

FCC 47 CFR PART 15 SUBPART E

CERTIFICATION TEST REPORT

FOR

MODEL NUMBER: 1645

FCC ID: C3K1645

REPORT NUMBER: 14U19051-E2 REVISION. B

ISSUE DATE: MARCH 25, 2015

Prepared for MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND, WA 98052, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev. Date Revisions Re	kevised By
01/26/15 Initial Issue C.	C. Pang
A 02/09/15 Removed heading in page 1. Changed EUT description to Handheld Computing Device. Fixed orientation typo, and added 11a and 11ac data rates.	ł. Lau
B 3/25/2015 Address TCB's Questions on Section 6, C.	C. Pang

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 2 of 349

TABLE OF CONTENTS

1.	ATTI	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	ILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	7
4	1 .1.	MEASURING INSTRUMENT CALIBRATION	7
2	4.2.	SAMPLE CALCULATION	7
4	4.3.	MEASUREMENT UNCERTAINTY	8
5.	EQU	IPMENT UNDER TEST	9
ł	5.1.	DESCRIPTION OF EUT	9
ł	5.2.	MAXIMUM OUTPUT POWER	9
ł	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS1	0
ł	5.4.	SOFTWARE1	0
ł	5.5.	WORST-CASE CONFIGURATION AND MODE1	1
ł	5.6.	DESCRIPTION OF TEST SETUP1	2
6.	TES	T AND MEASUREMENT EQUIPMENT1	6
7.	MEA	SUREMENT METHODS1	7
8.	ON 1	TIME AND DUTY CYCLE	8
- 8	3.1.	ON TIME AND DUTY CYCLE RESULTS1	8
8	3.2.	DUTY CYCLE PLOTS1	9
9.	ANT	ENNA PORT TEST RESULTS	21
ę	9.1.	802.11a MODE IN THE 5.2 GHz BAND2	21
	9.1.1		21
	9.1.2	. OUTPUT POWER AND PSD	.5 9
ę	9.2.	802.11n HT20 MODE IN THE 5.2 GHz BAND	34
	9.2.1		4
	9.2.2	6. OUTPUT POWER AND PSD	.2
ę	9.3.	802.11n HT40 MODE IN THE 5.2 GHz BAND4	17
	9.3.1 932	. 26 dB BANDWIDTH	.7 :0
	9.3.3	0070 DATE OF THE OWER AND PSD	3
ę	9.4.	802.11ac VHT80MHz_MODE IN THE 5.2 GHz BAND	57
	9.4.1 9.4 2	. 26 dB BANDWIDTH	7 9
			-

9.4.3. OUTPUT POWER AND PSD	61
 9.5. 802.11a MODE IN THE 5.3 GHz BAND 9.5.1. 26 dB BANDWIDTH	64 64 68 72
9.6. 802.11n HT20 MODE IN THE 5.2 GHz BAND 9.6.1. 26 dB BANDWIDTH 9.6.2. 99% BANDWIDTH 9.6.3. OUTPUT POWER AND PSD	77 77 81 85
 9.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND 9.7.1. 26 dB BANDWIDTH	90 90 93 96
9.8. 802.11ac VHT80 MODE IN THE 5.3 GHz BAND 9.8.1. 26 dB BANDWIDTH 9.8.2. 99% BANDWIDTH 9.8.3. OUTPUT POWER AND PSD	100 100 102 104
9.9. 802.11a MODE IN THE 5.6 GHz BAND 9.9.1. 26 dB BANDWIDTH 9.9.2. 99% BANDWIDTH 9.9.3. OUTPUT POWER AND PSD	107 107 111 115
9.10. 802.11n HT20 MODE IN THE 5.6 GHz BAND 9.10.1. 26 dB BANDWIDTH 9.10.2. 99% BANDWIDTH 9.10.3. OUTPUT POWER AND PSD	120 120 124 128
9.11. 802.11n HT40 MODE IN THE 5.6 GHz BAND 9.11.1. 26 dB BANDWIDTH 9.11.2. 99% BANDWIDTH 9.11.3. OUTPUT POWER AND PSD	133 133 137 141
9.12. 802.11ac VHT80 MODE IN THE 5.6 GHz BAND 9.12.1. 26 dB BANDWIDTH 9.12.2. 99% BANDWIDTH 9.12.3. OUTPUT POWER AND PSD	146 146 149 152
9.13. 802.11a MODE IN THE 5.8 GHz BAND 9.13.1. 6 dB BANDWIDTH 9.13.2. 26 dB BANDWIDTH 9.13.3. 99% BANDWIDTH 9.13.4. OUTPUT POWER 9.13.5. Maximum Power Spectral Density (PSD)	156 156 160 165 169 170
9.14. 802.11n HT20 MODE IN THE 5.8 GHz BAND	175 175 179 183 187 188
9.15. 802.11n HT40 MODE IN THE 5.8 GHz BAND 9.15.1. 6 dB BANDWIDTH	<i>19</i> 2 192

