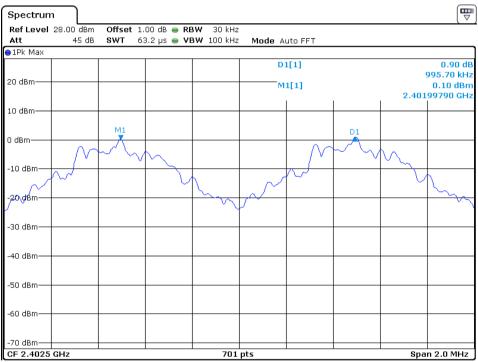
#### CH53-CH78



Date: 5 NOV 2019 13:46:26



#### 4.6 Channel Separation (Carrier Frequency Separation)


Minimum Hopping Channel Carrier Frequency Separation, FCC Ref: 15.247(a)(1):

Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and compared against the limit:

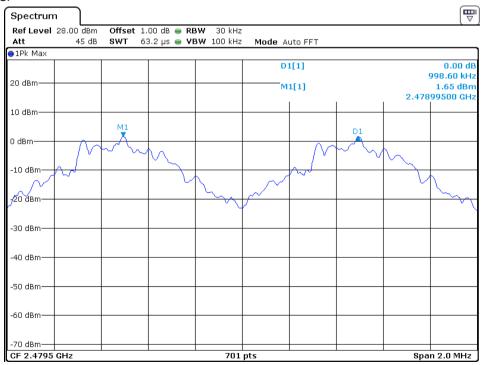
Not less than 2/3 of 20dB bandwidth of hopping channel: 1.372 x 2/3 = 0.915MHz

Minimum Channel Separation 0.9957 MHz

#### Low Channel



Date: 5NOV 2019 13:53:27




#### Middle Channel



Date: 5 NOV 2019 13:54:52

#### High Channel



Date: 5 NOV 2019 13:56:05



#### 4.7 Dwell Time (Time of Occupancy)

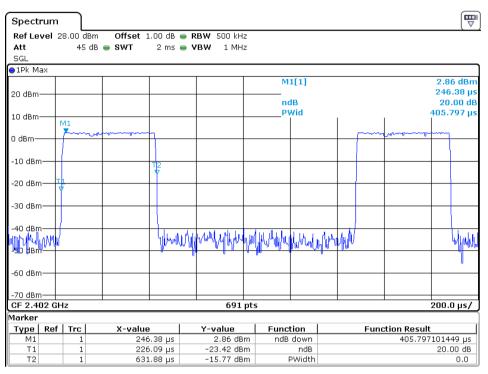
Average Channel Occupancy Time, FCC Ref: 15.247(a) (1)(iii):

The spectrum analyzer center frequency was set to one of the known hopping channels with a longer sweep time to show two successive hops on a channel; the SPAN was set to ZERO SPAN, and the TRIGGER was set to VIDEO. RBW shall be  $\leq$ channel spacing and where possible RBW should be set >>1/T, where T is the expected dwell time per channel. The time duration of the transmissions so captured was measured with the MARKER DELTA function.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Different modes of operation were performed and only the worst case data was reported.

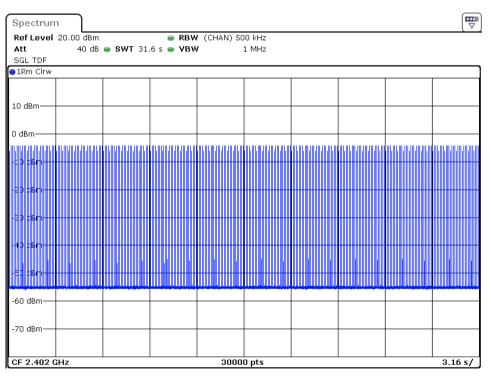
Worst Test Result:

#### Normal hopping mode


| Modulation<br>Type | Packet | Max Dwell Time            | Limit<br>(s) | Result |
|--------------------|--------|---------------------------|--------------|--------|
|                    | DH1    | 0.406ms * 321 = 130.326ms | 0.4          | Pass   |
| СГСИ               | DH3    | 1.661ms * 162 = 269.082ms | 0.4          | Pass   |
| GFSK               | DH5    | 2.913ms * 108 = 314.604ms | 0.4          | Pass   |

