

	FCC Test Report (WLAN)
Report No.:	RF161123E06
FCC ID:	C3K1817
Test Model:	1817
Received Date:	Aug. 03, 2015
Test Date:	Sep. 17 to 25, 2015 ; Dec. 29, 2016 to Jan. 10, 2017
Issued Date:	Apr. 21, 2017
	Microsoft Corporation One Microsoft Way Redmond WA 98052
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location (1):	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location (2):	No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	elease Control Record 4				
1	C	ertificate of Conformity	5		
2	S	ummary of Test Results	6		
	2.1 2.2	Measurement Uncertainty Modification Record			
3	G	eneral Information	7		
	3.1	General Description of EUT (WLAN)			
	3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards	14		
4	Т	est Types and Results	15		
	4.1	Radiated Emission and Bandedge Measurement	15		
	4.1.1	5			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results (Bandedge)			
	4.1.o 4.2	Test Results (Spurious emission) Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
	4.2.7	Test Results			
	4.3	6dB Bandwidth Measurement			
	4.3.1	Limits of 6dB Bandwidth Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure Deviation fromTest Standard			
		EUT Operating Conditions			
		Test Result			
	4.4	Conducted Output Power Measurement			
		Limits of Conducted Output Power Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		EUT Operating Conditions			
		Test Results			
	4.5	Power Spectral Density Measurement.			
	4.5.1				
		Test Setup Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
			00		

Арр	enc	dix – Information on the Testing Laboratories	44
5	F	Pictures of Test Arrangements	43
4.	6.7	Test Results	41
		EUT Operating Condition	
		Deviation from Test Standard	
		Test Procedure	
4.	6.3	Test Instruments	40
4.	6.2	Test Setup	40
		Limits of Conducted Out of Band Emission Measurement	
		Conducted Out of Band Emission Measurement	
4.	5.7	Test Results	39
4.	5.6	EUT Operating Condition	38

	Release Control Record	
Issue No.	Description	Date Issued
RF161123E06	Original release.	Apr. 21, 2017

1 Certificate of Conformity

Product:	dual-band wireless accessory radio
Brand:	Microsoft
Test Model:	1817
Sample Status:	ENGINEERING SAMPLE
Applicant:	Microsoft Corporation
Test Date:	Sep. 17 to 25, 2015 ; Dec. 29, 2016 to Jan. 10, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Midoli Peng / Specialist	, Date:	Apr. 21, 2017	
Approved by:	May Chen / Manager	, Date:	Apr. 21, 2017	

2 Summary of Test Results

	47 CFR FCC Part 15, Sub	part C (SEC	TION 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -18.16dB at 0.46250MHz.
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -1.6dB at 2483.5MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	15.247(b) Conducted power		Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.86 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.36 dB	
	1GHz ~ 6GHz	3.47 dB	
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.75 dB	
	18GHz ~ 40GHz	3.30 dB	

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

dual-band wireless accessory radio
Microsoft
1817
ENGINEERING SAMPLE
3.3Vdc from host equipment
64QAM, 16QAM, QPSK, BPSK for OFDM
OFDM
802.11n : up to72.2Mbps
For 15.407 5.18 ~ 5.24GHz, 5.26GHz ~ 5.32GHz, 5.50 ~ 5.58GHz & 5.66 ~5.70GHz, 5.745 ~ 5.825GHz For 15.247 2.412 ~ 2.462GHz
For 15.407 21 for 802.11n (HT20) For 15.247 11 for 802.11n (HT20)
For 15.407 5.18GHz -5.24GHz : 26.915 mW 5.26GHz ~ 5.32GHz: 25.351mW 5.50 ~ 5.58GHz & 5.66 ~5.70GHz: 44.771mW 5.745GHz ~ 5.825GHz: 49.659 mW For 15.247 415.911mW
Refer to Note
Refer to Note
NA
NA

Note:

1. 2.4GHz and 5GHz technology cannot transmit at same time.

2. The EUT has three type models, which are identical to each other in all aspects except for the following:

Туре	MTK P/N	Different	
Type 1 MTM010/AAAAL (LiteOn)			
Type 2 MTM010/AAABL (LiteOn)		For Marketing request.	
Туре 3	MTM010/AAAAA (Askey)		
Note: From	the above types, Type 1 was selected as represe	entative model for the test and its data was	

recorded in this report.