9.15.2. 9.15.3. 9.15.4	26 dB BANDWIDTH 99% BANDWIDTH OUTPUT POWER	195 198 201
9.15.5.	Maximum Power Spectral Density (PSD)	202
9. <i>16. 802</i> 9.16.1. 9.16.2.	2.11ac VHT80 MODE IN THE 5.8 GHz BAND 6 dB BANDWIDTH 26 dB BANDWIDTH	205 205 207
9.16.3. 9.16.4		
9.16.5.	Maximum Power Spectral Density (PSD)	
10. RADIA	TED TEST RESULTS	214
10.1. LIN	/ITS AND PROCEDURE	214
10.2. TR	ANSMITTER ABOVE 1 GHz	215
10.2.1. 10.2.2	TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND	215
10.2.3.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND	
10.2.4.	TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.2 GHz BAND	237
10.2.5.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND	
10.2.6.	TX ABOVE 1 GHZ 802.1111 HT20 MODE IN THE 5.3 GHZ BAND TX ABOVE 1 GHZ 802.11n HT40 MODE IN THE 5.3 GHZ BAND	249 257
10.2.8.	TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.3 GHz BAND	
10.2.9.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND	
10.2.10.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND	
10.2.11.	IX ABOVE 1 GHZ 802.11n H140 MODE IN THE 5.6 GHZ BAND	
10.2.12.	TX ABOVE 1 GHz 802.11ac VH180 MODE IN THE 5.0 GHZ BAND	
10.2.14.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BAND	
10.2.15.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.8 GHz BAND	323
10.2.16.	TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.8 GHz BAND	331
10.3. WO	DRST-CASE BELOW 1 GHz	
10.4. WO	DRST-CASE 18 to 26 GHz	
10.5. WO	DRST-CASE 26 to 40 GHz	340
11. AC PO	WER LINE CONDUCTED EMISSIONS	341
12. SETUP	PHOTOS	345

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND, WA 98052, U.S.A.				
EUT DESCRIPTION:	HANDHELD COMPUTING DEVIC	E			
MODEL:	1645				
SERIAL NUMBER:	000200544952 (CONDUCTED); 000207544952 (RADIATED)				
DATE TESTED:	DECEMBER 17, 2014 – JANUARY	(26, 2015			
	APPLICABLE STANDARDS				
STANDARD TEST RESULTS					
CFR 47 Pa	art 15 Subpart E	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Chin Pang Senior Engineer UL Verification Services Inc.

Tested By:

Tina Chu Lab Technician UL Verification Services Inc.

Page 6 of 349

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	🛛 Chamber E
Chamber C	🛛 Chamber F
	🛛 Chamber G
	🛛 Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 7 of 349

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 8 of 349

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a handheld computing device with 802.11 2x2, a/b/g/n/ac WLAN and Bluetooth radios.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)	2TX	(dBm)	(mW)
5180 - 5240	802.11a	10.17	10.40
5180 - 5240	802.11n HT20	10.00	10.00
5190 - 5230	802.11n HT40	10.27	10.64
5210	802.11ac VHT80	9.53	8.97
5260 - 5320	802.11a	10.17	10.40
5260 - 5320	802.11n HT20	10.16	10.38
5270 - 5310	802.11n HT40	10.15	10.35
5290	802.11ac VHT80	9.61	9.14
5500 - 5700	802.11a	10.35	10.84
5500 - 5700	802.11n HT20	10.24	10.57
5510 - 5670	802.11n HT40	10.40	10.96
5530 - 5610	802.11ac VHT80	9.59	9.10
5745 - 5825	802.11a	10.40	10.96
5745 - 5825	802.11n HT20	10.11	10.26
5755 - 5795	802.11n HT40	10.44	11.07
5775	802.11ac VHT80	9.29	8.49

