

## **CERTIFICATION TEST REPORT**

## **Report Number :** 11735596-E2V2

Applicant : MICROSOFT CORP ONE MICROSOFT WAY REDMOND, WA 98052, U.S.A.

**Model :** 1807

- FCC ID : C3K1807
  - IC : 3048A-1807
- EUT Description : PORTABLE COMPUTING DEVICE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS - 247 ISSUE 2

Date Of Issue: October 02, 2017

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

#### **Revision History**

| Rev. | Issue<br>Date | Revisions                                                                                                                 | Revised By |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------|------------|
| V1   | 08/23/17      | Initial Release                                                                                                           |            |
| V2   | 10/02/17      | <ul> <li>Updated section 2</li> <li>Updated section 7.1</li> <li>Updated test procedure in section 7.5 and 7.6</li> </ul> | C. Susa    |

Page 2 of 54

## TABLE OF CONTENTS

| 1. AT                                                                                                                                                                                                                   | TESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 5                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. TE                                                                                                                                                                                                                   | ST METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 6                                                                                                                                                        |
| 3. FA                                                                                                                                                                                                                   | CILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 6                                                                                                                                                        |
| 4. CA                                                                                                                                                                                                                   | LIBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 7                                                                                                                                                        |
| 4.1.                                                                                                                                                                                                                    | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 7                                                                                                                                                        |
| 4.2.                                                                                                                                                                                                                    | SAMPLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 7                                                                                                                                                        |
| 4.3.                                                                                                                                                                                                                    | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 7                                                                                                                                                        |
| 5. EC                                                                                                                                                                                                                   | UIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 8                                                                                                                                                        |
| 5.1.                                                                                                                                                                                                                    | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 8                                                                                                                                                        |
| 5.2.                                                                                                                                                                                                                    | MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 8                                                                                                                                                        |
| 5.3.                                                                                                                                                                                                                    | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 8                                                                                                                                                        |
| 5.4.                                                                                                                                                                                                                    | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 8                                                                                                                                                        |
| 5.5.                                                                                                                                                                                                                    | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 9                                                                                                                                                        |
| 5.6.                                                                                                                                                                                                                    | DESCRIPTION OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                         |
| 5.7.                                                                                                                                                                                                                    | TEST AND MEASUREMENT EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                         |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| 6. SU                                                                                                                                                                                                                   | IMMARY TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                         |
| 6. SU<br>7. AN                                                                                                                                                                                                          | IMMARY TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15<br>16                                                                                                                                                   |
| <ol> <li>6. SU</li> <li>7. AN<br/>7.1.</li> </ol>                                                                                                                                                                       | IMMARY TABLE<br>ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15<br>16<br>16                                                                                                                                             |
| <ol> <li>6. SU</li> <li>7. AN</li> <li>7.1.</li> <li>7.2.</li> </ol>                                                                                                                                                    | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>15</b><br><b>16</b><br>17                                                                                                                               |
| <ol> <li>6. SU</li> <li>7. AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> </ol>                                                                                                                                      | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>15</b><br>16<br>17<br>19                                                                                                                                |
| <ol> <li>6. SU</li> <li>7. AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> </ol>                                                                                                                        | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                             | <b>15</b><br>16<br>17<br>19<br>21                                                                                                                          |
| <ol> <li>6. SU</li> <li>7. AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> </ol>                                                                                                          | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH<br>AVERAGE POWER                                                                                                                                                                                                                                                                                                                                                                            | <b>15</b><br>16<br>17<br>19<br>21<br>23                                                                                                                    |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> </ol>                                                                                                  | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH<br>AVERAGE POWER<br>OUTPUT POWER.                                                                                                                                                                                                                                                                                                                                                           | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> </ol>                                                             |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> </ol>                                                                                    | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH<br>AVERAGE POWER<br>OUTPUT POWER<br>POWER SPECTRAL DENSITY                                                                                                                                                                                                                                                                                                                                  | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> <li>25</li> </ol>                                                 |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> <li>7.8.</li> </ol>                                                                      | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH<br>AVERAGE POWER<br>OUTPUT POWER<br>POWER SPECTRAL DENSITY<br>CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS.                                                                                                                                                                                                                                                                                    | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> <li>25</li> <li>27</li> </ol>                                     |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> <li>7.8.</li> <li>8. RA</li> </ol>                                                       | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> <li>25</li> <li>27</li> <li>31</li> </ol>                         |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> <li>7.8.</li> <li>8. RA</li> <li>8.1.</li> </ol>                                         | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH<br>AVERAGE POWER<br>OUTPUT POWER<br>POWER SPECTRAL DENSITY<br>CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS.                                                                                                                                                                                                                                                                                    | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> <li>25</li> <li>27</li> <li>31</li> <li>31</li> </ol>             |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> <li>7.8.</li> <li>8. RA</li> <li>8.1.</li> <li>8.2.</li> </ol>                           | ITENNA PORT TEST RESULTS<br>MEASUREMENT METHODS<br>ON TIME, DUTY CYCLE<br>6 dB BANDWIDTH<br>99% BANDWIDTH<br>AVERAGE POWER<br>OUTPUT POWER<br>POWER SPECTRAL DENSITY<br>CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS<br>DIATED TEST RESULTS<br>LIMITS AND PROCEDURE<br>TRANSMITTER ABOVE 1 GHz                                                                                                                                                                                                           | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> <li>25</li> <li>27</li> <li>31</li> <li>32</li> </ol>             |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> <li>7.8.</li> <li>8. RA</li> <li>8.1.</li> <li>8.2.</li> <li>8.2</li> <li>8.2</li> </ol> | IMMARY TABLE         ITENNA PORT TEST RESULTS         MEASUREMENT METHODS         ON TIME, DUTY CYCLE         6 dB BANDWIDTH         99% BANDWIDTH         AVERAGE POWER         OUTPUT POWER         POWER SPECTRAL DENSITY         CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS         DIATED TEST RESULTS         LIMITS AND PROCEDURE         TRANSMITTER ABOVE 1 GHz         2.1         RESTRICTED BANDEDGE (LOW CHANNEL)                                                                         | <b>15</b><br><b>16</b><br>17<br>19<br>21<br>23<br>24<br>25<br>27<br><b>31</b><br>32<br>32<br>34                                                            |
| <ol> <li>SU</li> <li>AN</li> <li>7.1.</li> <li>7.2.</li> <li>7.3.</li> <li>7.4.</li> <li>7.5.</li> <li>7.6.</li> <li>7.7.</li> <li>7.8.</li> <li>8.1.</li> <li>8.2.</li> <li>8.2</li> </ol>                             | IMMARY TABLE         ITENNA PORT TEST RESULTS         MEASUREMENT METHODS         ON TIME, DUTY CYCLE         6 dB BANDWIDTH         99% BANDWIDTH         AVERAGE POWER         OUTPUT POWER         POWER SPECTRAL DENSITY         CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS         NIATED TEST RESULTS         LIMITS AND PROCEDURE         TRANSMITTER ABOVE 1 GHz         2.1       RESTRICTED BANDEDGE (LOW CHANNEL)         2.2       AUTHORIZED BANDEDGE (HIGH CHANNEL)         Page 3 of 54 | <ol> <li>15</li> <li>16</li> <li>17</li> <li>19</li> <li>21</li> <li>23</li> <li>24</li> <li>25</li> <li>27</li> <li>31</li> <li>32</li> <li>34</li> </ol> |

