

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4					
1	C	Certificate of Conformity	5			
2	S	ummary of Test Results	6			
	2.1	Measurement Uncertainty				
	2.2	Modification Record				
3	G	General Information				
	3.1	General Description of EUT (WLAN)				
	3.2	Description of Test Modes				
	3.2.1	Test Mode Applicability and Tested Channel Detail				
	3.3 3.4	Duty Cycle of Test Signal Description of Support Units				
	3.4 3.4.1	Configuration of System under Test				
	3.5	General Description of Applied Standards				
4		est Types and Results				
	4.1 4.1.1	Unwanted Emission Measurement (Radiated Versus Conducted) Limits of Unwanted Emission Measurement				
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard				
		Test Setup				
		EUT Operating Conditions				
		Test Results (Radiated Measurement)				
		Test Results (Conducted Measurement)				
	4.2	Conducted Emission Measurement				
	4.2.1					
	4.2.2	Test Instruments				
	4.2.3	Test Procedures	39			
	4.2.4	Deviation from Test Standard	39			
	4.2.5	Test Setup	39			
		EUT Operating Conditions				
		Test Results				
	4.3	6dB Bandwidth Measurement				
	4.3.1					
		Test Setup				
		Test Instruments				
		Test Procedure				
		Deviation fromTest Standard				
		EUT Operating Conditions Test Result				
	4.3.7	Conducted Output Power Measurement				
		Limits of Conducted Output Power Measurement				
		Test Setup				
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard				
		EUT Operating Conditions				
		Test Results	45			
	4.5	Power Spectral Density Measurement				
	4.5.1					
		Test Setup				
		Test Instruments				
		Test Procedure				
	4.5.5	Deviation from Test Standard	46			

4.5.6 E	UT Operating Condition	46
4.5.7 Te	est Results	47
4.6 C	onducted Out of Band Emission Measurement	48
4.6.1 Li	mits of Conducted Out of Band Emission Measurement	48
4.6.2 Te	est Setup	48
	est Instruments	
4.6.4 Te	est Procedure	48
4.6.5 D	eviation from Test Standard	48
4.6.6 E	UT Operating Condition	48
4.6.7 T€	est Results	48
5 Pict	ures of Test Arrangements	50
Appendix	– Information on the Testing Laboratories	51

	Release Control Record	
Issue No.	Description	Date Issued
RF170326E02	Original release.	June 22, 2017

1 Certificate of Conformity

Product:	1T1R dual-band wireless accessory radio		
Brand:	Microsoft		
Test Model:	1803		
Sample Status:	ENGINEERING SAMPLE		
Applicant:	Microsoft Corporation		
Test Date:	May 12 to 19, 2017		
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)		
	ANSI C63.10: 2013		

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Wendy	Mu	_ , [Date:	June 22, 2017	
	Wendy Wu / Sp	ecialist				
Approved by :	\mathcal{M}		_, [Date:	June 22, 2017	
	May Chen / Ma	nager				

2 Summary of Test Results

	47 CFR FCC Part 15, Sub	part C (SEC	TION 15.247)
FCC Clause	Test Item Res		Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -12.60dB at 0.57578MHz.
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3.6dB at 240.00MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.30 dB	
	1GHz ~ 6GHz	5.16 dB	
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.91 dB	
	18GHz ~ 40GHz	5.30 dB	

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	1T1R dual-band wireless accessory radio			
Brand	Microsoft			
Test Model	1803			
Status of EUT	ENGINEERING SAMPLE			
Power Supply Rating	3.3Vdc from host equipment			
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM			
Modulation Technology	OFDM			
Transfer Rate	802.11n : up to 72.2Mbps			
Operating Frequency	For 15.407 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz For 15.247 2.412 ~ 2.462GHz			
Number of Channel	For 15.407 9 for 802.11n (HT20) For 15.247 11 for 802.11n (HT20)			
Output Power	For 15.407 5.18GHz -5.24GHz : 7.87mW 5.745GHz ~ 5.825GHz: 7.852 mW For 15.247 60.534mW			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	NA			
Data Cable Supplied	NA			
Note:				
1. Simultaneously transmission condition				
Condition Technology				

Condition	lology					
1	WLAN 2.4GHz	WLAN 5GHz				
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.						
2. The FUT has three type models, which are identical to each other in all connects event for the following						

2. The EOT has three type models, which are identical to each other in all aspects except for the following.						
Туре	MTK P/N	Different				
Type 1	M1023477-009 (LiteOn)					
Type 2	M1023477-010 (LiteOn)	For Marketing request.				
Туре 3	M1023477-011 (Askey)	7				
Nate: Erem	Note: From the object times. Time 4 was calented as representative model for the test and its date was					

Note: From the above types, Type 1 was selected as representative model for the test and its data was recorded in this report.

