

Microsoft Corporation

TEST REPORT

SCOPE OF WORK FCC TESTING-1830

REPORT NUMBER 180516024SZN-001

ISSUE DATE

[REVISED DATE]

[-----]

23 August 2018

PAGES 54

DOCUMENT CONTROL NUMBER FCC ID 247_b © 2017 INTERTEK

1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China

Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 www.intertek.com

Intertek Report No.: 180516024SZN-001

Microsoft Corporation

Application For Certification

FCC ID: C3K1830

Bluetooth Accessory

Model: 1830

2.4GHz Transceiver

Report No.: 180516024SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-17]

Prepared and Checked by:

Rui Zhou Project Engineer

Approved by:

Kidd Yang Technical Supervisor Date: 23 August 2018

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China. Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Revision History

Report No.	t No. Version Description		Issued Date
180516024SZN-001	Rev.01	Initial issue of report	02 August 2018
180516024SZN-001	Rev.02	Second issue of report	17 August 2018
180516024SZN-001	Rev.03	Third issue of report	23 August 2018

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1:	Summary of Tests
EXHIBIT 2:	General Description
EXHIBIT 3:	System Test Configuration
EXHIBIT 4:	Measurement Results
EXHIBIT 5:	Miscellaneous Information
EXHIBIT 6:	Test Equipment List

MEASUREMENT/TECHNICAL REPORT

Bluetooth Accessory

Model: 1830

FCC ID: C3K1830

	Original Grant	X_Class	s II Change	
Equipment Type: <u>DSS - Part 15 Sp</u>	pread Spectrum Tra	<u>ansmitter</u>		
Deferred grant requested per 47 CI	FR 0.457(d)(1)(ii)?	Yes	No	X
Company Name agrees to notify the	e Commission by:	If yes, defei date	da	ate
of the intended date of announce issued on that date.	ement of the produ	ict so that t	he grant ca	an be
Transition Rules Request per 15.37	7?	Yes	No	Х
If no, assumed Part 15, Subpart [10-01-17] Edition] provision.	C for intentional	radiator - tł	ne new 47	CFR
	C for intentional	radiator - tł	ne new 47	CFR

Table of Contents

1.0	Summary of Test results	6
2.0	General Description	8
2.1 2.2 2.3 2.4	Product Description Related Submittal(s) Grants Test Methodology Test Facility	8 8
3.0	System Test Configuration	10
3.1 3.2 3.3 3.4 3.5 3.6	Justification EUT Exercising Software Special Accessories Measurement Uncertainty Equipment Modification Support Equipment List and Description	10 11 11 11
4.0	Measurement Results	13
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Radiated Test Result Conducted Emission Peak Power 20dB Bandwidth Channel Number (Number of Hopping Frequencies) Channel Separation (Carrier Frequency Separation) Dwell Time (Time of Occupancy) Band Edge Transmitter Spurious Emission (Conducted)	24 27 30 32 35 37 40 43
5.0	Miscellaneous Information	48
5.1 5.2 5.3	Discussion of Pulse Desensitization Transmitter Duty Cycle Calculation Emissions Test Procedures	50
6.0	Test Equipment List	54

EXHIBIT 1 SUMMARY OF TEST RESULTS

1.0 Summary of Test results

Applicant: Microsoft Corporation Address: One Microsoft Way Redmond, WA 98052 USA

Bluetooth Accessory

Model: 1830

FCC ID: C3K1830

TEST ITEM	REFERENCE	RESULTS
Max. Output power	15.247(b)(3)	Pass
20 dB Bandwidth	15.247(a)(1)	Pass
Number of Hopping Frequencies	15.247(a)(1)	Pass
Carrier Frequency Separation	15.247(a)(1)	Pass
Dwell Time	15.247(a)(1)	Pass
Out of Band Antenna Conducted Emission	15.247(d)	Pass
Radiated Emission in Restricted Bands	15.247(d)	Pass
AC Conducted Emission	15.207	Pass
Antenna Requirement	15.203	Pass (See Notes)

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

EXHIBIT 2 GENERAL DESCRIPTION

2.0 General Description

2.1 Product Description

The Equipment Under Test (EUT) is a Bluetooth Accessory with Bluetooth function operating at 2402-2480MHz. For more detailed features description, please refer to the user's manual.

Bluetooth Version: 4.1 (dual-mode) Antenna Type: Integral antenna Antenna Gain: 2 dBi Modulation Type: GFSK, π /4-DQPSK and 8-DPSK

For electronic filing, the brief circuit description is saved with filename: Model 1830 Operational Description.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of transceiver for the Bluetooth Accessory which has Bluetooth function (classic Bluetooth mode), and for the BLE mode was tested and demonstrated in report 180516024SZN-002.

2.3 Test Methodology

All measurements were performed according to the procedures in ANSI C63.10: 2013 and KDB 558074 D01 v04. Radiated emission measurement was performed in semianechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 15 of CFR 47.

2.4 Test Facility

The Semi-anechoic chamber and shielding room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R. China. This test facility and site measurement data have been fully placed on file with File Number: CN1188.

EXHIBIT 3

SYSTEM TEST CONFIGURATION

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables were manipulated to produce worst case emissions. Only the worst case data was reported.

All packets DH1, DH3 & DH5 mode in modulation type GFSK, π /4-DQPSK and 8-DPSK were tested and only the worst data was reported in this report.

For maximizing emissions, the EUT was rotated through 360°, the EUT was placed on the styrene turntable with 0.8m up to 1GHz and 1.5 m above 1GHz. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

The unit was placed at the center of turntable and the rear of unit was flushed with the rear of the styrene table.

Radiated emission measurement were performed the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the styrene table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing.

The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

Toot	Tool	-
Test		

Description	Manufacturer	Name	Version
EMI Test Software	R&S	EMC32-ME+	V1.0

3.3 Special Accessories

N/A.