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

| REPORT NO: 11735<br>FCC ID: C3K1807 | 5596-E2V2                                  | DATE: October 2 <sup>nd</sup> , 2017<br>IC: 3048A-1807 |
|-------------------------------------|--------------------------------------------|--------------------------------------------------------|
| 8.2.3. HAR                          | MONICS AND SPURIOUS EMISSIONS              |                                                        |
| 8.3. SPURIO                         | US EMISSIONS 30 TO 1000 MHz (WORST-CASE CC | NFIGURATION)42                                         |
| 8.4. WORST-                         | CASE 18 to 26 GHz                          | 44                                                     |
| 9. AC POWER I                       | LINE CONDUCTED EMISSIONS                   | 46                                                     |
| 10. SETUP PH                        | отоз                                       | 49                                                     |

Page 4 of 54

## **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME:            | MICROSOFT CORP<br>ONE MICROSOFT WAY<br>REDMOND, WA 98052, U.S.A. |              |
|--------------------------|------------------------------------------------------------------|--------------|
| EUT DESCRIPTION:         | PORTABLE COMPUTING DEVICE                                        |              |
| MODEL:                   | 1807                                                             |              |
| SERIAL NUMBER:           | RADIATED: 032012672953<br>CONDUCTED: 031936672953                |              |
| DATE TESTED:             | AUGUST 04 – AUGUST 14, 2017                                      |              |
|                          | APPLICABLE STANDARDS                                             |              |
| S                        | TANDARD                                                          | TEST RESULTS |
| CFR 47 Part 15 Subpart C |                                                                  | Pass         |
| INDUSTRY CA              | NADA RSS-247 Issue 2                                             | Pass         |
| INDUSTRY CA              | NADA RSS-GEN Issue 4                                             | Pass         |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released For UL Verification Services Inc. By:

miner de Quela

FRANCISCO DE ANDA WiSE Program Manager UL VERIFICATION SERVICES INC.

Prepared By:

ERIC YU WISE LAB ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 54

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 558704 D01 v04, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 2.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street   | 47266 Benicia Street   |
|------------------------|------------------------|
| Chamber A(IC: 2324B-1) | Chamber D(IC: 22541-1) |
| Chamber B(IC: 2324B-2) | Chamber E(IC: 22541-2) |
| Chamber C(IC: 2324B-3) | Chamber F(IC: 22541-3) |
|                        | Chamber G(IC: 22541-4) |
|                        | Chamber H(IC: 22541-5) |

The above test sites and facilities are covered under FCC Test Firm Registration *#* 208313. UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. Chambers A through C are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under Industry Canada company address code 22541 with site numbers 22541 -1 through 2324B-3, respectively.

Page 6 of 54

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

## 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                                           | Uncertainty |
|-----------------------------------------------------|-------------|
| Worst Case Conducted Disturbance, 9KHz to 0.15 MHz  | 3.84 dB     |
| Worst Case Conducted Disturbance, 0.15 to 30 MHz    | 3.65 dB     |
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 3.15 dB     |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 5.36 dB     |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.32 dB     |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.45 dB     |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.24 dB     |

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 54

## 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is a handheld computing device with 802.11 2x2, a/b/g/n/ac WLAN, Bluetooth, Bluetooth LE.

## 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Mode | Output Power | Output Power |
|-----------------|------|--------------|--------------|
| (MHz)           |      | (dBm)        | (mW)         |
| 2402 - 2480     | BLE  | 2.73         | 1.87         |

The transmitter has a maximum average conducted output power as follows:

| Frequency Mode<br>Range |     | Output Power<br>(dBm) | Output Power<br>(mW) |
|-------------------------|-----|-----------------------|----------------------|
| (MHz)                   |     |                       |                      |
| 2402 - 2480             | BLE | 1.76                  | 1.50                 |

## 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes integrated antenna, with the maximum gains:

| Frequency Band<br>(GHz) | Antenna Gain (dBi) |  |
|-------------------------|--------------------|--|
| 2402-2480               | 0.20               |  |

## 5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 14.2.201.159

The test utility software used during testing was Wifi tool v2.0.0.77

## 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated band edge, harmonics, and spurious emissions from 1 GHz to 18GHz were performed with the EUT was set to transmit at the Low/Middle/High channels.

Radiated emission below 30MHz, below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT was set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, & Z, and it was determined that Z-Axis orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z-Axis orientation.

Worst-case data rates as provided by the client were:

BLE: 1 Mbps.

Page 9 of 54

## 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List                              |         |             |                        |    |  |  |  |
|-----------------------------------------------------|---------|-------------|------------------------|----|--|--|--|
| Description Manufacturer Model Serial Number FCC ID |         |             |                        |    |  |  |  |
| Laptop AC/DC adapter                                | Lenovo  | ADLX45NCC2A | 11S36200281ZZ20059W0H5 | NA |  |  |  |
| Laptop                                              | Lenovo  | 11e         | LR-04N7BL              | NA |  |  |  |
| USB Ethernet Adapter                                | Linksys | USB3GIGV1   | 15710S08406242         | NA |  |  |  |

#### I/O CABLES

| I/O Cable List |                                                              |       |             |             |            |  |  |  |
|----------------|--------------------------------------------------------------|-------|-------------|-------------|------------|--|--|--|
| Cable          | Cable Port # of identical Connector Cable Type Cable Remarks |       |             |             |            |  |  |  |
| No             |                                                              | ports | Туре        |             | Length (m) |  |  |  |
| 1              | USB                                                          | 1     | USB         | Un-Shielded | 0.17       |  |  |  |
| 2              | DC                                                           | 1     | Proprietary | Un-Shielded | 1.75       |  |  |  |
| 3              | AC                                                           | 1     | 2-prong     | Un-Shielded | 0.5        |  |  |  |
| 4              | Ethernet                                                     | 1     | RJ45        | Un-Shielded | 2          |  |  |  |

#### TEST SETUP

The EUT was tested connected to a host Laptop via RJ45/USB cable and AC adapter for antenna port. For radiated and AC line, tests were performed with EUT connected to AC adapter. Laptop was used to program settings then removed from setup.. Test software exercised the radio card.

