

RADIO TEST REPORT

For

MODEL NO.: 1769 FCC ID: C3K1769 IC ID: 3048A-1769

Test Report No. R-TR402-FCCISED-BT-2 Issue Date: April 12, 2017

FCC CFR47 Part 15 Subpart C Innovation, Science and Economic Development Canada RSS-247 Issue 1

> Prepared by Microsoft EMC Laboratory 17760 NE 67th Ct, Redmond WA, 98052, U.S.A. 425-421-9799 sajose@microsoft.com

1 Record of Revisions

Revision	Date	Section	Page(s)	Summary of Changes	Author/Revised By:
1.0	03/23/2017	All	All	Version 1.0	Daniel Salinas
2.0	04/12/2017	7	11	Updated equipment list to include EMC-858 antenna.	Daniel Salinas

Table of Contents

1	Rec	Record of Revisions				
2	Deviations from Standards7					
3	Facilities and Accreditations					
3	3.1	Tes	t Facility	7		
3	3.2	Acc	reditations	7		
3	3.3	Tes	t Equipment	7		
4	Меа	asure	ement Uncertainty	7		
5	Pro	duct	Description	8		
5	5.1	Tes	t Configurations	8		
5	5.2	Env	rironmental Conditions	8		
Ę	5.3	Ante	enna Requirements	8		
Ę	5.4	Equ	ipment Modifications	9		
Ę	5.5	Dat	es of Testing	9		
6	Tes	t Re	sults Summary	10		
7	Tes	t Equ	uipment List	11		
8	Tes	t Site	e Description	14		
8	3.1	Rac	diated Emissions Test Site	14		
	8.1.	.1	Radiated Measurements in 30 MHz - 1000 MHz	14		
	8.1.	2	Radiated Measurements above 1GHz	14		
8	3.2	Ante	enna port conducted measurements	14		
8	3.3	Tes	t Setup Diagrams	14		
9	Tes	t Re	sults- Conducted	17		
ç	9.1	Dut	y Cycle	17		
	9.1.	.1	Test Requirement:	17		
	9.1.	2	Test Method:	17		
	9.1.	3	Limits:	17		
	9.1.	.4	Test Results:	17		
	9.1.	5	Test Data:	18		
Ģ	9.2	20d	IB and 99% Occupied Bandwidth	19		
	9.2.	.1	Test Requirement:	19		
	9.2.	2	Test Method:	19		
	9.2.	3	Limits:	19		
	9.2.	4	Test Results:	19		

9.2.5	Test Data:	20
9.3 Ou	Itput Power	23
9.3.1	Test Requirement:	23
9.3.2	Test Method:	23
9.3.3	Limits:	23
9.3.4	Test Results:	24
9.3.5	Test Data:	25
9.4 Ch	annel Spacing	
9.4.1	Test Requirement:	
9.4.2	Test Method:	
9.4.3	Limits:	
9.4.4	Test Results:	
9.4.5	Test Data:	29
9.5 Nu	Imber of Hopping Frequencies	
9.5.1	Test Requirement:	
9.5.2	Test Method:	
9.5.3	Limits:	
9.5.4	Test Results	
9.5.5	Test Data:	
9.6 Dv	vell Time	31
9.6.1	Test Requirement:	31
9.6.2	Test Method:	31
9.6.3	Limits:	31
9.6.4	Test Results:	31
9.6.5	Test Data:	
9.7 Ba	nd Edge	34
9.7.1	Test Requirement:	
9.7.2	Test Method:	34
9.7.3	Limits:	34
9.7.4	Test Results:	34
9.7.5	Test Data:	35
9.8 Co	onducted Spurious Emissions	40
9.8.1	Test Requirement:	40
9.8.2	Test Method:	40
Report#: R-	TR402-FCCISED-BT-2 Issued: 12 April 2017 Microsoft EMC Laboratory	Page 4 of 67

9.8.3	Limits:	40
9.8.4	Test Results:	40
9.8.5	Test Data:	41
9.9 Rad	liated Spurious and Band Edge Emissions	50
9.9.1	Test Requirement:	50
9.9.2	Test Method:	50
9.9.3	Limits:	53
9.9.4	Test Result:	53
9.9.5	Test Data:	54
9.10 AC	Line Conducted Emissions	64
9.10.1	Test Requirements	64
9.10.2	Test Method	64
9.10.3	Limit	64
9.10.4	Test Result:	64
9.10.5	Test Data:	65

Test Report Attestation

Microsoft Corporation Model: 1769 FCC ID: C3K1769 IC ID: 3048A-1769

Applicable Standards

Specification	Test Result
FCC 47CFR Rule Parts 15.207, 15.209, 15.247	Pass
Innovation, Science and Economic Development Canada RSS-247 Issue 1, RSS-GEN Issue 4	Pass

Microsoft EMC Laboratory attests that the product model identified in this report has been tested to and meets the requirements identified in the above standards. The test results in this report solely pertains to the specific sample tested, under the conditions and operating modes as provided by the customer.

This report shall not be used to claim product certification, approval, or endorsement by A2LA or any agency of any Government. Reproduction, duplication or publication of extracts from this test report is prohibited and requires prior written approval of Microsoft EMC Laboratory.

This report replaces the previously issued report #R-TR402-FCCISED-BT-1 issued by Microsoft EMC Labs on 03/23/2017.

Written By: Daniel Salinas Radio Test Lead

Reviewed/ Issued By: Sajay Jose EMC/RF Compliance Lab Manager

2 Deviations from Standards

None.

3 Facilities and Accreditations

3.1 Test Facility

All test facilities used to collect the test data are located at Microsoft EMC Laboratory,

17760 NE 67th Ct, Redmond WA, 98052, USA

3.2 Accreditations

The lab is established and follows procedures as outlined in IEC/ISO 17025 and A2LA accreditation requirements.

A2LA Accredited Testing Certificate Number: 3472.01

FCC Registration Number: US1141

IC Site Registration Numbers: 3048A-3, 3048A-4

3.3 Test Equipment

The site and related equipment are constructed in conformance with the requirements of ANSI C63.4:2014 and other equivalent applicable standards.

Test site requirements for measurements above 1 GHz are in accordance with ANSI C63.4:2014.

ANSI C63.10:2013 and the appropriate KDB test methods were followed.

4 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the product, as specified in ETSI TR 100 028. This represents an expanded uncertainty expressed at 95% confidence level using a coverage factor k=2. These levels are for reference only and not included to determine product compliance. Expanded uncertainty calculations are available upon request.

