

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For
Portable Computing Device

FCC ID: C3K1724B Model Name: 1724

Report Number: 15U21305-S1V3 Issue Date: 10/23/2015

Prepared for Microsoft Corporation One Microsoft Way Redmond, WA 98052 United States

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
V1	10/2/2015	Initial Issue	
V2	10/5/2015	Updated FCC ID	Coltyce Sanders
V3	10/23/2015	Updated Section 6.4.1 based on FCC guidance	Coltyce Sanders

Table of Contents

1.	Attestation of Test Results	. 5
2.	Test Specification, Methods and Procedures	. 6
3.	Facilities and Accreditation	. 6
4.	SAR Measurement System & Test Equipment	. 7
4.1		
4.2	. SAR Scan Procedures	. 8
4.3	. Test Equipment	10
5.	Measurement Uncertainty	10
6.	Device Under Test (DUT) Information	11
6.1	DUT Description	11
6.2	. Wireless Technologies	11
6.3	. Nominal and Maximum Output Power	12
6.4	Power Reduction by Proximity Sensing	13
6	.4.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)	14
6	.4.2. Proximity Sensor Coverage (KDB 616217 §6.3)	15
6	.4.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)	16
6	.4.4. Resulting test positions for SAR measurements	16
7.	RF Exposure Conditions (Test Configurations)	17
7.1	. Standalone SAR Test Exclusion Considerations	17
7.2	. Required Test Configurations	18
8.	Dielectric Property Measurements & System Check	19
8.1	Dielectric Property Measurements	19
8.2	. System Check	21
9.	Conducted Output Power Measurements	23
9.1	. Wi-Fi 2.4GHz (DTS Band)	23
9.2	. Wi-Fi 5GHz (U-NII Bands)	24
9.3	. Bluetooth	26
10.	Measured and Reported (Scaled) SAR Results	27
10.	1. Wi-Fi (DTS Band)	28
10.	2. Wi-Fi (U-NII Band)	29
10.	3. Bluetooth	30
11.	SAR Measurement Variability	31

Page 3 of 33

12.	Simultaneous Transmission SAR Analysis	32
1.	2.1. Sum of the SAR for WLAN + Bluetooth	32
App	pendixes	33
1	5U21305-S1V1 SAR_App A Photos & Ant. Locations	33
1	5U21305-S1V1 SAR_App B System Check Plots	33
1	5U21305-S1V1 SAR_App C Highest Test Plots	33
1	5U21305-S1V1 SAR_App D Tissue Ingredients	33
1	5U21305-S1V1 SAR_App E Probe Cal. Certificates	33
1	5U21305-S1V1 SAR_App F Dipole Cal. Certificates	33

Page 4 of 33

1. Attestation of Test Results

Date Tested	8/17/2015 to 8/25/20	15			
Simultaneous Tx	N/A N/A 1.313				
Standalone	N/A 1.058 1.187 N/A				
-	Licensed	DTS	U-NII	DSS (BT)	
RF Exposure Conditions			ent Class		
	The Highest R	eported SAR (W/kg			
General population / Uncontrolled exposure	1.6				
Exposure Category		Peak spatial-average(1g of tissue)			
	SAR Li	mits (W/Kg)			
	IEEE Std 1528-2013				
Applicable Standards	Published RF expos		3		
Model Name	1724 FCC 47 CFR § 2.109	22			
FCC ID	C3K1724B				
Applicant Name	Microsoft Corporatio	[]			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:
At.	Vather Sonso
David Weaver	Nathan Sousa
Program Manager	Laboratory Engineer
UL Verification Services Inc.	UL Verification Services Inc.

2. Test Specification, Methods and Procedures

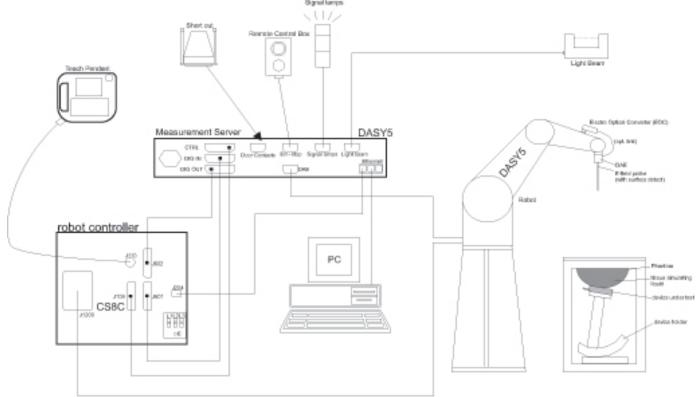
The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02
- o 447498 D01 General RF Exposure Guidance v05r02
- o 616217 D04 SAR for laptop and tablets v01r01
- o 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- o 865664 D02 RF Exposure Reporting v01r01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	
SAR Lab G	
SAR Lab H	


UL Verification Services Inc. is accredited by <u>NVLAP</u>, Laboratory Code 200065-0.

Page 6 of 33

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	on,	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	≤1.5·Δz	_{Zoom} (n-1)
Minimum zoom scan volume x, y, z		\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40001647	7/28/2016
Dielectric Probe kit	SPEAG	DAK-3.5	1082	9/16/2015
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	Control Company	Traceable	140493798	8/4/2016
System Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	Agilent	8665B	3438A00633	8/29/2015
Power Meter	HP	437B	3125U09516	8/27/2015
Power Meter	HP	437B	3125U11347	10/6/2015
Power Sensor	HP	8481A	3318A95392	10/6/2015
Power Sensor	HP	8481A	1926A16917	10/10/2015
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1808938	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2710	N/A
DC Power Supply	HP	6296A	2841A-05955	N/A
E-Field Probe (SAR Lab 1)	SPEAG	EX3DV4	7356	4/22/2016
E-Field Probe (SAR Lab 4)	SPEAG	EX3DV4	3989	3/17/2016
Data Acquisition Electronics (SAR Lab 1)	SPEAG	DAE4	1352	11/7/2015
Data Acquisition Electronics (SAR Lab 4)	SPEAG	DAE4	1377	8/27/2015
System Validation Dipole	SPEAG	D2450V2	706	5/11/2016
System Validation Dipole	SPEAG	D5GHzV2	1138	9/18/2015
Thermometer (SAR Lab 1)	EXTECH	445703	CCS-205	3/20/2016
Thermometer (SAR Lab 4)	EXTECH	445703	CCS-238	6/5/2016
Other				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Power Meter	Agilent	N1912A	MY55196007	7/2/2017
Power Sensor	Agilent	N1921A	MY53020038	3/6/2016
Power Sensor	Agilent	N1921A	MY53260010	7/8/2016

Dielectric Property Measurements

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

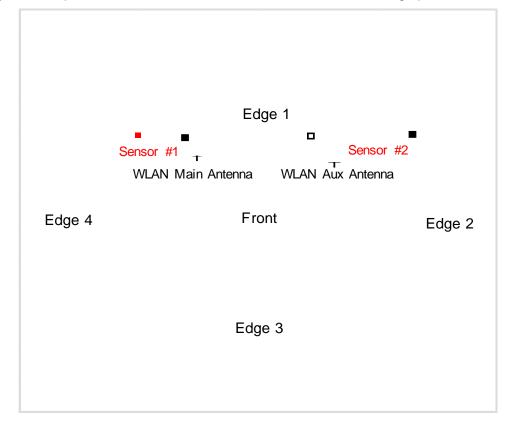
6. Device Under Test (DUT) Information

6.1. DUT Description

	Overall (Length x Width): 201 mm x 292 mm				
Device Dimension	Overall Diagonal: 350 mm				
Display Diagonal: 310 mm					
Back Cover	☑ The rechargeable battery	is not user accessible.			
Battery Options	☑ The rechargeable battery	is not user accessible.			
Wireless Router (Hotspot)	Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices. ☑ Mobile Hotspot (Wi-Fi 2.4 GHz) □ Mobile Hotspot (Wi-Fi 5 GHz)				
Wi-Fi Direct	Wi-Fi Direct enabled devices transfer data directly between each other ⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz) □ Wi-Fi Direct (Wi-Fi 5 GHz)				
	S/N	IMEI	Notes		
Test sample information	012181153053	N/A	SAR WLAN RADIATED #1		
	012184553053	N/A	SAR WLAN RADIATED #2		
Hardware Version	EV2.5				
Software Version	Mte OS 1.416.0				

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing		
	2.4 GHz	802.11b 802.11g 802.11n (HT20)	100%		
Wi-Fi	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT80)	100%		
	Does this device support bands 5.60 ~ 5.65 GHz? \boxtimes Yes \Box No				
	Does this device support				
Bluetooth	2.4 GHz	Version 4.0 LE	77.5% (DH5)		