3. The EUT incorporates a SISO function.

2.4GHz Band						
MODULATION MODE	IFIGURATION					
802.11n (HT20)	MCS 0~7	1TX	1RX			
	50	GHz Band				
MODULATION MODE DATA RATE (MCS) TX & RX CONFIGURATION						
802.11n (HT20)	MCS 0~7	1TX (fixed on Ant 3)	1RX (diversity)			

4. The antennas provided to the EUT, please refer to the following table:							
Antenna No.	Brand	Model	Gain (dBi)	Antenna Type	Connector Type	Frequency range (GHz to GHz)	Function
Ant. 1 (for WLAN 2.4GHz)	Microsoft		5.2			2.4~2.4835	TX/RX
Ant. 2 (for WLAN 5GHz) Chan (0)		NA	4.7	PCB	NA	5.15~5.85	RX
Ant. 3 (for WLAN 5GHz) Chan (1)			6.1			5.15~5.85	TX/RX

. e . 11

The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual. 5.

3.2 Description of Test Modes

11 channels are provided for 802.11n (HT20):

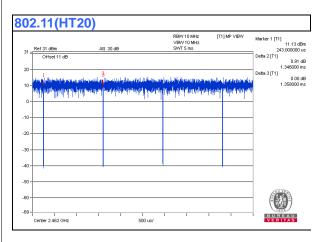
Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

NFIGURE					ſ	DESCRIPTION
MODE	RE≥1	G RE<1G	PLC	APCM		
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
r۵		ed Emission above	e 1GHz & R	E<1G: Radiated Em	nission below 1GH	Z
	edge Meas Power Lin	e Conducted Emi	ssion A	PCM: Antenna Port	Conducted Measu	urement
: 1. The EUT	had been	pre-tested on the	positioned of eac	h 3 axis. The worst of	case was found wh	nen positioned on Y-plan
diated En	nission	Test (Above 1	<u>GHz):</u>			
Dro Soon	haa ha	on conducted t	o dotormino th	o worst soos m	ada from all na	anible combinations
				d antenna ports		ssible combinations tenna diversity
architectu		,				,
Following	channe			the final test as I	isted below.	
МО	DE		TESTED		MODULATION TYPE	
WOL		CHANNEL	CHANNEL	OFDM	BPSK	(Mbps)
	(11720)	1 to 11				65
802.11n diated En Pre-Scan between	has bee available		o determine th	L	ode from all po	6.5 ssible combinations tenna diversity
802.11n ediated En Pre-Scan between architectu	hission has bee available ire).	Test (Below 1 en conducted t e modulations, el(s) was (were	GHz): to determine th data rates and e) selected for t	e worst-case mo d antenna ports the final test as l	ode from all po (if EUT with an isted below.	ssible combinations tenna diversity
802.11n diated En Pre-Scan between architectu	has bee available ire). channe	Test (Below 1 en conducted t e modulations,	GHz): to determine th data rates and	ne worst-case mo d antenna ports	ode from all po (if EUT with an	ssible combinations
802.11n Pre-Scan between architectu Following	hission has bee available ure). g channe DE	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE	GHz): to determine th data rates and e) selected for t TESTED	the worst-case mo d antenna ports the final test as l MODULATION	ode from all po (if EUT with an isted below. MODULATION	ssible combinations tenna diversity DATA RATE
802.11n Pre-Scan between architectu Following	hission has bee available ure). g channe DE	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL	GHz): to determine th data rates and selected for t TESTED CHANNEL	te worst-case mo d antenna ports the final test as l MODULATION TECHNOLOGY	ode from all po (if EUT with an isted below. MODULATION TYPE	ssible combinations tenna diversity DATA RATE (Mbps)
802.11n ediated En Pre-Scan between architectu Following 802.11n	hission has bee available ure). g channe DE (HT20)	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL	GHz): to determine th data rates and s) selected for t TESTED CHANNEL 6	te worst-case mo d antenna ports the final test as l MODULATION TECHNOLOGY	ode from all po (if EUT with an isted below. MODULATION TYPE	ssible combinations tenna diversity DATA RATE (Mbps)
802.11n Pre-Scan between architectu Following 802.11n	hission has bee available ire). g channe be (HT20) Conduc	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL 1 to 11	GHz): to determine th data rates and selected for to TESTED CHANNEL 6 Test:	the worst-case mo d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	ode from all po (if EUT with an isted below. MODULATION TYPE BPSK	ssible combinations tenna diversity DATA RATE (Mbps) 6.5
802.11n Pre-Scan between architectu Following 802.11n wer Line	hission has bee available ire). channe be (HT20) Conduc has bee	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL 1 to 11 to 11	GHz): to determine the data rates and b) selected for the TESTED CHANNEL 6 Test: to determine the	the worst-case mo d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	ode from all po (if EUT with an isted below. MODULATION TYPE BPSK	ssible combinations tenna diversity DATA RATE (Mbps) 6.5 ssible combinations
802.11n diated En Pre-Scan between architectu Following 802.11n wer Line Pre-Scan	has bee available ire). channe (HT20) Conduc has bee available	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL 1 to 11 to 11	GHz): to determine the data rates and b) selected for the TESTED CHANNEL 6 Test: to determine the	the worst-case mo d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	ode from all po (if EUT with an isted below. MODULATION TYPE BPSK	ssible combinations tenna diversity DATA RATE (Mbps) 6.5 ssible combinations
802.11n Pre-Scan between architectu Following 802.11n 802.11n wer Line Pre-Scan between architectu	has bee available ire). channe (HT20) Conduc has bee available ire).	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL 1 to 11 ted Emission en conducted t e modulations,	GHz): to determine the data rates and to selected for the TESTED CHANNEL 6 Test: to determine the data rates and	the worst-case mo d antenna ports the final test as I MODULATION TECHNOLOGY OFDM	ode from all po (if EUT with an isted below. MODULATION TYPE BPSK BPSK	ssible combinations tenna diversity DATA RATE (Mbps) 6.5 ssible combinations
802.11n ediated En Pre-Scan between architectu Following 802.11n wer Line Pre-Scan between architectu Following	has bee available ire). channe (HT20) Conduc has bee available ire). channe	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL 1 to 11 en conducted t e modulations, el(s) was (were AVAILABLE	GHz): to determine the data rates and e) selected for the CHANNEL 6 Test: to determine the data rates and e) selected for the TESTED	the worst-case mo d antenna ports the final test as I MODULATION TECHNOLOGY OFDM the worst-case mo d antenna ports the final test as I MODULATION	ode from all po (if EUT with an isted below. MODULATION TYPE BPSK Dde from all po (if EUT with an isted below. MODULATION	ssible combinations tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity DATA RATE
802.11n ediated En Pre-Scan between architectu Following Mot 802.11n wer Line Pre-Scan between architectu	has bee available ire). g channe (HT20) Conduc has bee available ire). g channe be	Test (Below 1 en conducted t e modulations, el(s) was (were AVAILABLE CHANNEL 1 to 11 eted Emission en conducted t e modulations, el(s) was (were	GHz): to determine the data rates and to selected for the TESTED CHANNEL 6 Test: to determine the data rates and to selected for t	the worst-case mo d antenna ports the final test as I MODULATION TECHNOLOGY OFDM oFDM	ode from all po (if EUT with an isted below. MODULATION TYPE BPSK ode from all po (if EUT with an isted below.	ssible combinations tenna diversity DATA RATE (Mbps) 6.5 ssible combinations tenna diversity

