

CLASS II PERMISSIVE CHANGE TEST REPORT

Report Number. : 11460738-E3V3

- Applicant : Microsoft Corporation One Microsoft Way Redmond, WA, 98052, USA
 - **Model :** 1708
 - FCC ID : C3K1708
 - IC : 3048A-1708
- **EUT Description :** Wireless Input Device
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS - 247 ISSUE 1

Date Of Issue: December 16, 2016

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	11/30/2016	Initial Review	
V2	12/14/2016	Updated section 5.2	Francisco de Anda
V3	12/16/2016	Revised section 5.2	Francisco de Anda

Page 2 of 60

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	. 5
2. TE	ST METHODOLOGY	. 6
3. FA	CILITIES AND ACCREDITATION	. 6
4. CA	LIBRATION AND UNCERTAINTY	. 7
4.1.	MEASURING INSTRUMENT CALIBRATION	. 7
4.2.	SAMPLE CALCULATION	. 7
4.3.	MEASUREMENT UNCERTAINTY	. 7
5. EQ	UIPMENT UNDER TEST	. 8
5.1.	DESCRIPTION OF EUT	. 8
5.2.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	. 8
5.3.	MAXIMUM OUTPUT POWER	. 8
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	. 9
5.5.	SOFTWARE AND FIRMWARE	. 9
5.6.	WORST-CASE CONFIGURATION AND MODE	. 9
5.7.	DESCRIPTION OF TEST SETUP	10
6 TE		15
0 . $1\mathbf{L}$		15
7. ME	ASUREMENT METHODS	16
7. ME 8. AN	ASUREMENT METHODS	16 17
 7. ME 8. AN 8.1. 	ASUREMENT METHODS TENNA PORT TEST RESULTS BASIC DATA RATE GFSK MODULATION	16 17 19
7. ME 8. AN 8.1. 8.1 8.1	ASUREMENT METHODS	16 17 <i>19</i> 19 20
7. ME 8. AN 8.1. 8.1 8.1 8.2	ASUREMENT METHODS TENNA PORT TEST RESULTS BASIC DATA RATE GFSK MODULATION 1. OUTPUT POWER 2. AVERAGE POWER FNHANCED DATA BATE OPSK MODUL ATION	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i>
7. ME 8. AN 8.1. 8.1 8.1 8.2. 8.2	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>21</i>
7. ME 8. AN 8.1. 8.1 8.1 8.2. 8.2 8.2	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>21</i> <i>22</i> <i>22</i>
7. ME 8. AN 8.1. 8.1 8.2. 8.2 8.2 8.2 8.2 8.3. 8.3	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i>
7. ME 8. AN 8. 1. 8.1 8.2. 8.2 8.2 8.2 8.2 8.3 8.3 8.3	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i> <i>24</i>
 7. ME 8. AN 8.1. 8.2. 8.2 8.2 8.3 8.3 9. RA 	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i> <i>24</i> 25
7. ME 8. AN 8. 1. 8.1 8.2. 8.2 8.2 8.2 8.2 8.3 8.3 9. RA 9. 1.	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i> <i>24</i> 25 <i>26</i>
 7. ME 8. AN 8.1. 8.1 8.2. 8.2 8.2 8.3 8.3 9. RA 9.1. 9.1 9.1 	ASUREMENT METHODS	16 17 <i>19</i> 19 20 <i>21</i> 21 22 <i>23</i> 23 24 25 <i>26</i> 26 36
7. ME 8. AN 8. 1. 8.1 8.1 8.2 8.2 8.2 8.2 8.3 8.3 9. RA 9.1. 9.1 9.1 9.2	ASUREMENT METHODS TENNA PORT TEST RESULTS BASIC DATA RATE GFSK MODULATION 1. OUTPUT POWER 2. AVERAGE POWER ENHANCED DATA RATE QPSK MODULATION 1. OUTPUT POWER 2. AVERAGE POWER 2. AVERAGE POWER 2. AVERAGE POWER 2. AVERAGE POWER 2. AVERAGE POWER 3. OUTPUT POWER 3. AVERAGE POWER 4. OUTPUT POWER 3. AVERAGE POWER 4. OUTPUT POWER 5. AVERAGE P	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i> <i>24</i> 25 <i>26</i> <i>26</i> <i>26</i> <i>26</i> <i>26</i> <i>26</i> <i>26</i> <i>26</i>
 7. ME 8. AN 8.1. 8.1 8.2. 8.2 8.2 8.3 8.3 9. RA 9.1 9.1 9.2. 9.3 	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i> <i>24</i> 25 <i>26</i> <i>26</i> <i>36</i> <i>46</i> <i>50</i>
 7. ME 8. AN 8.1. 8.1 8.2. 8.2 8.3 8.3 9. RA 9.1. 9.1 9.2. 9.3. 	ASUREMENT METHODS	16 17 <i>19</i> <i>19</i> <i>20</i> <i>21</i> <i>22</i> <i>23</i> <i>23</i> <i>24</i> 25 <i>26</i> <i>26</i> <i>36</i> <i>46</i> <i>50</i>