#### AFH mode:

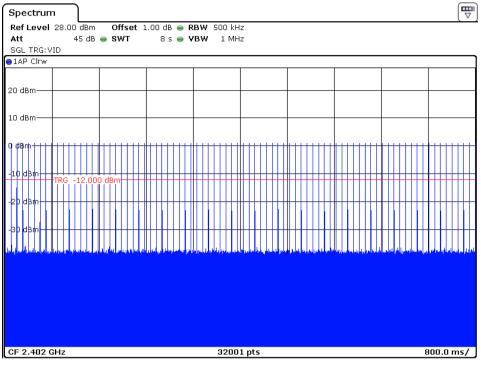
| Modulation<br>Type | Packet | Max Dwell Time          | Limit<br>(s) | Result |
|--------------------|--------|-------------------------|--------------|--------|
|                    | DH1    | 0.406ms * 85 = 34.51ms  | 0.4          | Pass   |
| GFSK               | DH3    | 1.661ms * 42 = 69.762ms | 0.4          | Pass   |
|                    | DH5    | 2.913ms * 32= 87.39ms   | 0.4          | Pass   |




Modulation Type: GFSK Packet: DH1

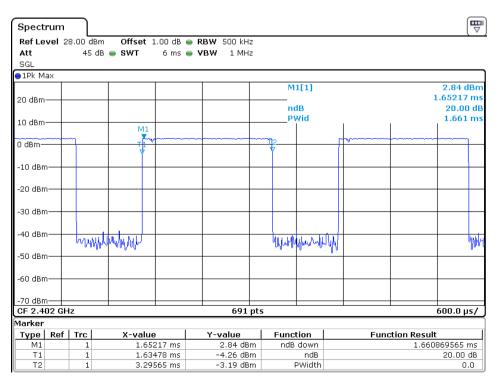


Date: 5 NOV 2019 11:32:04


#### Number of hops (Normal hopping mode)



Date: 5NOV 2019 14:09:21




#### Number of hops (AFH mode)

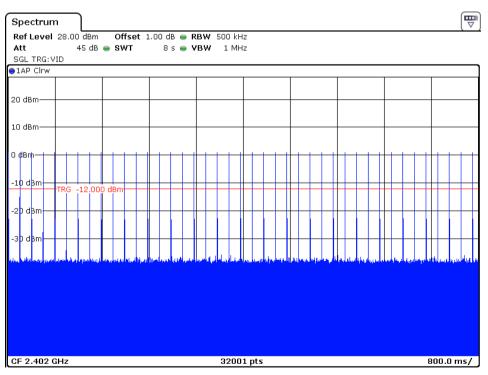


Date: 5NOV 2019 14:06:16

#### Packet: DH3



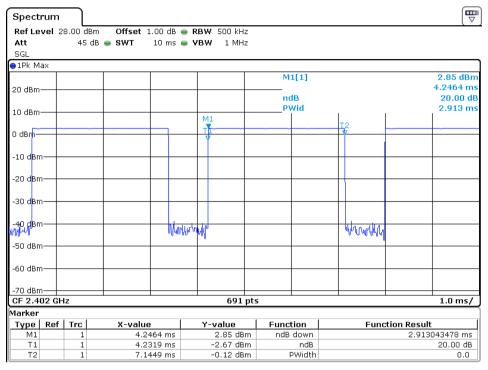
Date: 5 NOV 2019 11:31:11




#### Spectrum ● RBW (CHAN) 500 kHz Ref Level 20.00 dBm 40 dB 🔵 SWT 31.6 s 🔵 VBW Att 1 MHz SGL TDF ●1Rm Clrw 10 dBm--60 dBm--70 dBm-CF 2.402 GHz 30000 pts 3.16 s/

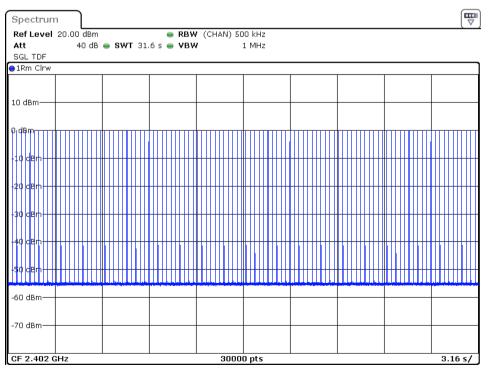
# Number of hops (Normal hopping mode)