Page 10 of 54

#### SETUP DIAGRAM FOR CONDUCTED TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 54

#### SETUP DIAGRAM FOR RADIATED TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 12 of 54

#### SETUP DIAGRAM FOR AC LINE CONDUCTED TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 13 of 54

## 5.7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST                                   |                                    |                             |       |            |  |  |  |
|-------------------------------------------------------|------------------------------------|-----------------------------|-------|------------|--|--|--|
| Description                                           | Manufacturer                       | Model                       | Asset | Cal Due    |  |  |  |
| Antenna, Broadband Hybrid, 30MHz to 2000MHz w/4dB Pad | Sunol Sciences Corp.               | JB3                         | T477  | 06/22/2018 |  |  |  |
| Antenna, Horn 1-18GHz                                 | ETS-Lindgren                       | 3117                        | T345  | 03/07/2018 |  |  |  |
| Antenna, Horn 18-26.5GHz                              | ARA                                | MWH-1826/B                  | T449  | 05/26/2018 |  |  |  |
| Power Meter, P-series single channel                  | Agilent (Keysight)<br>Technologies | N1911A                      | T1264 | 07/08/2018 |  |  |  |
| Power Sensor, P – series, 50MHz to 18GHz, Wideband    | Agilent (Keysight)<br>Technologies | N1921A                      | T413  | 06/20/2018 |  |  |  |
| Amplifier, 1-26.5GHz                                  | Agilent (Keysight)<br>Technologies | 8449B                       | T404  | 07/05/2018 |  |  |  |
| Amplifier, 10kHz-1GHz                                 | Agilent (Keysight)<br>Technologies | 8447D                       | T15   | 08/26/2017 |  |  |  |
| RF Amplifier                                          | MITEQ                              | AFS42-00101800-25-<br>S-42  | T493  | 02/15/2018 |  |  |  |
| Spectrum Analyzer, PSA, 3Hz to 26.5GHz                | Agilent (Keysight)<br>Technologies | E4440A                      | T199  | 07/22/2018 |  |  |  |
| Spectrum Analyzer, PXA, 3Hz to 44GHz                  | Agilent (Keysight)<br>Technologies | N9030A                      | T907  | 01/23/2018 |  |  |  |
| Spectrum Analyzer, PSA, 3Hz to 26.5GHz                | Agilent (Keysight)<br>Technologies | E9030A                      | T905  | 01/11/2018 |  |  |  |
| LISN                                                  | FISCHER                            | FCC-LISN-50/250-<br>25-2-01 | T1310 | 01/17/2018 |  |  |  |

| Test Software List                     |    |        |                          |  |  |  |
|----------------------------------------|----|--------|--------------------------|--|--|--|
| Description Manufacturer Model Version |    |        |                          |  |  |  |
| Radiated Software                      | UL | UL EMC | Ver 9.5, Apr 26, 2016    |  |  |  |
| Conducted Software                     | UL | UL EMC | Ver 9.5, May 26, 2015    |  |  |  |
| Antenna Port Software                  | UL | UL RF  | Ver 5.1.1, July 15, 2016 |  |  |  |

Page 14 of 54

## 6. SUMMARY TABLE

| FCC Part<br>Section   | Test Description                           | Test Limit | Test<br>Condition | Test<br>Result |
|-----------------------|--------------------------------------------|------------|-------------------|----------------|
| 15.247<br>(a)(2)      | Occupied Band width (6dB)                  | >500KHz    |                   | Pass           |
| 2.1051,<br>15.247 (d) | Band Edge / Conducted<br>Spurious Emission | -20dBc     |                   | Pass           |
| 15.247                | TX conducted output power                  | <30dBm     | Conducted         | Pass           |
| 15.247                | PSD                                        | <8dBm/3kHz |                   | Pass           |
| 15.207 (a)            | AC Power Line conducted<br>emissions       | Section 10 |                   | Pass           |
| 15.205,<br>15.209,    | Radiated Spurious Emission                 | < 54dBuV/m | Radiated          | Pass           |
| 15.247(d)             |                                            | < 74dBuV/m |                   |                |

Page 15 of 54

## 7. ANTENNA PORT TEST RESULTS

## 7.1. MEASUREMENT METHODS

On Time and Duty Cycle: KDB 558074 D01 v04, Section 6.

<u>6 dB BW</u>: KDB 558074 D01 v04, Section 8.1.

Output Power: KDB 558074 D01 v04, Section 9.1.3.

Power Spectral Density: KDB 558074 D01 v04, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v04, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v04, Section 12.1.

Band-edge: KDB 558074 D01 v04, Section 12.1.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Page 16 of 54

## 7.2. ON TIME, DUTY CYCLE

#### <u>LIMITS</u>

None; for reporting purposes only.

#### PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

#### ON TIME AND DUTY CYCLE RESULTS

| Mode | <b>ON Time</b> | Period | Duty Cycle | Duty   | Duty Cycle               | 1/T         |
|------|----------------|--------|------------|--------|--------------------------|-------------|
|      | В              |        | x          | Cycle  | <b>Correction Factor</b> | Minimum VBW |
|      | (msec)         | (msec) | (linear)   | (%)    | (dB)                     | (kHz)       |
| BLE  | 0.390          | 0.624  | 0.625      | 62.46% | 2.04                     | 2.564       |

Page 17 of 54

#### **DUTY CYCLE PLOT**



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 18 of 54

## 7.3. 6 dB BANDWIDTH

#### LIMITS

FCC §15.247 (a) (2)

IC RSS-247 (5.2) (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **RESULTS**

#### 6 dB BANDWIDTH

| Channel | Frequency | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|-----------|-------------------------|------------------------|
| Low     | 2402      | 0.67                    | 0.5                    |
| Middle  | 2440      | 0.66                    | 0.5                    |
| High    | 2480      | 0.67                    | 0.5                    |



Page 19 of 54

| K Agilent 11:50:49                          | Aug 7,2017                     |           |             |            | _L                | Measure              |
|---------------------------------------------|--------------------------------|-----------|-------------|------------|-------------------|----------------------|
| Pv7.0.1(072717),37<br>ef 30 dBm<br>Peak 🔽 🔋 | 7699 CS, Condu<br>#Atten 40 dB | icted A   |             | ▲ Mkr1 0.2 | 660 kHz<br>242 dB | Meas Of              |
| og<br>Ø<br>B/                               |                                |           |             |            |                   | Channel Powe         |
| 3                                           | 18                             |           |             |            |                   | Occupied B           |
| 3.9<br>Bm<br>PAvg                           |                                |           |             |            |                   | AC                   |
| L S2                                        |                                |           |             | ha         |                   | Multi Carrie<br>Powe |
| (f):<br>-50k<br>/p                          |                                |           |             |            |                   | Power Sta<br>CCD     |
| enter 2.440 000 G<br>es BW 100 kHz          | l<br>Hz<br>#VB                 | W 300 kHz | <br>Sweep 1 |            | 2 MHz<br>1 pts)   | Mor<br>1 of          |



Page 20 of 54

## 7.4. 99% **BANDWIDTH**

#### **LIMITS**

None; for reporting purposes only.