Page 9 of 349

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integrated antenna with maximum gains as follows:

Frequency	Antenn (dB	a Gain si)
Band (GHz)	Chain 0	Chain 1
5.15 - 5.25	3.1	3.6
5.25 - 5.35	2.9	3.5
5.47 - 5.725	3.3	2.5
5.725 -5.85	3.5	1.9

5.4. SOFTWARE

The test software used during testing was WIFI Tool v2.3.2

Page 10 of 349

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z, it was determined that Y orientation was worst-case orientation for 2.4GHz band and Z orientation was worst-case orientation for 5GHz band; therefore, all final radiated testing was performed with the EUT in Y (Landscape) orientation for 2.4GHz band and Z (Portrait) orientation for 5.GHz band.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802 11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40 mode: MCS0 802.11ac mode: MCS0

Page 11 of 349

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop	Lenovo	E545	5399926	DoC			
Laptop AC/DC adapter	Lenovo	ADLX65NCT2A	11S36200293ZZ10049556A	DoC			
Headset	N/A	N/A	N/A	N/A			

I/O CABLES (CONDUCTED TEST)

I/O Cable List							
Cable Port # of identical Connector Cable Type Cable					Cable	Remarks	
No		ports	Туре		Length (m)		
1	Antenna	1	SMA	Un-Shielded	0.3	To spectrum Analyzer	
2	Ether cable	1	RJ45- USB	Shielded	3	To EUT	
3	DC	1	DC	Un-shielded	0.8	N/A	

I/O CABLES (BELOW 1GHZ & AC LINE CONDUCTED TESTS)

I/O Cable List								
Cable Port # of identical Connector Cable Type Cable Remarks					Remarks			
No		ports	Туре		Length (m)			
1	AC Main	1	115VAC	Un-Shielded	1.2	NA		
2	DC	1	DC	Un-Shielded	0.8	NA		
3	Audio Jack	1	Headset	Un-shielded	1	N/A		

Page 12 of 349

TEST SETUP- CONDUCTED PORT

The EUT was tested connected to a host Laptop via RJ45/USB cable and spectrum analyzer to antenna port. Test software exercised the EUT.

SETUP DIAGRAM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 13 of 349

TEST SETUP- RADIATED-ABOVE 1 GHZ

The EUT was tested battery powered. Test software exercised the EUT.

SETUP DIAGRAM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 14 of 349

TEST SETUP - BELOW 1GHZ & AC LINE CONDUCTED TESTS

The EUT was tested with AC/DC power supply. Test software exercised the EUT.

SETUP DIAGRAM

Page 15 of 349

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Serial Number	Cal Due		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	143448	2/18/2015		
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB3	A022813-2	2/26/2015		
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826	1049	12/17/15		
Horn Antenna, 40GHz	ARA	MWH-2640/B	1029	7/15/2015		
Amplifier, 1 - 18GHz	Miteq	AFS42-00101800-25-S- 42	1782158	1/11/2016		
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	323562	4/23/2015		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	MY52350675	3/11/2015		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	00029310	3/20/2015		
Amplifier, 1 to 26.5GHz, 23.5dB Gain minimum	Agilent	8449B	3008A04710	3/25/2015		
EMI Test Receiver 9Khz- 7GHz	Rohde & Schwarz	ECSI7	N/A	9/16/2015		
LISN for Conducted Emissions CISPR-16	FCC	50/250-25-2	N/A	1/16/2016		
Power Cable, Line Conducted Emissions ANSI 63.4	UL	PG1	N/A	7/28/2015		
Amplifier, 26 - 40GHz	Miteq	NSP4000-SP2	924343	9/3/2015		
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Agilent	N1921A	MY53260010	7/12/2015		
Amplifier, 1 - 18GHz Miteq		AFS42-00101800-25-S- 42	N/A	1/20/2016		
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	185623	6/7/2015		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	MY53310972	05/08/15		
Power Meter, P-series single channel	Agilent	N1911A	MY53060011	4/9/2015		

Page 16 of 349

7. MEASUREMENT METHODS

26 dB Emission BW: KDB 789033 D02 v01r, Section C.

99% Occupied BW: KDB 789033 D02 v01, Section D.

<u>Conducted Output Power</u>: KDB 789033 D02 v01, Section E.2.b (Method SA-1). <u>Conducted Output Power</u>: KDB 789033 D02 v01, Section E.2.d (Method SA-2).