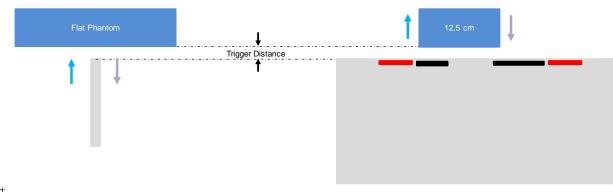

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Upper limit (dB):	-1.5 ~ 0.5		Maximur	n Pow er	Reduc	ed Pow er
RF Air interface	Mode	Channels	Target	Max. tune-up tolerance limit	Target	Max. tune-up tolerance limit
		1,11	11.0	11.5	11.0	11.5
	802.11b	2-10	13.0	13.5	13.0	13.5
		12-13	9.0	9.5	9.0	9.5
		1,11	15.0	15.5	12.2	12.7
Wi-Fi 2.4 GHz	802.11g	2-10	17.0	17.5	14.0	14.5
		12-13	13.0	13.5	10.0	10.5
		1,11	15.0	15.5	12.2	12.7
	802.11n HT20	2-10	17.0	17.5	14.0	14.5
		12-13	13.0	13.5	10.0	10.5
	802.11a	5150-5250 MHz	15.0	15.5	8.5	9.0
	802.11n HT20	5150-5250 MHz	15.0	15.5	8.5	9.0
Wi-Fi 5.2 GHz	802.11n HT40	5150-5250 MHz	12.0	12.5	8.5	9.0
WI-FI 5.2 GHZ	802.11ac VHT20	5150-5250 MHz	15.0	15.5	8.5	9.0
	802.11ac VHT40	5150-5250 MHz	12.0	12.5	8.5	9.0
	802.11ac VHT80	5150-5250 MHz	8.0	8.5	5.5	6.0
	802.11a	5250-5350 MHz	15.0	15.5	8.5	9.0
	802.11n HT20	5250-5350 MHz	15.0	15.5	8.5	9.0
Wi-Fi 5.3 GHz	802.11n HT40	5250-5350 MHz	12.0	12.5	8.5	9.0
WI-FI 5.3 GHZ	802.11ac VHT20	5250-5350 MHz	15.0	15.5	8.5	9.0
	802.11ac VHT40	5250-5350 MHz	12.0	12.5	8.5	9.0
	802.11ac VHT80	5250-5350 MHz	8.0	8.5	5.5	6.0
	802.11a	5470-5725 MHz	15.0	15.5	9.2	9.7
	802.11n HT20	5470-5725 MHz	15.0	15.5	9.2	9.7
Wi-Fi 5.5 GHz	802.11n HT40	5470-5725 MHz	12.0	12.5	9.2	9.7
WI-FI 5.5 GHZ	802.11ac VHT20		15.0	15.5	9.2	9.7
	802.11ac VHT40	5470-5725 MHz	12.0	12.5	9.2	9.7
	802.11ac VHT80	5470-5725 MHz	8.0	8.5	7.5	8.0
	802.11a	5725-5850 MHz	15.0	15.5	10.0	10.5
	802.11n HT20	5725-5850 MHz	15.0	15.5	10.0	10.5
Wi-Fi 5.8 GHz	802.11n HT40	5725-5850 MHz	12.0	12.5	10.0	10.5
	802.11ac VHT20	5725-5850 MHz	15.0	15.5	10.0	10.5
		•••••••••	12.0	12.5	10.0	10.5
	802.11ac VHT80	5725-5850 MHz	8.0	8.5	7.0	7.5
Blue	etooth	All	3.5	4.0	3.5	4.0
Blueto	ooth LE	All	3.5	4.0	3.5	4.0

6.4. Power Reduction by Proximity Sensing

The Proximity Envelope Sensor (PES) consists of two metallic capacitive proximity sense elements parallel to the beveled top surface and immediately adjacent to the WiFi antenna pair on either side. Each of these sense elements sets up an electric field between itself and the various components of the tablet. For a given excitation voltage, assuming the remainder of the tablet remains static, the number of point charges remains relatively constant. As an object (or operator) approaches these sense elements, the field starts to change to include the object (or operator). The number of point charges on the sense plate increases. By definition, this process increases the capacitance. A trigger event is determined when capacitance increases above a threshold determined by noise and range considerations. Transmit power is reduced at both antenna ports when the sensor system is triggered. The position of the sensors and antenna are as shown in the graphic below.


6.4.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

A non-standard setup was used for proximity sensor triggering distance determination based on guidance from the FCC. The operational description contains additional information.

Edge 1 (Top) of the DUT was placed directly below the flat phantom and a 12.5 cm phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction, per antenna and its respective Proximity Sensor. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The DUT featured a visual indicator on its display that showed the status of the Proximity Sensor (Triggered or not triggered). This was used to determine the status of the sensor during the Proximity Sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

It was confirmed separately that the output power was altered according to the Proximity Sensor status indication. This was achieved by observing the Proximity Sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

Legend

A Direction of DUT's travel for determining the power reduction triggering point

Direction of DUT's travel for determining the power resumption triggering point

Summary of Trigger Distances

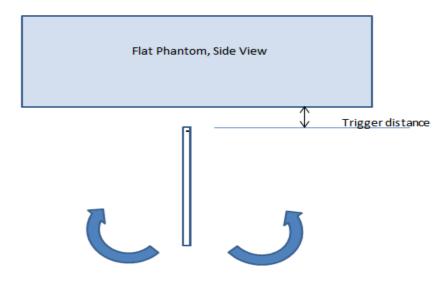

Tissue simulating	00	nce – Edge 1 ain)	00	nce – Edge 1 ux)	Trigger distar (Ma		Trigger distar (Au	nce – Edge 1 ux)	
Tissue simulating liquid	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	Moving toward the Left	Moving toward the Right	Moving toward the Left	Moving toward the Right	
2450 muscle	10 mm	10 mm	10 mm	10 mm	10 mm	10 mm	10 mm	10 mm	
5 GHz muscle	10 mm	10 mm	10 mm	10 mm	10 mm	10 mm	10 mm	10 mm	

Page 14 of 33

6.4.2. Proximity Sensor Coverage (KDB 616217 §6.3)

The rear surface or edge of the tablet is positioned at a test separation distance less than or equal to the distance required for rear surface or edge triggering, with both the antenna and sensor pad located at least 20 mm laterally outside the edge (boundary) of the phantom, along the direction of maximum antenna and sensor offset.

Each applicable tablet edge should be positioned perpendicularly to the phantom to determine sensor coverage. For antennas and/or sensors located near the corner of a tablet, both adjacent edges must be considered.


Summary of Tablet Sensor coverage to Proximity Sensor Triggering

Ва	nd	Edge ´	l (mm)	Minimum Distance (mm)		
		Left	Right	#1	#2	
Wi-Fi	2.4 GHz	49.09	36.29	10	10	
VVI-FI	5 GHz	49.09	36.29	10	10	

6.4.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Edge 1 parallel to the base of the flat phantom for each band.

The EUT was rotated about Edge 1 for angles up to $+/-45^{\circ}$. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to $+/-45^{\circ}$.

Proximity sensor tilt angle assessment (Edge 1) KDB 616217 §6.4

Band (MHz)	Minimum trigger distance measured	istance measured distance at which											
	according to KDB 616217 §6.2	power reduction was maintained over +/-45°	-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°
2.4 GHz	10 mm	10 mm	On	On	On	On	On	On	On	On	On	On	On
5 GHz	10 mm	10 mm	On	On	On	On	On	On	On	On	On	On	On

6.4.4. Resulting test positions for SAR measurements

Wireless technologies	Position	§6.2 Triggering Distance	§6.3 Coverage	§6.4 Tilt Angle	Worst case distance for SAR
Wi-Fi	Edge 1	10 mm	10 mm	10 mm	9 mm

7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

7.1. Standalone SAR Test Exclusion Considerations

Since the Dedicated Host Approach is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied in conjunction with KDB 616217 § 4.3 to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is 0 applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge 0 separation distance is applied to determine SAR test exclusion.

SAR Test Exclusion Calculations for WLAN at Maximum Power

Antennas < 50mm to adjacent edges

Тх	Frequency	Output	Power		Sep	aration Dis	stances (n	nm)			Ca	lculated Th	reshold Val	ue	
Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
							Wi-Fi Mai	n Antenna	1						
Wi-Fi 2.4 GHz	2457	17.50	56	5	5	172.01	191.06	77.19		17.6 -MEASURE-	17.6 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.2 GHz	5240	15.50	35	5	5	172.01	191.06	77.19		16 -MEASURE-	16 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.3 GHz	5320	15.50	35	5	5	172.01	191.06	77.19		16.1 -MEASURE-	16.1 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.5 GHz	5700	15.50	35	5	5	172.01	191.06	77.19		16.7 -MEASURE-	16.7 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.8 GHz	5825	15.50	35	5	5	172.01	191.06	77.19		16.9 -MEASURE-	16.9 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Bluetooth	2480	4.00	3	5	5	172.01	191.06	77.19		0.9 -EXEMPT-	0.9 -EXEMPT-	> 50 mm	> 50 mm	> 50 mm	
							Wi-Fi Su	b Antenna	1						
Wi-Fi 2.4 GHz	2457	17.50	56	5	5	65.19	191.06	167.01		17.6 -MEASURE-	17.6 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.2 GHz	5240	15.50	35	5	5	65.19	191.06	167.01		16 -MEASURE-	16 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.3 GHz	5320	15.50	35	5	5	65.19	191.06	167.01		16.1 -MEASURE-	16.1 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.5 GHz	5700	15.50	35	5	5	65.19	191.06	167.01		16.7 -MEASURE-	16.7 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	
Wi-Fi 5.8 GHz	5825	15.50	35	5	5	65.19	191.06	167.01		16.9 -MEASURE-	16.9 -MEASURE-	> 50 mm	> 50 mm	> 50 mm	

Note(s):

According to KDB 447498, if the calculated threshold value is >3 then SAR testing is required.