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.


MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5

Test Condition:

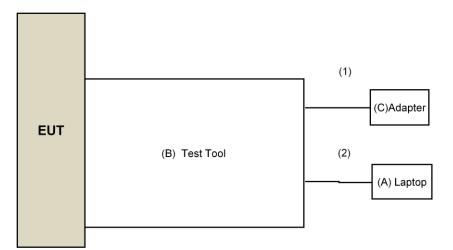
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE≥1G	23deg. C, 66%RH	120Vac, 60Hz	Terry Huang
RE<1G	22deg. C, 64%RH	120Vac, 60Hz	Terry Huang
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho
APCM	24deg. C, 68%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is \geq 98 %, duty factor is not required. 802.11n (HT20): Duty cycle = 1.346 ms/1.358 ms = 0.991

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Laptop	DELL	E6420	B92T3R1	FCC DoC	Supplied by Client
В	Test Tool	NA	NA	NA	NA	Supplied by client
С	Adapter	CUI	EPSA050250U	NA	NA	Supplied by client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.5	No	0	Supplied by client
2.	USB Cable	1	1.7	Yes	0	Supplied by client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Unwanted Emission Measurement (Radiated Versus Conducted)

4.1.1 Limits of Unwanted Emission Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 20, 2016	July 19, 2017
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 17, 2017	Jan. 16, 2018
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-01	Nov. 10, 2016	Nov. 09, 2017
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Dec. 13, 2016	Dec. 12, 2017
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 01, 2017	Mar. 31, 2018
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 05, 2016	Oct. 04, 2017
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 27, 2016	Dec. 26, 2017
Pre-Amplifier EMCI	EMC12630SE	980385	Feb. 02, 2017	Feb. 01, 2018
RF Cable	EMC104-SM- SM-1200 EMC104-SM- SM-2000 EMC104-SM- SM-5000	160923 150318 150323	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Pre-Amplifier EMCI	EMC184045S E	980387	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 15, 2017	Jan. 14, 2018
Software	ADT_Radiated _V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	 MF-7802	MF780208410	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA
Spectrum Analyzer R&S	FSv40	100964	June 28, 2016	June 27, 2017
Power meter Anritsu	ML2495A	0824006	May 26, 2016	May 25, 2017
Power sensor Anritsu	MA2411B	0738172	May 26, 2016	May 25, 2017

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 4.
- 3. The FCC Site Registration No. is 292998
- 4. The CANADA Site Registration No. is 20331-2
- 5 *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 6 Loop antenna was used for all emissions below 30 MHz.
- 7. Tested Date: May 12 to 16, 2017

4.1.3 Test Procedures

Following FCC KDB 558074 D01 DTS Meas. Guidance :

Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.

d. For all of Radiation emission test

For Radiated emission below 30MHz

- d-1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- d-2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d-3. Both X and Y axes of the antenna are set to make the measurement.
- d-4. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d-5. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.
- KDB 414788 OATS and Chamber Correlation Justification

 Based on FCC 15.31(f)(2) : measurements may be performed at a distance closer than that specified in the regulations; however, an attempts should be made to avoid making measurements in the near field.