3.	The antennas	provided to the	e EUT. please	e refer to the following table:	
υ.	The antennae	provided to the		roloi lo lilo iolioming labio.	

i .	o. The alternad provided to the Left, please releft to the following table.								
	Antenna No.	Brand	Model	Gain (dBi)	Antenna Type	Connector Type	Frequency range (GHz to GHz)	Function	
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1995			
	Ant. 1 (for WLAN 2.4GHz)			2.7			2.4~2.4835	TX/RX	
	Ant. 2 (for WLAN 5GHz) Chan (0)	Microsoft	NA	2.2	PCB	NA	5.15~5.85	TX/RX	
	Ant. 3 (for WLAN 5GHz) Chan (1)					2.2			5.15~5.85
1.									

4. The EUT incorporates a SISO function.

2.4GHz Band							
MODULATION MODE	DATA RATE (MCS) TX & RX CONFIGURATION						
802.11n (HT20)	MCS 0~7	1TX	1RX				
	5GHz Band						
MODULATION MODE	DATA RATE (MCS)	TX & RX CONFIGURATION					
802.11n (HT20)	MCS 0~7	1TX (Fixed Chan 0)	1RX (diversity)				

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

11 channels are provided for 802.11n (HT20):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

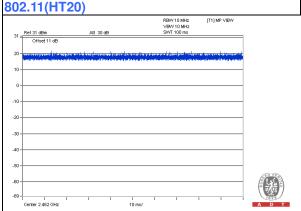
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT ONFIGURE		APP	LICABLE TO		DESCRIPTION		
MODE	RE≥1G	RE<1G	PLC	APCM	L	DESCRIPTION	
-	\checkmark	\checkmark	\checkmark	\checkmark	-		
		Emission above	e 1GHz & R	E<1G: Radiated En	nission below 1GH	Z	
	edge Meası Power Line	Conducted Emi	ssion A	PCM: Antenna Port	Conducted Measu	urement	
		pre-tested on the lane (for above ⁻		h 3 axis. The worst	case was found wh	nen positioned on Y-plane (
	<i>'</i> .	,	,				
adiated En	nission T	est (Above 1	GHz):				
Pre-Scan	has beer	n conducted t	o determine th	e worst-case m	ode from all po	ssible combinations	
between	available			d antenna ports			
architectu Following	,	(c) was (ware	a) selected for t	the final test as I	listed below		
			TESTED			DATA RATE	
MOI	DE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)	
	(HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5	
Pre-Scan	nission To has beer		to determine th			ssible combinations	
adiated En Pre-Scan between	nission T has beer available	n conducted t	to determine th	ne worst-case m d antenna ports			
adiated En Pre-Scan between architectu	hission T has beer available ure).	n conducted t modulations,	to determine th data rates and		(if EUT with an		
adiated En Pre-Scan between architectu	hission T has beer available ure). g channel	n conducted t modulations, (s) was (were AVAILABLE	to determine the data rates and e) selected for the TESTED	d antenna ports the final test as I MODULATION	(if EUT with an isted below.	tenna diversity DATA RATE	
adiated En Pre-Scan between architectu Following Mot	hission T has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and e) selected for the TESTED CHANNEL	d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps)	
adiated En Pre-Scan between architectu Following	hission T has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE	to determine the data rates and e) selected for the TESTED	d antenna ports the final test as I MODULATION	(if EUT with an isted below.	tenna diversity DATA RATE	
adiated En Pre-Scan between architectu Following 802.11n	has beer available ure). g channel (HT20)	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11	to determine the data rates and e) selected for the TESTED CHANNEL 6	d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps)	
Adiated En Pre-Scan between architectu Following 802.11n bwer Line	has beer available ure). g channel (HT20)	n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and e) selected for the TESTED CHANNEL 6	d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps)	
Adiated En Pre-Scan between architectu Following 802.11n 802.11n	nission Tr has beer available ure). channel (HT20) Conducte has beer	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	(if EUT with an isted below. MODULATION TYPE BPSK	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations	
Adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line	has beer available ure). g channel (HT20) Conducte has beer available	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	(if EUT with an isted below. MODULATION TYPE BPSK	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations	
adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line Pre-Scan between architectu	has beer available ure). g channel (HT20) Conducte has beer available ure).	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations,	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the data rates and	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM OFDM	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations	
Adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line Pre-Scan between architectu Following	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations,	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the data rates and	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations	
Adiated En Pre-Scan between architectu Following 802.11n 802.11n Ower Line Pre-Scan between architectu Following Mot	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and each	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE (Mbps)	
adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line Pre-Scan between architectu Following	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations, (s) was (were AVAILABLE	to determine the data rates and each rates and each rates and each rates and each rate rates and each rate rates and each rate	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM oFDM worst-case me d antenna ports the final test as I MODULATION	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below. MODULATION	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE	
adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line Pre-Scan between architectu Following Mot	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the data rates and e) selected for the TESTED CHANNEL	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE (Mbps)	
adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line Pre-Scan between architectu Following Mot	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the data rates and e) selected for the TESTED CHANNEL	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE (Mbps)	
adiated En Pre-Scan between architectu Following 802.11n 802.11n Dwer Line Pre-Scan between architectu Following Mot	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the data rates and e) selected for the TESTED CHANNEL	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE (Mbps)	
adiated En Pre-Scan between architectu Following 802.11n 0wer Line Pre-Scan between architectu Following Mot	has beer available ure). g channel (HT20) Conducte has beer available ure). g channel DE	n conducted t modulations, (s) was (were AVAILABLE CHANNEL 1 to 11 ed Emission n conducted t modulations, (s) was (were AVAILABLE CHANNEL	to determine the data rates and e) selected for the TESTED CHANNEL 6 Test: to determine the data rates and e) selected for the TESTED CHANNEL	d antenna ports the final test as I MODULATION TECHNOLOGY OFDM d antenna ports the final test as I MODULATION TECHNOLOGY	(if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below. MODULATION TYPE	tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE (Mbps)	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5


