

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

2.4 GHZ SHORT RANGE RF MODULE

MODEL NUMBER: 1575

FCC ID: C3K1575 IC: 3048A-1575

REPORT NUMBER: 12U14758-1, Revision C

ISSUE DATE: JUNE 10, 2013

Prepared for MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND, WA 98052, U.S.A.

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev. Date Revisions Revised B
01/29/13 Initial Issue T.LEE
A 06/05/13 Updated Correction Factors, Average Calculations, A 06/05/13 Antenna Gain, dwell time, peak power limit, MPE T. LEE calculation and Photos
B 06/07/13 Corrected Dwell time information. Clarified worst T. LEE
C 06/10/13 Added original MPE in RF Exposure Results AAumenta

Page 2 of 68

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	5
3.	FAG	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	3
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	SAMPLE CALCULATION	5
4	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	7
ł	5.1.	DESCRIPTION OF EUT	7
ł	5.2.	MAXIMUM OUTPUT POWER	7
ł	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
ł	5.4.	SOFTWARE AND FIRMWARE	7
ł	5.5.	WORST-CASE CONFIGURATION AND MODE	7
ł	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	ST AND MEASUREMENT EQUIPMENT10)
-		TY CYCLE CORRECTION FACTOR11	
7.			
8.	AN'	TENNA PORT TEST RESULTS12	
	8.1. 8.1.		
	8.1.		
	8.1.	.4. AVERAGE TIME OF OCCUPANCY	6
	8.1.		
	8.1. 8.1.		
0	-	DIATED TEST RESULTS	
-	9.1.	LIMITS AND PROCEDURE	-
	9.7. 9.2.	TRANSMITTER ABOVE 1 GHz	-
	9.2. 9.3.		
	-		
10.	. A	C POWER LINE CONDUCTED EMISSIONS	1
11.	. N	AXIMUM PERMISSIBLE RF EXPOSURE58	3
	11.1.	FCC RULES	3
	11.2.	IC RULES	9
	11.3.	EQUATIONS	0
1 11	CCS	Page 3 of 68 FORM NO: CCSUP47010	_
ΟL	$\overline{\mathbf{u}}$		2

11.4.	LIMITS AND IC EXEMPTION	62
12. SE	TUP PHOTOS	64
12.1.	ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	64
12.2.	RADIATED RF MEASUREMENT SETUP	65
12.3.	RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION Error! Bookmark not defined.	
12.4.	POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP	67

Page 4 of 68

Pass

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

COMPANY NAME:	Microsoft Corporation One Microsoft Way Redmond, WA 98052 U.S.A.				
EUT DESCRIPTION:	2.4 GHZ SHORT RANGE RF MODULES				
MODEL:	1575				
SERIAL NUMBER:	3566372810437230 (Conducted) & 3566372810388230 (Radiated)				
DATE TESTED:	January 15 – January 29, 2013				
	APPLICABLE STANDARDS				
STANDARD TEST RESULTS					
CFR 47 Part 15 Subpart C Pass					

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

TIMOTHY K. LEE WISE PROGRAM MANAGER UL CCS

DANNY VU EMC TECHNICIAN UL CCS

Page 5 of 68

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 2.4 GHz Short Range RF frequency hopping transceiver Module.

The radio module is manufactured by Microsoft.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2482	FHSS	4.35	2.72

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Patch antenna, with a maximum gain of 4.8 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Wireless Device Test Ver. 1.1.2.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The EUT is a desktop device. All radiated tests were conducted based on the normal or natural orientation of the EUT.

Page 7 of 68

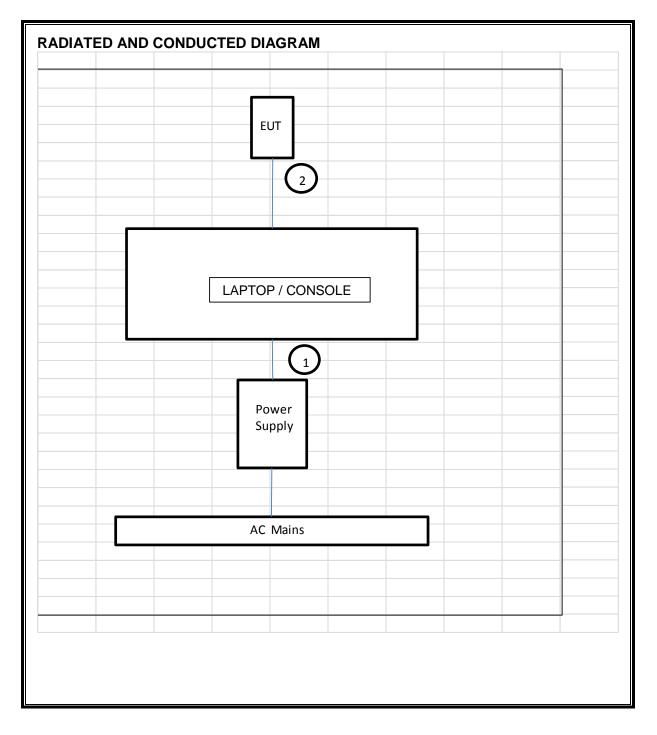
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Toshiba	Tecra 8200	81212625PU	N/A		
AC adapter	NEC	ADP57	9701608DE	N/A		
Interface Cable and PCB	Boron	MCSO1557	0166-001919	N/A		

I/O CABLES

Cable No	Port	# of identical ports	Connector Type		Cable Length (m)	Remarks
1	AC	1	US 115V	Un-shielded	0.9 m	none
2	USB	1	USB	Un-shielded	0.9 m	none


Note: Cable # 2 was not used for radiated measurement since EUT was embedded in console.

TEST SETUP

The EUT is connected to a USB interface cable to the laptop computer during the tests. Test software exercised the radio card

Page 8 of 68

SETUP DIAGRAM FOR TESTS

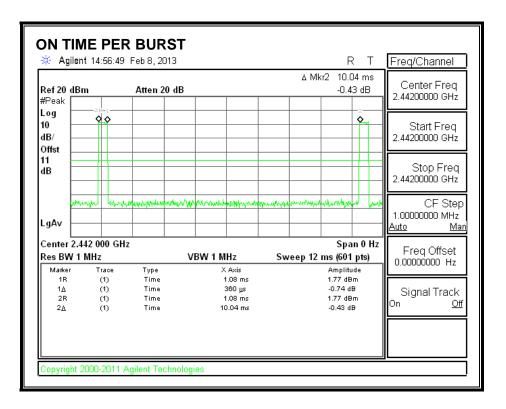
Page 9 of 68

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Antenna, Horn, 18 GHz	EMCO	3115	C00872	09/20/12	09/20/13	
Antenna, Horn, 26.5 GHz	ARA	SWH-28	C01015	04/23/12	04/23/13	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	10/21/12	10/21/13	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	10/21/12	10/21/13	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	02/21/12	02/21/13	
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRC13192	N02683	CNR	CNR	
Bilog 30-2000MHz	Sunol	JB1		02/07/12	02/07/13	
Power meter	HP	437B	T226	06/25/12	06/25/13	
Power Sensor	HP	8481A	T233	06/26/12	06/26/13	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	01/14/13	01/14/14	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	03/07/12	03/07/13	

Page 10 of 68


7. DUTY CYCLE CORRECTION FACTOR

LIMITS

None; for reporting purposes only.