Test item	Uncertainty	Unit
Radiated disturbance (30 MHz to 1 GHz)	5.99	dB
Radiated disturbance (1 GHz to 18 GHz)	5.12	dB
Conducted Disturbance at Mains Port	3.31	dB
Uncertainty for Conducted Power test	1.277	dB
Uncertainty for Conducted Spurious emission test	2.742	dB
Uncertainty for Bandwidth test	4.98	kHz
Uncertainty for DC power test	0.05	%
Uncertainty for test site temperature	0.5	°C
Uncertainty for test site Humidity	3	%
Uncertainty for time	0.189	%

5 **Product Description**

Company Name:	Microsoft Corporation
Address:	One Microsoft Way
City, State, Zip:	Redmond, WA 98052-6399
Customer Contact:	Mike Boucher
Functional Description of the EUT:	Portable Computing Device with IEEE 802.11a/b/g/n/ac MIMO supporting 20/40/80 MHz bandwidths, and Bluetooth 4.0 Radios.
Model:	1769
FCC ID:	C3K1769
IC ID:	3048A-1769
Radio Description:	BT (2402- 2480 MHz) Ch. 0-78
Modulation(s):	GFSK, π/4-DQPSK, 8PSK
Antenna Type and Gain:	Integral Antenna. Manufacturer declared max Antenna Gain in 2.4GHz band of operation: 3.4 dBi
EUT Classification:	FHSS
Equipment Design State:	Prototype/Production Equivalent
Equipment Condition:	Good
Test Sample Details:	RF Conducted Test Sample SN: 010557364757, 010566364757 RF Radiated Test Sample SN: 005372463857, 010557364757

5.1 Test Configurations

Test software "WiFi Tool" (V2.7.5) provided by the customer and "Lab Tool" (V2.0.0.77) from the module vendor was used to program the EUT to transmit continuously.

The device can operate in GFSK, π /4DQPSK and 8DPSK modulations and all modes were tested and included in this report. Channel numbers 0, 39 and 78 were used as Low, Mid and High Channels respectively.

5.2 Environmental Conditions

Ambient air temperature of the test site was within the range of 10 °C to 40 °C (50 °F to 104 °F) unless the EUT specified testing over a different temperature range. Humidity levels were in the range of 10% to 90% relative humidity. Testing conditions were within tolerance and any deviations required from the EUT are reported.

5.3 Antenna Requirements

The antennas are permanently attached and there are no provisions for connection to an external antenna.

5.4 Equipment Modifications

No modifications were made during testing.

5.5 Dates of Testing

Testing was performed on Dec 28, 2016 - Jan 19, 2017, and Mar 15, 2017- Mar 16, 2017.

6 Test Results Summary

Test Description	FCC Rule Part ISED Rule Part	Limit	Test Result (Pass/Fail)
Duty Cycle	Reporting & Measurements	Reporting & Measurements Purposes only	N/A
20dB Bandwidth	15.247 (a)(1)(iii) RSS-247 [5.1]	For reporting purposes only.	Pass
Output Power	15.247 (b)(3) RSS-247 [5.4]	< 125 mW – Conducted < 500 mW - EIRP	Pass
Channel Spacing	15.247 (a)(1) RSS-247 [5.1]	2/3 of 20dB BW or 25 kHz	Pass
Number of Hopping Frequencies	15.247 (a)(1)(iii) RSS-247 [5.1]	> 15 channels	Pass
Dwell Time	15.247 (a)(1)(iii) RSS-247 [5.1]	< 0.4 sec in 31.6 sec period	Pass
Conducted Band Edge/Spurious Emissions	15.247 (d) RSS-247 [5.5]	At least 20dBc	Pass
Radiated Spurious Emissions/ Restricted Band Emissions	15.205, 15.209 RSS-247 [5.5] RSS-Gen [8.9]	FCC CFR 47 15.209 limits RSS-Gen [8.9]	Pass
AC Powerline Conducted Emissions	15.207 RSS-Gen [8.8]	FCC CFR 47 15.207 limits RSS-Gen [8.8]	Pass

7 Test Equipment List

Equipment used for Radiated and Conducted Measurements						
Manufacturer	Description	Model #	Asset #	Calibration Due		
Rohde &	EMI Test	ESU40	RF-229	04/13/2017		
Schwarz	Receiver					
Rohde &	EMI Test	ESU40	EMC-846	04/22/2017		
Schwarz	Receiver					
Rohde &	EMI Test	ESU40	RF-012	04/14/2017		
Schwarz	Receiver					
Rohde &	EMI Test	FSV	RF-228	04/12/2017		
Schwarz	Receiver			0.444.0400.47		
Rohde &	Signal	SMB100A	RF-287	04/18/2017		
Schwarz	Generator		DE 007	0.4/4.4/00.47		
Rohde &	Power Meter	NRP2	RF-237	04/14/2017		
Schwarz Dab da 8	Devuer Concer			04/40/0047		
Ronde &	Power Sensor	NRP-Z91	RF-211	04/13/2017		
Schwarz Robdo ⁸	Dower Sensor			04/12/2017		
	Power Sensor	NRP-ZOI	KF-203	04/12/2017		
Schwarz Robdo 8	Power Sensor		DE 192	04/12/2017		
	Fower Sensor	INTT-291	NF-102	04/12/2017		
Sunol Sciences	Antenna -	IR6	PE 030	05/27/2017		
Sunoi Sciences	Broadband	500	111-039	03/21/2011		
ETS-Lindaren	Antenna	3117	RF-137	02/25/2017		
				02,20,2011		
ETS-Lindgren	Antenna	3117-PA	EMC-858	04/21/2017		
ETS-Lindgren	Antenna	Standard Gain	EMC-452	N/A		
ETS-Lindgren	Antenna	Standard Gain	RF-179	N/A		
Rohde &	Custom Filter	SFUNIT RX	RF-323	N/A		
Schwarz	Bank+Pre-Amp		55.040			
Ronde &	Pre-Amp	TS-PR26	RF-042	N/A		
Schwarz Dab da 8	Quuitala an d	0000400		N1/A		
Ronde &	Switch and	OSP130	RF-249	N/A		
Schwarz Debde ⁸	Control Unit	000400		NI/A		
Ronde &	Switch and	05P130	RF-018	IN/A		
Schwarz Robde 8	Switch and	090150	DE 250	NI/A		
Sobworz	Control Unit	03P100	KF-200			
Rohde &	Switch and	0SP150	RF_010	N/A		
Schwarz	Control Unit					
Murata	RF Cable	MXH087\//43000	RF-415	N/A		