Page 3 of 60

REPORT NO: 11460738-E3V3		DATE: December 16, 2016	
FCC ID: C	3K1708	IC: 3048A-1708	
10.1.	EUT POWERED BY AC/DC ADAPTER VIA USB CABLE	53	
10.2.	EUT POWERED BY HOST PC VIA USB CABLE	55	
11. SE	TUP PHOTOS		

Page 4 of 60

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Microsoft Corporation One Microsoft Way Redmond, WA 98052
EUT DESCRIPTION:	Wireless Input Device
MODEL:	1708
SERIAL NUMBER:	02600010964642 (Conducted), 02600009024642 (Radiated)
DATE TESTED:	November 18 th 2016 – November 23 rd , 2016

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	Pass				
INDUSTRY CANADA RSS-247 Issue 1	Pass				
INDUSTRY CANADA RSS-GEN Issue 4	Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Approved & Released For UL Verification Services Inc. By:

ino de Dunto

Francisco de Anda CONSUMER TECHNOLOGY DIVISION Program Manager UL VERIFICATION SERVICES INC.

Prepared By:

Clifford Susa CONSUMER TECHNOLOGY DIVISION Engineer UL VERIFICATION SERVICES INC

Page 5 of 60

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
🛛 Chamber A	Chamber D
Chamber B	🗌 Chamber E
🛛 Chamber C	Chamber F
	🗌 Chamber G
	🛛 Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 6 of 60

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Model 1708 is a wireless input device that contains an 802.11a/g/n and Bluetooth transceiver.

5.2. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The purpose of this C2PC is to upgrade the device described under section 5.1 of this report to include the following two configuration changes that will be manufactured;

Configuration C

-Removal of RF shield.

Configuration F

-Change of PCB layout due to re-sizing the PCB and consequent relocation of some non-RF relevant components and removal of RF shield

Radiated tests were performed. Conducted test are leveraged from the original report, number R11040094-E3V5. Conducted power data included in this report is used to verify the output power.

5.3. MAXIMUM OUTPUT POWER

The measured output power values were verified to be less or equal than the original values. Refer to original report number "R11040094-E3V5" for original output power values and for all antenna port conducted results.

The EUT has peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	7.35	5.43
2402 - 2480	DQPSK	7.11	5.14
2402 - 2480	Enhanced 8PSK	7.34	5.42

Page 8 of 60

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral antenna, with a maximum gain of 0 dBi.

5.5. SOFTWARE AND FIRMWARE

The controller firmware used with the EUT during testing was 3.1.703.0 and Radio Firmware was 1.0.107.0.

The test utility software used during testing was WCN Combo Tool v2.1509.00

5.6. WORST-CASE CONFIGURATION AND MODE

An investigation on two EUT configurations (C and F, described in section 5.2) was performed, it was determined that configuration F was worst-case. Therefore, all final radiated testing was performed on configuration F.

For below 1G radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X/Y/Z, it was determined that X orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates were:

GFSK mode: DH5 8PSK mode: 3-DH5

DQPSK mode has been verified to have the lowest power.

Page 9 of 60

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	Lenovo	X220	R9-EVC3X	DoC		
Laptop AC Adapter	Lenovo	42T4434	11S42T4434Z1ZF3K0CV0A3	DoC		
Interface Board	Microsoft	X930837-001	None	None		
AC/DC Adapter	Samsung	ETA0U61JWE	SC2F422AS/A-E	DoC		

I/O CABLES

	I/O Cable List								
Cable Port # of identical Connector Cable Type Cable Re						Remarks			
No		Length (m)							
1	USB	1	USB	unshielded	1				
2	DC	1	barrel	unshielded	0.8				
3	AC	1	2 prong	unshielded	1.5				

Page 10 of 60

TEST SETUP - CONDUCTED TESTS

The EUT was tested connected to a host Laptop via USB cable adapter and spectrum analyzer to antenna port. Test software exercised the EUT.