RESULTS

Mode	Tx on	Tx on + Tx off	Duty Cycle Correction Factor
	(msec)	(msec)	(dB)
FHSS	360	10040	-14.45

8. ANTENNA PORT TEST RESULTS

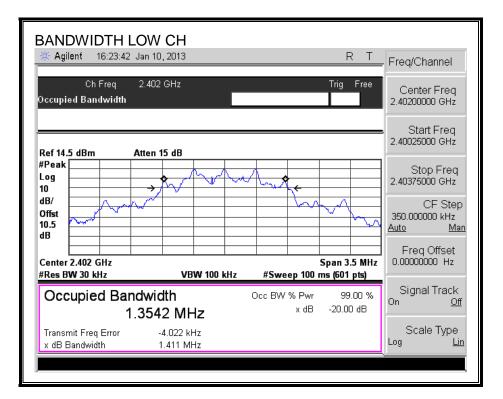
8.1.1. 20 dB AND 99% BANDWIDTH

<u>LIMIT</u>

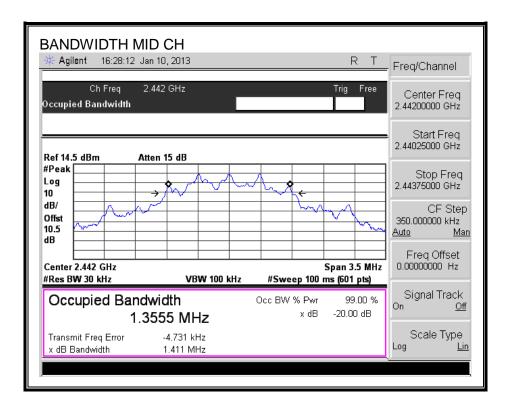
None; for reporting purposes only.

TEST PROCEDURE

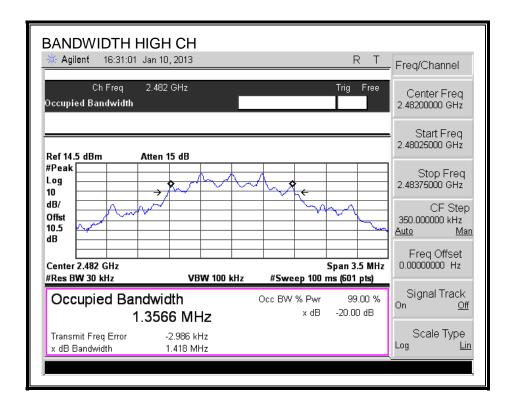
The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

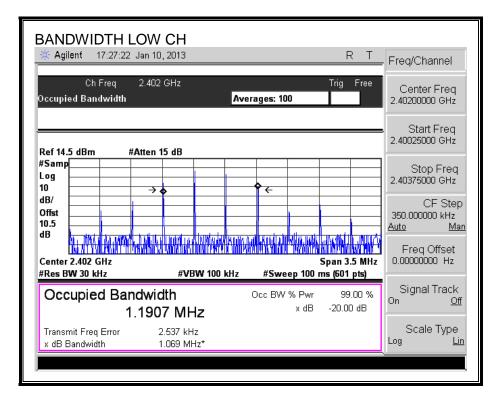
Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1411	1191
Middle	2442	1411	1340
High	2482	1418	1361


UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

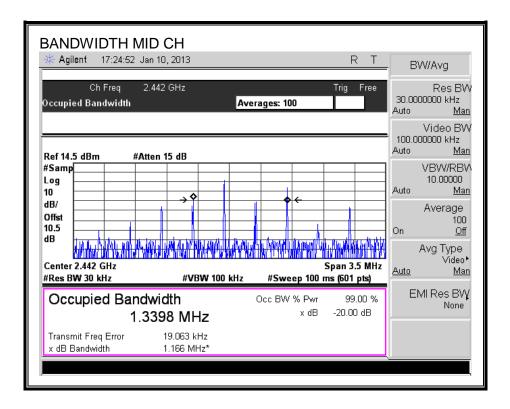
Page 12 of 68


20 dB AND 99% BANDWIDTH

Page 13 of 68



Page 14 of 68



Page 15 of 68


99% BANDWIDTH

Page 16 of 68

Page 17 of 68

Page 18 of 68

8.1.2. HOPPING FREQUENCY SEPARATION

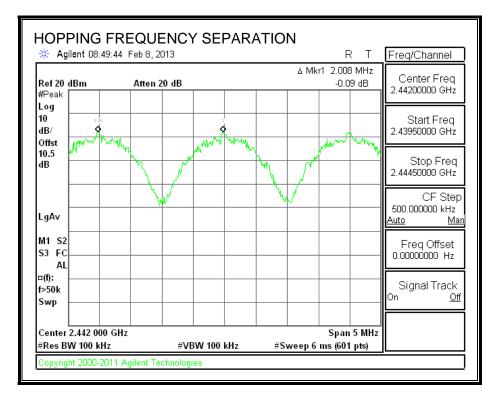
LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

Page 19 of 68

HOPPING FREQUENCY SEPARATION

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 68

8.1.3. NUMBER OF HOPPING CHANNELS

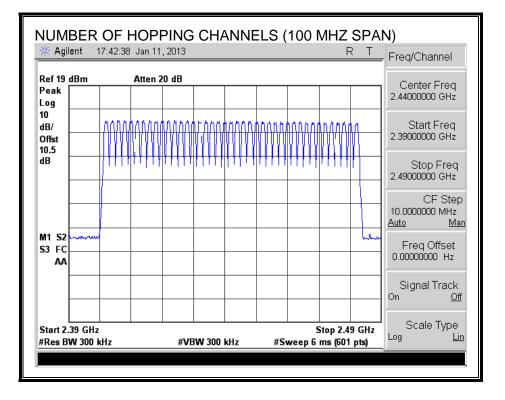
LIMIT

FCC §15.247 (a) (1) (iii)