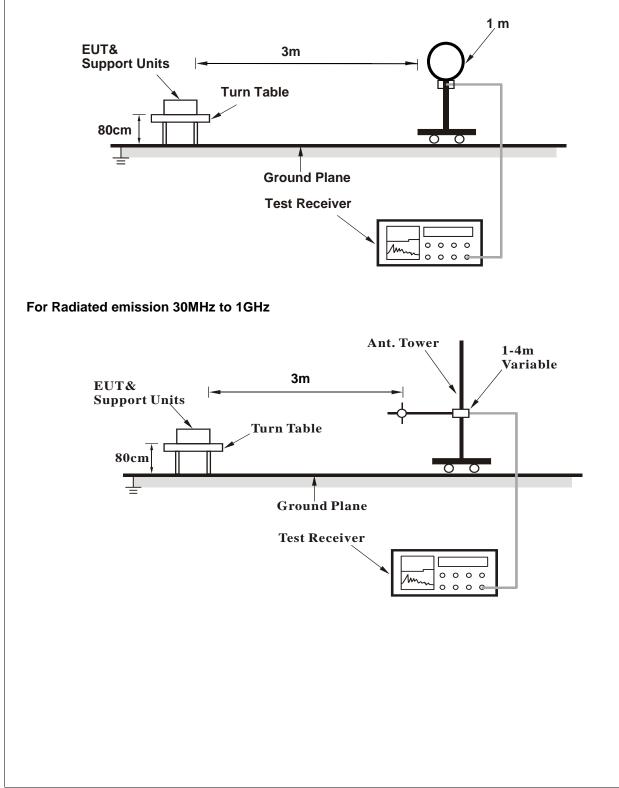
-OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

For Radiated emission above 30MHz

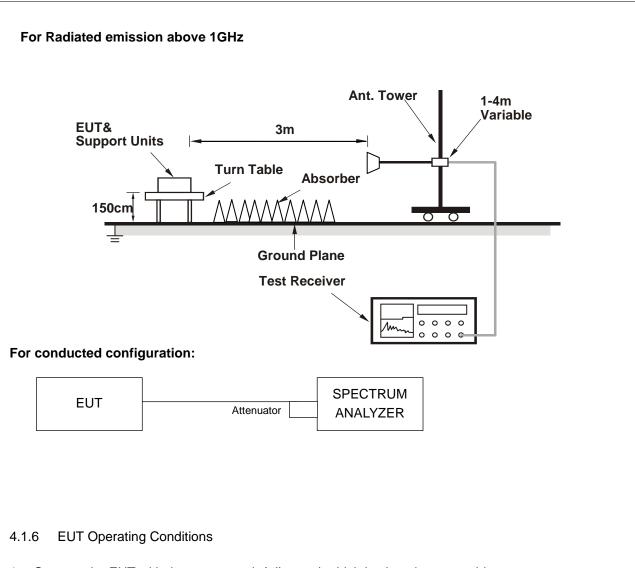
- d-1. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- d-2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d-3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d-4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d-5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- d-6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz. If duty cycle of test signal is < 98%, the duty factor need added to measured value.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

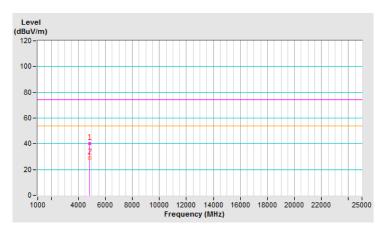
Connect the EUT with the support unit A (Laptop) which is placed on test table.
 The communication partner run test program "MT7662UQA.exe _V1.0.3.13" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

4.1.7 Test Results (Radiated Measurement)

Radiated versus Conducted Measurement					
Conducted measurement	Radiated measurement				
For Radiated measurement:					
The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation) For Conducted measurement:					
The level of unwanted emissions was measured as their power in a specified load (conducted spurious emissions).					

Radiated test was done with 50ohm terminator on antenna port

Above 1GHz Data

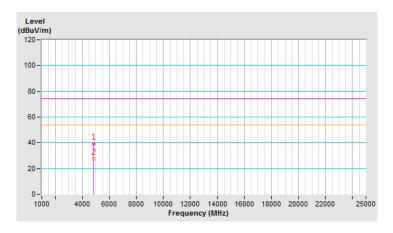

802.11n (HT20)

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4824.00	40.0 PK	74.0	-34.0	3.84 H	103	36.8	3.2
2	4824.00	28.8 AV	54.0	-25.2	3.84 H	103	25.6	3.2

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of all the restricted bands.

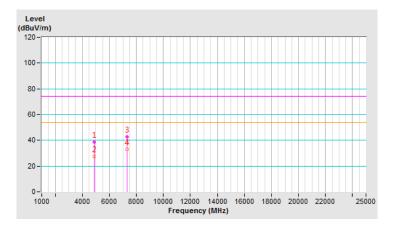

CHANNI	EL	TX Channel 1	DETECTOR	Peak (PK)
FREQUE	NCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4824.00	39.1 PK	74.0	-34.9	1.42 V	315	35.9	3.2
2	4824.00	27.4 AV	54.0	-26.6	1.42 V	315	24.2	3.2

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of all the restricted bands.