SETUP DIAGRAM - CONDUCTED TESTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 60

TEST SETUP - RADIATED TESTS

An interface board between EUT and laptop was used to program the EUT. Once programmed the EUT was tested standalone powered by batteries. Test software exercised the EUT.

SETUP DIAGRAM - RADIATED TESTS

Page 12 of 60

TEST SETUP- AC LINE CONDUCTED: AC/DC ADAPTER

The EUT was powered by AC/DC adapter via USB cable. Test software exercised the EUT.

SETUP DIAGRAM - AC LINE CONDUCTED: AC/DC ADAPTER

Page 13 of 60

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

The EUT was powered by host PC via USB cable. Test software exercised the EUT.

SETUP DIAGRAM - AC LINE CONDUCTED: LAPTOP CONFIGURATION

Page 14 of 60

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T130	09/23/17			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T119	01/04/2017			
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T346	02/22/2017			
Antenna, Active Loop 9kHz to 30MHz	ETS-Lindgren	6502	T757	05/31/2017			
RF Amplifier	MITEQ	AFS42- 00101800- 25-S-42	T931	08/26/2017			
RF Amplifier	MITEQ	AFS42- 00101800- 25-S-42	T1165	08/01/2017			
RF Preamplifier, 1 - 7GHz	Amplical	AMP1G6- 10-27	T1370	04/15/2017			
RF Preamplifier, 1 - 8GHz	MITEQ	AMF-4D- 01000800- 30-29P	T1574	08/26/2017			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A	T1450	12/21/2016			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A	T908	04/13/2017			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A	T906	02/03/2017			
High Pass Filter 3GHz	Micro-Tronics	HPM17543	T486	08/01/2017			
High Pass Filter 3GHz	Micro-Tronics	HPM17543	T896	08/26/2017			
Antenna, Horn, 18-26 GHz	ARA	MWH- 1826/B	T449	05/26/2017			
RF Preamplifier, 1 - 26GHz	Agilent	8449B	T404	07/05/2017			
Spectrum Analyzer, 40 GHz	HP	8564E	T106	09/07/2017			
LISN	Fischer Custom Communication, Inc.	FCC-LISN- 50/250-25- 2-01- CISPR16	T1310	06/08/2017			
EMI Test Receiver, 10 Hz - 7 GHz	Rohde & Schwarz	ESCR 7	T1436	12/19/2016			
Transient Limiter	Com-Power	LIT-930	T1457	02/10/2017			
Power Meter	Keysight	N1912A	T1244	05/03/2017			
Power Sensor	Keysight	N1921A	T1224	03/22/2017			
Radiated Software	UL	UL EMC	Rev. 9	.5, April 26, 2016			

Page 15 of 60

7. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3 and 6.5

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3 and 6.6

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Page 16 of 60

8. ANTENNA PORT TEST RESULTS

ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

ANSI C63.10, Section 11.6 : Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth GFSK	2.870	5.000	0.574	57.40%	2.41	0.348
Bluetooth 8PSK	2.878	4.995	0.576	57.62%	2.39	0.347

Page 17 of 60

DUTY CYCLE PLOTS

HOPPING OFF

Page 18 of 60

8.1. BASIC DATA RATE GFSK MODULATION

8.1.1. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.15	30	-22.85
Middle	2441	7.35	30	-22.65
High	2480	7.22	30	-22.78

Page 19 of 60

8.1.2. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	6.68
Middle	2441	7.01
High	2480	6.87

Page 20 of 60

8.2. ENHANCED DATA RATE QPSK MODULATION

8.2.1. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	6.81	21	-14.16
Middle	2441	7.11	21	-13.86
High	2480	7.05	21	-13.92

Page 21 of 60

8.2.2. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	3.48
Middle	2441	3.78
High	2480	3.66

Page 22 of 60

8.3. ENHANCED DATA RATE 8PSK MODULATION

8.3.1. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.05	21	-13.92
Middle	2441	7.34	21	-13.63
High	2480	7.23	21	-13.74

Page 23 of 60

8.3.2. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	3.47
Middle	2441	3.76
High	2480	3.65

Page 24 of 60

9. RADIATED TEST RESULTS

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final scans above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements.

PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak \rightarrow this is a note from Radiated automation software. When the frequency is below 1G, software is using RB=100kHz; when the frequency is above 1G, software is using RB=1MHz.