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Measurement Uncertainty	Uncertainty
Occupied Channel Bandwidth	±5%
RF Output Power	±1.5dB
Conducted Unwanted Emission	±3.0dB
Spurious emission (Above 1GHz)	±6.0dB
Radiated emission (Up to 1GHz)	±4.8dB
AC Conducted emission	±3.6 dB
Temperature	±1°C
Humidity	±5%

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

3.5 Equipment Modification

Any modifications installed previous to testing by Microsoft Corporation will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

3.6 Support Equipment List and Description

This product was tested in the following configuration:

Refer List:

Description	Manufacturer	Model No.
USB A-C Cabel (Provided by Applicant)	N/A	Shielded, 135cm
PC (Provided by Intertek)	HP	430
AC Adaptor (Provided by Intertek)	HMD Global Oy	FC0200

EXHIBIT 4

MEASUREMENT RESULTS

Applicant: Microsoft Corporation Date of Test: May 24, 2018

Model: 1830

4.0 Measurement Results

- 4.1 Radiated Test Results A sample calculation, configuration photographs and data tables of the emissions are included.
- 4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

 $\begin{array}{ll} \mbox{Where} & \mbox{FS} = \mbox{Field Strength in } dB\mu V/m \\ \mbox{RA} = \mbox{Receiver Amplitude (including preamplifier) in } dB\mu V \\ \mbox{CF} = \mbox{Cable Attenuation Factor in } dB \\ \mbox{AF} = \mbox{Antenna Factor in } dB \\ \mbox{AG} = \mbox{Amplifier Gain in } dB \\ \mbox{PD} = \mbox{Pulse Desensitization in } dB \\ \mbox{AV} = \mbox{Average Factor in } -dB \\ \end{array}$

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB

 $FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m

Applicant: Microsoft Corporation Date of Test: May 24, 2018

Model: 1830

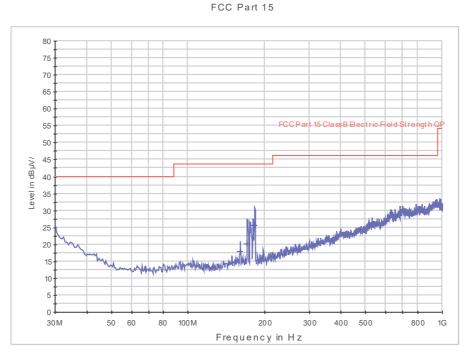
4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: 1830 Test Setup Photos. pdf.

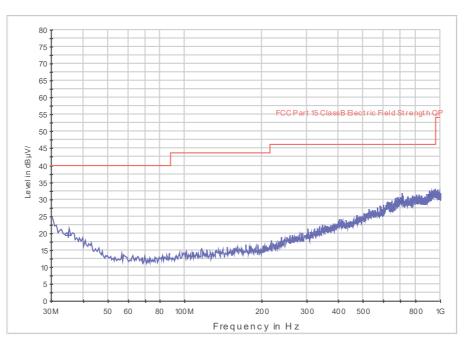
4.1.3 Radiated Emissions- FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission


at 905.910 MHz

Judgement: Passed by 14.6 dB


ANT Polarity: Horizontal

Model: 1830 Transmitting(2402MHz)

ANT Polarity: Vertical

Model: 1830 Transmitting(2402MHz)

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	160.465	26.6	20.0	11.3	17.9	43.5	-25.6
Horizontal	171.135	29.4	20.0	10.9	20.3	43.5	-23.2
Horizontal	183.000	34.3	20.0	11.4	25.7	43.5	-17.8
Vertical	35.000	24.0	20.0	15.3	19.3	40.0	-20.7
Vertical	707.545	24.0	20.0	25.3	29.3	46.0	-16.7
Vertical	905.910	24.8	20.0	26.6	31.4	46.0	-14.6

NOTES: 1. Quasi-Peak detector is used for frequency below 1GHz.

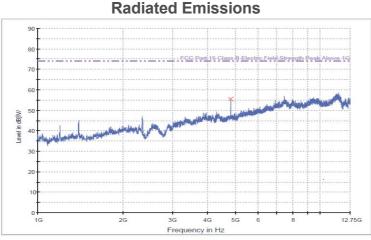
- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. All emissions are below the QP limit.
- 5. The spurious emissions were very low against the limit in the frequency range 9KHz to 30MHz. The amplitude of spurious emissions that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Applicant: Microsoft Corporation Date of Test: May 24, 2018 Worst Case Operating Mode:

Model: 1830 Transmitting(2402MHz)

4.1.4 Transmitter Spurious Emissions (Radiated) - FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

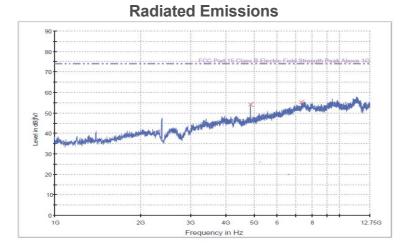

Worst Case Radiated Emission

at 4960.000 MHz

Judgement: Passed by 16.8 dB

Model: 1830 Transmitting (2402MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2402.000	109.2	36.7	28.1	100.6	/	/
Horizontal	*4804.000	58.7	36.8	33.5	55.4	74.0	-18.6


Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2402.000	109.2	36.7	28.1	22.5	78.1	/	/
Horizontal	*4804.000	58.7	36.8	33.5	22.5	32.9	54.0	-21.1

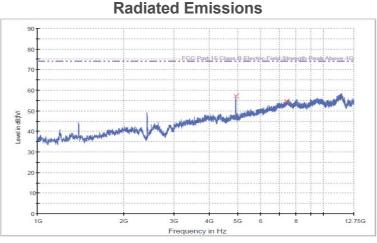
NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205 and RSS Gen (issue 4) - 8.10. The corresponding limit as per 15.209 and RSS Gen (issue 4) - 8.9 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

Model: 1830 Transmitting (2440MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4882.000	57.4	36.7	33.4	54.1	74.0	-19.9
Horizontal	*7323.000	55.0	36.6	36.8	55.2	74.0	-18.8