Power Spectral Density: KDB 789033 D02 v01, Section F.

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v01, Sections G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v01, Sections G.3, G.4, and G.5.

Page 17 of 349

8. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

8.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 2TX	3.145	3.185	0.987	98.74%	0.00	0.010
802.11n HT20 2TX	2.925	2.965	0.987	98.65%	0.00	0.010
802.11n HT40 2TX	1.428	1.470	0.971	97.14%	0.13	0.700
802.11ac VHT80 2TX	0.682	0.724	0.942	94.20%	0.26	1.466

Page 18 of 349

8.2. DUTY CYCLE PLOTS

RL	RF 50 Ω DC	PNO: Fast	SENSE-INT	ALIGN AUTO #Avg Type: RMS	08:04:23 PM Dec 19, 2014 TRACE 1 3 5 6 TYPL	Frequency
0 dB/div	Ref Offset 11.2 dB Ref 30.00 dBm	IFGain:Low	#Atten: 30 dB		Mkr3 3.185 ms 0.07 dB	Auto Tune
og 200 Nria Nria	which and the provide the	polyter have good and a	- I Marina Marina	en anti-	304 And Schwargener Mahanan	Center Freq 5.785000000 GHz
00 00 00						Start Free 5.785000000 GHz
00 60	-					Stop Freq 5.785000000 GHz
enter 5.7 es BW 8	785000000 GHz MHz	#VBW	50 MHz	Sweep :	Span 0 Hz 5.000 ms (1001 pts)	CF Step 8.000000 MHz
4 MODE 18 2 F 1 3 Δ4 1 4 F 5 6 7 8	C SCL X t (Δ) t t (Δ) t	3.145 ms (Δ) 830.0 us 3.185 ms (Δ) 830.0 μs	1.55 dB 13.41 dBm 0.07 dB 13.41 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz

Page 19 of 349

Agilent Sp	ectrum Analyzer - Swe	pt 5/A		an line to an	ALCONG TO THE		6
RL	1 90 1 50 5	- 0L		(SEASE-LINT)	#Avg Type: RMS	TRACE 1 3 4 5 6	Frequency
			PNO: Fast	#Atten: 30 dB		DET	1000
0 dB/div	Ref Offset 1 Ref 30.00	1.2 dB dBm			Δ	/kr3 1.470 ms -0.41 dB	Auto Tune
go							Contra Fran
aro 1			and in	in the second second	A304	A CONTRACTOR OF	5 75500000 GHz
0.00	- I I MARY TO AND	×2	and the second	Construction of the second	and the second states and the second	a boar to see the second second	
0.01	_						-
0.0							Start Freq
0,0	-						
00							
10.11		-					5 75500000 CH
310							0.7000000 GH
enter t	.755000000	GHz	#\/P\//	50 MH2	Swaan 31	Span 0 Hz	CF Step
es DVV			#VDVV	50 MHZ	sweep 5.	100 ms (1001 pts)	Auto Mar
1 Δ2	t (Δ)	^ 1.	428 ms (Δ)	1.09 dB	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 F 3 Δ4 4 F	t (Δ) t	7 1. 7	65.0 μs 470 ms (Δ) 65.0 μs	5.93 dBm -0.41 dB 6.93 dBm			Freq Offset 0 Hz
6							
8						-	
9						13.	
11							

Page 20 of 349

9. ANTENNA PORT TEST RESULTS

9.1. 802.11a MODE IN THE 5.2 GHz BAND

9.1.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	19.50	19.35
Mid	5200	19.50	19.38
High	5240	19.47	19.38

Page 21 of 349

26 dB BANDWIDTH, Chain 0

Page 22 of 349

26 dB BANDWIDTH, Chain 1

Page 23 of 349

Page 24 of 349

9.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel Frequency		99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	16.442	16.482
Mid	5200	16.435	16.337
High	5240	16.456	16.502

Page 25 of 349

99% BANDWIDTH, Chain 0

Page 26 of 349

99% BANDWIDTH, Chain 1

Page 27 of 349

Page 28 of 349

9.1.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.1	3.6	3.36

RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	3.36	3.36	24.00	11.00
Mid	5200	3.36	3.36	24.00	11.00
High	5240	3.36	3.36	24.00	11.00

Duty Cycle CF (dB)