Test Condition:

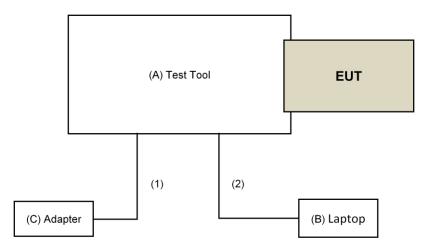
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE≥1G	24deg. C, 68%RH	120Vac, 60Hz	Weiwei Lo
RE<1G	23deg. C, 71%RH	120Vac, 60Hz	Weiwei Lo
PLC	25deg. C, 64%RH	120Vac, 60Hz	Timmy Hu
АРСМ	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required. 802.11(HT20)

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Test Tool	NA	NA	NA	NA	Supplied by Client
6	Laptop (For radiated emission test)	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab
В	Laptop (For conducted emission test)	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
С	Adapter	AMIG	AMS3-050200FU	NA	NA	Supplied by Client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC	1	1.5	No	0	Supplied by Client
2.	USB	1	1.7	Yes	0	Supplied by Client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver				
Agilent	N9038A	MY50010156	Aug. 18, 2016	Aug. 17, 2017
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 18, 2016	Jan. 17, 2017
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-05	May 07, 2016	May 06, 2017
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Dec. 29, 2016	Dec. 28, 2017
RF Cable	8D	966-3-1 966-3-2 966-3-3	Apr. 02, 2016	Apr. 01, 2017
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Oct. 05, 2016	Oct. 04, 2017
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 28, 2016	Dec. 27, 2017
Pre-Amplifier Agilent	8449B	3008A02465	Apr. 05, 2016	Apr. 04, 2017
RF Cable	EMC104-SM- SM-2000 EMC104-SM- SM-5000 EMC104-SM- SM-5000	150317 150321 150322	Mar. 30, 2016	Mar. 29, 2017
Spectrum Analyzer Keysight	N9030A	MY54490520	July 29, 2016	July 28, 2017
Pre-Amplifier EMCI	EMC184045	980143	Jan. 15, 2016	Jan. 14, 2017
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 16, 2016	Jan. 15, 2017
Software	ADT_Radiated _V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3 Loop antenna was used for all emissions below 30 MHz.
- 4. The test was performed in 966 Chamber No. 3.
- 5. The FCC Site Registration No. is 147459
- 6. The CANADA Site Registration No. is 20331-1
- 7. Tested Date: Dec. 29, 2016 to Jan. 10, 2017