The spectrum from 9KHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

Page 25 of 60

9.1. ABOVE 1 GHz

9.1.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	36.42	Pk	32.3	-23.7	45.02	-	-	74	-28.98	158	113	Н
2	* 2.388	38.16	Pk	32.3	-23.7	46.76	-	-	74	-27.24	158	113	Н
3	* 2.39	19.71	VA1T	32.3	-23.7	28.31	54	-25.69	-	-	158	113	H
4	* 2.389	20.25	VA1T	32.3	-23.7	28.85	54	-25.15	-	-	158	113	H

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 26 of 60

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	36.18	Pk	32.3	-23.7	44.78	-	-	74	-29.22	152	307	V
2	* 2.39	37.87	Pk	32.3	-23.7	46.47	-	-	74	-27.53	152	307	V
3	* 2.39	17.69	VA1T	32.3	-23.7	26.29	54	-27.71	-	-	152	307	V
4	* 2.388	20.11	VA1T	32.3	-23.7	28.71	54	-25.29	-	-	152	307	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 27 of 60

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.54	Pk	32.4	-23.6	49.34	-	-	74	-24.66	246	105	Н
2	* 2.484	41.59	Pk	32.4	-23.6	50.39	-	-	74	-23.61	246	105	Н
3	* 2.484	29.3	VA1T	32.4	-23.6	38.1	54	-15.9	-	-	246	105	Н
4	* 2.484	29.6	VA1T	32.4	-23.6	38.4	54	-15.6	-	-	246	105	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 28 of 60

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	38.39	Pk	32.4	-23.6	47.19	-	-	74	-26.81	276	326	V
2	* 2.484	40.03	Pk	32.4	-23.6	48.83	-	-	74	-25.17	276	326	V
3	* 2.484	23.68	VA1T	32.4	-23.6	32.48	54	-21.52	-	-	276	326	V
4	* 2.484	28.06	VA1T	32.4	-23.6	36.86	54	-17.14	-	-	276	326	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 29 of 60

HARMONICS AND SPURIOUS EMISSIONS

Page 30 of 60

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading	Det	AF T119 (dB/m)	Amp/Cbl/Fltr/Pa d (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
		(abuv)				(abuv/m)				(ab)			
1	* 1.277	33.16	PKFH	29.7	-22.6	40.26	-	-	74	-33.74	209	154	Н
	* 1.275	16.69	VA1T	29.7	-22.6	23.79	54	-30.21	-	-	209	154	Н
2	* 1.374	32.93	PKFH	29.1	-22.8	39.23	-	-	74	-34.77	173	133	V
	* 1.374	17.99	VA1T	29.1	-22.8	24.29	54	-29.71	-	-	173	133	V
4	* 4.804	43.54	PKFH	34.2	-27.6	50.14	-	-	74	-23.86	268	135	Н
	* 4.804	40.72	VA1T	34.2	-27.6	47.32	54	-6.68	-	-	268	135	Н
6	* 4.804	44.84	PKFH	34.2	-27.6	51.44	-	-	74	-22.56	100	101	V
	* 4.804	41.14	VA1T	34.2	-27.6	47.74	54	-6.26	-	-	100	101	V
3	3.256	38.82	PKFH	32.7	-29.4	42.12	-	-	-	-	232	104	Н
5	3.256	36.59	PKFH	32.7	-29.4	39.89	-	-	-	-	156	113	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 31 of 60

HARMONICS AND SPURIOUS EMISSIONS

Page 32 of 60

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fltr/Pa d (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.882	42.59	PKF	34.2	-27.6	49.19	-	-	74	-24.81	272	116	Н
			н										
	* 4.882	38.1	VA1T	34.2	-27.6	44.7	54	-9.3	-	-	272	116	Н
4	* 4.882	44.38	PKF	34.2	-27.6	50.98	-	-	74	-23.02	233	200	V
			н										
	* 4.882	40.13	VA1T	34.2	-27.6	46.73	54	-7.27	-	-	233	200	V
1	3.256	37.14	PkFH	32.7	-29.4	40.44	-	-	-	-	231	108	Н
3	3.256	35.73	PkFH	32.7	-29.4	39.03	-	-	-	-	248	202	V
5	6.657	29.89	PkFH	35.6	-26.4	39.09	-	-	-	-	107	187	V
6	6.721	27.55	PkFH	35.6	-25.7	37.45	-	-	-	-	26	132	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 33 of 60