0.00 Included in Calculations of Corr'd Power & PSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	6.93	7.16	10.06	24.00	-13.94
Mid	5200	7.01	6.95	9.99	24.00	-14.01
High	5240	7.20	7.12	10.17	24.00	-13.83

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-3.598	-3.742	-0.66	11.00	-11.66
Mid	5200	-3.651	-4.103	-0.86	11.00	-11.86
High	5240	-3.577	-4.351	-0.94	11.00	-11.94

Page 30 of 349

PSD, Chain 0

Page 31 of 349

PSD, Chain 1

Page 32 of 349

Page 33 of 349

9.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

9.2.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	19.89	19.80
Mid	5200	19.89	19.80
High	5240	19.92	19.80

Page 34 of 349

26 dB BANDWIDTH, Chain 0

Page 35 of 349

26 dB BANDWIDTH, Chain 1

Page 36 of 349

Page 37 of 349

9.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	17.687	17.578
Mid	5200	17.629	17.501
High	5240	17.522	17.517

Page 38 of 349

99% BANDWIDTH, Chain 0

Page 39 of 349

99% BANDWIDTH, Chain 1

Page 40 of 349

Page 41 of 349

9.2.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 42 of 349

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.1	3.6	3.36

RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	3.36	3.36	24.00	11.00
Mid	5200	3.36	3.36	24.00	11.00
High	5240	3.36	3.36	24.00	11.00

Duty Cycle CF (dB)

) 0.00 **I**I

Included in Calculations of Corr'd Power & PSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	6.90	6.98	9.95	24.00	-14.05
Mid	5200	6.83	7.08	9.97	24.00	-14.03
High	5240	6.90	7.07	10.00	24.00	-14.00

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-4.505	-4.361	-1.42	11.00	-12.42
Mid	5200	-4.473	-4.082	-1.26	11.00	-12.26
High	5240	-4.487	-4.551	-1.51	11.00	-12.51

Page 43 of 349

PSD, Chain 0

Page 44 of 349

PSD, Chain 1

Page 45 of 349

Page 46 of 349

9.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

9.3.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5190	40.32	39.90
High	5230	40.08	39.96

Page 47 of 349

26 dB BANDWIDTH, Chain 0

Page 48 of 349

26 dB BANDWIDTH, Chain 1

Page 49 of 349

9.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5190	36.130	36.097
High	5230	35.990	36.025

Page 50 of 349

99% BANDWIDTH, Chain 0

Page 51 of 349

99% BANDWIDTH, Chain 1

Page 52 of 349

9.3.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 53 of 349

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.1	3.6	3.36

RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain Gain		Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	(MHz) 5190	(dBi) 3.36	(dBi) 3.36	(dBm) 24.00	(dBm) 11.00

	Duty Cycle CF (dB)	0.13	Included in Calculations of Corr'd Power & PSD
--	--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	7.060	7.200	10.27	24.00	-13.73
High	5230	7.280	6.920	10.24	24.00	-13.76

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5100	_8.001	_7 /37	1 57	11.00	_15 57
2011	5190	-0.001	-7.437	-4.57	11.00	-15.57

PSD, Chain 0

Page 55 of 349

Page 56 of 349

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

9.4. 802.11ac VHT80MHz MODE IN THE 5.2 GHz BAND

9.4.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Mid	5210	82.56	81.72

Page 57 of 349

26 dB BANDWIDTH, Chain 0

26 dB BANDWIDTH, Chain 1

Page 58 of 349

9.4.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Mid	5210	75.901	75.873

Page 59 of 349

99% BANDWIDTH, Chain 0

99% BANDWIDTH, Chain 1

Page 60 of 349

9.4.3. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 61 of 349

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.1	3.6	3.36

RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Mid	5210	3.36	3.36	24.00	11.00

Duty Cycle CF (dB)	0.26	Included in Calculations of Corr'd Power & PSD
--------------------	------	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	6.40	6.12	9.53	24.00	-14.47

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	-12.550	-12.768	-9.39	11.00	-20.39

PSD, Chain 0

PSD, Chain 1

Page 63 of 349

9.5. 802.11a MODE IN THE 5.3 GHz BAND

9.5.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5260	19.50	19.38
Mid	5300	19.50	19.32
High	5320	19.59	19.41

Page 64 of 349

26 dB BANDWIDTH, Chain 0

Page 65 of 349

26 dB BANDWIDTH, Chain 1

Page 66 of 349

Page 67 of 349

9.5.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel Frequency		99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5260	16.430	16.504
Mid	5300	16.460	16.522
High	5320	16.524	16.370