Antennas > 50mm to adjacent edges

Тх	Frequency	equency Output Power Separation Distances					stances (n	nm)			Ca	Iculated Th	reshold Val	ue	
Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
							Wi-Fi Mai	in Antenna	a						
Wi-Fi 2.4 GHz	2457	17.50	56	5	5	172.01	191.06	77.19		< 50 mm	< 50 mm	1315.8 mW -EXEMPT-	1506.3 mW -EXEMPT-	367.6 mW -EXEMPT-	
Wi-Fi 5.2 GHz	5240	15.50	35	5	5	172.01	191.06	77.19		< 50 mm	< 50 mm	1285.6 mW -EXEMPT-	1476.1 mW -EXEMPT-	337.4 mW -EXEMPT-	
Wi-Fi 5.3 GHz	5320	15.50	35	5	5	172.01	191.06	77.19		< 50 mm	< 50 mm	1285.1 mW -EXEMPT-	1475.6 mW -EXEMPT-	336.9 mW -EXEMPT-	
Wi-Fi 5.5 GHz	5700	15.50	35	5	5	172.01	191.06	77.19		< 50 mm	< 50 mm	1282.9 mW -EXEMPT-	1473.4 mW -EXEMPT-	334.7 mW -EXEMPT-	
Wi-Fi 5.8 GHz	5825	15.50	35	5	5	172.01	191.06	77.19		< 50 mm	< 50 mm	1282.3 mW -EXEMPT-	1472.8 mW -EXEMPT-	334.1 mW -EXEMPT-	
Bluetooth	2480	4.00	3	5	5	172.01	191.06	77.19		< 50 mm	< 50 mm	1315.4 mW -EXEMPT-	1505.9 mW -EXEMPT-	367.2 mW -EXEMPT-	
							Wi-Fi Su	b Antenna	1						
Wi-Fi 2.4 GHz	2457	17.50	56	5	5	65.19	191.06	167.01		< 50 mm	< 50 mm	247.6 mW -EXEMPT-	1506.3 mW -EXEMPT-	1265.8 mW -EXEMPT-	
Wi-Fi 5.2 GHz	5240	15.50	35	5	5	65.19	191.06	167.01		< 50 mm	< 50 mm	217.4 mW -EXEMPT-	1476.1 mW -EXEMPT-	1235.6 mW -EXEMPT-	
Wi-Fi 5.3 GHz	5320	15.50	35	5	5	65.19	191.06	167.01		< 50 mm	< 50 mm	216.9 mW -EXEMPT-	1475.6 mW -EXEMPT-	1235.1 mW -EXEMPT-	
Wi-Fi 5.5 GHz	5700	15.50	35	5	5	65.19	191.06	167.01		< 50 mm	< 50 mm	214.7 mW -EXEMPT-	1473.4 mW -EXEMPT-	1232.9 mW -EXEMPT-	
Wi-Fi 5.8 GHz	5825	15.50	35	5	5	65.19	191.06	167.01		< 50 mm	< 50 mm	214.1 mW -EXEMPT-	1472.8 mW -EXEMPT-	1232.3 mW -EXEMPT-	

Note(s):

According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

Test Configurations	Rear	Edge 1	Edge 2	Edge 3	Edge 4
rest coningurations	Real	(Top Edge)	(Right Edge)	(Bottom Edge)	(Left Edge)
Wi-Fi 2.4 GHz SISO (Main Antenna)	Yes	Yes	No	No	No
Wi-Fi 2.4 GHz SISO (Sub Antenna)	Yes	Yes	No	No	No
Wi-Fi 2.4 GHz MIMO	Yes	Yes	No	No	No
Wi-Fi 5 GHz SISO (Main Antenna)	Yes	Yes	No	No	No
Wi-Fi 5 GHz SISO (Sub Antenna)	Yes	Yes	No	No	No
Wi-Fi 5 GHz MIMO	Yes	Yes	No	No	No
Bluetooth	No	No	No	No	No
Noto(s):				•	

Note(s):

Yes = Testing is required.

No = Testing is not required.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	He	ad	Во	dy
Target Trequency (MITZ)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR Lab 1

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2450	e'	51.2900	Relative Permittivity (ε_r):	51.29	52.70	-2.68	5
	B00y 2430	e"	14.9100	Conductivity (σ):	2.03	1.95	4.16	5
8/17/2015	Body 2410	e'	51.4700	Relative Permittivity (c _r):	51.47	52.76	-2.44	5
0/17/2013	B00y 2410	e"	14.8300	Conductivity (σ):	1.99	1.91	4.18	5
	Pody 2475	e'	51.3300	Relative Permittivity (ε_r):	51.33	52.67	-2.54	5
	Body 2475	e"	14.9300	Conductivity (σ):	2.05	1.99	3.50	5
	Body 2450	e'	51.6900	Relative Permittivity (ε_r):	51.69	52.70	-1.92	5
	B00y 2450	e"	14.8500	Conductivity (σ):	2.02	1.95	3.74	5
8/21/2015	Body 2410	e'	51.8200	Relative Permittivity (ε_r):	51.82	52.76	-1.78	5
0/21/2015	B00y 2410	e"	14.7500	Conductivity (σ):	1.98	1.91	3.62	5
	Body 2475	e'	51.6300	Relative Permittivity (c _r):	51.63	52.67	-1.97	5
	Body 2475	e"	14.8700	Conductivity (σ):	2.05	1.99	3.08	5

SAR Lab 4

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 5180	e'	47.7100	Relative Permittivity (c _r):	47.71	49.05	-2.73	5
	B00y 5160	e"	18.6100	Conductivity (σ):	5.36	5.27	1.68	5
	Body 5200	e'	47.7100	Relative Permittivity (ε_r):	47.71	49.02	-2.67	5
	B00y 5200	e"	18.5700	Conductivity (σ):	5.37	5.29	1.41	5
8/17/2015	Body 5600	e'	47.0000	Relative Permittivity (ε_r):	47.00	48.48	-3.05	5
0/17/2015	B00y 5000	e"	18.8900	Conductivity (σ):	5.88	5.76	2.10	5
	Body 5800	e'	46.6700	Relative Permittivity (ε_r):	46.67	48.20	-3.17	5
	B00y 5800	e"	19.2200	Conductivity (σ):	6.20	6.00	3.31	5
	Body 5825	e'	46.5600	Relative Permittivity (ε_r):	46.56	48.20	-3.40	5
	B00y 5625	e"	19.2000	Conductivity (σ):	6.22	6.00	3.64	5
	Body 5180	e'	48.1900	Relative Permittivity (ε_r):	48.19	49.05	-1.75	5
	BOUY 5160	e"	18.5600	Conductivity (σ):	5.35	5.27	1.41	5
	Body 5200	e'	48.0700	Relative Permittivity (ε_r):	48.07	49.02	-1.94	5
	B00y 5200	e"	18.5700	Conductivity (σ):	5.37	5.29	1.41	5
8/21/2015	Body 5600	e'	47.7900	Relative Permittivity (ε_r):	47.79	48.48	-1.42	5
0/21/2015	B00y 5000	e"	18.9800	Conductivity (σ):	5.91	5.76	2.59	5
	Body 5800	e'	47.0600	Relative Permittivity (c _r):	47.06	48.20	-2.37	5
	BUUY 5600	e"	19.0800	Conductivity (σ):	6.15	6.00	2.55	5
	Body 5825	e'	47.1600	Relative Permittivity (c _r):	47.16	48.20	-2.16	5
	BUUY 5625	e"	19.1600	Conductivity (σ):	6.21	6.00	3.43	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date		Та	rget SAR Values (W/kg)
System Dipole	Senar No.	Cal. Date	Freq. (MHz)	1g/10g	Head	Body
D2450V2	706	5/11/2015	2450	1g	52.6	51.3
D2430V2	700	3/11/2013	2430	10g	24.6	24.0
			5200	1g	81.4	75.4
			5200	10g	23.3	21.0
D5GHzV2	1138	9/18/2014	5600	1g	85.1	81.9
0001272	1150	3/10/2014	5000	10g	24.2	22.6
			5800	1g	80.6	75.2
			5500	10g	23.0	20.8

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Lab 1

	System	Dipole	T.S.		Measured	Results	Torret	Dalta	Dist
Date Tested	Туре	Serial #	Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
8/17/2015	D2450V2	706	Body	1g	5.27	52.7	51.30	2.73	
0/17/2013	D2430V2	700	Body	10g	2.43	24.3	24.00	1.25	
8/21/2015	D2450V2	706	Body	1g	5.41	54.1	51.30	5.46	1, 2
6/21/2015	D2450V2	700	BOUY	10g	2.49	24.9	24.00	3.75	1, 2