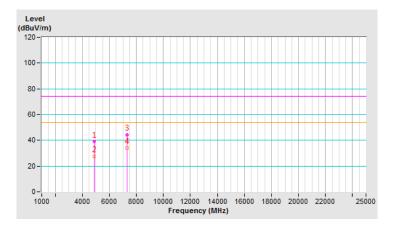

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4874.00	38.6 PK	74.0	-35.4	2.02 H	210	35.3	3.3	
2	4874.00	27.3 AV	54.0	-26.7	2.02 H	210	24.0	3.3	
3	7311.00	42.9 PK	74.0	-31.1	1.45 H	320	33.1	9.8	
4	7311.00	33.1 AV	54.0	-20.9	1.45 H	320	23.3	9.8	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

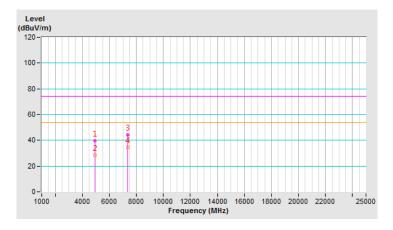

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4874.00	38.9 PK	74.0	-35.1	1.58 V	344	35.6	3.3	
2	4874.00	27.5 AV	54.0	-26.5	1.58 V	344	24.2	3.3	
3	7311.00	44.2 PK	74.0	-29.8	3.52 V	19	34.4	9.8	
4	7311.00	34.0 AV	54.0	-20.0	3.52 V	19	24.2	9.8	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

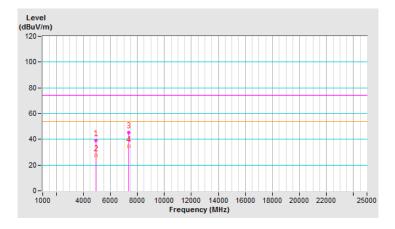

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4924.00	39.5 PK	74.0	-34.5	3.91 H	88	36.0	3.5	
2	4924.00	28.4 AV	54.0	-25.6	3.91 H	88	24.9	3.5	
3	7386.00	44.4 PK	74.0	-29.6	1.36 H	254	34.5	9.9	
4	7386.00	34.7 AV	54.0	-19.3	1.36 H	254	24.8	9.9	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value


CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4924.00	39.3 PK	74.0	-34.7	1.47 V	330	35.8	3.5	
2	4924.00	27.7 AV	54.0	-26.3	1.47 V	330	24.2	3.5	
3	7386.00	45.1 PK	74.0	-28.9	1.26 V	114	35.2	9.9	
4	7386.00	34.7 AV	54.0	-19.3	1.26 V	114	24.8	9.9	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

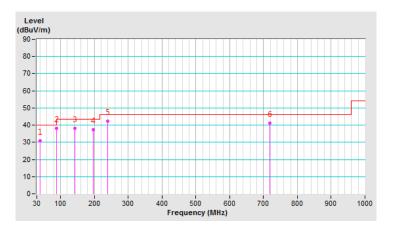
Below 1GHz Data:

802.11n (HT20)

CHANNEL	TX Channel 6	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	40.52	30.8 QP	40.0	-9.2	1.00 H	360	39.3	-8.5	
2	88.66	38.2 QP	43.5	-5.3	2.00 H	297	52.5	-14.3	
3	143.47	38.2 QP	43.5	-5.3	2.00 H	240	46.3	-8.1	
4	197.35	37.5 QP	43.5	-6.0	1.00 H	360	49.0	-11.5	
5	240.00	42.4 QP	46.0	-3.6	1.50 H	130	52.4	-10.0	
6	719.21	41.3 QP	46.0	-4.7	1.00 H	154	40.2	1.1	

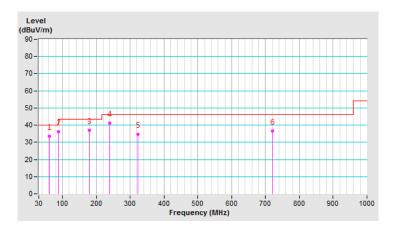
REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.

4. Margin value = Emission Level – Limit value


5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz.

CHANNEL	TX Channel 6	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA		' & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	60.82	33.4 QP	40.0	-6.6	1.50 V	360	42.1	-8.7
2	88.61	36.0 QP	43.5	-7.5	2.00 V	236	50.3	-14.3
3	179.45	36.9 QP	43.5	-6.6	1.00 V	255	46.4	-9.5
4	240.00	41.2 QP	46.0	-4.8	2.00 V	238	51.2	-10.0
5	322.70	34.7 QP	46.0	-11.3	1.50 V	242	41.8	-7.1
6	720.81	36.7 QP	46.0	-9.3	2.00 V	294	35.6	1.1

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz.

4.1.8 Test Results (Conducted Measurement)

Radiated versus Conducted Measurement							
Conducted measurement	Radiated measurement						
For Radiated measurement:							
The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation)							
For Conducted measurement:							
The level of unwanted emissions was measured spurious emissions).	as their power in a specified load (conducted						

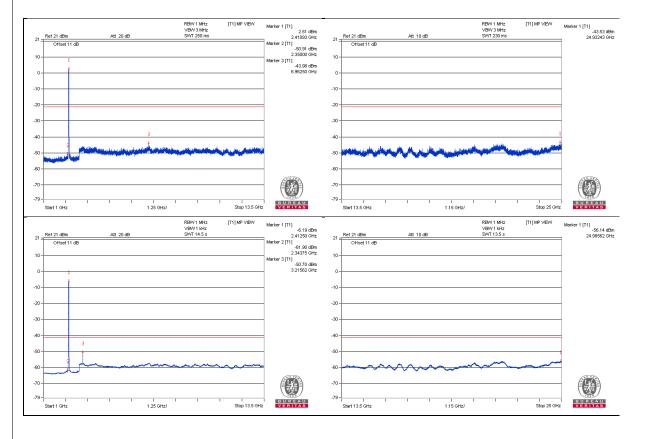
Conducted Measurement Factor

a.	The max antenna gain will be used fo	r conducted measu	urement shown as "Correction
	factor" in spurious emissions tables.	(Antenna gain=	5.2dBi)

- b. For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
- c. For the band edge the gain for the specific band may have been used.
- d. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:

For f = 30 - 1000 MHz, add 4.7 dB.