#### **Test Procedure**

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

#### 99% BANDWIDTH

| Channel | Frequency<br>(MHz) | 99% Bandwidth<br>(MHz) |
|---------|--------------------|------------------------|
| Low     | 2402               | 1.0178                 |
| Middle  | 2440               | 1.0177                 |
| High    | 2480               | 1.0185                 |

| OBW LOW CH                                                |                                                                    |                        |
|-----------------------------------------------------------|--------------------------------------------------------------------|------------------------|
| 🔆 Agilent 11:47:54 Aug 7, 2017                            | L                                                                  | Measure                |
| Ch Freq 2.402 GHz                                         | Trig Free<br>Averages: 20                                          | Meas Off               |
| APv7.0.1(072717),37699 CS, Conducted A                    |                                                                    | Channel Power          |
| Ref 20 dBm #Atten 30 dB<br>#Peak                          |                                                                    | Occupied BW            |
| dB/<br>0ffst<br>10.7                                      |                                                                    | ACP                    |
| Center 2.402 000 GHz                                      | Span 2 MHz                                                         | Multi Carrier<br>Power |
| 1000000000000000000000000000000000000                     | *5weep 100 ms (1001 pts)<br>Occ BW % Pwr 99.00 %<br>× dB -26.00 dB | Power Stat<br>CCDF     |
| Transmit Freq Error 4.867 kHz<br>× dB Bandwidth 1.231 MHz |                                                                    | More<br>1 of 2         |
| Copyright 2000–2010 Agilent Technologi                    | ies                                                                |                        |

Page 21 of 54

| OBW MID CH                                                |                                       |                      | Masaura                |
|-----------------------------------------------------------|---------------------------------------|----------------------|------------------------|
| <b>Aglient</b> 11:51:16 Hug 7, 2017                       |                                       | L                    | measure                |
| <b>Ch Freq</b> 2.44 GHz<br>Occupied Bandwidth             | Averages: 20                          | Trig Free            | Meas Off               |
|                                                           | 10                                    |                      | Channel Power          |
| HPV/.0.1(0/2/17),3/699 LS, Londuct                        | ed H                                  |                      |                        |
| Htten 30 dB #Htten 30 dB                                  |                                       |                      | Occupied BW            |
| dB/<br>offst<br>10.7                                      | × × × × × × × × × × × × × × × × × × × | the and              | ACP                    |
| dB Center 2.440 000 GHz                                   |                                       | Span 2 MHz           | Multi Carrier<br>Power |
| #Res BW 18 kHz #VBW                                       | 51 kHz = #Sweep 100 m                 | s (1001 pts)         |                        |
| Occupied Bandwidth<br>1 Ø177 MHz                          | Occ BW % Pwr<br>x dB                  | 99.00 %<br>-26.00 dB | CCDF                   |
| Transmit Freq Error 3.494 kHz<br>x dB Bandwidth 1.228 MHz |                                       |                      | More<br>1 of 2         |
| Copyright 2000–2010 Agilent Tec                           | nologies                              |                      |                        |
|                                                           | •••••                                 |                      |                        |



Page 22 of 54

## 7.5. AVERAGE POWER

#### <u>LIMITS</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated reading of average power.

#### RESULTS

| TEST 37699 | Date: | 08/04/17 |
|------------|-------|----------|
|------------|-------|----------|

#### 1Mbps

| Channel | Frequency<br>(MHz) | AV Power<br>(dBm) |
|---------|--------------------|-------------------|
| Low     | 2402               | 1.04              |
| Middle  | 2440               | 1.76              |
| High    | 2480               | 0.05              |

Page 23 of 54

## 7.6. OUTPUT POWER

#### LIMITS

FCC §15.247 (b)

IC RSS-247 (5.4) (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 10.7 dB cable) was entered as an offset in the power meter to allow for a gated reading of power.

#### **RESULTS**

#### OUTPUT POWER

| Channel | Frequency<br>(MHz) | Peak Power<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|--------------------------------|----------------|----------------|
| Low     | 2402               | 1.87                           | 30             | -28.13         |
| Middle  | 2440               | 2.73                           | 30             | -27.27         |
| High    | 2480               | 1.34                           | 30             | -28.66         |

Page 24 of 54

## 7.7. POWER SPECTRAL DENSITY

#### LIMITS

FCC §15.247 (e)

IC RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### **RESULTS**

#### POWER SPECTRAL DENSITY

| Channel | Frequency<br>(MHz) | PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Margin<br>(dB) |
|---------|--------------------|-------------------|---------------------|----------------|
| Low     | 2402               | -12.508           | 8                   | -20.508        |
| Middle  | 2440               | -11.768           | 8                   | -19.768        |
| High    | 2480               | -13.720           | 8                   | -21.720        |



Page 25 of 54

| 🕴 Agi                           | <b>lent</b> 11           | :51:41      | Aug 7,           | , 2017           |             |        |       |                      |                   | L                | Measure              |
|---------------------------------|--------------------------|-------------|------------------|------------------|-------------|--------|-------|----------------------|-------------------|------------------|----------------------|
| Pv7.0.<br>≷ef20<br>⊧Peak∥       | .1(0727<br>dBm           | ′17),37     | 699 CS<br>#Atten | , Condu<br>30 dB | icted A     |        |       | Mkr1 2               | 2.439 9<br>-11.76 | 72 GHz<br>;8 dBm | Meas Of              |
| .og<br>.0<br>HB/<br>Nffst       |                          |             |                  |                  |             |        |       |                      |                   |                  | Channel Powe         |
| .0.7<br>JB                      |                          | <u>.</u>    | miliyin          | mahr             | MANN        | hamen. | -     | Alv <sup>a</sup> ude |                   |                  | Occupied B           |
| }.0<br>¦Bm<br>⊧PAvg<br>L00      | MA                       | NW'' Y      | 11. 11 M         | ¥                |             | `Ψ' Р  | · • • | ¶° °¶¥<br>           | WV MA             | MAN              | AC                   |
| 41 S2<br>53 FS<br>AA            |                          |             |                  |                  |             |        |       |                      |                   |                  | Multi Carrie<br>Powe |
| :(f):<br>>50k<br>≽wp            |                          |             |                  |                  |             |        |       |                      |                   |                  | Power Sta<br>CCD     |
| ]<br>Center<br>•R <u>es B</u> 1 | 2.440<br>W <u>3 kH</u> ; | 000 GH<br>z | lz               |                  | <br>3W_9.1_ | kHz    | Sweep | 106.1 n              | Span<br>ns (100   | 1 MHz<br>1 pts)  | Mor<br>1 of          |



Page 26 of 54

## 7.8. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

#### **LIMITS**

FCC §15.247 (d)

IC RSS-247 (5.5)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

#### **RESULTS**

#### CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

| CBE LOW CH                                                        |                                                       |                |                                           |                        |
|-------------------------------------------------------------------|-------------------------------------------------------|----------------|-------------------------------------------|------------------------|
| 🔆 Agilent 14:15:35                                                | Aug 7, 2017                                           |                | L                                         | Measure                |
| APv7.0.1(072717),376<br>Ref 20 dBm # <br>Peak                     | 399 CS, Conducted A<br>Atten 30 dB                    | Mkr1           | 2.401 98 GHz<br>1.29 dBm                  | Meas Off               |
| Log<br>10<br>dB/<br>0ffst                                         |                                                       | ÷              |                                           | Channel Power          |
| 10.7<br>dB<br>DI<br>-18.7                                         | 3                                                     |                |                                           | Occupied BW            |
| dBm<br>#PAvg                                                      |                                                       |                |                                           | ACP                    |
| Center 2.400 00 GHz<br>#Res BW 100 kHz<br>Marker Trace            | #VBW 300 kHz<br>Type X Axis                           | Sweep 1 :      | Span 10 MHz<br>ms (1001 pts)<br>Amplitude | Multi Carrier<br>Power |
| $ \begin{array}{cccc} 1 & (1) \\ 2 & (1) \\ 3 & (1) \end{array} $ | Freq 2.401 98 6<br>Freq 2.400 00 6<br>Freq 2.400 00 6 | Hz<br>Hz<br>Hz | 1.29 dBm<br>-43.74 dBm<br>-43.74 dBm      | Power Stat<br>CCDF     |
|                                                                   |                                                       |                |                                           | <b>More</b><br>1 of 2  |
| Copyright 2000-201                                                | 10 Agilent Technologie                                | S              |                                           |                        |