Manufacturer	Description	Model #	Asset #	Calibration Due
Murata	RF Cable	MXHQ87WA3000	RF-396	N/A
Murata	RF Cable	MXHQ87WA3000	RF-392	N/A
Murata	RF Cable	MXHQ87WA3000	RF-585	N/A
MegaPhase	RF Cable	MXHQ87WA3000	EMC-1034	N/A
MegaPhase	RF Cable	EMC3-N1N1-394	EMC-1036	N/A
Huber & Suhner	RF Cable	SucoFlex 100	RF-350	N/A
Huber & Suhner	RF Cable	SucoFlex 106A	RF-599	N/A
Huber & Suhner	RF Cable	SucoFlex 100	RF-351	N/A
Huber & Suhner	RF Cable	SucoFlex 102A	RF-272	N/A
Madge Tech	THP Monitor	PRH Temp 2000	EMC-681	10/25/2017
Madge Tech	THP Monitor	PRH Temp 2000	EMC-679	11/15/2017
Micro-Coax	RF Cable	UTI Flex	RF-359	N/A
Micro-Coax	RF Cable	UTI Flex	RF-354	N/A
Micro-Coax	RF Cable	UFC142A	RF-088	N/A
Pasternack	3dB Attenuator	PE7087-3	RF-304	N/A
Pasternack	6dB Attenuator	PE7087-10	RF-341	N/A
Pasternack	10dB Attenuator	PE7087-10	RF-125	N/A

Note: Items with Calibration Due data marked as N/A are characterized before test, where applicable.

*All equipment in valid calibration status at the time of test.

Equipment used for Line Conducted Emissions Measurement							
Manufacturer	Description	Model #	Asset #	Calibration Due			
Rohde &	EMI Test	ESR 3	EMC-669	04/14/2017			
Schwarz	Receiver						
Teseq	LISN	NNB 51	EMC-057	06/22/2017			
Teseq	LISN	NNB 51	EMC-056	05/03/2017			
Micro-Coax	RF Cable	UFA210A-1- 1800-50U50U	EMC-367	N/A			
Madge Tech	Environmental Monitor	PRHTemp2000	EMC-170	08/31/2017			
ETS	TILE SW	Ver 7.1.3.60	EMC-985	N/A			
Fluke	Multimeter	87V	EMC-650	07/25/2017			

Note: Items with Calibration Due data marked as N/A are characterized before test, where applicable.

8 Test Site Description

8.1 Radiated Emissions Test Site

Radiated measurements are performed in a 3m semi-anechoic chamber, which meets NSA requirements for the frequency range of 30MHz to 1000MHz. For measurements above 1 GHz, absorbers are laid out on the ground plane between the receiving antenna and the EUT to meet Site VSWR requirements in accordance with ANSI C63.4:2014.

8.1.1 Radiated Measurements in 30 MHz - 1000 MHz

The EUT is positioned on a turntable at a height of 80cm using a non-conducting table. A linearly polarized broadband antenna is positioned at 3m from the EUT periphery. The turntable is rotated 360 degrees and the antenna height varied from 1m to 4m to determine the highest emissions. This is repeated for both Horizontal and Vertical polarizations of the measurement antenna. All possible orientations of the EUT were investigated for emissions and the vertical standing mode was identified as the worst case configuration.

8.1.2 Radiated Measurements above 1GHz

The EUT is positioned on a Turntable at a height of 1.5m. A Linearly polarized antenna is positioned at 3m from the EUT periphery. Guidelines in ANSI C63.10:2013 were followed with respect to maximizing the emissions. The measurement antenna is set at a fixed 1.5m height while the turntable is rotated 360 degrees and the EUT elevation angle is varied from 0 to 150 degrees in 30 degree increments to determine the highest emissions. This is repeated for both Horizontal and Vertical Polarizations of the Measurement Antenna. Measurements above 18GHz were performed at a 3m distance. Near field scanning is performed to identify frequencies above 1 GHz.

8.2 Antenna port conducted measurements

All antenna port conducted measurements were performed on a bench-top setup consisting of a spectrum analyzer, power meter (as necessary), splitters/combiners (as necessary), attenuators, and pre-characterized RF cables.

The correction factors between the EUT and the spectrum analyzer were added internally in the analyzer settings, where applicable. The plots displayed takes into account these correction factors.

8.3 Test Setup Diagrams

Spectrum Analyzer/ Power Meter

Fig.1. Test Setup for Antenna port conducted measurements

Fig.2. Test Setup for Radiated measurements in 30MHz- 1GHz Range

Fig.3. Test Setup for Radiated measurements in 1GHz- 18GHz Range

Fig.4. Test Setup for Radiated measurements >18GHz

9 Test Results- Conducted

9.1 Duty Cycle

9.1.1 **Test Requirement:**

Reporting and measurement purposes only.

9.1.2 Test Method:

Measurements were performed according to the procedure defined in ANSI C63.10 (2013) American National Standard of Procedure for Compliance Testing of Unlicensed Wireless Devices.

Spectrum Analyzer Settings:

 $RBW \ge Occupied Bandwidth if possible; otherwise, set RBW to the largest available value$ $VBW \ge RBW \ge Signal Period$ Detector = PeakSpan = 0 HzSweep points > 100

9.1.3 Limits:

Reporting and measurement purposes only.

9.1.4 Test Results:

Frequency	Data Rate	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
2402	1-DH1	0.39	1.25	31.20	5.05
2402	1-DH3	1.65	2.50	65.92	1.81
2402	1-DH5	2.88	3.74	76.92	1.13

9.1.5 Test Data:

RF 50	Swept SA 0 Ω DC CORREC	SENSE:IN		ALIGN AUTO	04:1	7:59 PM Dec 20
arker 3 Δ 1.2500	0 ms PNO: IFGain	Fast Trig Low Atte	r Free Run n: 30 dB	#Avg Type:	RMS	TRACE 2 3 TYPE WWW DET PND
dB/div Ref 19.00	0 dBm				ΔMkr	3 1.250 -0.37
9 .0	1	241			_3∆1	
0						
0						
o with the department	M-1417	well-Mark	www.wein.apullisi	navandary/Skridspine-	angeletere	
0						
0						
enter 2.40200000 es BW 8 MHz) GHz	VBW 8.0 N	MHz		Sweep 2.000	Span (ns (1001
N 1 t	× 402.0 µs	Y 1.90 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALU	E
$\Delta 1$ 1 t (Δ)	1.250 ms (Δ)	-0.37 dB				
				STATUS		

Plot 9-1. Duty Cycle (Ch. 0, 1-DH1)