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4882.000	57.4	36.7	33.4	22.5	31.6	54.0	-22.4
Horizontal	*7323.000	55.0	36.6	36.8	22.5	32.7	54.0	-21.3


NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 3. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205 and RSS Gen (issue 4) - 8.10. The corresponding limit as per 15.209 and RSS Gen (issue 4) - 8.9 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Model: 1830 Transmitting (2480MHz)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2480.000	109.7	36.7	28.1	101.1	/	/
Horizontal	*4960.000	60.7	36.8	33.3	57.2	74.0	-16.8
Horizontal	*7440.000	54.4	36.5	36.7	54.6	74.0	-19.4

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2480.000	109.7	36.7	28.1	22.5	78.6	/	/
Horizontal	*4960.000	60.7	36.8	33.3	22.5	34.7	54.0	-19.3
Horizontal	*7440.000	54.4	36.5	36.7	22.5	32.1	54.0	-21.9

NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- Emission within the restricted band meets the requirement of section 15.205 and RSS Gen (issue 4) - 8.10. The corresponding limit as per 15.209 and RSS Gen (issue 4) - 8.9 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

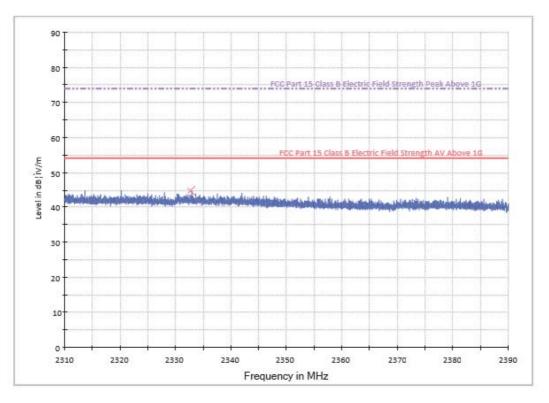
4.1.5 Restricted-Band Band-Edge Emissions (Radiated) - FCC section 15.209

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in15.209.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission

at 2483.506 MHz


Judgement: Passed by 27.1 dB

Restricted-Band Band-Edge Emissions (2310-2390MHz)

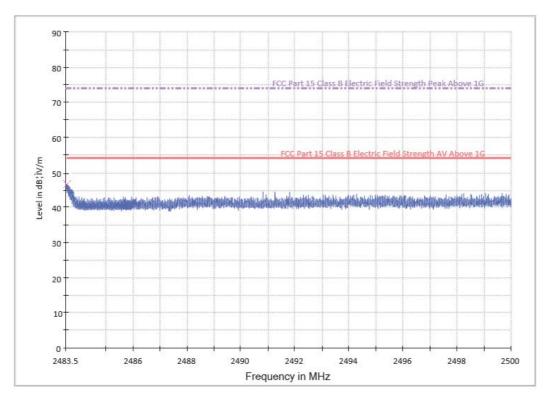
Applicant: Microsoft Corporation Date of Test: May 24, 2018 Worst Case Operating Mode:

Model: 1830 Transmitting (2402MHz)

Radiated Emissions

Polarizat	on	Frequency	Reading	Pre-	Antenna	Net	Peak Limit	Margin
		(MHz)	(dBµV)	Amp	Factor	at 3m	at 3m	(dB)
				Gain	(dB)	(dBµV/m)	(dBµV/m)	, , , ,
				(dB)				
Horizon	al	2333.610	53.6	36.7	28.1	45.0	74.0	-29.0

NOTES: 1. Peak detector is used except for others stated.


- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Restricted-Band Band-Edge Emissions (2483.5-2500MHz)

Applicant: Microsoft Corporation Date of Test: May 24, 2018 Worst Case Operating Mode:

Model: 1830 Transmitting (2480MHz)

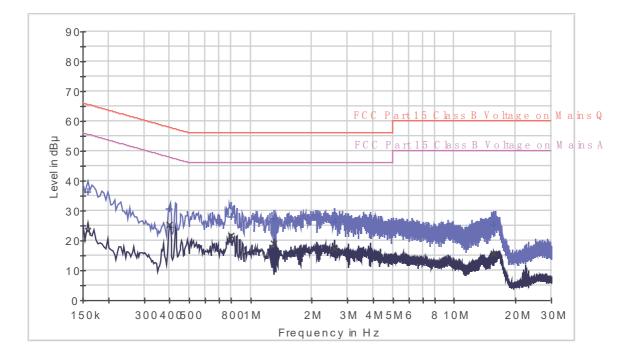
Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	at 3m	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2483.506	55.5	36.7	28.1	46.9	74.0	-27.1

NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

4.2 Conducted Emission


Worst Case Conducted emission at 0.422 MHz is Passed by 22.0 dB margin

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: 1830 Test Setup Photos.pdf.

Applicant: Microsoft Corporation Date of Test: May 25, 2018 Model: 1830 Worst Case Operating Mode: BT Link Modulation type: GFSK Phase: Live

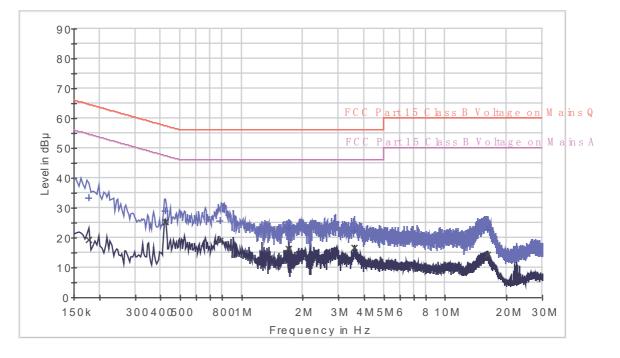
Conducted Emission Test - FCC

Result Table QP

Frequency (MHz)	QuasiPeak (dB¦ÌV)	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)
0.158000	36.2	L1	9.6	29.4	65.6
0.398000	30.6	L1	9.7	27.3	57.9
0.802000	28.0	L1	9.7	28.0	56.0
1.306000	27.4	L1	9.7	28.6	56.0
2.582000	26.3	L1	9.7	29.7	56.0
15.658000	25.2	L1	10.1	34.8	60.0