SAR Lab 4

	System	n Dipole	те		Measured	d Results	Torget	Dalta	Diet
Date Tested	Туре	Serial #	T.S. Liquid	-		Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
8/17/2015	D5GHzV2	1138	Body	1g	7.99	79.9	75.4	5.97	
8/17/2015	(5200)	1130	Body	10g	2.24	22.4	21.0	6.67	
8/17/2015	D5GHzV2	1138	Body	1g	8.73	87.3	81.9	6.59	3,4
0/17/2013	(5600)	1130	Body	10g	2.42	24.2	22.6	7.08	3,4
8/17/2015	D5GHzV2	1138	Body	1g	7.82	78.2	75.2	3.99	
0/17/2013	(5800)	1130	Body	10g	2.20	22.0	20.8	5.77	
8/21/2015	D5GHzV2	1138	Body	1g	7.39	73.9	75.4	-1.99	
0/21/2013	(5.2)	1130	Body	10g	2.08	20.8	21.0	-0.95	
8/21/2015	D5GHzV2	1138	Body	1g	8.43	84.3	81.9	2.93	
0/21/2013	(5.6)	1130	Body	10g	2.36	23.6	22.6	4.42	
8/21/2015	D5GHzV2	1138	Body	1g	7.29	72.9	75.2	-3.06	
0/21/2013	(5.8)	1130	Body	10g	2.04	20.4	20.8	-1.92	

9. Conducted Output Power Measurements

9.1. Wi-Fi 2.4GHz (DTS Band)

MIMO Measured Results for Max Power

Band	Mada	Node Data Rate	Ch #	Freq.	Avg Pow	ver (dBm)	Max Output	Power (dBm)	SAR Test	Note(s)
(GHz)	INIOUE	Dala Kale	Cii #	(MHz)	Main Ant	Aux Ant	Main Ant	Aux Ant	(Yes/No)	NOLE(S)
			2	2417	12.4	12.4				
	802.11b	1 Mbps	6	2437	12.4	12.4	13.5	13.5	Yes	
			10	2457	12.5	12.5				
			2	2417	16.0	15.8				
2.4	802.11g	6 Mbps	6	2437	15.7	15.7	17.5	17.5	Yes	
			10	2457	15.7	15.6				
	000.44+		2	2417	15.8	15.8				
	802.11n (HT20)	6.5 Mbps	6	2437	15.9	15.8	17.5	17.5	Yes	
	(11/20)		10	2457	15.9	15.6				

MIMO Measured Results for Reduced Power

Band	Mode	Data Rate	Ch #	Freq.	Avg Pow	/er (dBm)	Max Output	Power (dBm)	SAR Test	Note(s)
(GHz)	WOULE	Data Nate	017#	(MHz)	Main Ant	Aux Ant	Main Ant	Aux Ant	(Yes/No)	Note(5)
			2	2417	12.4	12.4				
	802.11b	1 Mbps	6	2437	12.4	12.4	13.5	13.5	Yes	
			10	2457	12.5	12.5				
			2	2417	13.0	13.0				
2.4	802.11g	6 Mbps	6	2437	13.0	13.0	14.5	14.5	Yes	
			10	2457	12.9	12.7				
	000 11-		2	2417	13.0	12.8				
	802.11n (HT20)	6.5 Mbps	6	2437	13.0	12.8	14.5	14.5	Yes	
	(11120)		10	2457	12.9	12.9				

Note(s):

1. Additionally, SAR is not required for Channels 12 and 13 because the tune-up limit and the measured output power for these two channels are no greater than those for the default test channels.