Page 27 of 54

| 🔆 Agilent 14:1                         | 7:43 Aug             | 7,2017               |        |          |     |         |                   | L                | Measure              |
|----------------------------------------|----------------------|----------------------|--------|----------|-----|---------|-------------------|------------------|----------------------|
| 1Pv7.0.1(07271<br>≷ef 20 dBm<br>≥eak Г | 7),37699 C<br>#Atter | .S, Condu<br>1 30 dB | cted A |          |     | Mkr1    | 2.440             | 00 GHz<br>19 dBm | Meas Of              |
| .0g<br>.0<br>JB/                       |                      |                      |        |          |     |         |                   |                  | Channel Power        |
|                                        |                      |                      | $\neq$ | $\vdash$ |     |         |                   |                  | Occupied Bl          |
| +17.9<br>IBm<br>PAvg                   |                      | +                    |        | $\vdash$ |     |         |                   |                  | ACI                  |
| 11 S2<br>3 FS                          | nor the summer       |                      |        |          |     | mme     | han the state     | America          | Multi Carrie<br>Powe |
| 2(f):<br>>50k<br>Эмр                   |                      |                      |        |          |     |         |                   |                  | Power Sta<br>CCDI    |
| L<br>Center 2.440 0<br>#Res BW 100 kH  | 0 GHz<br>Iz          | <br>#VB              |        | kHz      | Sw. | eep 1 m | Span 1<br>ns (100 | .0 MHz<br>1 pts) | More<br>1 of         |



Page 28 of 54





Page 29 of 54

|                        |                                                         |                                                           | IIGH CH                                      | CSPUR HI                                   |
|------------------------|---------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Measure                | L                                                       | ,2017                                                     | 1:21:46 Aug 7,                               | 🔆 Agilent 14:                              |
| Meas Off               | Mkr4 25.594 GHz<br>-32.621 dBm                          | 6, Conducted A<br>40 dB                                   | 717),37699 CS,<br>#Atten 4                   | APv7.0.1(0727)<br>Ref 30 dBm<br>#Peak      |
| Channel Power          |                                                         |                                                           | <u> </u>                                     | Log<br>101-<br>dB/<br>Offst                |
| Occupied BW            | 4                                                       |                                                           | 2 3                                          | 10.7<br>dB<br>DI<br>-19.8                  |
| ACP                    |                                                         |                                                           |                                              | dBm<br>#PAvg                               |
| Multi Carrier<br>Power | Stop 26.000 GHz<br>veep 2.482 s (8192 pts)<br>Amplitude | #VBW 300 kHz                                              | kHz<br>race Type                             | Start 30 MHz<br>#Res BW 100 k<br>Marker Tr |
| Power Stat<br>CCDF     | 0.17 dBm<br>-44.23 dBm<br>-40.93 dBm<br>-32.62 dBm      | q 2.480 GHz<br>q 4.960 GHz<br>q 7.440 GHz<br>q 25.594 GHz | (1) Freq<br>(1) Freq<br>(1) Freq<br>(1) Freq | 1 ()<br>2 ()<br>3 ()<br>4 ()               |
| <b>More</b><br>1 of 2  |                                                         |                                                           |                                              |                                            |
|                        |                                                         | ilent Technologies                                        | 000-2010 Agi                                 | Copyright 20                               |

Page 30 of 54

## 8. RADIATED TEST RESULTS

## 8.1. LIMITS AND PROCEDURE

#### <u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 0.009-0.490              | 2400/F(kHz) @ 300 m                   | -                                       |
| 0.490-1.705              | 24000/F(kHz) @ 30 m                   | -                                       |
| 1.705 - 30               | 30 @ 30m                              | -                                       |
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

#### TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 31 of 54

#### **Results**

## 8.2. TRANSMITTER ABOVE 1 GHz

#### LOW CHANNEL HORIZONTAL 125UL FREMONT, 3m Chamber 7 Aug 2017 16:05:54 Restricted Bandedge Project Number:11735596 Client:Microsoft Config:EUT w/ AC Adapter Mode:BLE 2402 H Tested by:39317 115 105 95 (dBuU/m) Harizontal 85 Peak Limit (dBuU/m) 75 65 Average Limit (dBuV/m) 55 2 45 dungn 35 2.415 2.31 10.5MHz/ Frequency (GHz) Ref/Attn Det/Avg Tupe Sweep Pts #Swps/Made Position Range (RHz) 189/12 PEAK/Pwr Avg(RMS) Imsec(Auto) 8868 MAXH 188 degs ; 2;2;31-2;415 RBU/UBU Ref/Attn Det/Avg Type Sweep 109/12 AVER/Pwr Avg (RMS) Insec (Auto) Range (GHz) 1:2:31-2:415 RBU/UBU 1M(-6dB)/3M Pts #Sups/Mode Position BLE\_BE\_2402\_H.DAT 30915 28 Dec 2015 Rev 9.5 01 Dec

## 8.2.1. RESTRICTED BANDEDGE (LOW CHANNEL)

#### **Trace Markers**

| Marker | Frequency | Meter   | Det | AF T712 (dB/m) | Amp/Cbl/Fltr/Pad (dB) | DC Corr (dB) | Corrected | Average Limit (dBuV/m) | Margin | Peak Limit (dBuV/m) | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|-----------------------|--------------|-----------|------------------------|--------|---------------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |     |                |                       |              | Reading   |                        | (dB)   |                     | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |                       |              | (dBuV/m)  |                        |        |                     |           |         |        |          |
| 2      | 2.329     | 38.58   | Pk  | 31.8           | -22.6                 | 0            | 47.78     |                        |        | 74                  | -26.22    | 100     | 353    | н        |
| 4      | 2.388     | 27.79   | RMS | 31.9           | -22.4                 | 2.04         | 39.31     | 54                     | -14.69 | -                   | -         | 100     | 353    | н        |
| 1      | 2.39      | 37.27   | Pk  | 31.9           | -22.6                 | 0            | 46.57     | -                      | -      | 74                  | -27.43    | 100     | 353    | н        |
| 3      | 2.39      | 26.05   | RMS | 31.9           | -22.6                 | 2.04         | 37.37     | 54                     | -16.63 |                     | -         | 100     | 353    | н        |