Date: 5.NOV.2019 14:16:05


# Number of hops (AFH mode)



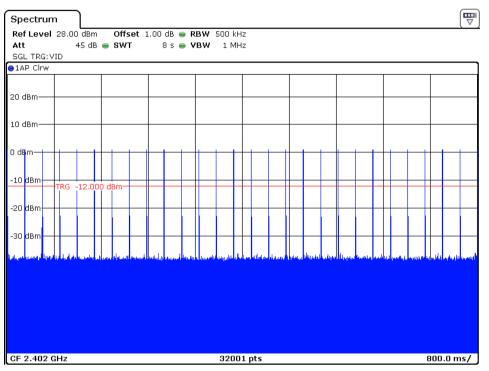
Date: 5.NOV.2019 14:05:31




#### Packet: DH5



Date: 5 NOV 2019 11:26:10


## Number of hops (Normal hopping mode)



Date: 5 NOV 2019 14:50:22



# Number of hops (AFH mode)



Date: 5 NOV 2019 14:04:52



### 4.8 Band Edge

Out of Band Conducted Emissions, FCC Rule 15.247(d):

In any 100 KHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

Furthermore, delta measurement technique for measuring bandage emissions was shown as below:

### (i) Lower channel 2402MHz:

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot = 98.8dBµv/m-37.97dB

= 60.83dBµv/m

Average Resultant field strength = Fundamental emissions (Average value) – delta from the bandedge plot = 76.3dBµv/m-37.97dB

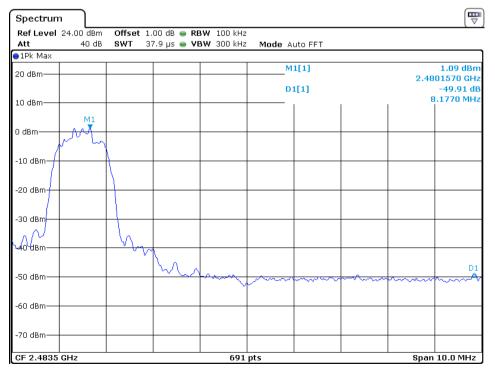
= 38.33dBµv/m

#### (ii) Upper channel 2480MHz:

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot = 98.5dBµv/m-49.73dB = 48.77dBµv/m

Average Resultant field strength = Fundamental emissions (Average value) – delta from the bandedge plot

- = 76.0dBµv/m-49.73dB
- = 26.27dBµv/m


The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed  $74dB\mu\nu/m$  (Peak Limit) and  $54dB\mu\nu/m$  (Average Limit).



## Worst Case Modulation Type: 8DPSK Hopping function off:

Spectrum Offset 1.00 dB 👄 RBW 100 kHz Ref Level 24.00 dBm 37.9 µs 👄 **VBW** 300 kHz 40 dB SWT Att Mode Auto FFT ●1Pk Max 0.14 dBm 2.4018230 GHz M1[1] 20 dBm D1[1] -37.97 dB -2.3300 MHz 10 dBm М1 0 dBm -10 dBm -20 dBm--30 dBm D1 -40 dBm -50. dBm--60 dBm -70 dBm· CF 2.4 GHz 691 pts Span 10.0 MHz

Date:29.SEP.2019 16:36:54



Date: 29.SEP.2019 16:39:07



# Hopping function on:

₽ Spectrum Ref Level 24.00 dBm Offset 1.00 dB 👄 RBW 100 kHz SWT 56.8 µs 👄 VBW 300 kHz Att 40 dB Mode Auto FFT ●1Pk Max D1[1] 44.14 dB 20 dBm -5.7020 MHz M1[1] 1.03 dBm 2.4051520 GHz 10 dBm-0 dBm--10 dBm -20 dBm -30 dBm Mary Mar -40 dBm--5A dBm mun -60 dBm -70 dBm-CF 2.4 GHz 691 pts Span 20.0 MHz

Date:29.SEP.2019 16:54:08

| Spectrum           |                    |     |                            |      |     |              |    |          |                                     |
|--------------------|--------------------|-----|----------------------------|------|-----|--------------|----|----------|-------------------------------------|
| Ref Level 2<br>Att | 24.00 dBm<br>40 dB |     | .00 dB 👄 RB<br>6.8 µs 👄 VI |      |     | uto FFT      |    |          |                                     |
| ●1Pk Max           |                    |     | -                          |      |     |              |    |          |                                     |
| 20 dBm             |                    |     |                            |      |     | 1[1]<br>1[1] |    | 10       | -49.73 dB<br>1.7380 MHz<br>0.60 dBm |
| 10 dBm             |                    |     |                            |      |     | 1            | I  | 2.47     | 41510 GHz                           |
| M1                 |                    |     |                            |      |     |              |    |          |                                     |
| o dem<br>Martin    | MyrMy              | Arr | when                       |      |     |              |    |          |                                     |
| -10 dBm            | · ·                |     |                            |      |     |              |    |          |                                     |
| -20 dBm            |                    |     |                            |      |     |              |    |          |                                     |
| -30 dBm            |                    |     |                            |      |     |              |    |          |                                     |
| -40 dBm            |                    |     |                            |      |     |              |    |          |                                     |
| -50 dBm            |                    |     |                            | burn | D1  | hanne        | mm | www.www  | mun                                 |
| -60 dBm            |                    |     |                            |      |     |              |    |          |                                     |
| -70 dBm            |                    |     |                            |      |     |              |    |          |                                     |
| CF 2.4835 (        | GHz                |     |                            | 691  | pts |              |    | <br>Span | 20.0 MHz                            |