9.2. Wi-Fi 5GHz (U-NII Bands)

MIMO Measured Results for Max Power

(D-Hz) Mode Data Refe Dr. 17 Org. 107 T.3.9 Aux Art Mane Art Aux Art Mane Art Aux Art Ware Art Mane Art Mane Art Mane Art Ware Art Mane Art	Band	asured Resu			Freq.	Avg Pow	/er (dBm)	Max Output I	Power (dBm)	SAR Test	
802.11a 80.84ps 56 5200 13.5 14.4 15.5 15.5 Yes 1 6.3 5300 13.8 14.4 15.5 15.		Mode	Data Rate	Ch #							Note(s)
402.11a 0.06ps 60 5300 13.8 14.0 15.5 15.5 Ves 1 60.11n 6.5 Mbp 60 6300 13.5 14.3 1 15.5 15.				52	5260	13.7	13.9				
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		000.44	0.14	56	5280	13.5	14.1	1.5.5	45.5		
80.11n (HT20) 52 65 5200 65 13.5 60 14.3 14.2 16.5 16.5 16.5 16.5 No 10.41(140) 13.5 Mbp 54 60 5300 11.3 11.4 11.2 11.5 11.5 No No 802.11n (HT40) 13.5 Mbp 54 60 5300 11.3 11.4 12.5 12.5 No No 802.11a (WH20) 6.5 Mbp 56 60 5200 11.3 11.3 11.5 12.5 No No No 802.11ac (WH20) 6.5 Mbp 56 5200 11.3 11.3 11.5 12.5 No No 802.11a (WH40) 13.5 Mbp 56 5200 13.4 13.8 15.5 15.5 No No No 802.11a (WH30) 6.5 Mbp 560 5600 13.4 13.8 15.5 15.5 No		802.11a	6 Mbps	60	5300	13.8	14.0	15.5	15.5	Yes	1, 2
802.11 (ILNI) (1720) 85.8 Mbp (1720) (1720) 15.8 (1720) (1720) 1				64	5320	13.7	14.2				
(017.0) 0.0 Moto 60 9300 11.7 14.2 10.5 17.5 No 16.4 9300 11.3 11.4 14.2 10.5 11.5 11.2 10.5 11.5 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.3 11.4 11.5 <td< td=""><td></td><td></td><td></td><td>52</td><td>5260</td><td>13.5</td><td>14.1</td><td></td><td></td><td></td><td></td></td<>				52	5260	13.5	14.1				
No. 000 5300 117 14.2 000 100 000 002.11n 13.5 Mbps 64 5500 11.3 11.4 12.5 12.5 No No 002.11n 0.5 Mbps 65 5260 13.5 14.1 15.5 16.1 002.11nc 0.5 Mbps 66 5260 13.7 14.1 15.5 16.5 10.0 10.0 10.0 11.0 11.0 11.5 10.5 No 0 002.11nc (Vr170) 20.3 Mbps 64 5520 17.0 17.2 8.5 8.5 No 0 002.11nc (Vr170) 20.3 Mbps 68 5200 17.0 17.2 8.5 8.5 No 0 000.11nc (Vr170) 20.3 Mbps 100 5800 13.5 13.8 13.8 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5<		802.11n	6.5 Mbps	56	5280	13.5	14.3	15.5	15.5	No	
802 line (µH740)13.5 Mps64527011.311.412.512.5No1802 line (µH740)0.5 Mps650530011.311.4112.5NoNoNo802 line (µH740)13.8 Mps62530011.311.511.511.511.5NoNoNo802 line (µH740)13.8 Mps64620630011.411.511.512.5NoNoNo802 line (µH740)13.8 Mps646207.07.28.58.5NoNoNoNo802 line (µH740)23.8 Mps64520013.513.811.511.5NoNoNoNo802 line (µH740)13.6 Mps116550013.513.813.5NoNoNoNoNoNoNo802 line (µH740)6.5 Mps116650013.613.813.513.5NoNoNoNoNoNo802 line (µH740)13.6 Mps11.6663013.713.813.513.5NoNoNoNoNo802 line (µH740)13.6 Mps11.611.311.311.511.511.511.5NoNoNo802 line (µH740)13.6 Mps11.611.311.311.511.511.511.511.511.511.511.511.511.511.511.511.511.5<		(HT20)	0.5 10005	60	5300	13.7	14.2	15.5	15.5	NO	
(U-NII 2A) (iT40) 13.8 Mps 62 5310 11.2 11.2 12.5 12.5 12.5 12.5 No 802 11ac 6.5 Mps 56 5280 13.7 14.1 15.5 16.5 No 1 802 11ac 13.6 Mps 64 620 13.8 14.2 11.3 11.3 12.5 12.5 No 1 802 11ac (W1740) 23.3 Mps 58 5280 13.8 13.8 14.2 12.5 12.5 No 1 802 11a (W1740) 23.3 Mps 58 5280 13.8 13.8 15.5 No 1 11.5 11.5 11.5 No 1 12.5 12.5 No 1 11.5 11.5 11.5 11.5 No 1 11.5 11.5 11.5 11.5 No 1 11.5 11.5 11.5 No 1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 <td< td=""><td></td><td></td><td></td><td>64</td><td>5320</td><td>13.8</td><td>14.2</td><td></td><td></td><td></td><td></td></td<>				64	5320	13.8	14.2				
(NH AV) (NH AV) (NH AV) (NH AV) (C (S)			13.5 Mbps	54	5270	11.3	11.4	12.5	12.5	No	
802.11a (VHT20) 6.5 Mpp (VHT20) 56 (54) 5280 13.7 14.3 (1.4) 15.5 15.5 No 802.11a (VHT20) 13.5 Mps 62 6310 11.4 11.4 12.5 12.5 No 1 802.11a (VHT40) 13.5 Mps 58 5230 7.0 7.2 8.5 8.5 No 1 802.11a (VHT20) 28.3 Mps 58 5230 7.0 7.2 8.5 8.5 No 1 802.11a (HT20) 6.5 Mps 112 5600 13.5 13.8 13.5 15.5 15.5 No 1 802.11n (HT20) 6.5 Mps 112 5600 13.5 13.8 13.9 1 1.5 15.5 No 1 802.11n (HT40) 6.5 Mps 112 5500 13.7 13.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>(U-NII 2A)</td> <td>(HT40)</td> <td>10.0 11000</td> <td>62</td> <td>5310</td> <td>11.2</td> <td>11.2</td> <td>12.0</td> <td>12.0</td> <td>110</td> <td></td>	(U-NII 2A)	(HT40)	10.0 11000	62	5310	11.2	11.2	12.0	12.0	110	
(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				52	5260	13.5	14.1				
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			6.5 Mbps		5280			15.5	15.5	No	
$ \left \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(VHT20)			5300	13.7					
(v)(HT40) 13.5 Mpps 62 5310 11.4 11.4 11.2 12.5 12.5 No 602.11ac (VH70) 29.3 Mbps 58 5200 7.0 7.2 8.5 8.5 No 7 802.11a 6 Mbps 112 5560 13.4 13.8 13.7 13.8 13.7 802.11a 6.5 Mbps 112 5560 13.8 13.9 15.5 15.5 No 7 802.11n 6.5 Mbps 112 5560 13.7 13.8 13.7 13.8 15.5 No 7 802.11n 13.5 Mbps 112 5560 11.1 11.1 12.5 No 7 </td <td></td>											
$ \left \begin{array}{ c c c c c c c c c c c c c c c c c c c$			13.5 Mbps					12.5	12.5	No	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		(VHT40)		62	5310	11.4	11.4	-	-	-	
802.11a 8 Maps 112 550 13.4 13.8 15.5 15.5 15.5 Yes 5.5 (HT20) 6.5 Mbps 112 5500 13.6 13.9 10.5 13.6 13.9 6.5 Mbps 112 5500 13.8 13.7 13.8 13.9 15.5 No 15.5 15.5 No 15.5 15.5 15.5 No 15.5		802.11ac (VHT80)	29.3 Mbps	58	5290	7.0	7.2	8.5	8.5	No	
$ \begin{tabular}{ c c c c c c } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $				100	5500	13.5	13.8				
Image: base in the section of the		802,11a	6 Mhns	112	5560		13.8	15.5	15.5	Yes	1
$ \left(\text{Ni} \left(\frac{802.11n}{(14720)} \right) \\ \left(\frac{802.11n}{(14720)} \right) \\ \left(\frac{802.11n}{(14720)} \right) \\ \left(\frac{802.11n}{(1470)} \right) \\ \left(\frac{165}{(5825)} \right) \\ \left(\frac{165}{(5825)} \right) \\ \left(\frac{110}{(1470)} \right) \\ \left(\frac{112}{142} \right) \\ \left(\frac{112}{142} \right) \\ \left(\frac{112}{142} \right) \\ \left(\frac{113}{14} \right) \\ \left(\frac{113}{11} \right) \\ $		002.114	0 11000	116	5580	13.8	13.7	10.0	10.0	100	
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$				128	5640	13.5	13.8				
(H120) 6.5 Mbps 116 5580 13.7 13.8 15.5 15.5 No 128 5640 11.0 13.7 13.8 15.5 15.5 No 15.5 No 15.5 No 15.5 15.5 No 15.5 15.5 </td <td></td> <td></td> <td></td> <td>100</td> <td>5500</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>				100	5500			-			
(iii) (iiii) (iii) (iiii) (iii) (iii) <			6.5 Mbps					15.5	15.5	No	
		(HT20)				1					
5.5 (UNI-2c) (HT40) 13.5 Mbps 118 5500 11.0 11.1 12.5 12.5 12.5 No 802.11ac (VHT20) 6.5 Mbps 126 5830 11.2 11 11.6 13.8 116 5580 13.7 13.8 15.5 No No 802.11ac (VHT20) 6.5 Mbps 110 5580 11.2 11.0 15.5 No No 802.11ac (VHT40) 13.5 Mbps 102 5510 11.1 11.0 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.3 11.2 11.3 11.2 11.3 11.2 11.3 11.2 11.2 11.2 11.2 11.3 11.2 <td></td>											
(JNI-2C) (III-40) III IIII IIIII IIIIII IIIIII IIIII IIIII IIIII IIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIIII IIIIIII IIIIIII IIIIIIII IIIIIIIII IIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			13.5 Mbps					12.5	12.5	No	
$ \left(\text{VHT20} \right) \begin{array}{c} 100 \\ 8.5 \text{ Mbps} \\ \hline 112 \\ (V+T20) \\ 13.5 \text{ Mbps} \\ \hline 13.5 \text{ Mbps} \\ \hline 13.5 \text{ Mbps} \\ \hline 112 \\ 128 \\ 118 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 135 \\ 11.1 \\ 11.2 \\ 11$		(H140)						-			
802.11ac (VHT20) 6.5 Mbps 112 5660 13.7 13.8 15.5 15.5 No 802.11ac (VHT40) 13.6 Mbps 116 5580 13.4 13.5 13.7 13.8 802.11ac (VHT40) 13.5 Mbps 102 5510 11.1 11.0 12.5 13.5	(UNII-2C)										
(VHT20) 6.5 Mbps 116 5580 13.4 13.8 15.5 15.5 No 802.11ac (VHT40) 13.5 Mbps 102 5510 11.1 11.0 11.1 11.0 11.1 11.1 11.0 12.5 12.5 No No No 802.11ac (VHT80) 13.5 Mbps 110 5550 11.1 11.0 12.5 12.5 No No 802.11ac (VHT80) 29.3 Mbps 106 5530 6.9 6.7 8.5 8.5 No No 802.11ac (VHT80) 29.3 Mbps 112 5660 13.7 14.0 Max Antt Aux Antt Aux Antt Aux Antt Yes/No No 802.11a 6 Mbps 1149 5745 13.8 13.7 15.5 15.5 Yes Yes 802.11a 6.5 Mbps 1149 5745 13.8 13.4 10.9 15.5 15.5 No Yes (UNI-3) 13.5 Mbps 1165 5825 13.8<											
Image: book book book book book book book boo			6.5 Mbps					15.5	15.5	No	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(VH120)									
$ \left(\begin{array}{c c c c c c c c c c c c } & 13.5 \ \mbox{Mbps} & 110 & 5550 & 11.1 & 11.3 \\ \hline 118 & 5590 & 11.2 & 11.2 \\ \hline 126 & 5630 & 11.2 & 11.0 \\ \hline 12.5 & 12.5 & 12.5 & 12.5 \\ \hline 12.5 & 12.5 & 12.5 & 12.5 \\ \hline 12.5 & 12.5 & 12.5 & 10.5 \\ \hline 12.5 & 12.5 & 12.5 & 10.5 \\ \hline 12.5 & 12.5 & 12.5 & 10.5 \\ \hline 12.5 & 12.5 & 10.5 & 10.5 & 10.5 \\ \hline 12.5 & 12.5 & 10.5 & 10.5 & 10.5 \\ \hline 12.5 & 12.5 & 10.5 & 10.5 & 10.5 & 10.5 \\ \hline 12.5 & 12.5 & 10.5 & 10.5 & 10.5 & 10.5 & 10.5 \\ \hline 12.5 & 12.5 & 10.5 & 1$											
$ \left(\begin{array}{c c c c c c c c c c c c } \hline (VHT40) & 13.5 \ Mpps & 118 & 5590 & 11.2 & 11.2 \\ \hline 126 & 5630 & 11.2 & 11.0 \\ \hline 126 & 5630 & 11.2 & 11.0 \\ \hline 120 & 5650 & 6.9 & 6.7 \\ \hline (VHT80) & 29.3 \ Mpps & 102 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 13.7 & 14.0 \\ \hline Main \ Ant & \ Aux \ Ant & \ Main \ Ant & \ Aux \ Ant & \ (Verrow \ (Verrow \ (Verrow \ IVerrow \ IVerro$								-			
$ \left \begin{array}{c c c c c c c c c } \hline 126 & 5630 & 11.2 & 11.0 \\ \hline 126 & 5630 & 11.2 & 11.0 \\ \hline 126 & 5630 & 6.9 & 6.7 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 6.8 & 6.5 \\ \hline 122 & 5610 & 128 & 128 \\ \hline 122 & 5600 & 13.7 & 14.0 \\ \hline 122 & 5600 & 13.7 & 14.0 \\ \hline 149 & 5745 & 13.8 & 13.7 \\ \hline 165 & 5825 & 14.0 & 13.9 \\ \hline 165 & 5825 & 13.8 & 13.7 \\ \hline 165 & 5825 & 13.8 & 13.7 \\ \hline 165 & 5825 & 13.8 & 13.8 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5660 & 13.7 & 13.7 \\ \hline 112 & 5745 & 13.8 & 13.8 \\ \hline 112 & 5745 & 13.8 & 13.8 \\ \hline 112 & 5755 & 11.1 & 10.8 \\ \hline 112 & 5755 & 11.1 & 10.8 \\ \hline 112 & 5755 & 11.1 & 10.8 \\ \hline 112 & 5755 & 11.3 & 10.9 \\ \hline 112 & 5755 & 11.3 & 10.9 \\ \hline 112 & 5755 & 11.3 & 10.9 \\ \hline 112 & 5755 & 11.3 & 10.9 \\ \hline 112 & 5755 & 11.3 & 10.9 \\ \hline 112 & 5755 & 11.3 & 10.9 \\ \hline 112 & 5755 & 11.3 & 11.0 \\ \hline 112 & 575 & 575 & 11.3 & 11.0 \\ \hline 112 & 575 & 575 & 575 \\ \hline 113 & 575 & 575 & 575 \\ \hline 113 & 575 & 575 & 575 \\ \hline 113 & 575 & 575 & 575 \\ \hline 113 & 575 & 575 & 575 \\ \hline 113 & 575 & 575 \\ \hline 113 & 575 & 575 \\ \hline 1$			13.5 Mbps					12.5	12.5	Мо	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(11140)						-			
$ \begin{array}{ c c c c c c c } \hline (VHT80) & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		000.44				1					
Band (GHz) Mode Data Rate Ch # Freq. (MHz) Avg Power (dBm) Max Output Power (dBm) SAR Test (Main Ant Not 802.11a 6 Mbps 132 5660 13.7 14.0 15.5 Yes Yes 802.11a 6 Mbps 149 5745 13.8 13.7 14.0 15.5 Yes Yes 802.11n (HT20) 6.5 Mbps 165 5825 14.0 13.9 15.5 No Yes No 802.11n (HT20) 6.5 Mbps 149 5745 13.8 13.8 13.8 15.5 No No No 5.8 (UNI-3) 802.11n (HT40) 13.5 Mbps 144 5670 11.0 11.0 11.0 12.5 No			29.3 Mbps					8.5	8.5	No	
(GHz) Mode Data Rate Ch # (MHz) Main Ant Aux Ant Main Ant Aux Ant Main Ant Aux Ant (Yes/No) Not 802.11a 6 Mbps 149 5745 13.8 13.7 14.0 15.5 15.5 Yes	David	(11100)		122				Max Output	Power (dPm)		
$ \left(\text{VNI-3} \right) \\ \left(\begin{array}{c} 802.11a \\ (\text{VIT20} \end{array} \right) \\ \left(\begin{array}{c} 802.11a \\ (\text{HT20} \end{array} \right) \\ \left(\begin{array}{c} 13.5 \text{ Mbps} \end{array} \right) \\ \left(\begin{array}{c} 132 \\ 132 \\ 159 \\ 159 \\ 159 \\ 159 \\ 159 \\ 159 \\ 159 \\ 159 \\ 11.3 \\ 11.0 \end{array} \right) \\ \left(\begin{array}{c} 132 \\ 138 \\ 13.9 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 12.5 $		Mode	Data Rate	Ch #							Note(s)
$ \left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	()			132				Ividin Ant		(122,112)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		802,11a	6 Mbps					15.5	15.5	Yes	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6.5 Mbps					15.5	15.5	No	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(HT20)						1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
5.8 (UNII-3) (HT40) 13.5 Mbps 151 5755 11.1 10.8 5.8 (UNII-3) (HT40) 13.5 Mbps 151 5755 11.1 10.8 12.5 12.5 No 802.11ac (VHT20) 6.5 Mbps 132 5660 13.4 14.0 15.5 15.5 No 802.11ac (VHT20) 6.5 Mbps 149 5745 13.8 13.9 15.5 15.5 No 802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 11.0 12.5 No 802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 12.5 No No 802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 12.5 No 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No		802.11n						t			
5.8 (UNII-3) 10.1 10.0 10.0 802.11ac (VHT20) 6.5 Mbps 132 5660 13.4 14.0 165 5825 13.8 13.9 15.5 15.5 No 802.11ac (VHT20) 13.5 Mbps 134 5670 11.0 11.0 15.5 No 802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 12.5 12.5 No 802.11ac (VHT40) 13.5 Mbps 138 5690 6.0 5.7 8.5 8.5 No			13.5 Mbps					12.5	12.5	No	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								t			
802.11ac (VHT20) 6.5 Mbps 149 5745 13.8 13.9 15.5 15.5 No 802.11ac (VHT40) 165 5825 13.8 14.0 15.5 15.5 No 802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 12.5 12.5 No 802.11ac (VHT40) 151 5755 11.3 11.1 12.5 12.5 No 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No	(UNII-3)									1	1
165 5825 13.8 14.0 802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 13.5 Mbps 142 5710 11.0 11.0 12.5 12.5 No 802.11ac (VHT40) 151 5755 11.3 11.1 12.5 12.5 No 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No			6.5 Mbps					15.5	15.5	No	
802.11ac (VHT40) 13.5 Mbps 134 5670 11.0 11.0 12.5 12.5 No 802.11ac 13.5 Mbps 151 5755 11.3 11.1 12.5 12.5 No 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No		(VH120)						t			
802.11ac (VHT40) 13.5 Mbps 142 5710 11.0 11.0 12.5 12.5 No 151 5755 11.3 11.1 12.5 12.5 No 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No											1
(VHT40) 13.5 Mbps 151 5755 11.3 11.1 12.5 12.5 No 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No		802.11ac	10 5 1 7					1	10-		
159 5795 11.3 11.0 802.11ac 29.3 Mbps 138 5690 6.0 5.7 8.5 8.5 No			13.5 Mbps					12.5	12.5	No	
802.11ac 29.3 Mbos 138 5690 6.0 5.7 8.5 8.5 No								t			
		802.11ac	00.014					0.5	0.5		1
(1.1.00) 0//0 /.2 0.3		(VHT80)	29.3 Mbps	155	5775	7.2	6.3	8.5	8.5	No	