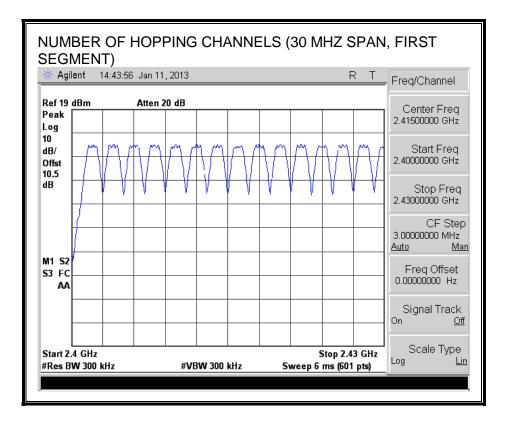
IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

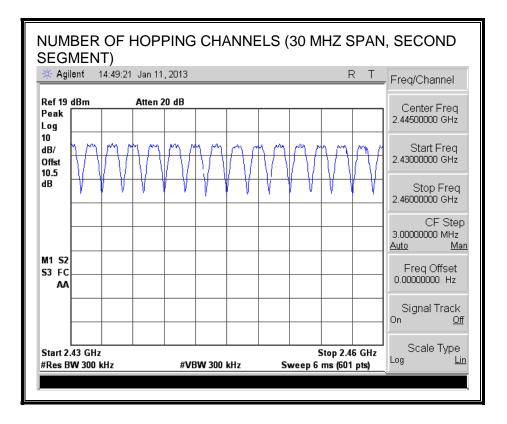
TEST PROCEDURE

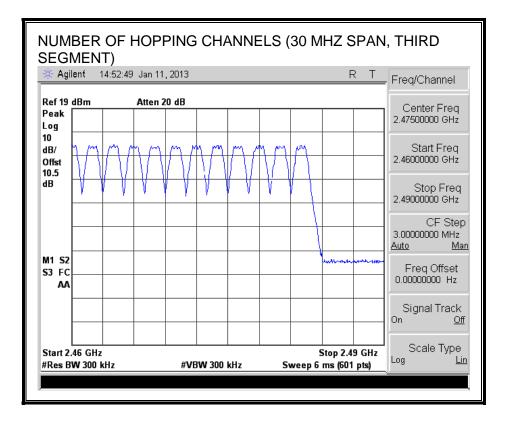

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

<u>RESULTS</u>


Normal Mode: 41 Channels observed.

Page 21 of 68


NUMBER OF HOPPING CHANNELS


Page 22 of 68

Page 23 of 68

Page 24 of 68

Page 25 of 68

8.1.4. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

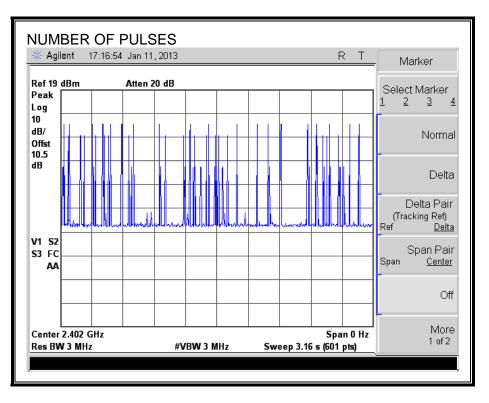
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 16.4 second period (41 channels * 0.4 s) is equal to 10 * (# of pulses in 1.64 s) * pulse width.

<u>RESULTS</u>

Pulse	Number of	Average Time	Limit	Margin
Width	Pulses in	of Occupancy		-
(msec)	1.64	(sec)	(sec)	(sec)
, ,	seconds		. ,	· · ·
0.3976	10	0.040	0.4	-0.360

Page 26 of 68


PULSE WIDTH

🔆 Agil	SE WIDT ent 16:08:5	57 Jan 11	, 2013					F	<u> </u>	Trac	e/Viev	N
Ref 12.	5 dBm	Atten 1	5 dB				Mkr1	Δ 397. 0.48	6µs ЗdB			
Peak Log		1	R				L >			1	2 1r	ace <u>3</u>
10 dB/ Offst 10.5										C	Clear V	Vrite
dB											Max	Hold
I - I	-Mound-ontaine	verponner					wheeling	mun	politiquestasses		Min	Hold
V1 S2 S3 VC AA											١	View
											B	lank
Center Res BW	2.445 GHz / 3 MHz		#\	/BW/3 N	 AHz	Swe	ep 990	Spa دىد (601	n O Hz ots)			∕lore of 2

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 27 of 68

NUMBER OF PULSES IN 1.64 SECOND OBSERVATION PERIOD

Time per grid is 0.316s. Therefore, 5.2 grids would represent 1.64 seconds. Only pulses within the 5.2 grids were counted.

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 28 of 68

OUTPUT POWER

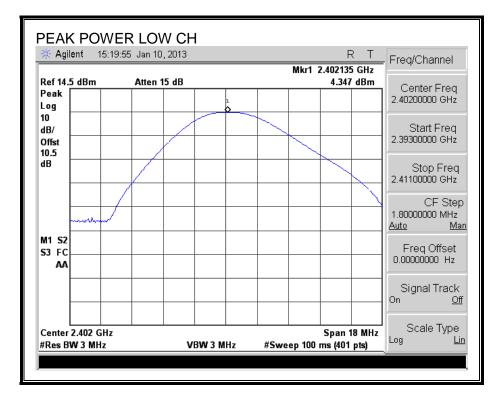
<u>LIMIT</u>

§15.247 (b) (2)

RSS-210 Issue 7 Clause A8.4

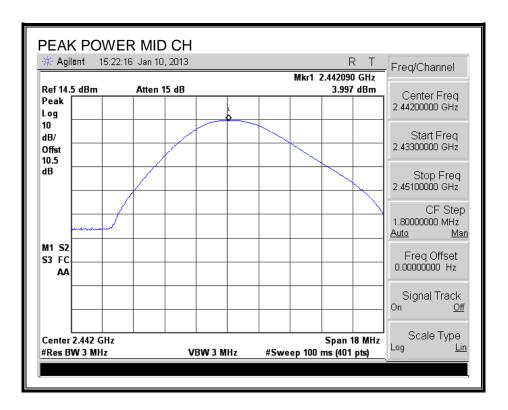
The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

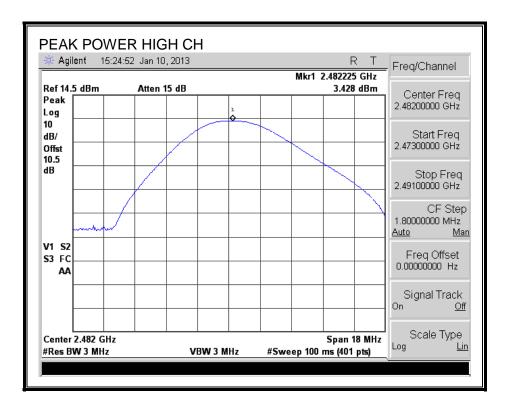

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	2402	4.35	21	-16.65	
Middle	2442	4.00	21	-17.00	
High	2482	3.43	21	-17.57	