HARMONICS AND SPURIOUS EMISSIONS

Page 34 of 60

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.333	39.65	PKFH	29.6	-21.9	47.35	-	-	74	-26.65	213	141	Н
	* 1.332	27.73	VA1T	29.6	-21.9	35.43	54	-18.57	-	-	213	141	Н
2	* 1.512	39.96	PKFH	27.8	-21.7	46.06	-	-	74	-27.94	179	155	V
	* 1.51	27.21	VA1T	27.8	-21.7	33.31	54	-20.69	-	-	179	155	V
4	* 4.96	45.52	PKFH	34.2	-28.5	51.22	-	-	74	-22.78	270	103	Н
	* 4.96	41.99	VA1T	34.2	-28.5	47.69	54	-6.31	-	-	270	103	Н
6	* 4.96	44.85	PKFH	34.2	-28.5	50.55	-	-	74	-23.45	37	101	V
	* 4.96	41.04	VA1T	34.2	-28.5	46.74	54	-7.26	-	-	37	101	V
3	3.256	39.39	PKFH	32.7	-29.4	42.69	-	-	-	-	231	189	Н
5	3.256	40.55	PKFH	32.7	-29.4	43.85	-	-	-	-	314	127	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 35 of 60

9.1.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.374	37.81	Pk	32.2	-23.7	46.31	-	-	74	-27.69	242	108	Н
1	* 2.39	37.14	Pk	32.3	-23.7	45.74	-	-	74	-28.26	242	108	Н
3	* 2.39	17.46	VA1T	32.3	-23.7	26.06	54	-27.94	-	-	242	108	Н
4	* 2.39	19.92	VA1T	32.3	-23.7	28.52	54	-25.48	-	-	242	108	H

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 36 of 60

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	* 2.345	19.19	VA1T	32	-23.7	27.49	54	-26.51	-	-	45	193	V
2	* 2.388	38.19	Pk	32.3	-23.7	46.79	-	-	74	-27.21	45	193	V
1	* 2.39	35.24	Pk	32.3	-23.7	43.84	-	-	74	-30.16	45	193	V
3	* 2.39	17.73	VA1T	32.3	-23.7	26.33	54	-27.67	-	-	45	193	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 37 of 60

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	39.03	Pk	32.4	-23.6	47.83	-	-	74	-26.17	150	111	Н
2	* 2.484	41.1	Pk	32.4	-23.6	49.9	-	-	74	-24.1	150	111	Н
3	* 2.484	18.25	VA1T	32.4	-23.6	27.05	54	-26.95	-	-	150	111	Н
4	* 2.484	27.1	VA1T	32.4	-23.6	35.9	54	-18.1	-	-	150	111	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

Page 38 of 60 UL VERIFICATION SERVICES INC.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	38.69	Pk	32.4	-23.6	47.49	-	-	74	-26.51	199	325	V
2	* 2.484	40.43	Pk	32.4	-23.6	49.23	-	-	74	-24.77	199	325	V
3	* 2.484	19.08	VA1T	32.4	-23.6	27.88	54	-26.12	-	-	199	325	V
4	* 2.484	26.24	VA1T	32.4	-23.6	35.04	54	-18.96	-	-	199	325	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 60

HARMONICS AND SPURIOUS EMISSIONS

Page 40 of 60

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.804	42.84	PKFH	34.3	-28.6	48.54	-	-	74	-25.46	57	103	н
	* 4.804	34.84	VA1T	34.3	-28.6	40.54	54	-13.46	-	-	57	103	н
4	* 4.804	43.63	PKFH	34.3	-28.6	49.33	-	-	74	-24.67	75	113	V
	* 4.804	35.59	VA1T	34.3	-28.6	41.29	54	-12.71	-	-	75	113	V
1	3.256	41.4	PKFH	32.9	-31.1	43.2	-	-	-	-	156	101	н
3	3.256	38.53	PKFH	32.9	-31.1	40.33	-	-	-	-	203	207	V
6	6.436	29.34	PKFH	35.6	-25.2	39.74	-	-	-	-	382	215	Н
5	6.453	29.89	PKFH	35.6	-25.2	40.29	-	-	-	-	145	123	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 41 of 60

HARMONICS AND SPURIOUS EMISSIONS

Page 42 of 60

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	* 4.882	42.74	PKFH	34.3	-27.8	49.24	-	-	74	-24.76	97	241	Н
	* 4.882	34.89	VA1T	34.3	-27.8	41.39	54	-12.61	-	-	97	241	Н
3	* 4.882	43.02	PKFH	34.3	-27.8	49.52	-	-	74	-24.48	268	109	V
	* 4.882	34.85	VA1T	34.3	-27.8	41.35	54	-12.65	-	-	268	109	V
1	3.256	39.83	PKFH	32.9	-31.1	41.63	-	-	-	-	323	110	Н
2	3.256	39.79	PKFH	32.9	-31.1	41.59	-	-	-	-	108	127	V
5	6.346	29.29	PKFH	35.6	-26.3	38.59	-	-	-	-	247	153	Н
6	6.349	29.96	PKFH	35.6	-26.4	39.16	-	-	-	-	23	101	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 43 of 60