Note: The conducted emission test was considered some factor to compute test result.

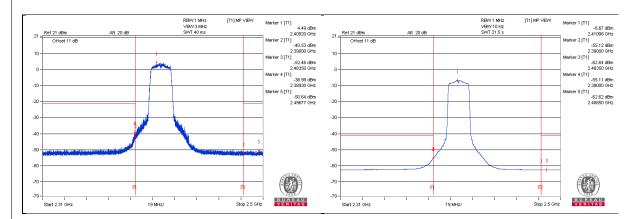

Above 1GHz Data: 802.11n (HT20) - Channel 1 Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	1609.37 PK	45.83	74	-28.17	-54.63	5.2	-49.43
2	1607.81 AV	36.5	54	-17.5	-63.96	5.2	-58.76
3	4823.43 PK	51.67	74	-22.33	-48.79	5.2	-43.59
4	4823.43 AV	40.74	54	-13.26	-59.72	5.2	-54.52

Note :

Emission Level (dBuV/m) = EIRP Level (dBm) $- 20\log(d) + 104.8$

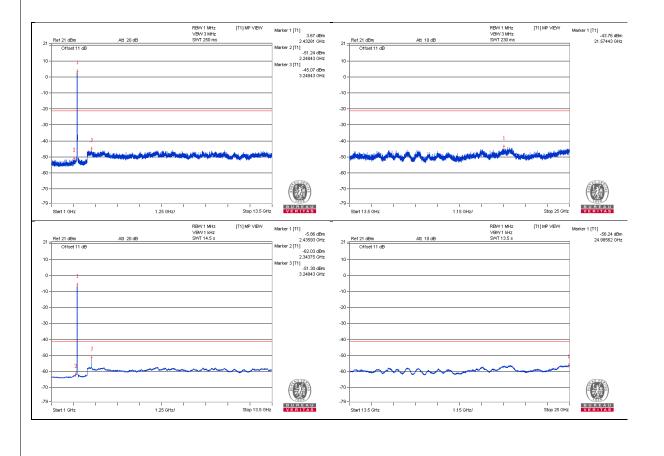
d = measurement distance in 3 meters.



Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2389.3 PK	61.48	74	-12.52	-38.98	5.2	-33.78
2	2390 AV	45.35	54	-8.65	-55.11	5.2	-49.91
3	2496.77 PK	49.82	74	-24.18	-50.64	5.2	-45.44
4	2488.5 AV	37.84	54	-16.16	-62.62	5.2	-57.42

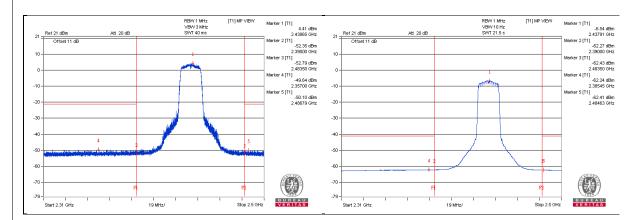
Note :



802.11n (HT20) - Channel 6 Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	1606.25 PK	45.15	74	-28.85	-55.31	5.2	-50.11
2	1609.37 AV	36.54	54	-17.46	-63.92	5.2	-58.72
3	4825 PK	50.84	74	-23.16	-49.62	5.2	-44.42
4	4823.43 AV	40.78	54	-13.22	-59.68	5.2	-54.48

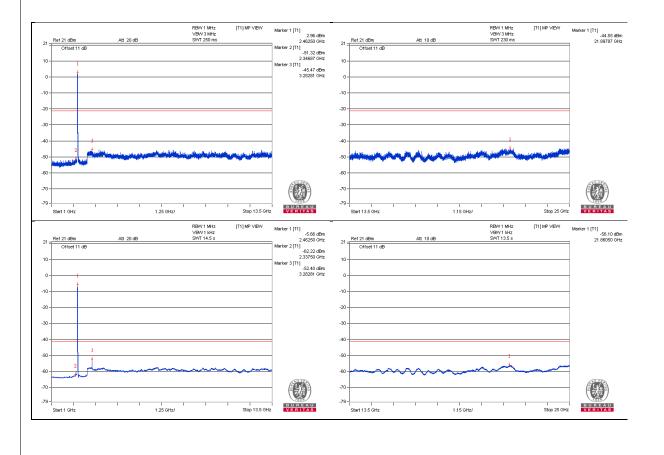
Note :



Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2357 PK	50.82	74	-23.18	-49.64	5.2	-44.44
2	2385.45 AV	38.22	54	-15.78	-62.24	5.2	-57.04
3	2486.79 PK	50.36	74	-23.64	-50.1	5.2	-44.9
4	2484.63 AV	38.05	54	-15.95	-62.41	5.2	-57.21

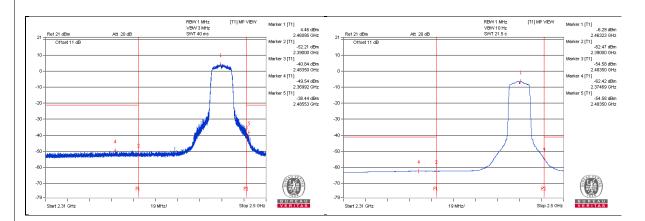
Note :



802.11n (HT20) - Channel 11 Conducted spurious emission table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	4923.43 PK	50.59	74	-23.41	-49.87	5.2	-44.44
2	4923.43 AV	40.9	54	-13.1	-59.56	5.2	-57.04
3	7385.93 PK	52.31	74	-21.69	-48.15	5.2	-44.9
4	7387.5 AV	42.05	54	-11.95	-58.41	5.2	-57.21

Note :

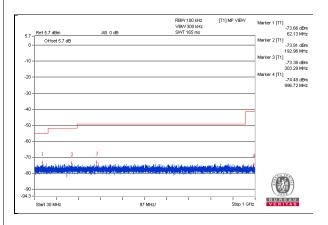


Bandedge table

No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	2369.92 PK	50.92	74	-23.08	-49.54	5.2	-44.34
2	2374.69 AV	38.04	54	-15.96	-62.42	5.2	-57.22
3	2485.53 PK	62.02	74	-11.98	-38.44	5.2	-33.24
4	2483.5 AV	45.88	54	-8.12	-54.58	5.2	-49.38

Note :

Below 1GHz Data: 802.11n (HT20) - Channel 6 Conducted spurious emission table


No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBm)	Correction Factor (dB)	EIRP Level (dBm)
1	62.13	26.8	40	-13.2	-73.66	5.2	-68.46
2	192.96	26.55	43.5	-16.95	-73.91	5.2	-68.71
3	303.29	27.08	46	-18.92	-73.38	5.2	-68.18
4	563.37	26.37	46	-19.63	-74.09	5.2	-68.89
5	747.19	26.01	46	-19.99	-74.45	5.2	-69.25
6	882.63	26.46	46	-19.54	-74	5.2	-68.8

Note :

Emission Level (dBuV/m) = EIRP Level (dBm) - 20log(d) + 104.8

d = measurement distance in 3 meters.

Emission levels include upper bound on ground plane reflection (4.7dB) for below 1GHz emission.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

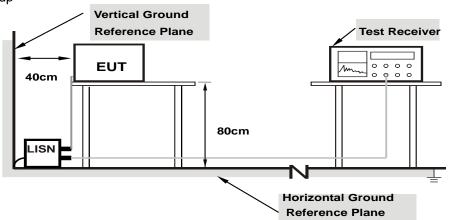
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2016	Oct. 23, 2017
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 26, 2016	Oct. 25, 2017
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 13, 2016	June 12, 2017
50 ohms Terminator	N/A	EMC-02	Sep. 29, 2016	Sep. 28, 2017
RF Cable	5D-FB	COCCAB-001	Sep. 30, 2016	Sep. 29, 2017
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 20, 2016	June 19, 2017
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. 1.
- 3 Tested Date: May 19, 2017



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L) Detector Function Quasi-Peak (QP) / Average (AV)
--

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Reading Value (dBuV)		Emissio (dB			nit uV)	Mar (d	-
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.20	37.33	26.66	47.53	36.86	66.00	56.00	-18.47	-19.14
2	0.18425	10.20	35.43	22.62	45.63	32.82	64.29	54.29	-18.66	-21.47
3	0.25938	10.21	28.01	19.03	38.22	29.24	61.45	51.45	-23.23	-22.21
4	0.56797	10.26	28.35	22.42	38.61	32.68	56.00	46.00	-17.39	-13.32
5	3.71094	10.31	19.44	11.94	29.75	22.25	56.00	46.00	-26.25	-23.75
6	16.16406	11.39	23.83	19.31	35.22	30.70	60.00	50.00	-24.78	-19.30

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)				Det	Detector Function Quasi-Pe Average		eak (QP) / (AV)			
Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		g Value suV)		on Level BuV)		mit suV)		rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.19	36.06	25.06	46.25	35.25	66.00	56.00	-19.75	-20.75
2	0.17734	10.18	32.26	18.65	42.44	28.83	64.61	54.61	-22.17	-25.78
3	0.22031	10.18	29.62	18.04	39.80	28.22	62.81	52.81	-23.01	-24.59
4	0.57578	10.25	28.75	23.15	39.00	33.40	56.00	46.00	-17.00	-12.60
5	3.67969	10.23	18.87	12.66	29.10	22.89	56.00	46.00	-26.90	-23.11
6	16.16406	11.16	25.33	21.40	36.49	32.56	60.00	50.00	-23.51	-17.44