Result Table AV

Frequency (MHz)	Average (dB¦ÌV)	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)
0.158000	23.4	L1	9.6	32.2	55.6
0.398000	25.5	L1	9.7	22.4	47.9
0.802000	21.8	L1	9.7	24.2	46.0
1.306000	19.1	L1	9.7	26.9	46.0
2.582000	17.3	L1	9.7	28.7	46.0
15.658000	15.7	L1	10.1	34.3	50.0


Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Limit (dBuV) Level (dBuV)

Applicant: Microsoft Corporation Date of Test: May 25, 2018 Model: 1830 Worst Case Operating Mode: BT Link Modulation type: GFSK Phase: Neutral

Conducted Emission Test - FCC

Result Table QP

Frequency (MHz)	QuasiPeak (dB¦ÌV)	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)
0.178000	33.2	N	9.7	31.4	64.6
0.422000	29.0	N	9.7	28.4	57.4
0.786000	25.8	N	9.7	30.2	56.0
1.702000	23.5	N	9.7	32.5	56.0
3.570000	22.4	N	9.8	33.6	56.0
16.114000	22.7	Ν	10.1	37.3	60.0

Result Table AV

Frequency (MHz)	Average (dB¦ÌV)	Line	Corr. (dB)	Margin (dB)	Limit (dB¦ÌV)
0.178000	19.5	Ν	9.7	35.1	54.6
0.422000	25.4	Ν	9.7	22.0	47.4
0.786000	19.0	N	9.7	27.0	46.0
1.702000	16.4	N	9.7	29.6	46.0
3.570000	16.7	Ν	9.8	29.3	46.0
16.114000	14.5	N	10.1	35.5	50.0

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Limit (dBuV) Level (dBuV)

Applicant: Microsoft Corporation Date of Test: July 20, 2018

Model: 1830

4.3 Peak Power

Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1).

The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm.

Worst case result:

Antenna Gain = 2dBi									
Modulation Frequency Output Power Output Power									
Туре	(MHz)	(dBm)	(mW)						
	2402	2.32	1.706						
GFSK	2441	3.70	2.344						
	2480	3.80	2.399						

For antenna with gains of 6dBi or less, and frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, the systems operate with an output power no greater than 125 mW.

Cable loss, external attenuation has been included in OFFSET(1.0dB) function.