HARMONICS AND SPURIOUS EMISSIONS

Page 44 of 60

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.96	43.06	PKFH	34.3	-28.2	49.16	-	-	74	-24.84	86	107	н
	* 4.96	34.9	VA1T	34.3	-28.2	41	54	-13	-	-	86	107	н
5	* 4.96	42.68	PKFH	34.3	-28.2	48.78	-	-	74	-25.22	128	107	V
	* 4.96	35.4	VA1T	34.3	-28.2	41.5	54	-12.5	-	-	128	107	V
1	3.256	40.87	PKFH	32.9	-31.1	42.67	-	-	-	-	147	101	н
4	3.256	39.13	PKFH	32.9	-31.1	40.93	-	-	-	-	197	105	V
3	6.43	29.9	PKFH	35.6	-25.2	40.3	-	-	-	-	312	213	Н
6	6.466	28.69	PKFH	35.6	-25	39.29	-	-	-	-	48	207	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PKFH - FHSS: RB=100k/1MHz VB=3 x RB, Peak

VA1T - FHSS: Linear Voltage Average VB=1/Ton where: Ton is transmit duration

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 60

9.2. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 9KHz TO 30 MHz (WORST-CASE CONFIGURATION)

Page 46 of 60

DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
4	.65682	33.68	Pk	11.8	.1	-40	5.58	31.26	-25.68	0-360
1	.65686	32.79	Pk	11.8	.1	-40	4.69	31.26	-26.57	0-360
5	1.14862	26.37	Pk	11.8	.2	-40	-1.63	26.42	-28.05	0-360
2	1.15333	27.96	Pk	11.8	.2	-40	04	26.39	-26.43	0-360
6	2.17922	20.61	Pk	11.9	.2	-40	-7.29	29.5	-36.79	0-360
3	2.21118	22.46	Pk	11.9	.2	-40	-5.44	29.5	-34.94	0-360

Pk - Peak detector

Page 47 of 60

SPURIOUS EMISSIONS 30MHz TO 1000MHz (WORST-CASE CONFIGURATION)

Page 48 of 60

<u>Data</u>

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5	83.5925	37.2	Pk	11.4	-30.7	17.9	40	-22.1	0-360	100	V
4	148.4475	33.38	Pk	16.7	-30.2	19.88	43.52	-23.64	0-360	100	Н
1	297	43.35	Pk	17.3	-29.4	31.25	46.02	-14.77	0-360	300	V
2	352	39.42	Pk	18.4	-29.2	28.62	46.02	-17.4	0-360	100	Н
3	434	32.56	Pk	20.7	-28.9	24.36	46.02	-21.66	0-360	100	Н
6	908.7	28.88	Pk	26.9	-27.3	28.48	46.02	-17.54	0-360	100	Н

Pk - Peak detector

Page 49 of 60

9.3. WORST-CASE ABOVE 18 GHz

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)