Date:29.SEP.2019 16:54:47



## 4.9 Transmitter Spurious Emissions (Conducted)

Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.



# Modulation Type: GFSK

#### CH00

| Spectrum               | )                                                                                                               |                                                |           |                   |       |                        |
|------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------|-------------------|-------|------------------------|
| Ref Level 24.00<br>Att |                                                                                                                 | .00 dB 👄 <b>RBW</b> 1<br>2.1 ms 👄 <b>VBW</b> 3 |           | Auto Sweep        |       |                        |
| ⊖1Pk Max               |                                                                                                                 |                                                |           |                   |       |                        |
| 20 dBm                 |                                                                                                                 |                                                |           | 1[1]              | -1.30 | -51.63 dB<br>94350 GHz |
| 10 dBm                 |                                                                                                                 |                                                | N         | 11[1]             | 2.40  | 2.22 dBm<br>21910 GHz  |
| 0 dBm                  |                                                                                                                 |                                                |           |                   |       | M1                     |
| -10 dBm                |                                                                                                                 |                                                |           |                   |       |                        |
| -20 dBm                |                                                                                                                 |                                                |           |                   |       |                        |
| -30 dBm                |                                                                                                                 |                                                |           |                   |       |                        |
| -40 dBm                |                                                                                                                 |                                                |           |                   |       |                        |
| .50.dBn                |                                                                                                                 | D1                                             |           |                   |       |                        |
| -60 dBm                | and an office of the second |                                                |           | a a standit (), a |       |                        |
| -70 dBm                |                                                                                                                 |                                                |           |                   |       |                        |
| Start 1.0 MHz          |                                                                                                                 |                                                | 32001 pts |                   | Sto   | p 2.5 GHz              |

Date: 5 NOV.2019 15:32:16

| Ref Level 24.00 dBm |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |
|---------------------|---------------------|--------------------|-----------------|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Att 40 dB           | <b>SWT</b> 227 ms 🖷 | <b>VBW</b> 300 kHz | Mode Auto Sweep |                   |     |                                                                                                                                                                                                                                   |
| 20 dBm              |                     |                    | D1[1]           |                   | 4.4 | -47.86 dE                                                                                                                                                                                                                         |
| 10 dBm              |                     |                    | M1[1]           | 1                 | 2.4 | 1.48 dBm<br>01790 GHz                                                                                                                                                                                                             |
| 1<br>0 dBm          |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |
| -10 dBm             |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |
| -20 dBm             |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |
| -30 dBm             |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |
| -40 dBm             |                     |                    |                 | . u u ahijaha kat |     |                                                                                                                                                                                                                                   |
|                     |                     |                    |                 |                   |     | a la serie de la completa de la serie de la serie<br>Nota de la serie |
| -60 dBm             |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |
| -70 dBm             |                     |                    |                 |                   |     |                                                                                                                                                                                                                                   |

Date: 5.NOV.2019 15:34:38



#### **TEST REPORT**

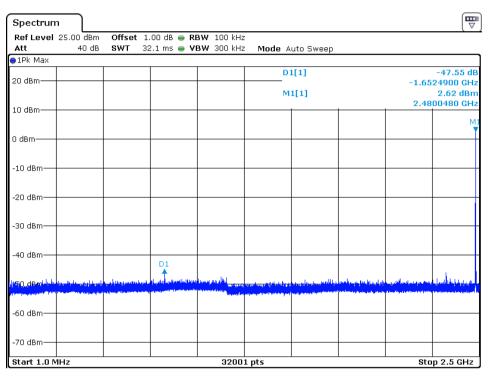
### Intertek Report No.: 190929011SZN-001