Pk - Peak detector RMS - RMS detection

Page 32 of 54



#### Trace Markers

| Marker | Frequency | Meter   | Det | AF T712 (dB/m) | Amp/Cbl/Fitr/Pad (dB) | DC Corr (dB) | Corrected | Average Limit (dBuV/m) | Margin | Peak Limit (dBuV/m) | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|-----------------------|--------------|-----------|------------------------|--------|---------------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |     |                |                       |              | Reading   |                        | (dB)   |                     | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |                       |              | (dBuV/m)  |                        |        |                     |           |         |        |          |
| 2      | 2.375     | 39.05   | Pk  | 31.9           | -22.5                 | 0            | 48.45     | -                      | -      | 74                  | -25.55    | 351     | 113    | v        |
| 4      | 2.382     | 28.1    | RMS | 31.9           | -22.4                 | 2.04         | 39.62     | 54                     | -14.38 | -                   | -         | 351     | 113    | V        |
| 1      | 2.39      | 36.42   | Pk  | 31.9           | -22.6                 | 0            | 45.72     |                        | -      | 74                  | -28.28    | 351     | 113    | V        |
| 3      | 2.39      | 27.13   | RMS | 31.9           | -22.6                 | 2.04         | 38.45     | 54                     | -15.55 | -                   | -         | 351     | 113    | V        |

Pk - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 33 of 54

## 8.2.2. AUTHORIZED BANDEDGE (HIGH CHANNEL)



#### Trace Markers

| Marker | Frequency | Meter   | Det | AF T712 (dB/m) | Amp/Cbl/Fltr/Pad (dB) | DC Corr (dB) | Corrected | Average Limit (dBuV/m) | Margin | Peak Limit (dBuV/m) | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|-----------------------|--------------|-----------|------------------------|--------|---------------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |     |                |                       |              | Reading   |                        | (dB)   |                     | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |                       |              | (dBuV/m)  |                        |        |                     |           |         |        |          |
| 1      | 2.484     | 48.58   | Pk  | 32.4           | -22.7                 | 0            | 58.28     |                        | -      | 74                  | -15.72    | 25      | 231    | н        |
| 2      | 2.484     | 48.38   | Pk  | 32.4           | -22.7                 | 0            | 58.08     |                        |        | 74                  | -15.92    | 25      | 231    | н        |
| 3      | 2.484     | 27.37   | RMS | 32.4           | -22.7                 | 2.04         | 39.09     | 54                     | -14.91 | -                   |           | 25      | 231    | н        |
| 4      | 2.484     | 29.64   | RMS | 32.4           | -22.7                 | 2.04         | 41.36     | 54                     | -12.64 | -                   | -         | 25      | 231    | н        |

Pk - Peak detector RMS - RMS detection

Page 34 of 54



#### Trace Markers

| Marker | Frequency | Meter   | Det | AF T712 (dB/m) | Amp/Cbl/Fitr/Pad (dB) | DC Corr (dB) | Corrected | Average Limit (dBuV/m) | Margin | Peak Limit (dBuV/m) | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|-----------------------|--------------|-----------|------------------------|--------|---------------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |     |                |                       |              | Reading   |                        | (dB)   |                     | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |                       |              | (dBuV/m)  |                        |        |                     |           |         |        |          |
| 1      | 2.484     | 48.64   | Pk  | 32.4           | -22.7                 | 0            | 58.34     | -                      | -      | 74                  | -15.66    | 285     | 114    | v        |
| 2      | 2.484     | 48.91   | Pk  | 32.4           | -22.7                 | 0            | 58.61     | -                      | -      | 74                  | -15.39    | 285     | 114    | V        |
| 3      | 2.484     | 26.75   | RMS | 32.4           | -22.7                 | 2.04         | 38.47     | 54                     | -15.53 | -                   | -         | 285     | 114    | V        |
| 4      | 2.525     | 27.86   | RMS | 32.4           | -22.2                 | 2.04         | 40.08     | 54                     | -13.92 | -                   | -         | 285     | 114    | V        |

Pk - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 35 of 54







Page 36 of 54

#### Radiated Emissions

| Marker | Frequency | Meter   | Det  | AF T863 (dB/m) | Amp/Cbl/Fltr/Pad (dB) | DC Corr (dB) | Corrected | Avg Limit (dBuV/m) | Margin | Peak Limit (dBuV/m) | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|----------------|-----------------------|--------------|-----------|--------------------|--------|---------------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      |                |                       |              | Reading   |                    | (dB)   |                     | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |                |                       |              | (dBuV/m)  |                    |        |                     |           |         |        |          |
| 2      | * 11.594  | 34.06   | PK2  | 38.2           | -22.5                 | 0            | 49.76     |                    | -      | 74                  | -24.24    | 112     | 101    | н        |
|        | * 11.594  | 22.09   | MAv1 | 38.2           | -22.5                 | 2.04         | 39.83     | 54                 | -14.17 |                     | -         | 112     | 101    | Н        |
| 4      | * 5.033   | 38.7    | PK2  | 34.4           | -28.3                 | 0            | 44.8      |                    | -      | 74                  | -29.2     | 103     | 200    | V        |
|        | * 5.034   | 26.56   | MAv1 | 34.4           | -28.3                 | 2.04         | 34.7      | 54                 | -19.3  |                     | -         | 103     | 200    | V        |
| 5      | * 8.318   | 36.21   | PK2  | 36.1           | -25                   | 0            | 47.31     |                    | -      | 74                  | -26.69    | 21      | 200    | V        |
|        | * 8.319   | 24.29   | MAv1 | 36.1           | -25                   | 2.04         | 37.43     | 54                 | -16.57 | -                   | -         | 21      | 200    | v        |
| 1      | 1.877     | 41.23   | PK2  | 30.9           | -20.8                 | 0            | 51.33     |                    | -      |                     | -         | 65      | 100    | н        |
| 3      | 13.132    | 32.33   | PK2  | 39.3           | -21.9                 | 0            | 49.73     | -                  | -      | -                   |           | 271     | 101    | Н        |
| 6      | 13.82     | 32.09   | PK2  | 39.1           | -20.9                 | 0            | 50.29     | -                  | -      | -                   | -         | 301     | 200    | V        |

\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 37 of 54





Page 38 of 54

#### **Radiated Emissions**

| Marker | Frequency<br>(GHz) | Meter  | Det  | AF T863 (dB/m) | Amp/Cbl/Fltr/Pad (dB) | DC Corr (dB) | Corrected | Avg Limit (dBuV/m) | Margin<br>(dB) | Peak Limit (dBuV/m) | PK Margin | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|--------|------|----------------|-----------------------|--------------|-----------|--------------------|----------------|---------------------|-----------|-------------------|----------------|----------|
|        | (unit)             | (dBuV) |      |                |                       |              | (dBuV/m)  |                    | (00)           |                     | (00)      | (5-63)            | (cm)           |          |
| 1      | * 1.324            | 36.31  | PK2  | 28.9           | -21.7                 | 0            | 43.51     | -                  | -              | 74                  | -30.49    | 268               | 199            | н        |
|        | * 1.323            | 17.71  | MAv1 | 28.9           | -21.6                 | 2.04         | 27.05     | 54                 | -26.95         | -                   | -         | 268               | 199            | н        |
| 2      | * 7.675            | 35.72  | PK2  | 36             | -26                   | 0            | 45.72     | -                  | -              | 74                  | -28.28    | 288               | 104            | н        |
|        | * 7.674            | 23.23  | MAv1 | 36             | -26                   | 2.04         | 35.27     | 54                 | -18.73         | -                   | -         | 288               | 104            | н        |
| 3      | * 11.749           | 33.05  | PK2  | 38.5           | -21.9                 | 0            | 49.65     | -                  | -              | 74                  | -24.35    | 319               | 104            | н        |
|        | * 11.749           | 19.53  | MAv1 | 38.5           | -21.9                 | 2.04         | 38.17     | 54                 | -15.83         | -                   | -         | 319               | 104            | н        |
| 4      | * 4.738            | 39.25  | PK2  | 34.2           | -28.3                 | 0            | 45.15     | -                  | -              | 74                  | -28.85    | 351               | 104            | V        |
|        | * 4.739            | 26.85  | MAv1 | 34.2           | -28.3                 | 2.04         | 34.79     | 54                 | -19.21         | -                   | -         | 351               | 104            | v        |
| 5      | * 7.307            | 37.37  | PK2  | 35.8           | -27.2                 | 0            | 45.97     | -                  | -              | 74                  | -28.03    | 182               | 104            | V        |
|        | * 7.308            | 24.93  | MAv1 | 35.8           | -27.1                 | 2.04         | 35.67     | 54                 | -18.33         | -                   | -         | 182               | 104            | V        |
| 6      | * 12.422           | 32.49  | PK2  | 39             | -21.6                 | 0            | 49.89     | -                  | -              | 74                  | -24.11    | 360               | 199            | V        |
|        | * 12.423           | 19.56  | MAv1 | 39             | -21.6                 | 2.04         | 39        | 54                 | -15            | -                   | -         | 360               | 199            | V        |