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

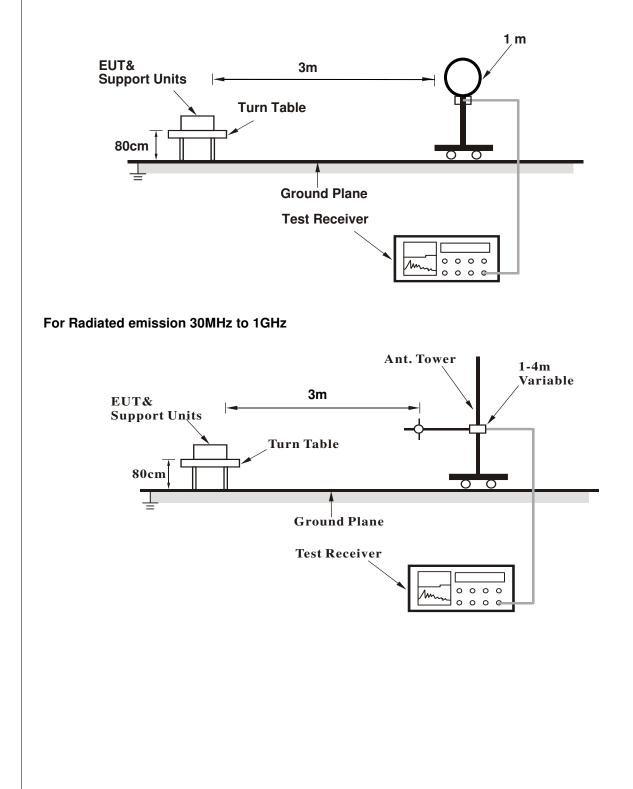
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

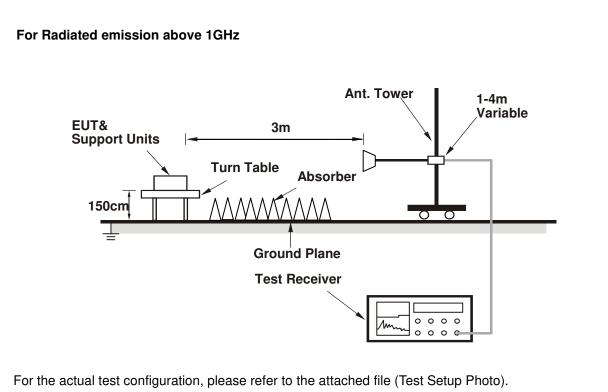
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

4.1.6 EUT Operating Conditions

- 1. Connect the EUT with the support unit B (Laptop) which is placed on test table.
- 2. The communication partner run test program "MT7662UQA.exe _V1.0.3.13" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

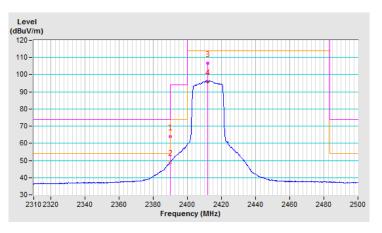
4.1.7 Test Results (Bandedge)

802.11n (HT20)

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	63.9 PK	74.0	-10.1	1.24 H	26	68.1	-4.2	
2	2390.00	49.2 AV	54.0	-4.8	1.24 H	26	53.4	-4.2	
3	*2412.00	106.6 PK			1.24 H	26	110.7	-4.1	
4	*2412.00	96.0 AV			1.24 H	26	100.1	-4.1	