MIMO Measured Results for Reduced Power Avg Power (dBm) Max Output Power (dBm) Freq. (MHz) SAR Test Band Data Rate Mode Ch # Note(s) (GHz) Main Ant (Yes/No) Main Ant Aux Ant Aux Ant 52 5260 7.8 7.8 56 5280 7.9 8.1 802.11a 6 Mbps 9.0 9.0 No 60 5300 8.3 8.2 64 5320 8.2 8.1 52 5260 7.9 7.9 56 5280 8.2 8.2 802.11n 6.5 Mbps 9.0 9.0 No (HT20) 60 5300 8.3 8.3 64 5320 8.1 8.3 5270 7.9 54 7.9 5.3 802.11n 13.5 Mbps 9.0 9.0 Yes 1,2 (U-NII 2A) (HT40) 62 5310 8.1 8.0 52 5260 8.0 8.3 56 5280 8.0 8.3 802.11ac 6.5 Mbps 9.0 9.0 No (VHT20) 60 5300 8.2 8.0 64 5320 8.2 8.0 802.11ac 54 5270 8.1 8.1 9.0 13.5 Mbps 9.0 No (VHT40) 62 5310 7.9 8.1 802.11ac (VHT80) 29.3 Mbps 58 5290 5.0 5.2 6.0 6.0 No 100 5500 9.5 9.5 112 5560 9.6 9.5 802.11a 6 Mbps 9.7 9.7 No 116 5580 9.6 9.7 128 9.7 9.7 5640 100 5500 9.3 9.7 112 5560 9.6 9.6 802.11n 6.5 Mbps 9.7 9.7 No (HT20) 116 9.7 5580 9.6 128 5640 9.6 9.7 102 5510 9.6 9.6 110 5550 9.6 9.6 802 11n 13.5 Mbps 9.7 9.7 Yes 1 5.5 (HT40) 118 5590 9.5 9.7 (UNII-2C) 126 9.7 5630 9.6 9.6 100 5500 9.5 802.11ac 112 5560 9.6 9.7 6.5 Mbps 9.7 9.7 No (VHT20) 116 5580 9.7 9.7 128 5640 9.7 9.7 102 5510 9.5 9.5 802.11ac 110 5550 9.7 9.7 13.5 Mbps 9.7 9.7 No (VHT40) 118 5590 9.7 9.7 126 5630 9.7 9.7 802.11ac 106 5530 6.8 6.7 29.3 Mbps 8.0 8.0 No (VHT80) 122 5610 6.8 6.5

MIMO Measured Results for Reduced Power (continued)

Band	Mode	Data Rate	Ch #	Freq.	Avg Pow	ver (dBm)	Max Output P	ower (dBm)	SAR Test	Note(s)
(GHz)	woue	Dala Nale	Cir#	(MHz)	Main Ant	Aux Ant	Main Ant	Aux Ant	(Yes/No)	Note(S)
			132	5660	10.0	9.7	9.7	9.7		
	802.11a	6 Mbps	149	5745	10.0	9.4	10.5	10.5	No	
			165	5825	10.0	9.8	10.5	10.5		
	000.44		132	5660	9.7	9.8	9.7	9.7		1
	802.11n (HT20)	6.5 Mbps	149	5745	10.0	9.5	10.5	10.5	No	
	(1120)		165	5825	10.0	9.9	10.5	10.5		
			134	5670	9.8	9.4	9.7	9.7		1
	802.11n	13.5 Mbps	142	5710	9.8	9.6	9.7	9.7	Yes	1
5.0	(HT40)	13.5 10005	151	5755	9.7	9.3	10.5	10.5	165	'
5.8 (UNII-3)			159	5795	9.7	9.6	10.5	10.5		
(0111-3)	000.44		132	5660	9.8	9.7	9.7	9.7		1
	802.11ac (VHT20)	6.5 Mbps	149	5745	10.0	9.6	10.5	10.5	No	
	(11120)		165	5825	10.0	9.9	10.5	10.5		
			134	5670	9.6	9.5	9.7	9.7		1
	802.11ac	13.5 Mbps	142	5710	10.0	9.5	9.7	9.7	No	
	(VHT40)		151	5755	9.9	9.7	10.5	10.5		
			159	5795	9.6	9.4	10.5	10.5		
	802.11ac	29.3 Mbps	138	5690	7.0	6.6	8.0	8.0	No	
	(VHT80)	29.3 Wibps	155	5775	7.3	6.3	7.5	7.5		

Note(s):

1. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.