Reysight Spectrum Analyzer - Swept SA RF 50 Ω DC arker 3 Δ 2,50000 ms	CORREC PN	SENSE:	s: Free Run	ALIGN AUTO #Avg Type	RMS	04:14:54 PM Dec 20, 20 TRACE 2 3 4 TYPE DET P NNN
dBidiv Ref 19.00 dBm					Δ	/kr3 2.500 m 0.06 d
×9 00 00 	¢1					<u>3∆1</u>
10 10 10 10	~~~			مليلين	anterstant data and a fights	4
enter 2.402000000 GHz es BW 8 MHz		VBW 8.0	MHz		Sweep 4.0	Span 0 F 00 ms (1001 pt
R MODE TRC SCL X	936.0 µs 1.648 ms (2.500 ms (Υ 1.54 dBm Δ) -0.44 dB Δ) 0.06 dB	FUNCTION	FUNCTION WIDTH	FUNCTION	N VALUE
						,
				STATUS		

Plot 9-2. Duty Cycle (Ch. 0, 1-DH3)

Plot 9-3. Duty Cycle (Ch. 0, 1-DH5)

9.2 20dB and 99% Occupied Bandwidth

9.2.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.247 (a)(1)(iii)

ISED RSS-247 [5.1]

9.2.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013.

Spectrum analyzer settings:

The x dB (-20dB) function on the spectrum analyzer was used to measure 20dB BW with the settings below: Span = approximately 2 to 3 times the 20 dB/99% Occupied bandwidth, centered on a hopping channel RBW \geq 1 to 5 % of the 20 dB bandwidth VBW \geq 3x RBW Sweep = Auto Detector function = Peak Trace = Max Hold The internal function of the spectrum analyzer is used to measure the 99% bandwidth.

9.2.3 Limits:

N/A- Reporting Purposes only.

9.2.4 Test Results:

Frequency (MHz)	Mode	Data Rate (Mbps)	Channel No.	20 dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
2402	1-DH5	1	0	0.89	0.84
2441	1-DH5	1	39	0.89	0.85
2480	1-DH5	1	78	0.93	0.85
2402	2-DH5	2	0	1.32	1.17
2441	2-DH5	2	39	1.32	1.17
2480	2-DH5	2	78	1.32	1.17
2402	3-DH5	3	0	1.25	1.17
2441	3-DH5	3	39	1.25	1.17
2480	3-DH5	3	78	1.25	1.17

9.2.5 Test Data:

M Keysight Spectrum Analyzer - Occupied BW					- 4 -
x dB -20.00 dB	CORREC FIFGain:Low	SENSE:INT r Freq: 2.402000000 GHz Free Run Avg[Hole h: 10 dB	ALIGN AUTO 04:24:30 Radio Sto d:>1/1 Radio De	M Jan 04, 2017 d: None vice: BTS	Trace/Detector
10 dB/div Ref 26.00 dBm					
16.0 6.00	0				Clear Write
-140 -140 -240 -340	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m		Average
-410				~~~~	Max Hold
Center 2.402 GHz #Res BW 20 kHz	v	/BW 200 kHz	Sp Sweep	an 2 MHz 4.667 ms	Min Hold
Occupied Bandwidth 83	י 36.80 kHz	Total Power	11.1 dBm		Detector
Transmit Freq Error x dB Bandwidth	-1.866 kHz 884.7 kHz	OBW Power x dB	99.00 % -20.00 dB		Peak≯ Auto <u>Man</u>
MSG			STATUS		

Plot 9-6. 20dB Bandwidth (Ch. 78, 1-DH5)

Keysight Spectrum Analyzer - Occupied 8	w				
RF 50 Ω DC	CORREC Center	SENSE:INT	ALIGN AUTO 04:28:1 Radio S	15 PM Jan 04, 2017	Trace/Detector
center Freq 2.4020000	Trig:	Free Run Avg Ho	ld:>1/1	sto. reone	
	#FGain:Low #Atte	n: 10 dB	Radio D	Device: BTS	
IO dB/div Ref 26.00 dB	m				
.og 16.0					
6.00					Clear Write
100	A	A A			
	m	a ada mundu			
4.0	r				Auerae
8.0	/				Average
34.0			× .		
110 hours are more when			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	maria	
54.0					Max Hold
54.0					
Center 2 402 CHz				Popo 2 MHz	
Res BW 20 kHz	\ \	/BW 200 kHz	Swee	p 6.933 ms	Min Male
					MITTHOR
Occupied Bandwid	th	Total Power	11.8 dBm		
1	1703 MHz				Detecto
					Peak
Transmit Freq Error	1.323 kHz	OBW Power	99.00 %		Auto <u>Mar</u>
x dB Bandwidth	1.319 MHz	x dB	-20.00 dB		
20			STATUS.		
NPA .			janni US		

Plot 9-8. 20dB Bandwidth	(Ch. 39, 2-DH5)
--------------------------	-----------------

Plot 9-9. 20dB Bandwidth (Ch. 78, 2-DH5)

Keysight Spectrum Analyzer - Occupied BV	1					- 4
RF SO G DC Center Freq 2.402000000 Ref 26.00 dBn	GHZ #FGein:Low GHZ Gente Trig: 1 #Atter	sense:INT] r Freq: 2.40200000 GHz Free Run Avg Ho n: 10 dB	ALIGN AUTO 04:34 Radie Id:>1/1 Radie	:13 PMJan 04, 2017 Std: None Device: BTS	Trac	e/Detector
16.0 6.00 -4.00	~	mon				Clear Write
-14.0			1			Average
64.0				- Contraction of the second		Max Hold
Center 2.402 GHz #Res BW 20 kHz Occupied Bandwidt	v h	/BW 200 kHz Total Power	Swe 11.8 dBn	Span 3 MHz ep 6.933 ms 1		Min Hold
1.	1710 MHz					Detector
Transmit Freq Error x dB Bandwidth	2.839 kHz 1.252 MHz	OBW Power x dB	99.00 % -20.00 dE	3	Auto	Man
MSG			STATUS			

Plot 9-12. 20dB Bandwidth (Ch. 78, 3-DH5)

9.3 Output Power

9.3.1 Test Requirement: FCC CFR 47 Rule Part 15.247 (b)(1)

ISED RSS-247 [5.4]

9.3.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013.

Spectrum analyzer settings:

Peak Power Measurements:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel= 5 MHz RBW > the 20 dB bandwidth of the emission being measured= 1.5 MHz VBW \ge 3 x RBW= 5 MHz Sweep = Auto Detector function = Peak Trace = Max Hold The trace was allowed to stabilize. A Marker was set to the peak of the emission. The indicated level is the peak output power.