S RF Emissions Project Number: 11468738 Client: Number: 11468738 Client: Number: 11468738 Client: Number: 11468738 S Feeck Limit (dBuU/m) S S S 1 B Frequency (GHz) Rege (BHz)	5 EMC	21 Nov 2016 18:33:09
5 Project Number: 11460738 Circi guration: EUT on ly Model Sorat Case 5 Tested by / 5N: 37699 C5 5 Feedk Limit (dBuU/m) 5		RF Emissions
5 Peck Limit (dBuU/m) 5 Avg Limit (dBuU/m) 5 Avg Limit (dBuU/m) 5 3 6 2 7 2 10 2 118 Frequency (GHz) 80/68 86/68 18 Frequency (GHz)	5	Project Number: 11469738 Client Vilorosoft Configuration:EUT only
5 Peak Limit (dBuU/m) 5 Avg Limit (dBuU/m) 5 3 6 3 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 2 1 3 1 2 1 3	5	Tested by / SN: 37699 CS
5 Avg Limit (dBuU/m) 5 Avg Limit (dBuU/m) 5	Peak Limit (dBuV/m)	
5 Avg Limit (dBuU/m) 5 Avg Limit (dBuU/m) 5 1 5 1 5 1 6 1 7 1 7 1 8 Frequency (GHz) 7 1 8 Frequency (GHz) 18 Frequency (GHz) 18 1 19 1 10 1 10 1 10 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 19 1 19 1 19 1 10 1 10 1 10 1 10 1 <tr< td=""><td>5</td><td></td></tr<>	5	
5 Avg Linit (dBuU/m) 5 Avg Linit (dBuU/m) 5 Avg Linit (dBuU/m) 5 Avg Linit (dBuU/m) 6 Avg Linit (dBuU/m) 7 Avg Linit (dBuU/m)	5	
5 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ava Limit (dBuU/m)	
5 5 5 18 18 Frequency (GHz) Range (GHz) RBU/RBU Ref/Rtin Det/ Sweep Pts KSaps/Node Label Range (GHz) RBU/RBU Ref/Rtin Det/ Sweep Pts KSaps/Node Label	5	
1 2 5 2 5 2 18 Frequency (GHz)	5	
5 5 18 18 Frequency (GHz) 18 Frequency (GHz) 18 Frequency (GHz) 18 18 18 18 18 18 18 18 18 18		2 million and a survey and the second description of the second second and the second se
5 18 18 Frequency (GHz) 18 Frequency (GHz) 18 18 Frequency (GHz) 18 18 18 18 18 18 18 18 18 18		
5	5	
5 18 18 Frequency (GHz) Range (9tz) 18 118-25 186-388//38 186/Attin Det/ 118-25 186-388//38 186/Attin Det/ 1860-26 1870-26 1		
18 Frequency (GHz) 26 Frequency (GHz) Range (Btz) 884/484 Ref /Attn Det/ Sweep Pts #Swes/Node Label 11/1 1/1 2/2 Notify Ref /Attn Det/ Sweep Pts #Swes/Node Label Ref /Attn Det/ Sweep Pts #Swes/Node Label 11/1 2/2 Notify Horizontal Ref (Rtp.) Ref /Attn Det/ Sweep Pts #Swes/Node Label 11/1 2/2 Notify Horizontal Ref (Rtp.) Ref /Attn Det/ Sweep Pts #Swes/Node Label 11/1 2/2 Notify Horizontal Ref (Rtp.) Ref (Rtp.	5	
18 Frequency (GHz) Range (GHz) R8U/08U Ref/Rtin Det/ Sweep Pts KSwps/Node Label 118-265 181:385/381 97/9 FERK/- ISSuec(Auto) 1282 Well? Horizontal Range (GHz) R8U/08U Ref/Rtin Det/ Sweep Pts KSwps/Node Label		
Range (BHz) RBU/RBU Ref/Ritin Det/ Same Pts Files/Mode Label 1.16=26 HK-3481/3M 97/6 PERK/- IdBase(Auto) IdBk Horizontal Range (Btz) RBU/RBU Ref/Ritin Det/ Sweep Pts #Swps/Mode Label	18	26
Nange (vitz) Barry Ref / Kitri Deller / Ref / Kitri Deller / Resettion (vite Stage)/Refe (data) 1.18-26 Harry Salv/34 19/19 Filter / Resettion (vite Stage)/Refe (data) 1.18-26 Harry Salv/34 19/19 Filter / Resettion (vite Stage)/Refe (data) 1.18-26 Harry Salvy S	Prove (CHr) Dell/IRI Dr.C/Alto Dr.L/	Frequency (GHz)
	Nonge (bitz) rosu/ves ref/Hitn bet/ 1:18-25 1H(-3dB)/3M 97/8 PERK/ -	Sweep PLs #Swps/Mode Label nange Lonz/ nawvoswi ner/Attn Uet/ Sweep rts +swps/naae Label 1600meec(Auto)1282 WWH Horizontal

15 UL EMC						RF	Fmissi	005		21 No	əv 201	16 1	8:33:09
95 35						Pro Cli Cor Moo Tes	ject Numbi ent:Micros figuration le:Worst Ci ted by / !	er:11460 soft n:EUT on se 5N:37699	738 Iy CS				
75 Peak L	imit (dBuV/m))											
55													
55 Avg Lir	nit (dBuV/m)												
15	4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second	man	mhorman	4 million		Newmon	maharanad	- mar allowed	where the and the second	At man angele	6 Jayun	Monorman
35													
25													
5													
10													
10					Frequen	oy (GHz)							2
	RBW/UBW Ref/A	ttn Det/	Sxeep	Pts #Swps/Mc	ode Label	Ronge (GHz) 2:18-26	RBN/UBN 1N(-3dB)/3N	Ref/Attn 97/8	Det/ PEAK/ -	Sweep 168xsec (Auto	Pts : 0 1282 M	≢Swps/Mode AXH	Label Jertical
Kange (bHz)													