Modulation Type: GFSK

CH00

Att 50 dB SWT	1 ms 🥌 VBW 3 MHz Mode	e Auto Sweep	
1Pk Max			
		M1[1]	2.32 dBn 2.40218090 GH
20 dBm			
10 dBm			
	M1		
0 dBm			
~~~~			
-10 dBm			
-20 dBm			
-30 dBm			
1.5820			
-40 dBm			
-50 dBm			
(0.40m)			
-60 dBm			

	ffset 1.00 dB ⊕ RBW 31 WT 1 ms ⊕ VBW 31		
1Pk Max			
		M1[1]	3.70 dBr 2.44089150 GH
20 dBm-			
States and			
10 dBm		MI	
) dBm			
, doin			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
50 dBm			
-60 dBm			

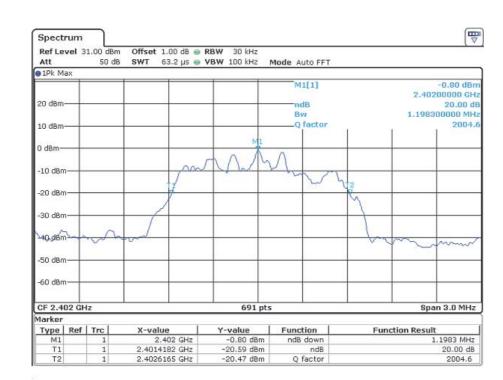


	WT 1 ms 💿 VBW 3 MHz	Mode Auto Sweep	
1Pk Max			
		M1[1]	3.80 dBn 2.47964540 GH
20 dBm			
10 dBm			
	M1		
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			



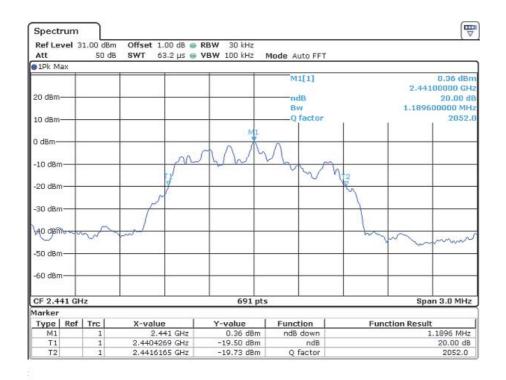
Applicant: Microsoft Corporation Date of Test: July 20, 2018

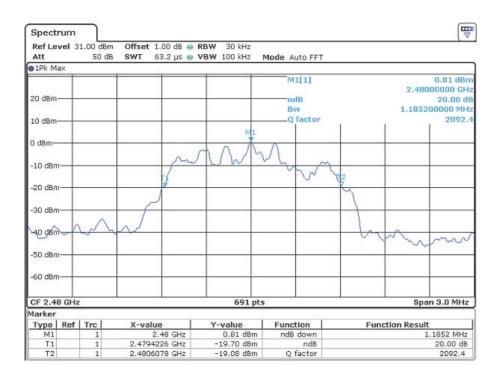
Model: 1830


#### 4.4 20dB Bandwidth

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a) (1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.


Frequency (MHz)	20 dB Bandwidth (MHz)
2402	1.1983
2441	1.1896
2480	1.1852


Worst Case Modulation Type: 8DPSK





#### CH39







Applicant: Microsoft Corporation Date of Test: July 20, 2018

Model: 1830

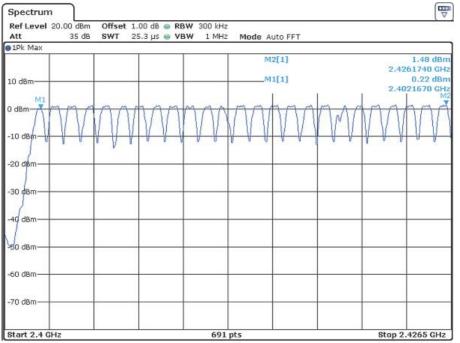
#### 4.5 Channel Number (Number of Hopping Frequencies)

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a) (1) (iii):

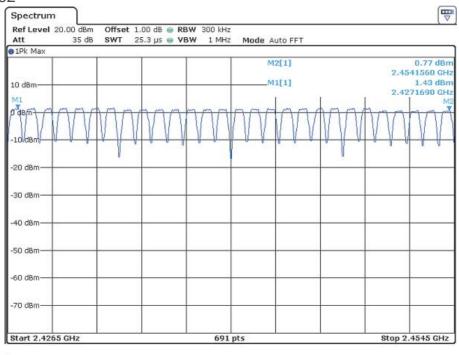
The RF passband of the EUT was divided into 3 approximately equal bands. With the analyzer set to MAX HOLD readings were taken for 2-3 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

Number of hopping channels =	79
Note: In AEU mode, this device exercise using 20	abappala and it's actisfied the requirement

Note: In AFH mode, this device operates using 20 channels and it's satisfied the requirement of limit of minimum of 15 hopping channels.

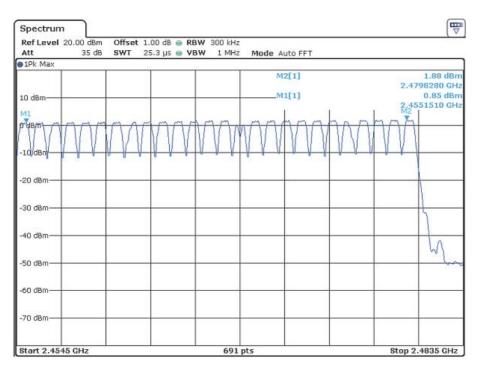

#### Worst Case Modulation Type: GFSK

#### CH00-CH78


Att	35 dB	SWT	1 ms 🛞 VE	BW 1 MHz	Mode A	uto Sweep			
1Pk Max						1[1] 2[1]			0.48 dBr 102160 GH 2.05 dBr 180230 GH
M1 0 486 8000	WWW	nnnn	MMM	huluulu	MMMM	MMM	MANA	mm	
20 dBm						2			
30 dBm									
40 dBm								-	
50 dBm									, u
60 dBm									
-70 dBm									



#### CH00-CH24




#### CH25-CH52





#### CH53-CH78





Applicant: Microsoft Corporation Date of Test: July 20, 2018

Model: 1830

4.6 Channel Separation (Carrier Frequency Separation)

Minimum Hopping Channel Carrier Frequency Separation, FCC Ref: 15.247(a)(1):

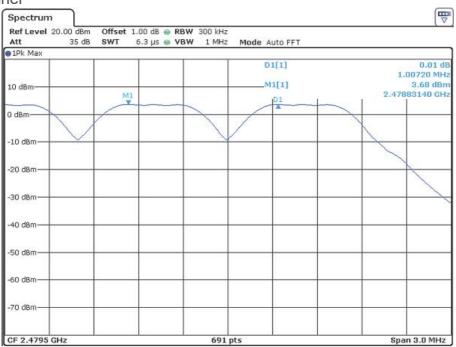
Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and compared against the limit:

Not less than 2/3 of 20dB bandwidth of hopping channel: 1.1983 x 2/3 = 0.799MHz

Minimum Channel Separation 1.0072 MHz

Worst Case Modulation Type: 8DPSK

Low Channel


Att 35 dB SWT	t 1.00 dB 😑 RBW 300 kH 6.3 µs 😁 VBW 1 MH		
1Pk Max			
10 d8m		D1[1] M1[1]	1.19 dt 1.00720 MH 1.90 dBn 2.40215700 GH
) dBm	MI		
-10 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
70 dBm			



#### Middle Channel

IS 🔲 VBW 1 MHZ Mode Auto FFT	
D1[1]	2.0.1 d
DI[1]	0.04 d 1.00720 MH
M1[1]	3.15 dBr
01 1	2.44082710 GH
	DI[1] DI[1] M1[1] P1 A A A A A A A A A A A A A

## High Channel





Applicant: Microsoft Corporation Date of Test: May 30, 2018

Model: 1830

#### 4.7 Dwell Time (Time of Occupancy)

Average Channel Occupancy Time, FCC Ref: 15.247(a) (1)(iii):

The spectrum analyzer center frequency was set to one of the known hopping channels. The SWEEP was set to 10ms, the SPAN was set to ZERO SPAN, and the TRIGGER was set to VIDEO. The time duration of the transmissions so captured was measured with the MARKER DELTA function.

The maximum number of hopping channels in 31.6s for DH1 =1600 / 2 / 79 *31.6=320

The maximum number of hopping channels in 31.6s for DH3 =1600 / 4 / 79 *31.6=160

The maximum number of hopping channels in 31.6s for DH5 =1600 / 6 / 79 *31.6=107

Modulation Type	Packet		Max Dwell	Time		Limit (s)	Result
	3DH1	0.416	ms * 320=	133.12	ms	0.4	Pass
8DPSK	3DH3	1.667	ms * 160=	266.72	ms	0.4	Pass
ODESK	3DH5	2.922	ms * 107=	302.14	ms	0.4	Pass

AFH mode:

The maximum number of hopping channels in 8s for DH1 =800 / 2 / 20 *8=160

The maximum number of hopping channels in 8s for DH3 =800 / 4 / 20 *8=80

The maximum number of hopping channels in 8s for DH5 =800 / 6 / 20 *8=53.33