Page 29 of 68

OUTPUT POWER



UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 30 of 68

Page 31 of 68

Page 32 of 68

8.1.5. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power		
	(MHz)	(dBm)		
Low	2402	4.10		
Middle	2442	3.75		
High	2482	3.18		

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 33 of 68

8.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

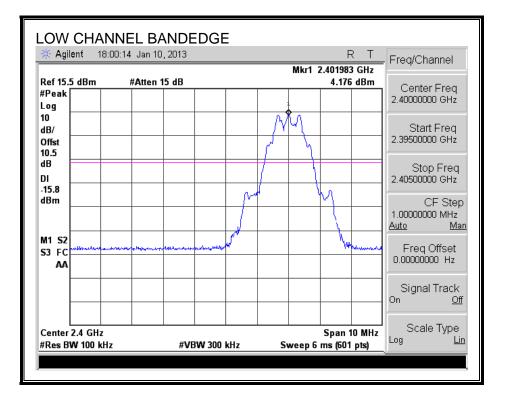
IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

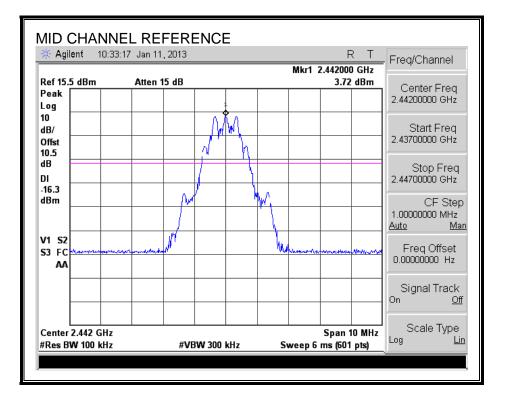

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 34 of 68

SPURIOUS EMISSIONS, LOW CHANNEL

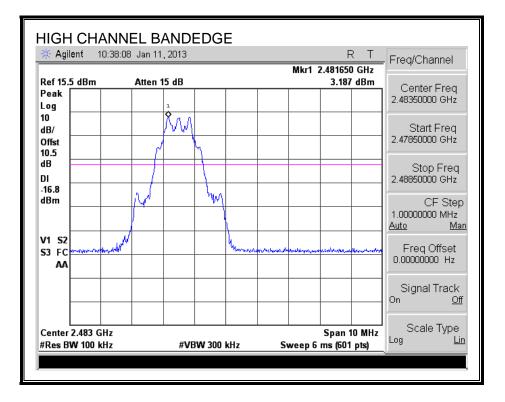


Page 35 of 68

🔆 Agilen	t 11:23:1	2 Jan 11, 2013	3		R T	Freq/Channel	
Ref 15.5 d Peak	IBm	Atten 15 dB			kr1 2.97 GHz _45.12 dBm	Center Freq 13.0150000 GHz	
Log 10 dB/ Offst						Start Freq 30.000000 MHz	
10.5 dB DI		-	dankara akagkara dankara atala		and a second	Stop Freq 26.000000 GHz	
						CF Step 2.59700000 GHz <u>Auto Ma</u>	
Start 30 MHz /Res BW 100 kHz Marker Trace		# Type			Stop 26 GHz Sweep 2.691 s (601 pts) Amplitude		
1	(1)	Freq	2.97 GHz		45.12 dBm	0.00000000 Hz Signal Track On <u>Of</u> Scale Type Log <u>Li</u>	

Page 36 of 68

SPURIOUS EMISSIONS, MID CHANNEL


UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

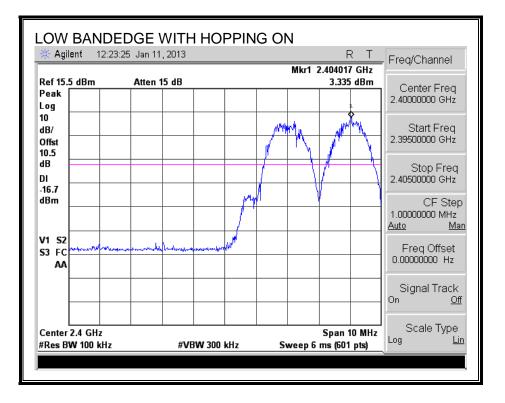
Page 37 of 68

🔆 Agilent	t 11:16:4	1 Jan 11, 20	13	R T Mkr2 7.34 GHz	Freq/Channel
Ref 15.5 d Peak Log	Bm	Atten 15 d	B	46.12 dBm	Center Freq 13.0150000 GHz
10		1			Start Freq 30.0000000 MHz
dB DI				with the second s	Stop Freq 26.000000 GHz
dBm		*			CF Step - 2.59700000 GHz <u>Auto Ma</u>
Start 30 M #Res BW	100 kHz		#VBW 300 kHz	Stop 26 GHz Sweep 2.691 s (601 pts)	Freq Offset
Marker 1	Trace (1)	Type Freq	X Axis 4.88 GHz	Amplitude -35 dBm	0.0000000 Hz
2	ä	Freq	7.34 GHz	-46.12 dBm	Signal Track On <u>Ot</u>
					Scale Type Log <u>Li</u>

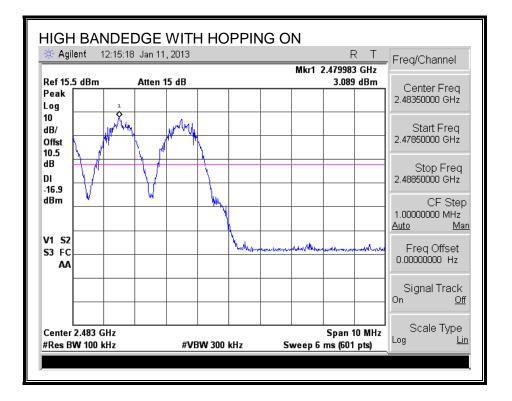
Page 38 of 68

SPURIOUS EMISSIONS, HIGH CHANNEL

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 39 of 68

🔆 Agilent	: 11:01:0	02 Jan 11, 2	013			M	⊦ kr2 7.4	₹ T 3 GHz	. Ma	rker
Ref 15.5 d	Bm	Atten 15	dB				-45.24	dBm	Select	Marker
Peak Log									1 <u>2</u>	3 4
10									r	
dB/										Norma
Offst	_	1								
10.5 dB		2							-	
	and theme			da						Delta
-16.8		-				******				
dBm –									_	elta Pair
									(Tracl Ref	king Ref) Delta
Start 30 M	Hz						Stop 2	G GHz	Rei	Della
#Res BW '			#VBW 300	kHz	Swee	p 2.691	s (601		S	pan Pair
Marker	Trace	Туре		Axis			Amplitu		Span	<u>Center</u>
1 2	(1) (1)	Freq Freq		96 GHz 43 GHz			34.37 dB 45.24 dB		ŕ	
	.,									Off
										More
										1 of 2


UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 40 of 68

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 41 of 68

Page 42 of 68

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

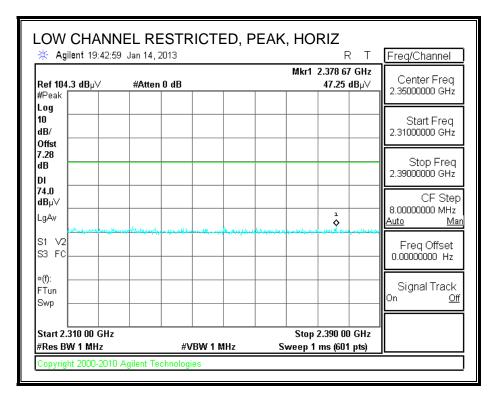
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

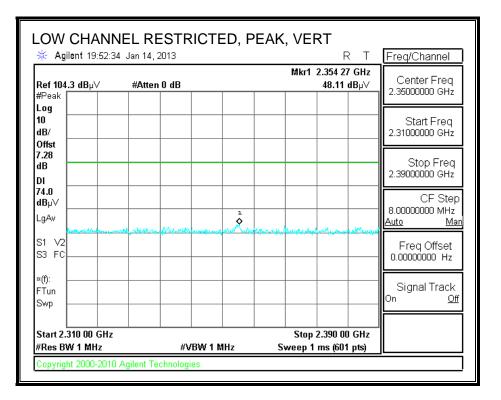
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 43 of 68

9.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

AVERAGE FIELD STRENGTH CALCULATION:

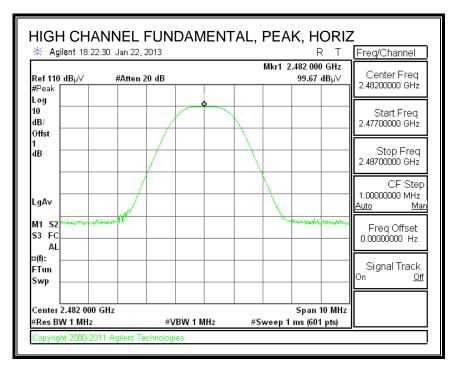

AVG Field Strength = Peak Reading – Duty Cycle Correction Factor

- = 47.25 dBuV 14.45 dBuV
- = 32.80dBuV
- AVG Margin = AVE Reading AVE Power Limit = 32.80 dBuV – 54 dBuV = -21.20 dBuV

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 44 of 68

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


AVERAGE FIELD STRENGTH CALCULATION:

- AVG Field Strength = Peak Reading Duty Cycle Correction Factor
 - = 48.11 dBuV 14.45 dBuV
 - = 33.66dBuV
- AVG Margin = AVE Reading AVE Power Limit = 33.66 dBuV – 54 dBuV = -20.34 dBuV

Page 45 of 68

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL) (Marker Delta Method)

Fundamental Peak Power = 99.67dBuV

Page 46 of 68

Delta from Marker Peak to Highest Marker in Restricted Band = 42.75dB

🔆 Ag	ilent 18	:20:58	Jan 22, 2	2013						Т	Freq/Channel
Ref 110 #Peak	dBµ∨	;	#Atten 2	0 dB		1		Mkr1 2	.482 000 (99.48 df		Center Freq 2.48200000 GHz
Log 10 dB/					~^5	₩ \ \ \ \					Start Freq 2.47700000 GHz
Offst 1 dB				ſ	/		v ₹				Stop Freq 2.48700000 GHz
LgAv	~	a Herridania.	es and	<i>s</i>			v	munul	~~~~~		CF Step 1.0000000 MHz Auto Mar
ا Center #Res B\			1	#VB	W 300	kHz	#S	weep 1	Span 10 ms (601 p		Freq Offset
Marker 1 2		race (1) (1)	Type Freq Freq		X 2.482 00 2.483 50				Amplitude 99.48 dBµV 56.73 dBµV	2	Signal Track On <u>Off</u>

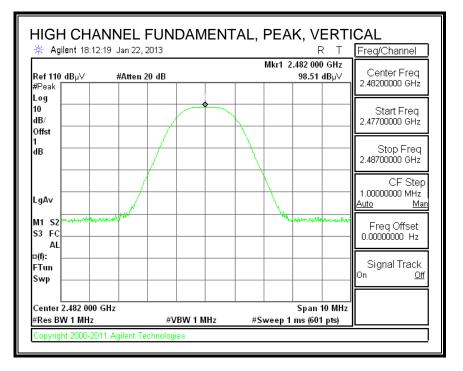
CALCULATION

_ Peak Reading = Fundamental Peak Field Strength - Delta

_Peak Margin = Peak Reading - 74

			Fundar (dBu)		Reading (dBuV/m		Limit (dBuV/m)		Margin (dBuV/m)
	Delta (dB)	Horn Antenna	Peak	AVG	Peak	AVG	Peak	AVG	Peak	AVG
High Ch, 2482MHz	42.75	Horizontal	99.67	N/A	56.92	42.47	74	54	-17.08	-11.53

AVERAGE FIELD STRENGTH CALCULATION:


AVG Field Strength	= Peak Reading – Duty Cycle Correction Factor
	= 56.92 dBuV – 14.45 dBuV
	= 42.47 dBuV

AVG Margin = AVE Reading – AVE Power Limit = 42.47 dBuV - 54 dBuV= -11.53 dBuV

Page 47 of 68

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Fundamental Peak Power = 98.51dBuV