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

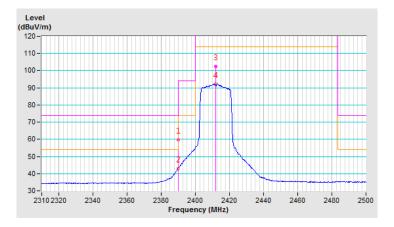
3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	59.8 PK	74.0	-14.2	2.86 V	31	64.0	-4.2	
2	2390.00	42.8 AV	54.0	-11.2	2.86 V	31	47.0	-4.2	
3	*2412.00	102.4 PK			2.86 V	31	106.5	-4.1	
4	*2412.00	92.2 AV			2.86 V	31	96.3	-4.1	

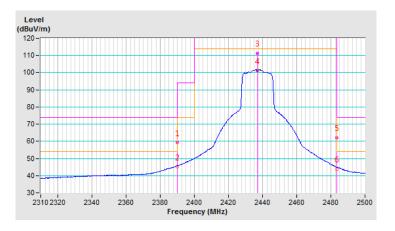

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

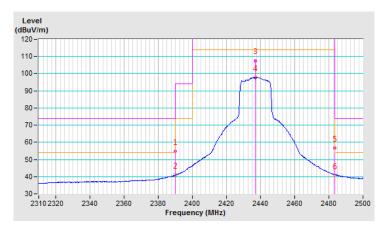
5. " * ": Fundamental frequency.


CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	59.4 PK	74.0	-14.6	1.01 H	26	63.6	-4.2	
2	2390.00	45.1 AV	54.0	-8.9	1.01 H	26	49.3	-4.2	
3	*2437.00	111.4 PK			1.01 H	26	115.4	-4.0	
4	*2437.00	101.4 AV			1.01 H	26	105.4	-4.0	
5	2483.50	62.2 PK	74.0	-11.8	1.01 H	26	66.2	-4.0	
6	2483.50	43.9 AV	54.0	-10.1	1.01 H	26	47.9	-4.0	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)


- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

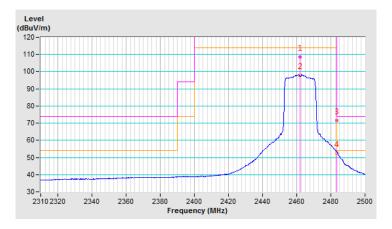
CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	54.6 PK	74.0	-19.4	1.88 V	229	58.8	-4.2	
2	2390.00	41.2 AV	54.0	-12.8	1.88 V	229	45.4	-4.2	
3	*2437.00	107.6 PK			1.88 V	229	111.6	-4.0	
4	*2437.00	97.8 AV			1.88 V	229	101.8	-4.0	
5	2483.50	56.6 PK	74.0	-17.4	1.88 V	229	60.6	-4.0	
6	2483.50	40.5 AV	54.0	-13.5	1.88 V	229	44.5	-4.0	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2462.00	108.6 PK			1.37 H	24	112.7	-4.1	
2	*2462.00	97.9 AV			1.37 H	24	102.0	-4.1	
3	2483.50	71.6 PK	74.0	-2.4	1.37 H	24	75.6	-4.0	
4	2483.50	52.4 AV	54.0	-1.6	1.37 H	24	56.4	-4.0	


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

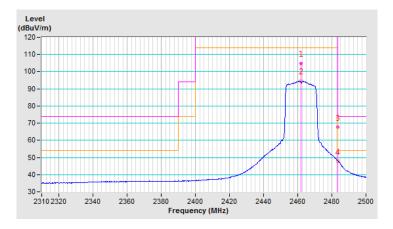
3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2462.00	104.9 PK			2.04 V	228	109.0	-4.1	
2	*2462.00	94.6 AV			2.04 V	228	98.7	-4.1	
3	2483.50	67.8 PK	74.0	-6.2	2.04 V	228	71.8	-4.0	
4	2483.50	47.8 AV	54.0	-6.2	2.04 V	228	51.8	-4.0	


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

Above 1GHz Data

802.11n (HT20)