CH39

| Spectrum                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 | ₹  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|--------------|------------------|---------------------------------|----|
| Ref Level 24.00 dBi   Att 40 d                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Randa Autori                                          |                             |              |                  |                                 |    |
| Alt 40 u                                                                                                         | B 3WI 32.1 MS 🖷 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>DW</b> 300 KH2                                                                                                | Mode Auto 9                                           | sweep                       |              |                  |                                 |    |
| 20 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | D1[1]<br>M1[1]                                        |                             |              | -1.33            | -52.15 (<br>51270 Gl<br>3.24 dB | Hz |
| 10 dBm                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              | 2.44             | 10020 GI                        | Hz |
| 0 dBm                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  | M                               | 1  |
| -10 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 |    |
| -20 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 |    |
| -30 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 |    |
| -40 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 |    |
| 50 dBm                                                                                                           | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LL DI                                                                                                            | a ha shi ka ku ka |                             | a Hanada da  |                  | the second set                  |    |
| and the second | Industry and a start of the street street and a street str | and the second | owners and the plant but have an                      | a statement of the state of | and house of | Byunnakhinakhini | a brita b da second             |    |
| -60 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 | _  |
| -70 dBm                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                       |                             |              |                  |                                 |    |
| Start 1.0 MHz                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32001                                                                                                            | pts                                                   |                             |              | Sto              | p 2.5 GH                        | z  |

Date: 5.NOV.2019 15:29:51

| Spectrun         | n         |        |           |                   |            |           |   |                       |                                                                    |
|------------------|-----------|--------|-----------|-------------------|------------|-----------|---|-----------------------|--------------------------------------------------------------------|
| Ref Level        | 25.00 dBm | Offset | 1.00 dB 😑 | RBW 100 kH        | z          |           |   |                       |                                                                    |
| Att              | 40 dB     | SWT    | 227 ms 👄  | <b>VBW</b> 300 kH | z Mode A   | uto Sweep |   |                       |                                                                    |
| 😑 1Pk Max        |           |        |           |                   |            |           |   |                       |                                                                    |
| 20 dBm           |           |        |           |                   |            | 1[1]      |   | 17.9                  | -45.46 dB<br>04070 GHz<br>2.52 dBm                                 |
| 10 - 10          |           |        |           |                   |            |           |   | 2.4                   | 40810 GHz                                                          |
| 10 dBm<br>11     |           |        |           |                   |            |           |   |                       |                                                                    |
| 0 dBm——          |           |        |           |                   |            |           |   |                       |                                                                    |
| -10 dBm          |           |        |           |                   |            |           |   |                       |                                                                    |
| -20 dBm          |           |        |           |                   |            |           |   |                       |                                                                    |
| -30 dBm          |           |        |           |                   |            |           |   |                       |                                                                    |
| -40 dBm          |           |        |           |                   | ىلەللەت. ( | د         | a |                       |                                                                    |
| Lands a straight |           |        |           |                   |            |           |   | and the second second | lyn y telder Lybbel en odd P<br>1935 y Alfranse Angelen af seatter |
| -60 dBm          |           |        |           |                   |            |           |   |                       |                                                                    |
| -70 dBm          |           |        |           |                   |            |           |   |                       |                                                                    |
| CF 13.65 (       | GHz       |        |           | 320               | D1 pts     |           |   | Span                  | 22.7 GHz                                                           |


Date: 5NOV.2019 15:16:32



#### **TEST REPORT**

## Intertek Report No.: 190929011SZN-001

#### CH78



Date: 5 NOV 2019 15:00:41

|                                | 25.00 dBm                              |                     | 00 dB 😑 RI          |                                                     |        |           |                           |                                   |                                    |
|--------------------------------|----------------------------------------|---------------------|---------------------|-----------------------------------------------------|--------|-----------|---------------------------|-----------------------------------|------------------------------------|
| Att                            | 40 dB                                  | SWT                 | 227 ms 👄 <b>V</b> l | <b>BW</b> 300 kHz                                   | Mode A | uto Sweep |                           |                                   |                                    |
| 1Pk Max                        |                                        |                     |                     |                                                     | D      | 1[1]      |                           | 17.2                              | -41.21 d                           |
|                                |                                        |                     |                     |                                                     | м      | 1[1]      |                           |                                   | 0.10 dBi                           |
| 10 dBm                         |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |
| 1<br>0 dBm                     |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |
| -10 dBm                        |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |
| 20 dBm                         |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |
| 30 dBm                         |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |
| 40 dBm                         |                                        |                     |                     |                                                     |        |           | D1                        |                                   |                                    |
| -                              | الأرد بالرغانية (مرير ماريل)<br>معصيفي | an an Anna ta       | di selemente di     | la porten l'artico, al sa<br>Conservationes a disco |        |           | A share a share the state | مەراللاردۇرۇر.<br>مەراللاردۇرۇرۇر | Hana Kanaditan<br>Manaditan Inggin |
| and a second particular of the |                                        | and a second second |                     |                                                     |        |           |                           | <b>4</b> .                        |                                    |
| 60 dBm                         |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |
| 70 dBm                         |                                        |                     |                     |                                                     |        |           |                           |                                   |                                    |