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 48 of 68

Delta from Marker Peak to Highest Marker in Restricted Band = 43.44

Log 10 dB/ Offst 1 dB LgAv Center 2.482 000 GHz #Res BW 100 kHz 1 (1) Freq 2.482 000 GHz 2 (1) Freq 2.483 500 GHz Belta Pair (Tracking Ref) Ref Span 10 MHz #Sweep 1 ms (601 pts) Matker Trace Type XAvis Amplitude 98.42 dBµV 2 (1) Freq 2.483 500 GHz Span 2 Genter Span 0 GHZ Span 0 GHZ	X Ayne	nt 18:08:44	Jan 22, 2	2013						RТ		arker
#Peak 1 2 3 2 Log 10 1 2 3 2 10 dB/ 0 1 1 0 0ffst 1 1 0 0 0 1 dB 0 0 0 0 1 dB 0 0 0 0 1 dB 0 0 0 0 LgAv 0 0 0 0 0 Center 2.482 000 GHz #VBW 300 kHz #Span 10 MHz Ref Amplitude #Res BW 100 kHz #VBW 300 kHz #Sweep 1 ms (601 pts) Span Span Maker Trace Type XAvis Amplitude Span 2 (1) Freq 2.483 500 GHz 96.42 dBµV Off 2 (1) Freq 2.483 500 GHz 54.98 dBµV Off	Ref 110 d	Bµ∨	#Atten 2	20 dB				Mkr2 2				
10 10 10 10 10 10 10 10 10 10	#Peak 🗌					i					1 2	3 4
dB/ Offst 1 dB Image: Constraint of the second se					N	M					-	
00/ Offst 1 00/ Offst 00/ Delta 1 00/ Offst 00/ Delta 1 00/ Delta 00/ B 00/ Delta <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td>Norma</td></t<>					1	5						Norma
1 dB Image: Constraint of the second sec					1	\vdash						nonna
LgAv LgAv LgAv LgAv LgAv LgAv LgAv LgAv	Offst				/						-	
LgAv LgAv LgAv LgAv LgAv LgAv LgAv LgAv				$\vdash \! \wedge$			- V 2					
LgAv LgAv LgAv LgAv LgAv LgAv LgAv LgAv	°Р _						Y.					Delta
LgAv LgAv LgAv LgAv LgAv LgAv LgAv LgAv				1								
LgAv LgAv LgAv LgAv LgAv LgAv LgAv LgAv	~	man	al care and					maran		a name	Г	Delta Pair
LgAV Center 2.482 000 GHz #Res BW 100 kHz #Res BW 100 kHz #VBW 300 kHz 1 (1) Freq 2 (1) Freq 2.483 500 6Hz Bester 4.98 dBµV Center Span 10 MHz Span 2 Span 2 Sp												
#Res BW 100 kHz #VBW 300 kHz #Sweep 1 ms (601 pts) Marker Trace Type X Axis Amplitude 1 (1) Freq 2.482 000 GHz 98.42 dBµV 2 (1) Freq 2.483 500 GHz 54.98 dBµV Off More	LgAv ⊨											
#Res BW 100 kHz #VBW 300 kHz #Sweep 1 ms (601 pts) Marker Trace Type X Axis Amplitude 1 (1) Freq 2.482 000 GHz 98.42 dBµV 2 (1) Freq 2.483 500 GHz 54.98 dBµV Off More	Center 2	182 000 GHz							Snan	10 MHz	<u> </u>	
Marker Trace Type X Axis Amplitude Span <u>Center</u> 1 (1) Freq 2.482 000 GHz 98.42 dBµV 2 (1) Freq 2.483 500 GHz 54.98 dBµV Off Моге				#VE	SW 300	kH7	#5	waan 1				
1 (1) Freq 2.482.000 GHz 98.42 dBµV 2 (1) Freq 2.483.500 GHz 54.98 dBµV Off More			Type					neep i	<u> </u>	• <u> </u>	Span	<u>Center</u>
Off 								1				
More	2	(1)	Freq		2.483 50	00 GHz			54.98 dB	μv		~ ~ ~
												ΟΠ
												IVIORE 1 of 2

CALCULATION

_ Peak Reading = Fundamental Peak Field Strength - Delta

_Peak Margin = Peak Reading - 74

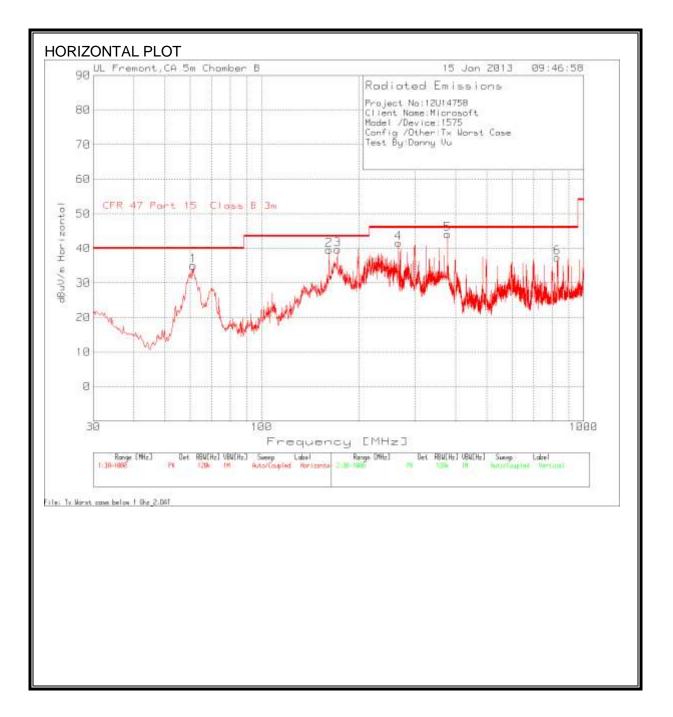
				Fundamental (dBuV/m)		Reading (dBuV/m)		BuV/m)	Margin (dBuV/m)
	Delta (dB)	Horn Antenna	Peak	AVG	Peak	AVG	Peak	AVG	Peak	AVG
High Ch, 2482MHz	43.44	Vertical	98.51	N/A	55.07	41.82	74	54	-18.93	-12.18

AVERAGE FIELD STRENGTH CALCULATION:

AVG Field Strength	= Peak Reading – Duty Cycle Correction Factor
-	= 55.07 dBuV – 14.45 dBuV
	= 40.62 dBuV