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4824.00	39.4 PK	74.0	-34.6	1.02 H	342	37.1	2.3	
2	4824.00	26.4 AV	54.0	-27.6	1.02 H	342	24.1	2.3	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4824.00	36.9 PK	74.0	-37.1	2.48 V	347	34.6	2.3	
2	4824.00	23.6 AV	54.0	-30.4	2.48 V	347	21.3	2.3	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	-
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4874.00	39.8 PK	74.0	-34.2	1.00 H	344	37.3	2.5
2	4874.00	26.8 AV	54.0	-27.2	1.00 H	344	24.3	2.5
3	7311.00	33.9 PK	74.0	-40.1	1.12 H	334	25.0	8.9
4	7311.00	20.4 AV	54.0	-33.6	1.12 H	334	11.5	8.9
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	NO. FREQ. EMISSION LIMIT MARGIN (dB) ANTENNA TABLE RAW CORRECT							CORRECTION FACTOR (dB/m)
1	4874.00	37.3 PK	74.0	-36.7	2.44 V	349	34.8	2.5
2	4874.00	23.9 AV	54.0	-30.1	2.44 V	349	21.4	2.5
3	7311.00	33.6 PK	74.0	-40.4	2.14 V	239	24.7	8.9
4	7311.00	20.3 AV	54.0	-33.7	2.14 V	239	11.4	8.9

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	-
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4924.00	39.7 PK	74.0	-34.3	1.04 H	344	37.1	2.6
2	4924.00	26.7 AV	54.0	-27.3	1.04 H	344	24.1	2.6
3	7386.00	34.0 PK	74.0	-40.0	1.08 H	337	24.8	9.2
4	7386.00	20.6 AV	54.0	-33.4	1.08 H	337	11.4	9.2
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. EMISSION LIMIT MARGIN ANTENNA TABLE RAW CORRECTI							
1	4924.00	36.9 PK	74.0	-37.1	2.38 V	346	34.3	2.6
2	4924.00	23.8 AV	54.0	-30.2	2.38 V	346	21.2	2.6
3	7386.00	33.5 PK	74.0	-40.5	2.12 V	234	24.3	9.2
4	7386.00	20.3 AV	54.0	-33.7	2.12 V	234	11.1	9.2

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

Below 1GHz Data

802.11n (HT20)

CHANNEL	TX Channel 6	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA		& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	99.55	32.2 QP	43.5	-11.3	2.00 H	71	45.1	-12.9
2	166.04	33.5 QP	43.5	-10.0	2.00 H	239	42.3	-8.8
3	240.17	38.4 QP	46.0	-7.6	1.00 H	285	48.2	-9.8
4	392.46	27.7 QP	46.0	-18.3	1.00 H	256	32.9	-5.2
5	479.96	30.1 QP	46.0	-15.9	1.00 H	300	33.1	-3.0
6	817.86	33.4 QP	46.0	-12.6	1.00 H	277	30.2	3.2
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	50.76	35.6 QP	40.0	-4.4	1.00 V	24	44.1	-8.5
2	112.91	26.6 QP	43.5	-16.9	1.00 V	269	37.6	-11.0
3	166.02	28.7 QP	43.5	-14.8	1.00 V	108	37.5	-8.8
4	236.03	29.6 QP	46.0	-16.4	1.00 V	236	39.7	-10.1
5	479.98	31.2 QP	46.0	-14.8	1.00 V	212	34.2	-3.0
6	644.33	30.6 QP	46.0	-15.4	1.50 V	14	30.2	0.4

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

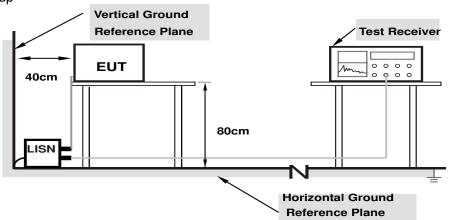
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver	ESCS 30	100375	May 06, 2015	May 05, 2016
R&S Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 01, 2015	Aug. 31, 2016
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 11, 2015	June 10, 2016
RF Cable	5D-FB	COCCAB-001	Mar. 09, 2015	Mar. 08, 2016
50 ohms Terminator	E1-011311	09	Nov. 27, 2014	Nov. 26, 2015
50 ohms Terminator	N/A	EMC-02	Sep. 30, 2014	Sep. 29, 2015
Software BVADT	BVADT_Cond_ V7.3.7.3	NA	NA	NA

Note:

- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: Sep. 17, 2015

^{1.} The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

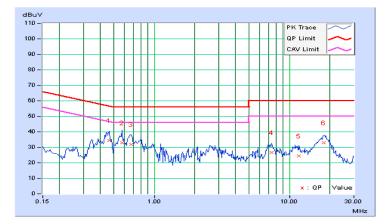
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

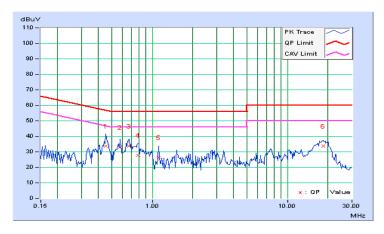
Same as 4.1.6.