Page 68 of 349

99% BANDWIDTH, Chain 0

Page 69 of 349

99% BANDWIDTH, Chain 1

Page 70 of 349

Page 71 of 349

9.5.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
2.9	3.5	3.21

Page 72 of 349
<u>RESULTS</u>

Bandwidth, Antenna Gain and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5260	19.38	3.21	3.21	23.87	11.00
Mid	5300	19.32	3.21	3.21	23.86	11.00
High	5320	19.41	3.21	3.21	23.88	11.00

Duty Cycle CF (dB) 0.0	0	Included in Calculations of Corr'd Power & PSD
------------------------	---	--

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	7.24	7.08	10.17	23.87	-13.70
Mid	5300	7.16	6.96	10.07	23.86	-13.79
High	5320	7.35	6.91	10.15	23.88	-13.73

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	-3.651	-4.451	-1.02	11.00	-12.02
Mid	5300	-4.065	-4.502	-1.27	11.00	-12.27
High	5320	-4.018	-4.644	-1.31	11.00	-12.31

Page 73 of 349

PSD, Chain 0

Page 74 of 349

PSD, Chain 1

Page 75 of 349

Page 76 of 349

9.6. 802.11n HT20 MODE IN THE 5.2 GHz BAND

9.6.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5260	19.98	19.74
Mid	5300	19.95	19.86
High	5320	19.86	19.80

Page 77 of 349

26 dB BANDWIDTH, Chain 0

Page 78 of 349

26 dB BANDWIDTH, Chain 1

Page 79 of 349

Page 80 of 349

9.6.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel Frequency		99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5260	17.667	17.598
Mid	5300	17.557	17.588
High	5320	17.642	17.565

Page 81 of 349

99% BANDWIDTH, Chain 0

Page 82 of 349

99% BANDWIDTH, Chain 1

Page 83 of 349

Page 84 of 349

9.6.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
2.9	3.5	3.21

Page 85 of 349

<u>RESULTS</u>

Bandwidth, Antenna Gain and Limits

0.00

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5260	19.74	3.21	3.21	23.95	11.00
Mid	5300	19.86	3.21	3.21	23.98	11.00
High	5320	19.80	3.21	3.21	23.97	11.00

Duty Cycle CF (dB)

Included in Calculations of Corr'd Power & PSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	7.00	7.03	10.03	23.95	-13.93
Mid	5300	7.35	6.94	10.16	23.98	-13.82
High	5320	7.04	6.68	9.87	23.97	-14.09

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	-4.519	-4.427	-1.46	11.00	-12.46
Mid	5300	-4.530	-4.761	-1.63	11.00	-12.63
High	5320	-4.624	-4.943	-1.77	11.00	-12.77

Page 86 of 349

PSD, Chain 0

Page 87 of 349

PSD, Chain 1

Page 88 of 349

Page 89 of 349

9.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND

9.7.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5270	40.32	39.90
High	5310	40.26	39.90

Page 90 of 349

26 dB BANDWIDTH, Chain 0

Page 91 of 349

26 dB BANDWIDTH, Chain 1

Page 92 of 349

9.7.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5270	35.981	36.041
High	5310	36.098	36.144

Page 93 of 349

99% BANDWIDTH, Chain 0

Page 94 of 349

99% BANDWIDTH, Chain 1

Page 95 of 349

9.7.3. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains		
Antenna	Antenna	Directional		
Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)		
2.9	3.5	3.21		

Page 96 of 349

<u>RESULTS</u>

Bandwidth, Antenna Gain and Limits

Channel	Frequency	Min	Directional Directional		Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5270	39.90	3.21	3.21	24.00	11.00
High	5310	39.90	3.21	3.21	24.00	11.00

Duty Cycle CF (dB) 0.13 Included in Calculations of Corr'd Power & PSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	7.220	6.780	10.15	24.00	-13.85
High	5310	7.010	6.880	10.09	24.00	-13.91

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	-7.813	-7.829	-4.68	11.00	-15.68
High	5310	-7.612	-8.319	-4.81	11.00	-15.81

Page 97 of 349

PSD, Chain 0

Page 98 of 349

Page 99 of 349

9.8. 802.11ac VHT80 MODE IN THE 5.3 GHz BAND

9.8.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Mid	5290	82.20	81.72	

Page 100 of 349