	Modulation Type	Packet		Max Dwell 1	Гime		Limit (s)	Result
Γ		3DH1	0.416	ms * 160=	66.56	ms	0.4	Pass
	8DPSK	3DH3	1.667	ms * 80=	133.36	ms	0.4	Pass
	ODESK	3DH5	2.922	ms * 53.33=	155.83	ms	0.4	Pass



#### Worst Case Modulation Type: 8DPSK Packet: 3DH1

Spectrum Ref Level 22.00 dBm Offset 1.00 dB 👄 RBW 1 MHz Att 40 dB 💿 SWT 1 ms 👜 VBW 3 MHz SGL 1Pk Max M1[1] 2.65 dBr 504.35 µs 20.00 dB 415.942 µs 10 dBm ndB PWid andminin 0 dBn -10 dBm -20 dBm -30 dBm -40 dBm 150 abrill West and Mere and a local with Althe LAUGH -60 dBm -70 dBm-CF 2.441 GHz 691 pts 100.0 µs/ Marker Y-value 2.65 dBm -15.22 dBm -17.12 dBm Type | Ref | Trc | Function Result X-value Function 504.35 µs 273.91 µs 689.86 µs M1 T1 415.942028986 µs 20.00 dB ndB down ndB PWidth 1 Τ2 0.0

#### Packet: 3DH3

Spect								
Ref Le Att SGL	vel 2	2.00 dBr 40 dl			RBW 1 MHz VBW 3 MHz			
1Pk M	ax					0.000		
10 dBm	_				MI	M1[1] 		2.61 dBr 965.22 µ 20.00 d 1.667 m
0 dBm-	-1		HANNAL AND AND	Mununulu	mound and an	charman manager we	upper support	an sold aprilia
-10 dBm	n		-					T ₂
-20 dBm	n		-					
-30 dBm	n		-					
-40 dBm	n		_				_	
USO BBR	WH							hud
-60 dBm	n							
-70 dBm	n							
CF 2.4	41 GH	z		1	691 pt:	5		200.0 µs/
Marker								
Type	Ref	Trc	X-value		Y-value	Function	Functio	n Result
M1		1		5.22 µs	2.61 dBm	ndB down	10000000000	1.666666667 ms
T1		1		3.19 µs	-7.24 dBm	ndB		20.00 dB
T2		1	1.88	986 ms	-11.28 dBm	PWidth		0.0

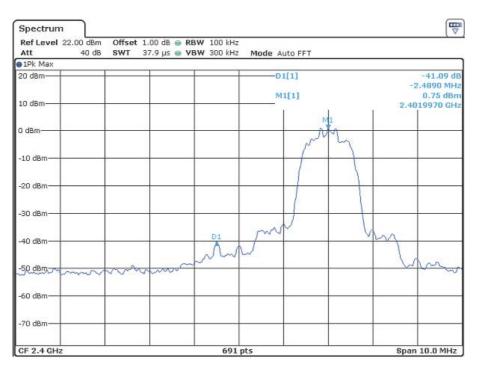


#### Packet: 3DH5

rum						(
vel 2						
ax						
_					ndB PWid	2.62 d 3.53623 20.00 M1 2.922
-		- porture	warmentude	and the second second second	mannen	upuntur and marked and
-		V				T12 V
-+-						
+			-			
here	hhruspe	1				
-+-		_				
+						
41 GF	łz			691 pts		400.0 μ
Def	Tral	V	lue I	o	Eurotian 1	Europhian Deput
Ker						Function Result 2.92173913 r
-			of the state of th			2.92173913 1
						20.001
	22222222222222222222222222222222222222	vel 22.00 de 40 d ax	vel         22.00         dBm         Offser           40         dB         SWT         SWT           8X	vel         22.00 dBm         Offset         1.00 dB           40 dB         SWT         4 ms           8X	vel         22.00 dBm         Offset         1.00 dB         RBW         1 MHz           40 dB         SWT         4 ms         VBW         3 MHz           ax	vel         22.00 dBm         Offset         1.00 dB         RBW         1 MHz           40 dB         SWT         4 ms         VBW         3 MHz           8X



Applicant: Microsoft Corporation Date of Test: May 30, 2018 & July 20, 2018 Model: 1830


#### 4.8 Band Edge

Out of Band Conducted Emissions, FCC Rule 15.247(d)

In any 100 KHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.



### Worst Modulation Type: 8DPSK



Maximum Out of Band Conducted Emissions was 41.09 dB below the maximum inband 100 kHz emission.



Maximum Out of Band Conducted Emissions was 51.28 dB below the maximum inband 100 kHz emission.



### Hopping Mode:

Reference Level: 3.55dBm

Spectrum	dBm								æ
	24.00 dBm			BW 100 kH					
Att 1Pk Max	40 dB	SWT 18	89.5 µs 🥌 V	'BW 300 kH	z Mode /	Auto FFT			
20 d8m					M	1[1]		2,430	3.55 dBm 99970 GHz
10 dBm			M1			· · · · · · · · · · · · · · · · · · ·			
	****	ANIA ANA	AAAAA AA	AAAAAAAA	ANAMANA		AAAAAAA	Addatable	AAAAA
- MARAN	ana kan	'naYaan	1. A. A. 1997		1000	NA AN	ANN NI NI	na Ma	
-10 960				<b>VIIII</b> III	1111111	Ŭ U U U U U U		WWWWWW	
-20 dBm-	1.0.10	In an	alara	1.11.12	discrib.	dutin	a del al	i.h.h.	E.H.
-30 dBm									
40 dBm-									
50 dBm									Hate
-60 dBm									
-70 dBm	2								
Start 2.4 G	Hz			3200	1 pts			Stop 2	4835 GHz
Spectrun	n )								
Ref Level	24.00 dBm 40 dB			W 100 kHz		uto FFT			1.
Att 1Pk Max	40 GB	SWT 50	να hz 🖷 ΛΕ	3W 300 kHz					
20 dBm					M	1[1]			50.52 dBm 00000 GHz
10 d8m			-						
0 d8m						AN	M Ma m	00.00	n m a
0 ubin					ſ	1/1	$\prod$	M M J	141
-10 dBm					-	VI	VV	V V	VV
-20 dBm	D1 -16.450	d8m				1 N		1 4	
-30 dBm									
00000000									
-40 dBm					, N				
-ERdBar	munumm	Komm	mumw	sher when					
-60 dBm									
-70 d0m									
-70 dBm	011-				1 mbr				0.44.000
Start 2.39 Marker				3200	1 pts			Stop	2.41 GHz
Type Re M1	f Trc 1	X-value 2	.4 GHz	Y-value -50.52 dB	Func m	tion	Fund	tion Result	
-									
Spectrun		Offert 1	00 d8 👄 🕫	3W 100 kHz					