4.2.7 Test Results

Phase Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
----------------	-------------------	-----------------------------------

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)			Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.46250	0.14	34.42	28.34	34.56	28.48	56.65	46.65	-22.08	-18.16
2	0.57578	0.15	32.81	24.72	32.96	24.87	56.00	46.00	-23.04	-21.13
3	0.67734	0.15	31.73	22.82	31.88	22.97	56.00	46.00	-24.12	-23.03
4	7.42578	0.42	26.37	19.89	26.79	20.31	60.00	50.00	-33.21	-29.69
5	11.68750	0.57	23.77	17.99	24.34	18.56	60.00	50.00	-35.66	-31.44
6	18.00391	0.76	32.37	26.05	33.13	26.81	60.00	50.00	-26.87	-23.19

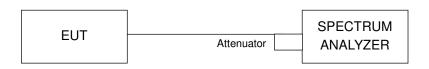
Remarks:


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)					De	Detector Function Quasi-Peak (QP) / Average (AV)				1
	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value uV)		on Level BuV)		nit ⊌uV)	Maı (d	•
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.45078	0.12	33.76	25.66	33.88	25.78	56.86	46.86	-22.98	-21.08
2	0.57578	0.13	32.81	25.98	32.94	26.11	56.00	46.00	-23.06	-19.89
3	0.67344	0.14	33.50	24.36	33.64	24.50	56.00	46.00	-22.36	-21.50
4	0.78672	0.15	27.69	19.29	27.84	19.44	56.00	46.00	-28.16	-26.56
5	1.10938	0.17	26.15	17.68	26.32	17.85	56.00	46.00	-29.68	-28.15
6	18.29688	0.80	32.99	26.82	33.79	27.62	60.00	50.00	-26.21	-22.38

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP40	100060	May 08, 2015	May 07, 2016

Note:

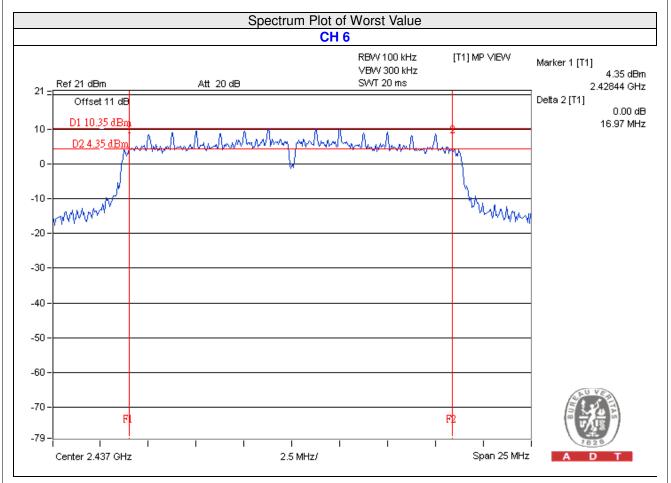
- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Sep. 25, 2015

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation fromTest Standard

No deviation.