AVG Margin = AVE Reading – AVE Power Limit = 40.62 dBuV - 54 dBuV= -13.38 dBuV

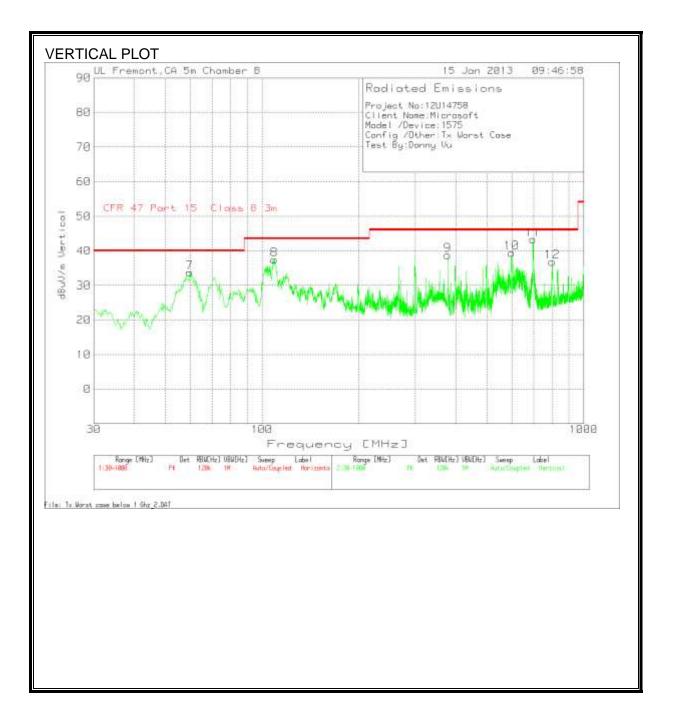
Page 49 of 68


HARMONICS AND SPURIOUS EMISSIONS

Complia			/ Measurem Services, Fr		3m Ch	amber										
Compan			Microsoft													
Project	#:		12U14758													
Date :			1/29/2013													
	gineer:		Danny Vu													
Configu	ration:		EUT and Lapte	ор												
Aode:			Tx													
est Eq	uipmen	<u>t:</u>														
н	orn 1-	18GHz	Pre-ar	nplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	Но	orn > 180	iHz		Limit	
T60; S	S/N: 223	8 @3m		P 8449B		•				-				-	FCC 15.205	-
- Hi Fred	quency Cal	oles								 						
3' (cable 2	2807700	12' c	able 2	28076	500	20' ca	ble 22	807500		HPF	Re	ject Filte	r	<u>x Measurements</u> W=VBW=1MHz	
3' c	able 22	807700	12' ca	ble 228	07600	•	20' cab							ge Measuremen 1MHz ; VBW=10		
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes	
GHz	(m)	dBuV	dBuV	dB/m	-	dB	dB	dB	dBuV/m		dBuV/m	dBuV/m	dB	dB	(V/H)	
	mel 2402		- upur	<u></u>									(1/22)			
.804	3.0	39.9	31.9	33.1	6.8	-34.1	0.0	0.0	45.7	37.7	74	54	-28.3	-16.3	Н	
.804	3.0	41.1	31.4	33.1	6.8	-34.1	0.0	0.0	46.9	37.2	74	54	-27.1	-16.8	V	
	nnel 2442															
.884	3.0	40.2	32.2	33.2	6.8	-34.0	0.0	0.0	46.1	38.2	74	54	-27.9	-15.8	H	
.326	3.0	42.1	36.8	36.3	9.1	-33.1	0.0	0.0	54.4	49.1	74	54	-19.6	-4.9	H	
.884 .326	3.0	40.8 39.4	33.0 32.0	33.2 36.3	6.8 9.1	-34.0 -33.1	0.0	0.0	46.7 51.7	38.9 44.3	74 74	54 54	-27.3 -22.3	-15.1 -9.7	<u>v</u>	
	nnel 248		52.0	- 30.5	7.1	-33.1	+ 0.0	0.0	51.7		/-		-22.3	-7.1	•	
.964	3.0	45.8	42.4	33.2	6.9	-34.0	0.0	0.0	51.9	48.5	74	54	-22.1	-5.5	Н	
.446	3.0	42.4	36.2	36.5	9.1	-33.0	0.0	0.0	54.9	48.7	74	54	-19.1	-5.3	Н	
.964	3.0	43.6	38.9	33.2	6.9	-34.0	0.0	0.0	49.7	44.9	74	54	-24.3	-9.1	v	
116	3.0	38.2	34.3	36.5	9.1	-33.0	0.0	0.0	50.7	46.8	74	54	-23.3	-7.2	V	
7 .446 Rev. 11.10	0.11 f Dist	Measurem Distance to	ent Frequency Antenna	y		Amp D Corr	Preamp (Distance		ct to 3 mete	ers		0		ield Strengtl Strength Li		

Page 50 of 68

9.3. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 51 of 68

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 52 of 68

HORIZONTAL AND VERTICAL DATA

		I								
Project No		12U14758								
Client Na		Microsoft								
Model /D		1575								
Config /O	ther:	Tx Worst Case								
Test By:		Danny Vu								
Horizonta	I 30 - 1000M	IHz								
Marker	Test	Meter		T122	5mB Amp		CFR 47		Height	
No.	Frequency	Reading	Detector	Sunol	Path 30-	dBuV/m	Part 15	Margin	[cm]	Polarity
				0	1000MHz		Class B			
1	61.4029	56.4	PK	7.5	-28.9	35	40	-5	300	Horz
2	161.8145	55.1	PK	12.4	-27.9	39.6	43.5	-3.9	200	Horz
3	171.8945	55.78	PK	11.7	-27.8	39.68	43.5	-3.82	200	Horz
4	266.1031	55.67	PK	12.9	-27	41.57	46	-4.43	100	Horz
5	377.9516	55.93	PK	15	-26.8	44.13	46	-1.87	100	Horz
6	828.4472	41.07	PK	21.6	-25.3	37.37	46	-8.63	100	Horz
Vertical 3	0 - 1000MHz								-	
				T122	5mB Amp		CFR 47			
Marker	Test	Meter		Sunol	Path 30-		Part 15		Height	
No.	Frequency	-		Bilog.TXT			Class B	Margin	[cm]	Polarity
7	59.6583	55.36	PK	7.4	-29	33.76	40	-6.24	100	Vert
8	109.2826	53.35	РК	12.6	-28.5	37.45	43.5	-6.05	100	Vert
9	377.9516	50.6	PK	15	-26.8	38.8	46	-7.2	100	Vert
10	597.9656	47.67	PK	18.4	-26.6	39.47	46	-6.53	100	Vert
11	696.0512	49.39	PK	20.1	-26.2	43.29	46	-2.71	100	Vert
12	798.2074	40.93	PK	21.3	-25.4	36.83	46	-9.17	100	Vert
PK - Peak										
	i-Peak dete									
Av - Aver	age detecto	r]						

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 54 of 68

RESULTS

WORST EMISSIONS

Project No:12U14758
Client Name:Microsoft
Model/Device:1575
Test Volt/Freq:120VAC/60 Hz
Test By:Danny Vu