9.3.3 Limits:

15.247/RSS-247: 1 Watt (30dBm), if \geq 75 non-overlapping channels.

Additionally, for EDR modes and devices with \leq 75 non-overlapping channels (AFH), 21dBm conducted.

RSS-247: 4 W (36dBm) EIRP.

Additionally, for EDR modes and devices with ≤ 75 non-overlapping channels (AFH), 27dBm EIRP..

9.3.4 Test Results:

Frequency (MHz)	Mode	Data Rate (Mbps)	Channel No.	Cond. Peak Power (dBm)	Cond. Limit (dBm)	Margin (dBm)	Results
2402	1-DH5	1	0	4.34	21	-16.56	Pass
2441	1-DH5	1	39	4.13	21	-16.77	Pass
2480	1-DH5	1	78	3.95	21	-16.95	Pass
2402	2-DH5	2	0	6.34	21	-14.56	Pass
2441	2-DH5	2	39	6.10	21	-14.80	Pass
2480	2-DH5	2	78	5.86	21	-15.04	Pass
2402	3-DH5	3	0	6.66	21	-14.25	Pass
2441	3-DH5	3	39	6.42	21	-14.48	Pass
2480	3-DH5	3	78	6.19	21	-14.71	Pass

Frequency (MHz)	Mode	Channel No.	Cond. Peak Power (dBm)	Ant. Gain (dBi)	EIRP (dBm)	ISED EIRP Limit (dBm)	Margin (dBm)	Results
2402	1-DH5	0	4.34	3.4	7.74	27	-19.26	Pass
2441	1-DH5	39	4.13	3.4	7.53	27	-19.47	Pass
2480	1-DH5	78	3.95	3.4	7.35	27	-19.65	Pass
2402	2-DH5	0	6.34	3.4	9.74	27	-17.26	Pass
2441	2-DH5	39	6.10	3.4	9.50	27	-17.50	Pass
2480	2-DH5	78	5.86	3.4	9.26	27	-17.74	Pass
2402	3-DH5	0	6.66	3.4	10.06	27	-16.95	Pass
2441	3-DH5	39	6.42	3.4	9.82	27	-17.18	Pass
2480	3-DH5	78	6.19	3.4	9.59	27	-17.41	Pass

9.3.5 Test Data:

Plot 9-14. Peak Power (Ch. 39, 1-DH5)

Plot 9-15. Peak Power (Ch. 78, 1-DH5)

Plot 9-16. Peak Power (Ch. 0, 2-DH5)

Plot 9-17. Peak Power (Ch. 39, 2-DH5)

Plot 9-18. Peak Power (Ch. 78, 2-DH5)

Plot 9-20. Peak Power (Ch. 39, 3-DH5)

Plot 9-21. Peak Power (Ch. 78, 3-DH5)

9.4 Channel Spacing

9.4.1 Test Requirement: FCC CFR 47 Rule Part 15.247 (a)(1)

ISED RSS-247 [5.1]

9.4.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013. The EUT was in pseudorandom hopping mode with the separation of two peaks measured using the delta marker.

Spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) = 300 kHz Video (or Average) Bandwidth (VBW) ≥ RBW= 910 kHz Sweep = Auto Detector function = Peak Trace = Max Hold The trace(s) was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

9.4.3 Limits:

The channel carrier frequencies must be separated by 25kHz or the 20dB BW of the hopping channel whichever is greater. If the output power is less than 125mW, then the channel separation can be 2/3 of the 20dB bandwidth 623.33kHz or 25kHz whichever is greater.

9.4.4 Test Results:

Pass. Minimum channel separation= 1.005 MHz in 1-DH5 Mode.

9.4.5 **Test Data:**

📕 Keysight Spectrum Analyzer - Swept SA				
RF 50 Ω DC CORREC	SENSE:II	A A	LIGN AUTO	03:15:37 PM Dec 21, 2016
Marker 1 2.440832000000 GHz	PNO: Wide Trig IFGain:Low Att	g: Free Run en: 34 dB	#Avg Type: RMS Avg Hold:>1/1	TRACE 2 3 4 5 6 TYPE M
10 dB/div Ref 24.00 dBm			M	(r1 2.440 832 GHz 1.918 dBm
14.0		1	<u>^2</u>	Δ1
4.00				
-16.0				
-26.0				
-46.0				
-56.0				
Center 2.441000 GHz #Res BW 300 kHz	#VBW 3.0	MHz	Sweet	Span 3.000 MHz 5 1.533 ms (1001 pts)
MKR MODE TRC SCL X	Y	FUNCTION FUNC	TION WIDTH F	UNCTION VALUE
1 N 1 f 2.440 832 GH 2 Δ1 1 f (Δ) 1.005 Mi 3 4 4 6 6 6	iz <u>1.918 dBm</u> iz (Δ) -0.008 dB			
7 8 9 9 10 11				
MSG			STATUS	Þ

Plot 9-22 Channel Separation

9.5 Number of Hopping Frequencies

9.5.1 Test Requirement:

FCC CFR 47 Rule Part 15.247 (a)(1)(iii)

ISED RSS-247 [5.1]

9.5.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013. The EUT had its hopping function enabled.

Spectrum analyzer settings:

 $\begin{array}{l} \mbox{Span} = \mbox{the frequency band of operation} \\ \mbox{RBW} < 30\% \mbox{ of the OBW} = 300 \mbox{ kHz} \\ \mbox{VBW} \geq \mbox{RBW} = 3 \mbox{ MHz} \\ \mbox{Sweep} = \mbox{Auto} \\ \mbox{Detector function} = \mbox{Peak} \\ \mbox{Trace} = \mbox{Max Hold} \\ \mbox{The trace was allowed to stabilize and the number of channels was counted.} \end{array}$

9.5.3 Limits:

The minimum number of hopping channels required is 15.

9.5.4 Test Results

Pass.

The EUT utilizes 79 hopping channels in BDR and EDR modes. In AFH mode, the EUT utilizes a minimum of 20 hopping channels.

9.5.5 **Test Data:**

Plot 9-23. Number of Hopping Channels

9.6 Dwell Time

9.6.1 Test Requirement: FCC CFR 47 Rule Part 15.247 (a)(1)(iii)

ISED RSS-247 [5.1]

9.6.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013. The EUT had its hopping function enabled.