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

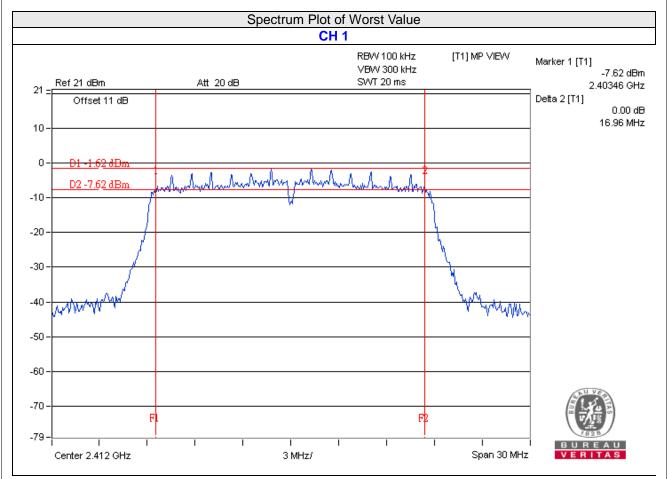
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation fromTest Standard

No deviation.

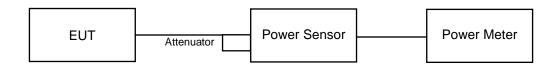
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

802.11n (HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2412	16.96	0.5	PASS
6	2437	17.13	0.5	PASS
11	2462	16.98	0.5	PASS



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

802.11n (HT20)

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2412	50.234	17.01	30	Pass
6	2437	52.36	17.19	30	Pass
11	2462	60.534	17.82	30	Pass

FOR AVERAGE POWER

802.11n (HT20)

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2412	6.839	8.35
6	2437	6.887	8.38
11	2462	6.966	8.43

4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

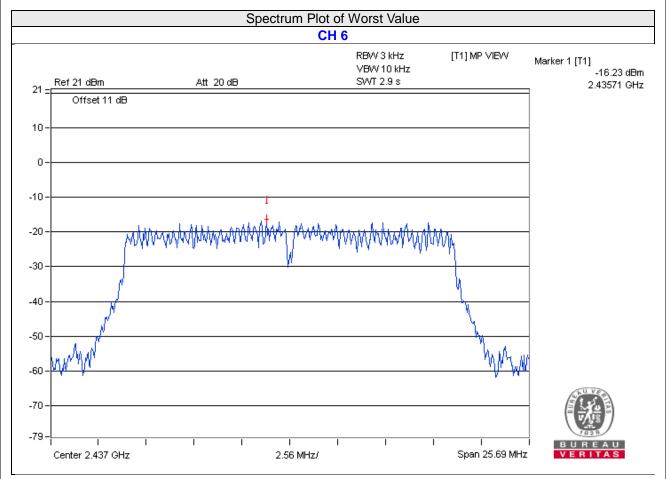
4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \ge 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


Same as Item 4.3.6

4.5.7 Test Results

802.11n (HT20)

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2412	-17.00	8	Pass
6	2437	-16.23	8	Pass
11	2462	-17.44	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dBc of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

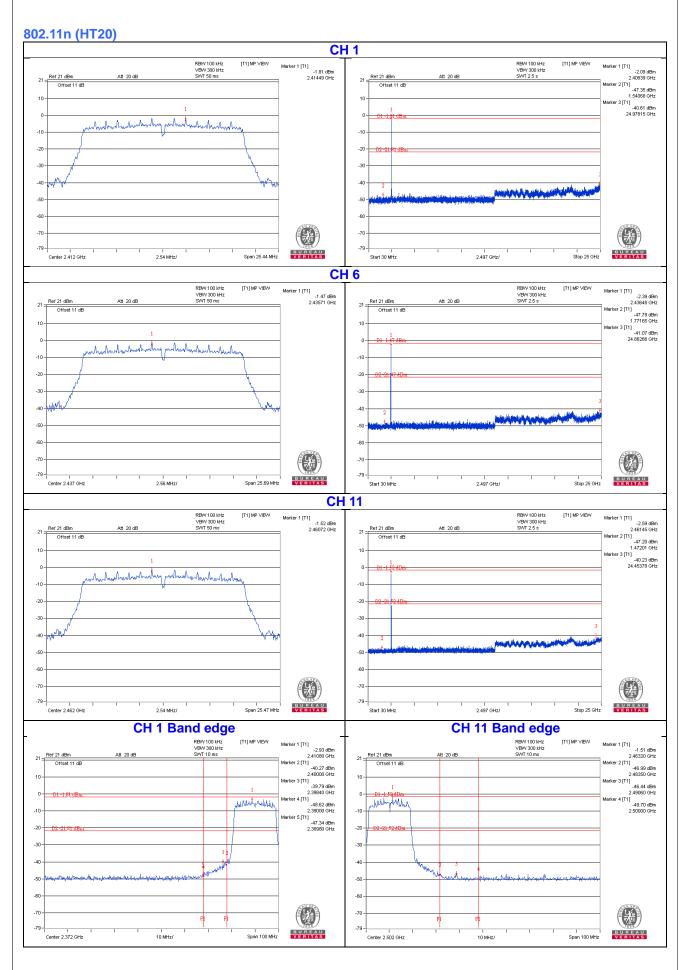
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard No deviation.


4.6.6 EUT Operating Condition

Same as Item 4.3.6

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---