\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 54





Page 40 of 54

#### Radiated Emissions

| Marker | Frequency | Meter   | Det  | AF T863 (dB/m) | Amp/Cbl/Fitr/Pad (dB) | DC Corr (dB) | Corrected | Avg Limit (dBuV/m) | Margin | Peak Limit (dBuV/m) | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|----------------|-----------------------|--------------|-----------|--------------------|--------|---------------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      |                |                       |              | Reading   |                    | (dB)   |                     | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |                |                       |              | (dBuV/m)  |                    |        |                     |           |         |        |          |
| 4      | * 10.672  | 33.33   | PK2  | 37.6           | -22.6                 | 0            | 48.33     |                    | -      | 74                  | -25.67    | 80      | 104    | н        |
|        | * 10.672  | 19.62   | MAv1 | 37.6           | -22.6                 | 2.04         | 36.66     | 54                 | -17.34 | -                   | -         | 80      | 104    | н        |
| 6      | * 12.14   | 32.8    | PK2  | 39             | -22                   | 0            | 49.8      |                    | -      | 74                  | -24.2     | 342     | 104    | V        |
|        | * 12.139  | 19.36   | MAv1 | 39             | -22                   | 2.04         | 38.4      | 54                 | -15.6  | -                   | -         | 342     | 104    | V        |
| 5      | 2.099     | 35.87   | PK2  | 31.4           | -21.1                 | 0            | 46.17     |                    | -      | -                   | -         | 268     | 199    | V        |
| 1      | 2.635     | 35.29   | PK2  | 32.5           | -21                   | 0            | 46.79     |                    | -      | -                   | -         | 57      | 199    | н        |
| 2      | 4.446     | 38.33   | PK2  | 33.8           | -28.3                 | 0            | 43.83     |                    | -      | -                   | -         | 146     | 104    | н        |
| 3      | 5.151     | 39.93   | PK2  | 34.4           | -29.6                 | 0            | 44.73     |                    | -      |                     | -         | 262     | 104    | н        |

\* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 41 of 54

# 8.3. SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)



#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)



Page 42 of 54

#### **Radiated Emissions**

| Marker | Frequency | Meter   | Det | AF T408 (dB/m) | Amp/Cbl (dB) | Corrected | QPk Limit (dBuV/m) | Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|--------------|-----------|--------------------|--------|---------|--------|----------|
|        | (MHz)     | Reading |     |                |              | Reading   |                    | (dB)   | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |              | (dBuV/m)  |                    |        |         |        |          |
| 4      | 30.8502   | 32.16   | Pk  | 24.6           | -27.2        | 29.56     | 40                 | -10.44 | 0-360   | 100    | V        |
| 1      | 31.3604   | 29.62   | Pk  | 24.3           | -27.2        | 26.72     | 40                 | -13.28 | 0-360   | 200    | Н        |
| 5      | 37.0568   | 33.72   | Pk  | 20.2           | -27.2        | 26.72     | 40                 | -13.28 | 0-360   | 100    | V        |
| 2      | 56.7394   | 35.72   | Pk  | 11.2           | -26.9        | 20.02     | 40                 | -19.98 | 0-360   | 400    | Н        |
| 3      | 208.1362  | 49.8    | Pk  | 14.8           | -25          | 39.6      | 43.52              | -3.92  | 205     | 165    | Н        |
|        |           | 45.69   | Qp  | 14.8           | -25          | 35.49     | 43.52              | -8.03  | 205     | 165    | Н        |
| 6      | 209.1012  | 43.26   | Pk  | 14.6           | -25          | 32.86     | 43.52              | -10.66 | 0-360   | 200    | V        |
| 7      | 705.9658  | 35.3    | Pk  | 24.2           | -23.6        | 35.9      | 46.02              | -10.12 | 0-360   | 200    | V        |

Pk - Peak detector

Qp - Quasi-Peak detector

Page 43 of 54

## 8.4. WORST-CASE 18 to 26 GHz

## SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

| RF Emissions<br>Project Number: 11735596<br>Client WICROSOFT<br>Configuration: EUT + AC Adapter<br>Models Limit (dBuU/m)<br>Avg Limit (dBuU/m)<br>Avg Limit (dBuU/m)<br>8<br>8<br>Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UL EMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 Aug 2017 20:49:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Number: 1173596<br>Chineren Horosoft<br>Configuration:EUT + 40 Adopter<br>Modelstreament<br>Modelstreament<br>Avg Limit (dBuU/m)<br>Avg Limit (dBuU/m)<br>8<br>8<br>Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5<br>Peak Limit (dBuU/m)<br>5<br>Avg Limit (dBuU/m)<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Number:11735596<br>ClientMICROSOFT<br>Configuration:EUT + AC Adapter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 Feak Limit (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tested by / SN:6E43578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5<br>Avg Limit (dBuV/m)<br>5<br>5<br>5<br>5<br>18<br>7<br>18<br>7<br>18<br>7<br>18<br>7<br>18<br>7<br>18<br>7<br>18<br>7<br>18<br>7<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 Peak Limit (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg Limit (dBuU/m)     3       15     2       15     2       15     1       15     2       16     1       17     2       18     26       18     Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>15<br>15<br>18<br>18<br>18<br>18<br>Frequency (GHz)<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 Avg Limit (dBuU/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5<br>5<br>18<br>Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and a second and a |
| 5<br>5<br>18<br>Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Munummental and a second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5<br>18 26<br>Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 26 Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rompe (BHz) RBM/BW Ref/Rttn Det/ Sweep Pts HSwps/Hode Lobel Rompe (BHz) RBM/BW Ref/Rttn Det/ Sweep Pts HSwps/Hode Lobel 11/8-26 11/(-3d6)/311 97/8 PERK/- I6Bisec(Auto) 1282 HW81 Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Range         (GHz)         RBM/UBW         Ref/Attn         Det/           1:18-26         1M(-3dB)/3M         97/8         PEAK/         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sweep Pts #Swps/Hode Label<br>1600seec(Auto)1202 HWM Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page 44 of 54