Spectrum analyzer settings:

Span = zero span, centered on a hopping channel RBW = 100 kHz VBW ≥ 3 x RBW= 300 kHz Sweep = as necessary to capture the entire dwell time per hopping channel = 4ms Detector function = Peak Trace = Clear Write/ Trigger Mode

Dwell Time is measured with analyzer set to zero span at the middle channel and the trigger set to capture a burst.

9.6.3 Limits:

400 ms within 31.6s (400 ms × 79 Channels)

9.6.4 Test Results:

Pass.

Standard Bluetooth 1x/EDR has a channel hopping rate of 1600 hops/s.

1x/EDR mode uses 5 transmit and 1 receive slots for a total of 6 slots.

Bluetooth is hopping at a rate of 1600/6 = 266.67 hops/s/slot. Then, 266.67 hops/s/79 channels = 3.38 hops/s for one channel.

The dwell time limit is number of hopping channels * 400ms. For Bluetooth, 79 channels *400ms = 31.6 s.

So the number of hops over a 31.6 s period is 3.38 hops/s * 31.6 s = 106.67 hops.

Worst case dwell time for one channel in DH5 mode = 106.67 hops * Dwell Time = 106.67 hops * 2.896ms = 308.91ms.

In AFH mode, the EUT utilizes a minimum of 20 channels. In this mode, the hopping rate is reduced to 800 hops/s with 6 time slots.

The hopping rate is calculated as 800/6 = 133.33 hops/s/slot. Since there are a minimum of 20 channels, 133.33 hops/s/slot/20 channels = 6.67 hops/s on a single channel.

The number of hops over an 8 s period is 6.67 hops/s * 8 s = 53.36 hops.

The worst case dwell time for one channel = 53.36 hops * Dwell Time = 53.6 hops * 2.896 ms = 155.23 ms.

9.6.5 Test Data:

Plot 9-25. Dwell Time – DH3

Plot 9-26 Dwell Time - DH5

9.7 Band Edge

9.7.1 Test Requirement: FCC CFR 47 Rule Part 15.247 (d)

ISED RSS-247 [5.5]

9.7.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013.

Spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation RBW = 100 kHz

VBW = 300 kHz Sweep = Auto Detector function = Peak Trace = Max Hold

The trace was allowed to stabilize. The marker was set on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. The delta marker function was set and the marker-to-peak function moved to the peak of the in-band emission.

With the same instrument settings, the hopping function of the EUT was enabled and the trace was allowed to stabilize. The same procedure listed above was used to determine if any spurious emissions caused by the hopping function complied with the specified limit.

9.7.3 Limits:

The maximum level is at least 20dBc with measurements taken with the EUT in pseudorandom hopping mode and with hopping mode disabled.

9.7.4 Test Results:

Pass.

9.7.5 Test Data:

Plot 9-27. Low Channel Band edge: 1-DH5 Mode (Hopping disabled)

Plot 9-28. Low Channel Band edge: 2-DH5 Mode (Hopping disabled)

Plot 9-29. Low Channel Band edge: 3-DH5 Mode (Hopping disabled)

Plot 9-30. High Channel Band edge: 1-DH5 Mode (Hopping disabled)

Plot 9-31. High Channel Band edge: 2-DH5 Mode (Hopping disabled)

Plot 9-32 High Channel Band edge: 3-DH5 Mode (Hopping disabled)

Plot 9-33. Low Channel Band edge 1-DH5 Mode (Hopping enabled)

Plot 9-34. High Channel Band 1-DH5 Mode (Hopping enabled)

Plot 9-35. Low Channel Band edge 2-DH5 Mode (Hopping enabled)

Plot 9-36. High Channel Band 2-DH5 Mode (Hopping enabled)

Plot 9-37. Low Channel Band edge 3-DH5 Mode (Hopping enabled)

Plot 9-38. High Channel Band 3-DH5 Mode (Hopping enabled)

9.8 Conducted Spurious Emissions

9.8.1 Test Requirement:

FCC CFR 47 Rule Part 15.247 (d)

ISED RSS-247 [5.5]

9.8.2 Test Method:

Measurements were performed according to the procedure defined in DA 00-705 'Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems' and ANSI C63.10:2013.

Spectrum analyzer settings:

Span = 30 M- 12 GHz; 12 G- 25 GHz RBW = 1 MHz VBW = 3 MHz Sweep Time = Auto Sweep Points= 30000 Detector function = Peak Trace = Max Hold

If an emission is found within 3dB of the limit or exceeding the limit, reduce the RBW to 100 kHz for the final measurements.

The trace was allowed to stabilize. The marker was set on the peak of any spurious emission recorded. The level displayed had to comply with the limit specified.

9.8.3 Limits:

The maximum spurious emission shall be at least 20dBc.

9.8.4 Test Results:

Pass

9.8.5 Test Data:

Plot 9-39. Conducted Spurious Emissions 30-12000 MHz: 1-DH5 Mode (Ch. 0)

Plot 9-40. Conducted Spurious Emissions 12-25 GHz: 1-DH5 Mode (Ch. 0)

RF 50.0 DC CORREC	SENSE:INT	ALIGN AUTO	05:00:48 PM Dec 21.2
rker 1 11.574666000000 GHz	PNO: Fast Trig: Free R IFGain:Low Atten: 34 d	#Avg Type: RMS tun Avg Hold:>1/1 B	TRACE 23 TYPE DET P NN
B/div Ref 24.00 dBm			Mkr1 11.574 666 G -29.353 dl
	a the state of the		
and the second design of the s			
rt 30 MHz	41/DW/20 MILT		Stop 12.000 G

Plot 9-41. Conducted Spurious Emissions 30-12000 MHz: 1-DH5 Mode (Ch. 39)

Plot 9-42. Conducted Spurious Emissions 12-25 GHz: 1-DH5 Mode (Ch. 39)

Plot 9-43. Conducted Spurious Emissions 30-12000 MHz: 1-DH5 Mode (Ch. 78)

Plot 9-44. Conducted Spurious Emissions 12-25 GHz: 1-DH5 Mode (Ch. 78)

sight spe	RF 50 Ω	DC CORREC		SENSE:INT	A	IGN AUTO		01:42:15	5 PM Jan 05
ker 1	11.49845700	0000 GHz	PNO: Fast G	Trig: Free Atten: 34	Run dB	#Avg Type: Avg Hold:>	RMS 1/1	T	ACE 2 TYPE MW DET P N
3/div	Ref 24.00 dB	m					Mkr	1 11.498 -29.	457 (607 d
									-15
			يق ورالح را	altin			من سقام وزافر	مانترور والطون ور المانغ	a, Physical
e piletre			a state of the sta	and the second second	and the second	New York Street of Street Street	Let Tables	and the splitter of a state	نې <u>د لمې د</u>
t 30 M	Hz							Stop 1	12.000
SBW 1	1.0 MHz		#VE	BW 3.0 MHz			Sweep	20.00 ms	(30001