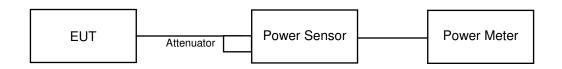
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

802.11n (HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2412	17.12	0.5	PASS
6	2437	16.97	0.5	PASS
11	2462	17.10	0.5	PASS



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
Power meter Anritsu	ML2495A	1014008	Apr. 28, 2015	Apr. 27, 2016	
Power sensor Anritsu	MA2411B	0917122	Apr. 28, 2015	Apr. 27, 2016	

Note:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Sep. 25, 2015

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

802.11n (HT20)

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2412	218.776	23.40	30	Pass
6	2437	415.911	26.19	30	Pass
11	2462	193.197	22.86	30	Pass

FOR AVERAGE POWER

802.11n (HT20)

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2412	33.884	15.30
6	2437	125.893	21.00
11	2462	30.903	14.90

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

сит	-	SPECTRUM
EUT	Attenuator	 ANALYZER

4.5.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP40	100060	May 08, 2015	May 07, 2016

Note:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Sep. 25, 2015

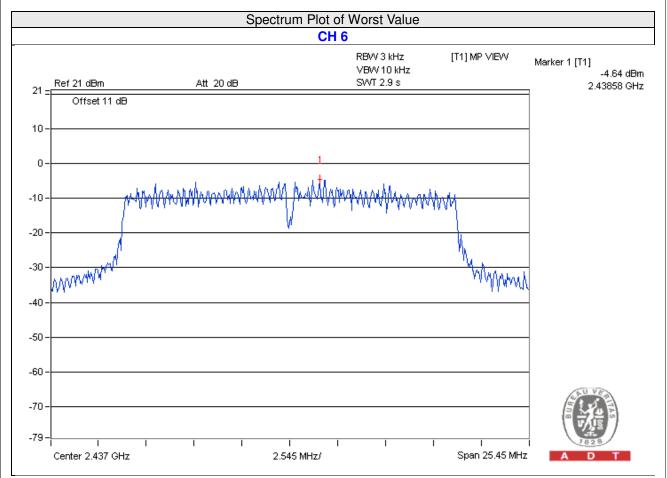
4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


Same as Item 4.3.6

4.5.7 Test Results

802.11n (HT20)

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2412	-10.91	8	Pass
6	2437	-4.64	8	Pass
11	2462	-11.65	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dBc of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP40	100060	May 08, 2015	May 07, 2016

Note:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Sep. 25, 2015
- 4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

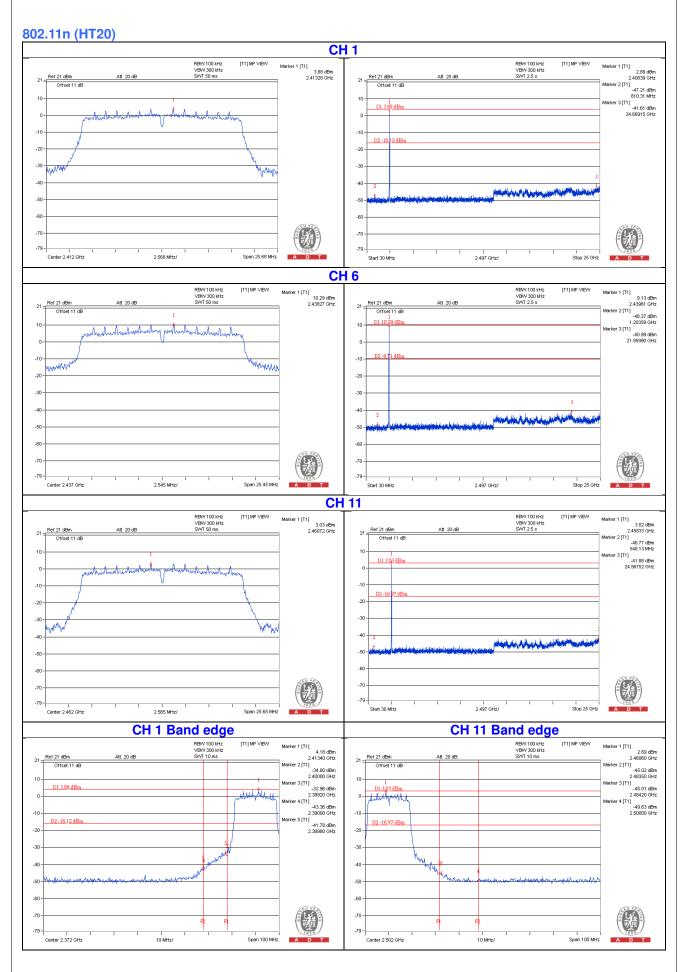
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.


4.6.6 EUT Operating Condition

Same as Item 4.3.6

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----