Reflevel	24.00 UBM 40 dB			3W 300 kHz		uto FFT			
Ref Level Att					M	1[1]			50.44 dBm
Att 1Pk Max					120.02	P P			00000 GHz
Att 1Pk Max 20 dBm						1 1			
Att 1Pk Max									
Att 1Pk Max 20 dBm	4 19 1 1	1 A A f	Λ						
Att 1Pk Max 20 dBm 10 dBm 0 dBm	1/1/1	MM	M						
Att 1Pk Max 20 dBm 10 dBm 0 dBm 0 dBm 40 dBm	D1 -16.450		M						
Att 1Pk Max 20 dBm 10 dBm 0 dBm	D1 -16.450								
Att 1Pk Max 20 dBm 10 dBm 0 dBm 40 dBm	01 -16.450	dBm-V	M						
Att 1 Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm	01 -16.450	dam V							
Att 1Pk Max 20 dBm 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	D1 -16.450	dam /		 					
Att 1 Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm	D1 -16.450	dBm /	M	MI	Jour Vourry Marsh	henrengtoon	and the second of the second o		สารณาสาราชสาร
Att PIR Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	01 -16.450	dBm V		Mi	fr-strangfragt	harenatar	manyund		สสรรรษา
Att 1Pk Max 20 dBm 10 dBm 10 dBm -0 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	D1 -16.450	dBm-V		M1	fra Vana frakt	harewarkar	Martle rowly		ซรุ <i>โประการแล้ง</i> เรื่อง
Att 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm		dBm-V		สาราราชาติสาราสารา		hereonetar	and the second of the second o		
Att 1Pk Max 20 dBm 10 dBm 0 dBm -0 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	GHz	dam / /		M1 1100770000 3200 Y-volue					p 2.5 GHz



Applicant: Microsoft Corporation Date of Test: May 30, 2018

Model: 1830

4.9 Transmitter Spurious Emissions (Conducted)

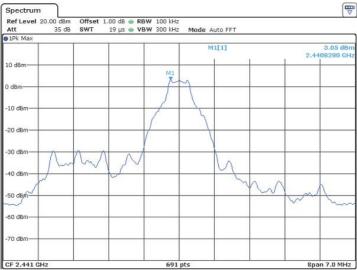
Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.



## Worst Case Modulation Type: GFSK

### CH00 Reference Level: 1.85dBm


Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 1.0 SWT 1		W 100 kH:		uto FFT			[₩
1Pk Max								
				M	1[1]		2.40	1.85 dBm 21620 GHz
10 dBm								
				MI				
0 dBm			r	7			-	
-10 dBm			1					
-10 dBill			1	7				
-20 dBm			1	1				
			/					
-30 dBm		/			0	ΛΛ	Δ	
10.10		N			W	Im	M	
-40 dBm		1			w			
-50 dBm	100	/						m
mmm	~							n
-60 dBm								
-70 dBm								
CF 2.402 GHz				pts				n 7.0 MHz

Att	20.00 dBm 35 dB		1.00 dB 👄 Ri 2.1 ms 👄 V			uto Sweep			
1Pk Max		-	-						
10 d8m				-		1[1]			-53.00 df 501910 GH 1.69 dBn 021910 GH M1
0 dBm									Y
-10 dBm									
-20 dBm	01 -18.150	d8m							
-30 dBm									
-40 dBm		-							
-50 dBm —	w.d.p.t.p.t.ant	للما الم	DI.	waran la la da	and the literature	hand a she d	barn a third a	of million on a base	Aurille, Judei
oo asm	facial a contra para para	il <u>uane lefente</u>	a and a set bird official state		and political diversion				
-70 dBm									

-47.81 ( 156.060 M) 1.45 dB 2.401790 G
156.060 Mi 1.45 dB
1.45 dB
2.401790 GI
hard a fall of the
See States



### CH39 Reference Level: 3.05dBm




Att 1Pk Max	35 dB	SWT	32.1 ms 👳 V	511 000 Mile	HOUG A	uto Sweep			-
10 dBm						1[1] 1[1]		-53.79 5.6360 M 3.06 di 408460 G	1H Bn
0 d8m	-								ľ
-10 dBm—	-	-							+
-20 dBm—	D1 -16.95	D dBm							+
-30 dBm—	-		-						+
-40 dBm—									
-50 d8m—		_				1		D1	
ala abm	n la datin la ana	Al Jana (na Babla)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Constitution of the state	phanes and participants and an		layer in the treating		il.
-70 dBm—									

Att	35 dB	SWT	227 ms 😑 V	BW 300 kHz	Mode A	uto Sweep			
1Pk Max		71	- 22						
					D	1[1]			-49.87 d
10000						1[1]		18	6.060 MH 2.92 dBr
10 dBm				-		T[T]		2.4	40810 GH
						î î	1 1		
0 dBm				-				-	
-10 dBm									
-20 dBm	Ð1 -16.950	dBm							
20 0011									
-30 dBm									
1.000									
-40 dBm	-		-						
1									
50 dBm	I well to all	-						-	
All and a second	- Alexandra and a strength	I day Ukudad	Additionality	1 all added to be a	U.A.Phylochille	A solution also	Cheve In 1997	Andheathing	monula
60 dBm-			A MALER MARK	to and a star of a	that the he	a shi shareshi	And the set		Manage A.
		1							
70 40 -									
-70 dBm			- 23	1		2		°	



#### CH78 Reference Level: 3.63dBm



Att	l 20.00 dBm 35 dB		1.00 dB 👄 R 32.1 ms 👄 V			uto Sweep			
1Pk Max	1		-						
						1[1]		-150	-53.72 di 5.3390 MH
10 dBm			-		M	1[1]			1.54 dBn 802040 GH
						Ê Î	Ĩ.	2.48	102040 GH
0 dBm									
10 dBm-	-		-						
0.02.20.2000	D1 -16.370	dBm							
20 dBm—									
-30 dBm									
40 dBm-									
10 0011									
50 dBm-			-						01