Plot 9-45. Conducted Spurious Emissions 30-12000 MHz: 2-DH5 Mode (Ch. 0)

Plot 9-46. Conducted Spurious Emissions 12-25 GHz: 2-DH5 Mode (Ch. 0)

Plot 9-47. Conducted Spurious Emissions 30-12000 MHz: 2-DH5 Mode (Ch. 39)

Plot 9-48. Conducted Spurious Emissions 12-25 GHz: 2-DH5 Mode (Ch. 39)

Plot 9-49. Conducted Spurious Emissions 30-12000 MHz: 2-DH5 Mode (Ch. 78)

Plot 9-50. Conducted Spurious Emissions 12-25 GHz: 2-DH5 Mode (Ch. 78)

Plot 9-51. Conducted Spurious Emissions 30-12000 MHz: 3-DH5 Mode (Ch. 0)

Plot 9-52. Conducted Spurious Emissions 12-25 GHz: 3-DH5 Mode (Ch. 0)

	C SENSE INT		01:44:07 PM 1xe 05 1
ker 1 11.969676000000 GH	PNO: Fast Free Run IFGain:Low Atten: 34 dB	#Avg Type: RMS Avg Hold:>1/1	TRACE 2 3 TYPE MWW DET P NN
B/div Ref 24.00 dBm		Mkr	1 11.969 676 G -29.004 dl
			-16.
			الله في معالم مع المحمد و معالم (معادة أو الله في محمد و معالم و رويه الا مورو و معاد و
t 30 MHz			Stop 12.000

Plot 9-53. Conducted Spurious Emissions 30-12000 MHz: 3-DH5 Mode (Ch. 39)

Plot 9-54. Conducted Spurious Emissions 12-25 GHz: 3-DH5 Mode (Ch. 39)

Keysight Spect	trum Analyze	r - Swept SA					TON HITO			
orkor 1 d	44 4709	50 Q DC	CORREC		SENSE:INT]	AL	IGN AUTO	PMS	01:44:40	PM Jan 05, 2
arker 1	11.1708	780000		PNO: Fast G FGain:Low	Trig: Free Atten: 34	Run dB	Avg Hold:>	1/1	1	DET P N N
								Mkr	1 11.170	878 G
dB/div g	Ref 24.	00 dBm							-30.	192 dE
0										
0										-16.3
										. 1
°										• • • • • •
			has without	in the second	And the states	with Land	in station with the			
and better		and the second second	والمالك المتراجات المرادة		in the set	A BERRY AND A				
0 dinestant										
。										
L 30 M	LI7								Stop 1	2 000 G
es BW 1	1.0 MHz			#V	BW 3.0 MHz			Sweep	20.00 ms	(30001 p
							STATUS			

Plot 9-55. Conducted Spurious Emissions 30-12000 MHz: 3-DH5 Mode (Ch. 78)

Plot 9-56. Conducted Spurious Emissions 12-25 GHz: 3-DH5 Mode (Ch. 78)

9.9 Radiated Spurious and Band Edge Emissions

9.9.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.247 (d)

ISED RSS-247 [5.5] and RSS GEN [8.9]

9.9.2 Test Method:

Measurements were performed according to the procedure defined in KDB 558074 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V03R05 and ANSI C63.10 2013.

Radiated spurious measurements are made from 30MHz to the 10th harmonic of the fundamental frequency of the transmitter. The limit for radiated spurious emissions is per 15.209 and RSS-247 [5.5]. Additionally, emissions found in the restricted bands as listed in 15.205 were tested for compliance per limits in 15.209 and RSS-Gen.

The EUT was tested near the low, middle and high channels of operation in each sub band. Guidelines in ANSI C63.10:2013 were followed with respect to maximizing the emissions.

A pre-amp and a high pass filter were required for this test, in order to provide the measuring system with sufficient sensitivity. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength.

Both horizontal and vertical antenna polarizations were investigated. Worst case maximized data is shown in this test report.

Radiated Spurious Emissions

Spectrum Analyzer Settings: 30 MHz- 1 GHz: RBW= 120 kHz VBW ≥ 3 X RBW Trace Mode: Peak Detector (Max Hold). Final measurements performed using QP Detector. Span= 30 MHz- 1 GHz Sweep time= Auto Sweep points ≥ 2 x Span/RBW Above 1 GHz: RBW= 1 MHz VBW= 3 MHz Trace Mode: Peak Detector (Max Hold) and RMS Average Detector (Max Hold) Span= 1- 18 GHz and 18- 26.5 GHz. Sweep time= Auto Sweep points ≥ 2 x Span/RBW

Final Measurements above 1 GHz

Peak Measurements

Spectrum Analyzer Settings: RBW= 1 MHz VBW= 3 MHz Trace Mode: Peak Detector (Max Hold) Span= wide enough to encompass the emission Sweep Points ≥ 2 × Span/RBW Sweep Time = Auto **RMS Average Measurements Spectrum Analyzer Settings:** RBW= 1 MHz VBW≥ 3 × RBW Detector= RMS Span= wide enough to encompass the emission Sweep points≥ 2 × Span/RBW Sweep time = auto Trace= Average at least 100 traces Trace Averaging Type= power (RMS) The duty cycle correction factor is added to the emission level.

Restricted Band-Edge Emissions

<u>Peak Measurements</u>

Spectrum Analyzer Settings: RBW= 1 MHz VBW= 3 MHz Trace Mode: Peak Detector (Max Hold) Span= 2310 – 2500 MHz Sweep Points = 401 Sweep Time = Auto Average Measurements (Reduced Video Bandwidth Method) Spectrum Analyzer Settings: RBW= 1 MHz VBW = 2 kHzVBW Mode = Linear Trace Mode: Peak Detector (Max Hold) Span= 2310 – 2500 MHz Sweep Points = 401 Sweep Time = Auto Sweep Count = 200

Sample Calculation:

<u>Field Strength Level:</u> Amplitude (Analyzer level) + AFCL (Antenna Factor and Cable losses) – Amplifier Gain = 50 dBuV + 33 dB – 25 dB = 58dBuV/m

9.9.3 Limits:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (meters)	Corrected Field Strength for 3m measurement distance (dBµV/m)
0.009-0.490	2400/F (kHz)	300	48.5- 13.8
0.490-1.705	24000/F (kHz)	30	33.8- 23.0
1.705-30	30	30	29.5
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
960-1000	500	3	54
Above 1000 (Restricted Frequency Bands)	500	3	54 (Average) 74 (Peak)

9.9.4 Test Result:

Pass.