Date: 5 NOV 2019 15:02:16



### 5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

#### 6.0 <u>Product Labelling</u>

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

### 7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

### 8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.



## 9.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the measured bandedge, the test procedure and calculation of factor such as pulse desensitization.

9.1 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period ( $T_{eff}$ ) is approximately 625µs for Bluetooth. With a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.

9.2 Calculation of Average Factor

Based on the Bluetooth Specification Version 5.0 (without BLE) and worst case AFH mode, transmitter ON time is independent of packet type (DH1, DH3 and DH5) and packet length, the AFH mode Duty cycle connection factor as below:

Channel hop rate = 800 hops/second (AFH Mode)

Adjusted channel hop rate for DH5 mode = 133.33 hops/second

Time per channel hop = 1/133.33 hops/second = 7.5 ms

Time to cycle through all channels = 7.5 x 20 channels = 150 ms

Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)

Worst case dwell time = 7.5 ms

Duty cycle connection factor = 20log10 (7.5ms / 100ms) = -22.5 dB



#### 9.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10: 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter, up to 1GHz 0.8m and above 1GHz 1.5m in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 9.2.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz with RBW 9KHz used.



### 9.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.10: 2013.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used (RBW 3MHz used for fundamental emission).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

# intertek

Total Quality. Assured.

TEST REPORT

### Intertek Report No.: 190929011SZN-001

# 10 Test Equipment List

| Equipment<br>No. | Equipment              | Manufacturer    | Model No.        | Serial No. | Cal. Date   | Due Date    |
|------------------|------------------------|-----------------|------------------|------------|-------------|-------------|
| SZ061-12         | BiConiLog<br>Antenna   | ETS             | 3142E            | 00166158   | 14-Sep-2018 | 14-Sep-2020 |
| SZ185-01         | EMI Receiver           | R&S             | ESCI             | 100547     | 04-Jan-2019 | 04-Jan-2020 |
| SZ061-08         | Horn Antenna           | ETS             | 3115             | 00092346   | 24-Aug-2019 | 24-Aug-2021 |
| SZ061-06         | Active Loop<br>Antenna | Electro-Metrics | EM-6876          | 217        | 24-May-2019 | 24-May-2020 |
| SZ056-03         | Spectrum<br>Analyzer   | R&S             | FSP 30           | 101148     | 28-May-2019 | 28-May-2020 |
| SZ056-06         | Signal Analyzer        | R&S             | FSV 40           | 101101     | 28-May-2019 | 28-May-2020 |
| SZ181-04         | Preamplifier           | Agilent         | 8449B            | 3008A02474 | 05-Jul-2019 | 05-Jul-2020 |
| SZ188-01         | Anechoic<br>Chamber    | ETS             | RFD-F/A-<br>100  | 4102       | 15-Dec-2018 | 15-Dec-2020 |
| SZ062-02         | RF Cable               | RADIALL         | RG 213U          |            | 10-Jun-2019 | 10-Jun-2020 |
| SZ062-05         | RF Cable               | RADIALL         | 0.04-<br>26.5GHz |            | 10-Jun-2019 | 10-Jun-2020 |
| SZ062-12         | RF Cable               | RADIALL         | 0.04-<br>26.5GHz |            | 10-Jun-2019 | 10-Jun-2020 |
| SZ067-04         | Notch Filter           | Micro-Tronics   | BRM50702<br>-02  |            | 05-Jun-2018 | 05-Jun-2020 |
| SZ185-02         | EMI Test<br>Receiver   | R&S             | ESCI             | 100692     | 29-Oct-2019 | 29-Oct-2020 |
| SZ187-02         | Two-Line V-<br>Network | R&S             | ENV216           | 100073     | 28-May-2019 | 29-May-2020 |
| SZ188-03         | Shielding<br>Room      | ETS             | RFD-100          | 4100       | 16-Jan-2017 | 16-Jan-2020 |