#### <u>DATA</u>

#### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | T449 AF<br>(dB/m) | Amp/Cbl (dB) | Dist Corr<br>(dB) | Corrected<br>Reading<br>(dBuVolts) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) |
|--------|--------------------|----------------------------|-----|-------------------|--------------|-------------------|------------------------------------|-----------------------|----------------|------------------------|-------------------|
| 1      | 20.684             | 41.03                      | Pk  | 33                | -21.7        | -9.5              | 42.83                              | 54                    | -11.17         | 74                     | -31.17            |
| 2      | 22.316             | 40.7                       | Pk  | 33.5              | -20.7        | -9.5              | 44                                 | 54                    | -10            | 74                     | -30               |
| 3      | 24.694             | 42.93                      | Pk  | 34.1              | -20.2        | -9.5              | 47.33                              | 54                    | -6.67          | 74                     | -26.67            |
| 4      | 18.733             | 41.1                       | Pk  | 32.3              | -21.9        | -9.5              | 42                                 | 54                    | -12            | 74                     | -32               |
| 5      | 22.729             | 41.5                       | Pk  | 33.4              | -20.9        | -9.5              | 44.5                               | 54                    | -9.5           | 74                     | -29.5             |
| 6      | 23.449             | 41.6                       | Pk  | 33.9              | -20.5        | -9.5              | 45.5                               | 54                    | -8.5           | 74                     | -28.5             |

Pk - Peak detector

Page 45 of 54

## 9. AC POWER LINE CONDUCTED EMISSIONS

#### LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

| Fraguancy of Emission (MHz) | Conducted Limit (dBµV) |            |  |  |  |  |
|-----------------------------|------------------------|------------|--|--|--|--|
| Frequency of Emission (MHZ) | Quasi-peak             | Average    |  |  |  |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5-5                       | 56                     | 46         |  |  |  |  |
| 5-30                        | 60                     | 50         |  |  |  |  |

\*Decreases with the logarithm of the frequency.

#### TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

#### **RESULTS**

Page 46 of 54

#### LINE 1 RESULTS



#### WORST EMISSIONS

| Range 1: Line-L1 .15 - 30MHz |           |         |     |         |           |         |           |            |           |             |           |
|------------------------------|-----------|---------|-----|---------|-----------|---------|-----------|------------|-----------|-------------|-----------|
| Marker                       | Frequency | Meter   | Det | LISN L1 | LC Cables | Limiter | Corrected | CFR 47     | QP Margin | CFR 47      | Av(CISPR) |
|                              | (MHz)     | Reading |     |         | C1&C3     | (dB)    | Reading   | Part 15    | (dB)      | Part 15     | Margin    |
|                              |           | (dBuV)  |     |         |           |         | dBuV      | Class B QP |           | Class B Avg | (dB)      |
| 1                            | .15225    | 41.42   | Qp  | .1      | .1        | 10.1    | 51.72     | 65.88      | -14.16    | -           | -         |
| 2                            | .15225    | 24.49   | Ca  | .1      | .1        | 10.1    | 34.79     | -          | -         | 55.88       | -21.09    |
| 3                            | .65737    | 19.5    | Qp  | 0       | .1        | 10.1    | 29.7      | 56         | -26.3     | -           | -         |
| 4                            | .66075    | 15.45   | Ca  | 0       | .1        | 10.1    | 25.65     | -          | -         | 46          | -20.35    |
| 5                            | 2.47425   | 13.02   | Qp  | 0       | .1        | 10.1    | 23.22     | 56         | -32.78    | -           | -         |
| 6                            | 2.47425   | 10.67   | Ca  | 0       | .1        | 10.1    | 20.87     | -          | -         | 46          | -25.13    |
| 7                            | 7.22625   | 12.73   | Qp  | 0       | .2        | 10.2    | 23.13     | 60         | -36.87    | -           | -         |
| 8                            | 7.2285    | 5.69    | Ca  | 0       | .2        | 10.2    | 16.09     | -          | -         | 50          | -33.91    |
| 9                            | 13.299    | 14.34   | Qp  | .1      | .2        | 10.2    | 24.84     | 60         | -35.16    | -           | -         |
| 10                           | 13.299    | 4       | Ca  | .1      | .2        | 10.2    | 14.5      | -          | -         | 50          | -35.5     |
| 11                           | 19.28625  | 7.62    | Qp  | .1      | .3        | 10.3    | 18.32     | 60         | -41.68    | -           | -         |
| 12                           | 19.4685   | 3.36    | Ca  | .1      | .3        | 10.3    | 14.06     | -          | -         | 50          | -35.94    |

Qp - Quasi-Peak detector

Ca - CISPR average detection

#### LINE 2 RESULTS



#### WORST EMISSIONS

| Marker | Frequency | Meter   | Det | LISN L2 | LC Cables | Limiter | Corrected | CFR 47     | QP Margin | CFR 47      | Av(CISPR) |
|--------|-----------|---------|-----|---------|-----------|---------|-----------|------------|-----------|-------------|-----------|
|        | (MHz)     | Reading |     |         | C2&C3     | (dB)    | Reading   | Part 15    | (dB)      | Part 15     | Margin    |
|        |           | (dBuV)  |     |         |           |         | dBuV      | Class B QP |           | Class B Avg | (dB)      |
| 13     | .15225    | 40.79   | Qp  | 0       | 0         | 10.1    | 50.89     | 65.88      | -14.99    | -           | -         |
| 14     | .15225    | 23.49   | Ca  | 0       | 0         | 10.1    | 33.59     | -          | -         | 55.88       | -22.29    |
| 15     | .65625    | 19.66   | Qp  | 0       | .1        | 10.1    | 29.86     | 56         | -26.14    | -           | -         |
| 16     | .66075    | 15.5    | Ca  | 0       | .1        | 10.1    | 25.7      | -          | -         | 46          | -20.3     |
| 17     | 2.8905    | 21.94   | Qp  | 0       | .1        | 10.1    | 32.14     | 56         | -23.86    | -           | -         |
| 18     | 2.8905    | 5.47    | Ca  | 0       | .1        | 10.1    | 15.67     | -          | -         | 46          | -30.33    |
| 19     | 4.047     | 18.45   | Qp  | 0       | .1        | 10.1    | 28.65     | 56         | -27.35    | -           | -         |
| 20     | 4.04925   | 5.68    | Ca  | 0       | .1        | 10.1    | 15.88     | -          | -         | 46          | -30.12    |
| 21     | 13.299    | 13.89   | Qp  | .1      | .2        | 10.2    | 24.39     | 60         | -35.61    | -           | -         |
| 22     | 13.299    | 4.61    | Ca  | .1      | .2        | 10.2    | 15.11     | -          | -         | 50          | -34.89    |
| 23     | 27.28613  | 6.18    | Qp  | .1      | .3        | 10.5    | 17.08     | 60         | -42.92    | -           | -         |
| 24     | 27.285    | 2.05    | Ca  | .1      | .3        | 10.5    | 12.95     | -          | -         | 50          | -37.05    |

#### **Qp** - Quasi-Peak detector

Ca - CISPR average detection