and a start of the	La sulle de las classes	hala halilata	rates take and billion	المعسادة الرواد	بالرواء كميتعرار	mighamoth	Alexandree as	portorelland str	And the marile
ou usm—	-	dependence of	alay ta da and a second a s		which also do allowed		(and the section of the	-	a second s
70 dBm-									

Ref Level 20 Att	.00 dBm 35 dB	Offset SWT	1.00 dB  RI 227 ms  VI			uto Sweep				
1Pk Max										
10 dBm						D1[1] M1[1]		-49.21 d 4.366780 GH 1.75 dBr 2.479820 GH		
0 dBm						-		-		
-10 dBm										
-20 dBm	-16.370	dBm								
-30 dBm										
-40 dBm						,,				
-50 dBm	D Note that and Note that and			المرابع المالي والم	a. Culture	المراجع والمحالية المراجع	ate ou the stand	and the address	ينابع والم	
60 dBm		Alter Party	en and supplier and and	Lastadeder, aller	No. of Contraction	half the subst	ALLA DO	- CALLER CO.	lan, the second second	
-70 dBm										
Start 2.3 GHz				3200					25.0 GHz	



# **EXHIBIT 5**

# **MISCELLANEOUS INFORMATION**



#### 5.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandedge, the test procedure and calculation of factor such as pulse desensitization.



#### 5.1 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period ( $T_{eff}$ ) is approximately 625µs for Bluetooth. With a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.



#### 5.2 Transmitter Duty Cycle Calculation, FCC Rule 15.35(b, c)

Based on the Bluetooth Specification, transmitter ON time is independent of packet type (DH1, DH3 and DH5) and packet length (single-slot and multi-slot). The maximum transmitter ON time for the Bluetooth is 625µs.

Each TX and RX time slot is 625µs in length. A TDD scheme is used where master and slave alternately transmit. For one period for a pseudo-random hopping through all 79 RF channels, for DH5:

Normal Mode: Channel hop rate=1600 hops/second Time of 1 hopset (5 TX slots + 1 RX slot) = 0.625 ms x 6 = 3.75 ms Time of 1 cycle =3.75 ms x 79 = 296.25 ms Average factor =  $20 \log (3.125 / 100) = -30.1$  dB

AFH Mode: Channel hop rate = 800 hops/second (AFH Mode) Adjusted channel hop rate for DH5 mode = 133.33 hops/second Time per channel hop = 1 / 133.33 hops/second = 7.5 ms Time to cycle through all channels = 7.5 x 20 channels = 150 ms Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s) Worst case dwell time = 7.5 ms Duty cycle connection factor = 20log10(7.5ms / 100ms) = -22.5 dB





#### 5.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10: 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter, up to 1GHz 0.8m and above 1GHz 1.5m in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz with RBW 9KHz used.



#### 5.3.1 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.10: 2013.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used (RBW 3MHz used for fundamental emission).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.



# **EXHIBIT 7**

# **TEST EQUIPMENT LIST**



**TEST REPORT** 

#### **Test Equipment List** 6.0

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-12	BiConiLog Antenna	ETS	3142E	00166158	20-Sep-2017	20-Sep-2018
SZ185-01	EMI Receiver	R&S	ESCI	100547	24-Jan-2018	24-Jan-2019
SZ061-08	Horn Antenna	ETS	3115	00092346	20-Sep-2017	20-Sep-2018
SZ061-07	Pyramidal Horn Antenna	ETS	3160-09	00083067	17-Mar-2018	17-Mar-2019
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	11-May-2018	11-May-2019
SZ056-03	Spectrum	R&S	FSP 30	101148	01-Jun-2017	01-Jun-2018
	Analyzer	Ras	F3F 30	101140	05-Jun-2018	05-Jun-2019
SZ056-06	Signal	R&S	FSV 40	101101	07-Jul-2017	07-Jul-2018
	Analyzer				05-Jun-2018	05-Jun-2019
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	24-Jan-2018	24-Jan-2019
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	16-Jan-2017	16-Jan-2019
SZ062-02	RF Cable	RADIALL	RG 213U		16-Jun-2017	16-Jun-2018
02002-02					02-Jun-2018	02-Jun-2019
SZ062-05	RF Cable	RADIALL	0.04-		16-Jun-2017	16-Jun-2018
			26.5GHz		02-Jun-2018	02-Jun-2019
SZ062-12	RF Cable	RADIALL	0.04-		16-Jun-2017	16-Jun-2018
			26.5GHz		02-Jun-2018	02-Jun-2019
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		14-Jun-2017	14-Jun-2018
	NOIGHT IIICEI	MICIO-ITOMICS			05-Jun-2018	05-Jun-2019
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	30-Oct-2017	30-Oct-2018
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	30-Oct-2017	30-Oct-2018
SZ188-03	Shielding Room	ETS	RFD-100	4100	16-Jan-2017	16-Jan-2019

----END----