- 2. When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest *reported* SAR for UNII band 2A is
 - \circ \leq 1.2 W/kg, SAR is not required for UNII band I
 - > 1.2 W/kg, both bands should be tested independently for SAR.

9.3. Bluetooth

Maximum tune-up tolerance limit is 4.00 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 248227 D01 SAR meas for 802.11 v02:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

10.1. Wi-Fi (DTS Band)

F		Pwr		Dist			F ace a	Area Scan	Power	(dBm)	1-g SAI	R (W/kg)		Dist		
Frequency Band	Mode	Back- off	ANT	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	Notes	Plot No.		
					Rear	10	2457	0.243	13.5	12.5	/////	/////	(11)	$\langle D \rangle$		
		N/A	Main	0	Edge 1	10	2457	0.722	13.5	12.5	0.495	0.623				
2.4GHz	MIMO 802.11b				Edge 1 Slant	10	2457	0.522	13.5	12.5	0.552	0.695	2			
2.4002	1 Mbps				Rear	10	2457	0.243	13.5	12.5	UUU	(111)	VU	(1)		
	1 mbpo	N/A	Aux	0	Edge 1	10	2457	0.722	13.5	12.5	0.513	0.646	2			
					Edge 1 Slant	10	2457	0.522	13.5	12.5	0.441	0.555				
Frequency		Pwr		Dist.	T (D)	0	Freq.	Area Scan		(dBm)	1-g SA	R (W/kg)		Plot		
Band	Mode	Back- off	ANT	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	Notes	No.		
				0	Rear	2	2417	0.598	17.5	16.0	0.407	0.575	2			
		OFF	Main	9	Edge 1	2	2417	0.185	17.5	16.0	0.139	0.196				
2.4GHz	MIMO 802.11g			3	Edge 1 Slant	2	2417	0.137	17.5	16.0		())))	())	$\langle l \rangle$		
2.4002	6 Mbps			0	Rear	2	2417	0.598	17.5	15.8	0.219	0.324	2			
	0	OFF	Aux	9	Edge 1	2	2417	0.185	17.5	15.8	0.143	0.212				
				ÿ	Edge 1 Slant	2	2417	0.137	17.5	15.8	VIII	(111)	VII	(1)		
					Rear	6	2437	0.316	14.5	13.0	/////	UUU	(1)	(1)		
						2	2417	/////	14.5	13.0	0.498	0.703	3			
					Edge 1	6	2437	0.593	14.5	13.0	0.470	0.664				
		ON	Main	0		10	2457	//////	14.5	12.9	0.488	0.705	3			
						2	2417	/////	14.5	13.0	0.613	0.866	3			
					Edge 1 Slant	6	2437	0.940	14.5	13.0	0.621	0.877	2			
	MIMO					10	2457	//////	14.5	12.9	0.711	1.028	3			
2.4GHz	802.11g 6 Mbps			Ì	Rear	6	2437	0.316	14.5	13.0	1111	(111)	111	()		
	0 Mibh2					2	2417		14.5	13.0	0.660	0.932	3			
		ON		Aux			Edge 1	6	2437	0.593	14.5	13.0	0.751	1.061		
			Aux		0	0	0	10	2457	11111	14.5	12.7	0.716	1.084	3	
						2	2417	ann	14.5	13.0	0.539	0.761	3			
					Edge 1 Slant	6	2437	0.940	14.5	13.0	0.637	0.900	2			
					Lugo - olain	10	2457	11111	14.5	12.7	0.699	1.058	3	1		
		Pwr					2101	Area Scan		(dBm)		R (W/kg)	Ű	•		
Frequency Band	Mode	Back-	ANT	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	Notes	Plot No.		
		-		0	Rear	6	2437	0.489	17.5	15.9	0.332	0.480	2			
	мімо	OFF	Main		Edge 1	6	2437	0.168	17.5	15.9	1111	11111	111	111		
	802.11n	0.1	main	9	Edge 1 Slant	6	2437	0.179	17.5	15.9	0.169	0.244				
2.4GHz	HT40			0	Rear	6	2437	0.489	17.5	15.8	0.198	0.293	2			
	6.5 Mbps	OFF	Aux		Edge 1	6	2437	0.168	17.5	15.8	11111	1111	(11)	111		
		-	-	9	Edge 1 Slant	6	2437	0.179	17.5	15.8	0.176	0.260				
				Ì	Rear	6	2437	0.179	14.5	13.0	1111	1111		111		
						2	2417	11111	14.5	13.0	0.512	0.723	3			
					Edge 1	6	2437	0.617	14.5	13.0	0.504	0.712	Ē			
		ON	Main	0		10	2457	11111	14.5	12.9	0.727	1.051	3			
				ľ		2	2417	MHH	14.5	13.0	0.583	0.824	3			
	1				Edge 1 Slant	6	2417	0.627	14.5	13.0	0.585	0.824	2			
	MILLO				Lugo i oluitt	10	2457	0.027	14.5	12.9	0.693	1.002	3			
	MIMO						< +U/	111111	14.0	12.3	0.085			<u> </u>		
2.4GHz	802.11n				Pear			0 170	14.5	12.9	1111	000	111	111		
2.4GHz	802.11n HT40				Rear	6	2437	0.179	14.5	12.8	0.677	1.001		111		
2.4GHz	802.11n					6 2	2437 2417	//////	14.5	12.8	0.677	1.001	3	////		
2.4GHz	802.11n HT40		A		Rear Edge 1	6 2 6	2437 2417 2437	0.179 0.617	14.5 14.5	12.8 12.8	0.736	1.001 1.089	3			
2.4GHz	802.11n HT40	ON	Aux	0		6 2 6 10	2437 2417 2437 2457	//////	14.5 14.5 14.5	12.8 12.8 12.9	0.736 0.491	1.001 1.089 0.710	3			
2.4GHz	802.11n HT40	ON	Aux	0	Edge 1	6 2 6 10 2	2437 2417 2437 2457 2417	0.617	14.5 14.5 14.5 14.5	12.8 12.8 12.9 12.8	0.736 0.491 0.549	1.001 1.089 0.710 0.812	3 3 3			
2.4GHz	802.11n HT40	ON	Aux	0		6 2 6 10	2437 2417 2437 2457	//////	14.5 14.5 14.5	12.8 12.8 12.9	0.736 0.491	1.001 1.089 0.710	3			

Note(s):

1. Highest <u>reported</u> SAR is \leq 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required.

2. Highest <u>reported</u> SAR is > 0.4 W/kg. Due to the highest <u>reported</u> SAR for this test position, other test positions were evaluated until a SAR ≤ 0.8 W/kg was <u>reported</u>.