Page 50 of 60

<u>Data</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T449 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	18.813	41.67	Pk	32.4	-24.9	-9.5	39.67	54	-14.33	74	-34.33
2	21.737	40.27	Pk	33.2	-24.8	-9.5	39.17	54	-14.83	74	-34.83
3	25.021	43.7	Pk	34.2	-24.4	-9.5	44	54	-10	74	-30
4	18.806	40.73	Pk	32.4	-24.8	-9.5	38.83	54	-15.17	74	-35.17
5	21.73	40.27	Pk	33.2	-24.8	-9.5	39.17	54	-14.83	74	-34.83
6	25.061	44.37	Pk	34.3	-25	-9.5	44.17	54	-9.83	74	-29.83

Pk - Peak detector

Page 51 of 60

10. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted	Limit (dBµV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 52 of 60

10.1. EUT POWERED BY AC/DC ADAPTER VIA USB CABLE

LINE 1 RESULTS

WORST EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L1	LC Cables 1&3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
1	.15225	24.32	Qp	.1	0	10.1	34.52	65.88	-31.36	-	-
2	.15225	11.43	Ca	.1	0	10.1	21.63	-	-	55.88	-34.25
3	.5955	28.66	Qp	0	0	10.1	38.76	56	-17.24	-	-
4	.59325	22.06	Ca	0	0	10.1	32.16	-	-	46	-13.84
5	10.99613	21.38	Qp	0	.2	10.2	31.78	60	-28.22	-	-
6	10.995	13.46	Ca	0	.2	10.2	23.86	-	-	50	-26.14

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 53 of 60

LINE 2 RESULTS

WORST EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L2	LC Cables 2&3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B	QP Margin (dB)	CFR 47 Part 15 Class B	Av(CISPR) Margin (dB)
								QP		Avg	
7	.15225	23.71	Qp	0	0	10.1	33.81	65.88	-32.07	-	-
8	.15225	7.97	Ca	0	0	10.1	18.07	-	-	55.88	-37.81
9	.59325	25.84	Qp	0	0	10.1	35.94	56	-20.06	-	-
10	.59325	15.97	Ca	0	0	10.1	26.07	-	-	46	-19.93
11	11.0355	19.02	Qp	0	.2	10.2	29.42	60	-30.58	-	-
12	11.02875	9.73	Ca	0	.2	10.2	20.13	-	-	50	-29.87

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 54 of 60

10.2. EUT POWERED BY HOST PC VIA USB CABLE

LINE 1 RESULTS

WORST EMISSIONS

Marker	Frequency (MHz)	Meter Reading	Det	LISN L1	LC Cables	Limiter (dB)	Corrected Reading	CFR 47 Part 15	QP Margin	CFR 47 Part 15	Av(CISPR) Margin
		(dBuV)			1&3		dBuV	Class B	(dB)	Class B	(dB)
1	.15225	38.32	Qp	.1	0	10.1	48.52	65.88	-17.36	-	-
2	.15225	25.1	Ca	.1	0	10.1	35.3	-	-	55.88	-20.58
3	.18375	35.32	Qp	0	0	10.1	45.42	64.31	-18.89	-	-
4	.18375	22.69	Ca	0	0	10.1	32.79	-	-	54.31	-21.52
5	1.599	9.77	Qp	0	.1	10.1	19.97	56	-36.03	-	-
6	1.59788	4.72	Ca	0	.1	10.1	14.92	-	-	46	-31.08

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 55 of 60

LINE 2 RESULTS

WORST EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L2	LC Cables 2&3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
7	.15225	34.4	Qp	0	0	10.1	44.5	65.88	-21.38	-	-
8	.15225	22.72	Ca	0	0	10.1	32.82	-	-	55.88	-23.06
9	.1815	36.38	Qp	0	0	10.1	46.48	64.42	-17.94	-	-
10	.18375	23.04	Ca	0	0	10.1	33.14	-	-	54.31	-21.17
11	1.572	10.68	Qp	0	.1	10.1	20.88	56	-35.12	-	-
12	1.59	5.47	Ca	0	.1	10.1	15.67	-	-	46	-30.33

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 56 of 60