9.9.5 Test Data:

9.9.5.1 Radiated Restricted Band-edge emissions

Plot 9-57. Restricted Band Edge 1-DH5 Mode- Ch. 0 (2310-2390MHz) - Peak

Plot 9-58. Restricted Band Edge 1-DH5 Mode– Ch. 0 (2310-2390MHz) – Average

Plot 9-59. Restricted Band Edge 1-DH5 Mode- Ch. 78 (2483.5-2500MHz) - Peak

Plot 9-60. Restricted Band Edge 1-DH5 Mode- Ch. 78 (2483.5-2500MHz) - Average

Plot 9-61. Restricted Band Edge 2-DH5 Mode- Ch. 0 (2310-2390MHz) - Peak

Plot 9-62. Restricted Band Edge 2-DH5 Mode- Ch. 0 (2310-2390MHz) - Average

Plot 9-63. Restricted Band Edge 2-DH5 Mode- Ch. 78 (2483.5-2500MHz) - Peak

Plot 9-64. Restricted Band Edge 2-DH5 Mode- Ch. 78 (2483.5-2500MHz) - Average

Plot 9-65. Restricted Band Edge 3-DH5 Mode- Ch. 0 (2310-2390MHz) - Peak

Plot 9-66. Restricted Band Edge 3-DH5 Mode- Ch. 0 (2310-2390MHz) - Average

Plot 9-67. Restricted Band Edge 3-DH5 Mode- Ch. 78 (2483.5-2500MHz) - Peak

Plot 9-68. Restricted Band Edge 3-DH5 Mode- Ch. 78 (2483.5-2500MHz) - Average

9.9.5.2 Emissions in 30 MHz- 1 GHz range

All channels and modes of operations were tested and worst case emissions in 3DH5 mode, Ch 0 shown below.

Carrier Frequency (MHz)	Frequency (MHz)	Raw Quasi- Peak Field Strength (dBµV/m)	Correction Factor (dB)	Corrected Quasi- Peak Field Strength (dBµV/m)	QP Limit (dBµV/m)	Margin (dB)
2402	30.08	-1.33	27.50	26.17	40.00	-13.83
2402	88.43	0.47	14.60	15.07	43.50	-28.43
2402	127.36	-1.74	20.40	18.66	43.50	-24.84
2402	157.74	-2.2	19.60	17.40	43.50	-26.10
2402	384.00	6.99	23.00	29.99	46.00	-16.01
2402	958.99	-0.75	31.60	30.85	46.00	-15.15

9.9.5.3	Emissions	in 1-18	GHz range
0.0.0.0			er in in inge

RSE 1 - 18GHz Average Data								
Carrier Frequency (MHz)	Frequency (MHz)	Raw Avg. Amplitude (dBµV)	System Correction Factor (dB)	DC Correction Factor	Corrected Avg. Field Strength (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	
2402	4804.00	30.46	9.6	1.14	41.20	54	-12.80	
2441	2338.64	26.85	13.8	1.14	41.79	54	-12.21	
2441	4882.00	26.41	9.5	1.14	37.05	54	-16.95	
2480	2374.83	26.97	14.0	1.14	42.11	54	-11.89	
2480	3306.50	25.28	7.7	1.14	34.12	54	-19.88	
2480	4959.90	26.57	9.5	1.14	37.21	54	-16.79	

RSE 1 - 18GHz Peak Data									
Carrier Frequency (MHz)	Frequency (MHz)	Raw Peak Amplitude (dBµV)	Correction Factor (dB)	Corrected Peak Field Strength (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)			
2402	4803.70	39.46	9.6	49.06	74	-29.94			
2441	2339.33	38.47	13.8	52.27	74	-21.73			
2441	4883.50	34.76	9.5	44.26	74	-29.74			
2480	2374.83	30.58	24.0	54.58	74	-19.42			
2480	3301.80	33.76	7.8	41.56	74	-32.44			
2480	4959.50	37.07	9.5	46.57	74	-27.43			

Plot 9-70. Radiated Spurious Emissions (Ch. 0) 2-DH5 (1-18 GHz)

Final_Result RMS [Final_Result.Result:5]

Final_Result PK+ [Final_Result.Result:4]

9.9.5.4 Emissions in 18-26.5 GHz range

All channels and modes of operations were tested and worst case results from 1DH5 mode, Ch 0 shown below. No significant emissions above noise floor.

Plot 9-73. Radiated Spurious Emissions (Ch. 0) 1-DH5 (18-26.5 GHz)

9.10 AC Line Conducted Emissions

9.10.1 Test Requirements

FCC CFR 47 Rule Part 15.207 (a)

ISED RSS Gen [8.8]

9.10.2 Test Method

Conducted power line measurements are made over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly) connected to a public power network. The measurements were made using a LISN (Line Impedance Stabilization Network).

The EUT is set to continuously transmit on Ch.0.

EMI Receiver Settings:

150 kHz – **30 MHz:** RBW= 9 kHz VBW ≥ 3 X RBW Trace Mode: Peak Detector (Max Hold). Final measurements were performed using Quasi-Peak and Average Detectors. Span= 150 kHz – 30 MHz Sweep time= Auto

9.10.3 Limit

	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

9.10.4 Test Result:

Pass

9.10.5 Test Data:

Frequency (MHz)	QP Net Reading (dBμV)	AVG Net Reading (dBµV)	Quasi- Peak Limit (dBµV)	Average Limit (dBµV)	Line Tested (L or N)	Quasi- Peak Margin (dB)	Average Margin (dB)
0.163	52.22	33.28	65.63	55.63	L	-13.41	-22.35
0.169	50.78	31.43	65.47	55.47	N	-14.69	-24.03
0.184	48.73	29.71	65.04	55.04	L	-16.31	-25.32
0.187	48.15	29.60	64.93	54.93	N	-16.78	-25.33
0.216	44.47	27.35	64.13	54.13	L	-19.66	-26.78
0.208	44.42	26.05	64.34	54.34	N	-19.93	-28.29
0.587	36.04	29.31	56.00	46.00	L	-19.96	-16.69
0.571	34.37	26.08	56.00	46.00	N	-21.63	-19.92
6.504	34.10	28.02	60.00	50.00	L	-25.90	-21.98
5.431	31.94	24.68	60.00	50.00	N	-28.07	-25.32
4.994	27.51	18.68	56.00	46.00	L	-28.49	-27.32

End of Report