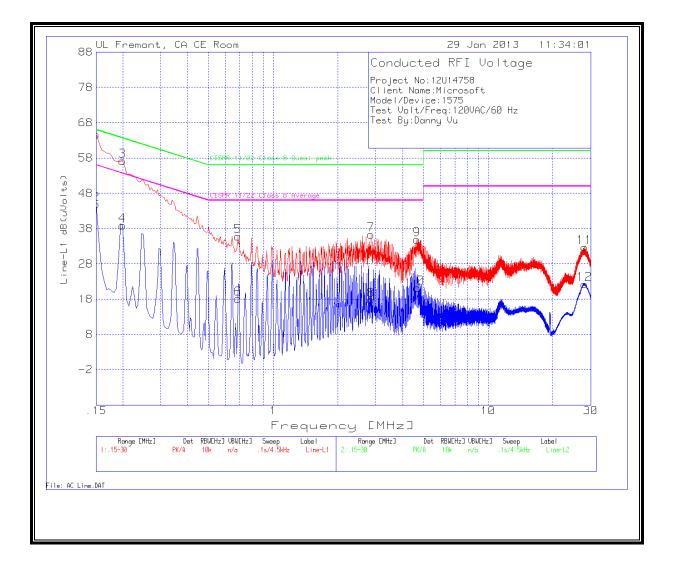
Line 1, 0.15 - 30MHz

Test Frequency (MHz)	Meter Reading dB(uV)	Detector	LISN Factor (dB)	Cable Loss (dB)	Corrected Reading dB(uV)	Quasi-peak Limit dB(uV)	Margin	Average Limit dB(uV)	Margin (dB)
0.15	64.55	РК	0.1	0	64.65	66	-1.35	-	-
0.15	44.89	Av	0.1	0	44.99	-	-	56	-11.01
0.1995	57.05	РК	0.1	0	57.15	63.6	-6.45	-	-
0.1995	38.72	Av	0.1	0	38.82	-	-	53.6	-14.78
0.6855	35.7	РК	0.1	0	35.8	56	-20.2	-	-
0.6855	18.06	Av	0.1	0	18.16	-	-	46	-27.84
2.85	36.09	РК	0.1	0.1	36.29	56	-19.71	-	-
2.85	17.6	Av	0.1	0.1	17.8	-	-	46	-28.2
4.668	34.65	РК	0.1	0.1	34.85	56	-21.15	-	-
4.668	21.04	Av	0.1	0.1	21.24	-	-	46	-24.76
28.095	31.95	РК	0.5	0.3	32.75	60	-27.25	-	-
28.095	21.4	Av	0.5	0.3	22.2	-	-	50	-27.8

Line 2, 0.15 - 30MHz

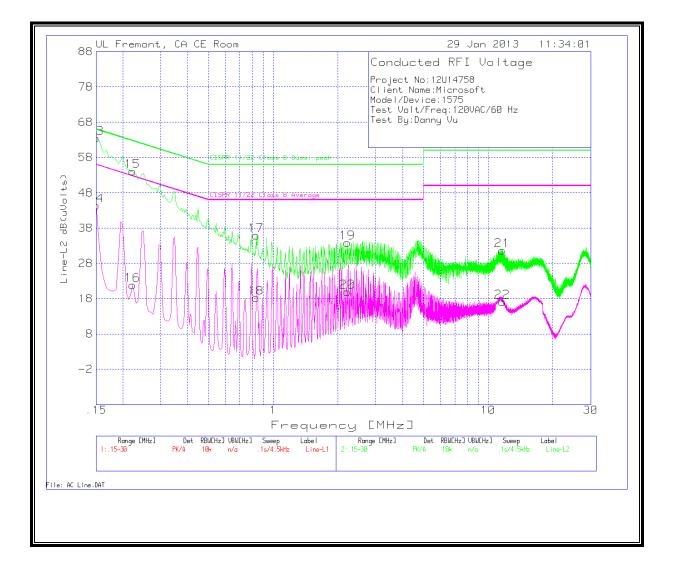
Test Frequency (MHz)	Meter Reading dB(uV)	Detector	LISN Factor (dB)	Cable Loss (dB)	Corrected Reading dB(uV)	Quasi-peak Limit dB(uV)	Margin	Average Limit dB(uV)	Margin (dB)
0.15	63.37	РК	0.1	0	63.47	66	-2.53	-	-
0.15	44.26	Av	0.1	0	44.36	-	-	56	-11.64
0.222	54.01	РК	0.1	0	54.11	62.7	-8.59	-	-
0.222	21.75	Av	0.1	0	21.85	-	-	52.7	-30.85
0.834	35.81	РК	0.1	0	35.91	56	-20.09	-	-
0.834	18.09	Av	0.1	0	18.19	-	-	46	-27.81
2.211	33.68	РК	0.1	0.1	33.88	56	-22.12	-	-
2.211	19.76	Av	0.1	0.1	19.96	-	-	46	-26.04
11.6115	31.27	РК	0.2	0.2	31.67	60	-28.33	-	-
11.6115	16.66	Av	0.2	0.2	17.06	-	-	50	-32.94

PK - Peak detector


QP - Quasi-Peak detector

LnAv - Linear Average detector

LgAv - Log Average detector


Av - Average detector

LINE 1 RESULTS

Page 56 of 68

LINE 2 RESULTS

Page 57 of 68

11. MAXIMUM PERMISSIBLE RF EXPOSURE

11.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300	6 6 6
1500–100,000			5	é
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz
 * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
 Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

Page 58 of 68

11.2. IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Exposure Limits posed Workers (I				owave Ex-
1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000-300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

Table 5

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m^2 is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (µT) or 12.57 milligauss (mG).

Page 59 of 68

11.3. EQUATIONS

POWER DENSITY

Power density is given by:

S = EIRP / (4 * Pi * D^2)

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

Page 60 of 68

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

Page 61 of 68

11.4. LIMITS AND IC EXEMPTION

VARIABLE LIMITS

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency:

824 MHz / 1500 = 0.55 mW/cm² (FCC) 824 MHz / 150 = 5.5 W/m² (IC).

FIXED LIMITS

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2 From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

•below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W;

•at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.

Page 62 of 68

RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

Single Chai	Single Chain and non-colocated transmitters										
Band	Mode	Separation	Output	Antenna	Duty	EIRP	FCC Power IC Pow				
		Distance	Power	Gain	Cycle		Density	Density			
		(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)			
2.4 GHz	FHSS	20	4.10	4.80	100.0	7.8	0.002	0.02			

Multiple cha	Multiple chain or colocated transmitters										
Band	Mode	Chain	Separation	Output		Duty	EIRP		IC Power		
		for	Distance	Power	Gain	Cycle		Density	Density		
		MIMO	(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)		
2.4 GHz	FHSS	N/A		4.10	4.80	100.0	7.8				
2.4 GHz	WLAN (C3K1398)	1		24.91	2.00	100.0	490.9				
C	Combined		20				503.7	0.100	1.00		

The device operates above 1.5 GHz with a maximum EIRP less than or equal to 5 Watts as a mobile device with a minimum separation distance of 20 cm, therefore it is exempt from routine RF Exposure Evaluation under RSS-102.

Page 63 of 68