3. Testing for a second channel was required because the <u>reported</u> SAR for this test position was >0.8 W/kg.

Page 28 of 33

10.2. Wi-Fi (U-NII Band)

Frequency		Pwr		Dist.			Freq.	Area Scan	Power	(dBm)	1-g SAF	R (W/kg)		Plot
Band	Mode	Back- off	ANT	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	Notes	No.
				0	Rear	52	5260	0.382	15.5	13.7	\overline{DDD}	/////	///	$\langle \rangle \rangle$
		OFF	Main	9	Edge 1	52	5260	0.765	15.5	13.7	0.455	0.689	2	
5.3 GHz	MIMO 802.11a			9	Edge 1 Slant	52	5260	0.451	15.5	13.7	0.347	0.525	3	
U-NII 2A	6 Mbps			0	Rear	52	5260	0.382	15.5	13.9	11111	11111	111	$\langle \rangle \rangle$
	o mopo	OFF	Aux	9	Edge 1	52	5260	0.765	15.5	13.9	0.517	0.747	2	
				3	Edge 1 Slant	52	5260	0.451	15.5	13.9	0.350	0.506	3	
					Rear	54	5270		9.0	7.9	11111	1111	(1)	$\langle \rangle$
					Real	62	5320	0.167	9.0	8.1	0.125	0.154		
			N 4 - 1 -	0	Edua 4	54	5270	//////	9.0	7.9	0.812	1.046	3	
		ON	Main	0	Edge 1	62	5320	1.730	9.0	8.1	0.932	1.147	2	2
	MIMO					54	5270		9.0	7.9	0.257	0.331	3	
5.3 GHz	802.11n				Edge 1 Slant	62	5320	1.490	9.0	8.1	0.740	0.910		
U-NII 2A	HT40					54	5270		9.0	7.9	inn		111	$\overline{0}$
	13.5 Mbps				Rear	62	5320	0.167	9.0	8.0	0.181	0.228		~~~
						54	5270	//////	9.0	7.9	0.768	0.989	3	
		ON	Aux	0	Edge 1	62	5320	1.730	9.0	8.0	0.730	0.919	2	
							5270	1.750	9.0	7.9	0.348	0.919	3	┝──┤
					Edge 1 Slant	54							3	┝──┤
						62	5320	1.490	9.0	8.0	0.750	0.944		
Frequency		Pwr		Dist.	T (D)))	01 /	Freq.	Area Scan		(dBm)	1-g SAF	R (W/kg)		Plot
Band	Mode	Back-	ANT	(mm)	Test Position	Ch #.	(MHz)	Max. SAR	Tune-up	Meas.	Meas.	Scaled	Notes	No.
		off			<u> </u>	100	5500	(W/kg)	limit					
				0	Rear	100	5500	0.359	15.5	13.5			111	111
		OFF	Main		Edge 1	100	5500	0.954	15.5	13.5	0.518	0.821	3	
	MIMO			9		116	5580	//////	15.5	13.8	0.504	0.745	2	
5.5 GHz	802.11a				Edge 1 Slant	100	5500	0.647	15.5	13.5	0.324	0.514	2	
U-NII 2C	6 Mbps			0	Rear	100	5500	0.359	15.5	13.8		11111		
		OFF	Aux		Edge 1	100	5500	0.954	15.5	13.8	0.336	0.497	3	
		0		9	9- 1	116	5580		15.5	13.7	0.357	0.540	2	
					Edge 1 Slant	100	5500	0.647	15.5	13.8	0.260	0.385	2	
					Rear	118	5590	0.209	9.7	9.5	())))	VIII.	(1)	$\langle n \rangle$
						102	5510	())))	9.7	9.6	1.160	1.187	3	3
		ON	Main	0	Edge 1	110	5550	$V \\ U \\ $	9.7	9.6	1.060	1.085	3	
	MIMO					118	5590	1.490	9.7	9.5	0.923	0.966	2	
5.5 GHz	802.11n				Edge 1 Slant	118	5590	/////	9.7	9.5	0.334	0.350		
U-NII 2C	HT40			Ì	Rear	118	5590	0.209	9.7	9.7	(1111	1111	(0)	
	13.5 Mbps					102	5510		9.7	9.6	0.705	0.721	3	
		ON	Aux	0	Edge 1	110	5550	MHH	9.7	9.6	0.689	0.705	3	
		<u> </u>	/ ux	Ŭ	Lugo	118	5590	1.490	9.7	9.7	0.630	0.630	2	
					Edgo 1 Slort	118		1.430	9.7	9.7 9.7	0.830		2	┝──┤
					Edge 1 Slant	ιlõ	5590	11111				0.318		
Frequency	Meda	Pwr		Dist.	Toot Desition	Ch #	Freq.	Area Scan		(dBm)	1-g SAF	R (W/kg)	Natar	Plot
Band	Mode	Back- off	ANT	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Tune-up limit	Meas.	Meas.	Scaled	Notes	No.
				0	Rear	165	5825	0.301	15.5	14.0				~~~
		OFF	Main	0	Edge 1	165	5825	0.655	15.5	14.0	0.311	0.439	2	\cdots
	MIMO	OFF	IVIAILI	9	Edge 1 Slant	165	5825	0.389	15.5	14.0	0.192	0.439	2	┝──┤
5.8 GHz U-NII 3	802.11a			0	Rear	165	5825	0.309	15.5	14.0	0.192	0.271		
0-1111 3	6 Mbps	OFF	A	0		165	5825		15.5	13.9	0.295	0.426		\cdots
			Aux	9	Edge 1 Edge 1 Slant	165	5825	0.655 0.389	15.5	13.9	0.295	0.420	3	┝──┥
			l								0.209	0.302	t to	
					Rear	159	5795	0.108	10.5	9.7	0.007	0.000	111	111
		ON	Main	0	Edge 1	151	5755	11111	10.5	9.7	0.667	0.802	3	┝──┤
	MIMO					159	5795	0.466	10.5	9.7	0.574	0.690	2	\vdash
5.8 GHz	802.11n				Edge 1 Slant	159	5795		10.5	9.7	0.421	0.506	L	
U-NII 3	HT40				Rear	159	5795	0.108	10.5	9.6	11111	11111	111	111
	13.5 Mbps	ON	Aux	0	Edge 1	151	5755	11111	10.5	9.3	0.699	0.921	3	4
			Aux	Ŭ	Luge	159	5795	0.466	10.5	9.6	0.638	0.785	2	
					Edge 1 Slant	159	5795	//////	10.5	9.6	0.592	0.728		
					v									

Note(s):

1. Highest <u>reported</u> SAR is \leq 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required.

 Highest <u>reported</u> SAR is > 0.4 W/kg. Due to the highest <u>reported</u> SAR for this test position, other test positions were evaluated until a SAR ≤ 0.8 W/kg was <u>reported</u>.

3. Testing for a second channel was required because the <u>reported</u> SAR for this test position was >0.8 W/kg.

Page 29 of 33

10.3. Bluetooth

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f}(GHz)$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Body-worn Accessory Exposure Conditions

Max. tune-up	tolerance limit	Min. test	Frequency	SAR test	Test	Estimated
(dBm)	(mW)	separation distance (mm)	(GHz)	exclusion Result*	Configuration	1-g SAR (W/kg)
4.0	3	5	2.480	0.9	Rear/Front	0.126

Conclusion:

*: The computed value is \leq 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <1.6 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or 3 (1-g or 10-g respectively) or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 or 3 (1-g or 10-g respectively).

Frequency				Repeated	Highest	Fir Repe		Sec Repe		Third Repeated
Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	SAR (Yes/No)	Measured SAR (W/kg)	Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)
2400	Wi-Fi 802.11b/g/n	Standalone	Edge 1	No	0.751	N/A	N/A	N/A	N/A	N/A
5300	Wi-Fi 802.11a/n/ac	Standalone	Edge 1	Yes	0.932	0.92	1.01	N/A	N/A	N/A
5500	Wi-Fi 802.11a/n/ac	Standalone	Edge 1	Yes	1.16	1.13	1.03	N/A	N/A	N/A
5800	Wi-Fi 802.11a/n/ac	Standalone	Edge 1	No	0.699	N/A	N/A	N/A	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively).

12. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

RF Exposure Condition	ltem		Capable Transmit Configurations							
Standalone	1	U-NII	+	BT						
Notes:	-									
1. Only DTS supports H	lotspot									
2. DTS Radio cannot tra	ansmit	simultaneously wit	h Bluetooth R	adio.						
3. U-NII Radio can trans	smit sim	ultaneously with E	Bluetooth Rad	io.						

Estimated SAR for Simultaneous Transmission SAR Analysis

Considerations for SAR estimation

- 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- 2. Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation:
 - When the separation distance from the antenna to an adjacent edge is \leq 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations.
 - When the separation distance from the antenna to an adjacent edge is > 5 mm but \leq 50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation.
 - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg
- Please refer to <u>Estimated SAR Tables</u> to see which test positions are inherently compliant as they consist of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR values < 1.2 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these test positions.

Тх	Frequency	Output	Power	Separation Distances (mm)					Estimated 1-g SAR Value (W/kg)						
Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
	Wi-Fi Main Antenna														
Wi-Fi 2.4 GHz	2457	17.50	56	5	5	65.1		274		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.2 GHz	5240	15.50	35	5	5	65.1		274		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.3 GHz	5320	15.50	35	5	5	65.1		274		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.5 GHz	5700	15.50	35	5	5	65.1		274		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.8 GHz	5825	15.50	35	5	5	65.1		274		-MEASURE-	-MEASURE-	0.400		0.400	
	Wi-Fi Sub Antenna														
Wi-Fi 2.4 GHz	2457	17.50	56	5	5	173.7		76.3		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.2 GHz	5240	15.50	35	5	5	173.7		76.3		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.3 GHz	5320	15.50	35	5	5	173.7		76.3		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.5 GHz	5700	15.50	35	5	5	173.7		76.3		-MEASURE-	-MEASURE-	0.400		0.400	
Wi-Fi 5.8 GHz	5825	15.50	35	5	5	173.7		76.3		-MEASURE-	-MEASURE-	0.400		0.400	
Bluetooth	2480	4.00	3	5	5	65.1		274		0.126	0.126	0.400		0.400	

Estimated SAR for WLAN

12.1. Sum of the SAR for WLAN + Bluetooth

RF Exposure	③ U-N∎	⑤ BT	(3) + (5) U-NII + BT			
conditions	(Main)	(Aux)	∑1-g SAR	SPLSR (Yes/No)		
Rear	0.137	0.126	0.263	No		
Edge 1	1.187	0.126	1.313	No		
Edge 1 Slant	0.811	0.126	0.937	No		

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is \leq 0.04 for all circumstances that require SPLSR calculation.

Page 32 of 33

Appendixes

Refer to separated files for the following appendixes.

15U21305-S1V1 SAR_App A Photos & Ant. Locations

15U21305-S1V1 SAR_App B System Check Plots

15U21305-S1V1 SAR_App C Highest Test Plots

15U21305-S1V1 SAR_App D Tissue Ingredients

15U21305-S1V1 SAR_App E Probe Cal. Certificates

15U21305-S1V1 SAR_App F Dipole Cal. Certificates

END OF REPORT