

FCC 47 CFR Parts 1 & 2 Published RF Exposure KDB Procedures IEEE 1528-2013

SAR EVALUATION REPORT

For **Portable Computing Device**

Model: 1573 FCC ID: C3K1573

Report Number: 13U15414-17 Issue Date: 1/17/2014

Prepared for Microsoft Corporation One Microsoft Way Redmond, WA 98052 United States

Prepared by UL Verification Services Inc. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	1/17/2014	Initial Issue	

Page 2 of 143

Table of Contents

1.	A	Attestation of Test Results				
2.	Test Methodology7					
3.	Facilities and Accreditation7					
4.	С	Calibration and Uncertainty	8			
	4.1.	-				
	4.2	-				
5.		Measurement System Description and Setup				
6.		SAR Measurement Procedure				
	6.1.					
	6.2	2. Volume Scan Procedures	12			
7.	D	Device Under Test	13			
	7.1	. General Information	13			
	7.2	Wireless Technologies	13			
	7.3	8. Simultaneous Transmission Condition	14			
	7.4	. General LTE SAR Test and Reporting Considerations	15			
	7.5	. Output Power Tune-up Limit	16			
	7.6	Power Reduction by Proximity Sensing	17			
	7	7.6.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)	17			
	7	7.6.2. Proximity Sensor Triggering Distance Measurement Results	18			
	7	7.6.3. Proximity Sensor Coverage (KDB 616217 §6.3)	26			
	7	7.6.4. Proximity Sensor Coverage Measurement Results	33			
	7	7.6.5. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)	35			
8.	R	RF Exposure Conditions	36			
	8.1	. Standalone SAR Test Exclusion Considerations	56			
	8.2	2. Required Test Configurations	<u> 5</u> 9			
	8.3	Additional Test Scenarios	<u> </u>			
9.	R	RF Output Power Measurement	70			
	9.1	GSM	70			
	9.2	2. W-CDMA	72			
	9.3	. LTE	76			
10)_	Tissue Dielectric Properties	34			
	10.	1. Composition of Ingredients for the Tissue Material Used in the SAR Tests	35			
		Page 3 of 143				
UL	. ve	erification Services Inc. FORM NO: CCSUP4031	ى			

10.2	Tissue Dielectric Parameter Check Results	
11.	System Performance Check	
11.1	System Performance Check Measurement Conditions	89
11.2	Reference SAR Values for System Performance Check	89
11.3	System Performance Check Results	
12.	SAR Test Results	
12.1	GSM850	
12.2	GSM1900	
12.3	W-CDMA Band V	
12.4	W-CDMA Band II	
12.5	LTE Band 2 (BW=20 MHz)	
12.6	LTE Band 4 (BW=20 MHz)	
12.7	LTE Band 5 (BW=10 MHz)	
12.8	LTE Band 17 (BW=10 MHz)	
13.	SAR Measurement Variability	
13.1	The Highest Measured SAR Configuration in Each Frequency Band	
13.2	Repeated Measurement Results	
14.	Simultaneous Transmission SAR Analysis	105
14.1	Estimated SAR for Simultaneous Transmission SAR Analysis	
14	.1.1. Estimated SAR for WWAN	106
14.2	Sum of the SAR for GSM850, Wi-Fi, and BT	107
14.3	Sum of the SAR for GSM1900, Wi-Fi, and BT	110
14.4	Sum of the SAR for W-CDMA Band V, Wi-Fi, and BT	115
14.5	Sum of the SAR for W-CDMA Band II, Wi-Fi, and BT	118
14.6	Sum of the SAR for LTE Band 2, Wi-Fi, and BT	123
14.7	Sum of the SAR for LTE Band 4, Wi-Fi, and BT	
14.8	Sum of the SAR for LTE Band 5, Wi-Fi, and BT	
14.9	Sum of the SAR for LTE Band 17, Wi-Fi, and BT	
15.	Appendixes	143
15.1	DUT and SAR setup Photos	143
15.2	System Performance Check Plots	143
15.3	Highest SAR Test Plots	
15.4	Calibration Certificate for E-Field Probe EX3DV4 - SN 3773	
15.5	Calibration Certificate for E-Field Probe EX3DV4 - SN 3902	143
15.6	Calibration Certificate for D750V3 - SN 1019	
	Page 4 of 143	

15.7.	Calibration Certificate for D835V2 - SN 4d117	143
15.8.	Calibration Certificate for D1750V2- SN 1050	143
15.9.	Calibration Certificate for D1900V2- SN 5d140	143

Page 5 of 143

1. Attestation of Test Results

Applicant	Microsoft Corporation			
DUT description	Portable Computing Device			
Model	1573			
Test device is	An identical prototype			
Device category	Portable	Portable		
Exposure category	General Population/Uncontrolled Exposure			
Date tested	10/23/2013 – 12/16/2013			
The highest	RF exposure condition	Licensed	DTS	UNII
reported SAR values	Standalone	<mark>1.440</mark> W/kg	<mark>N/A</mark> W/kg	<mark>N/A</mark> W/kg
	Simultaneous Transmission	<mark>1.575</mark> W/kg	<mark>N/A</mark> W/kg	<mark>N/A</mark> W/kg
Applicable Standards	FCC 47 CFR Parts 1 & 2 Published RF Exposure KDB Procedures, and TCB workshop updates IEEE 1528-2013			
Test Results	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:

Dave Weaver WiSE Program Manager UL Verification Services Inc. Prepared By:

Ray Su WiSE Laboratory Engineer UL Verification Services Inc.

Page 6 of 143

2. Test Methodology

The tests documented in this report were performed in accordance with FCC 47 CFR Parts 1 & 2, IEEE 1528-2013, the following FCC Published RF exposure KDB procedures, and TCB workshop updates:

- o 447498 D01 General RF Exposure Guidance v05r01
- 616217 D04 SAR for Laptop and Tablets v01r01
- 941225 D01 SAR test for 3G devices v02
- o 941225 D02 HSPA and 1x Advanced v02r02
- o 941225 D03 SAR Test Reduction GSM GPRS EDGE v01
- 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01
- 941225 D05 SAR for LTE Devices v02r02
- 248227 D01 SAR Meas for 802 11abg v01r02
- 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01
- o 865664 D02 SAR Reporting v01r01
- o 690783 D01 SAR Listings on Grants v01r02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA.

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	
SAR Lab F	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 7 of 143

4. Calibration and Uncertainty

Measuring Instrument Calibration 4.1.

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Tissue Dielectric Properties

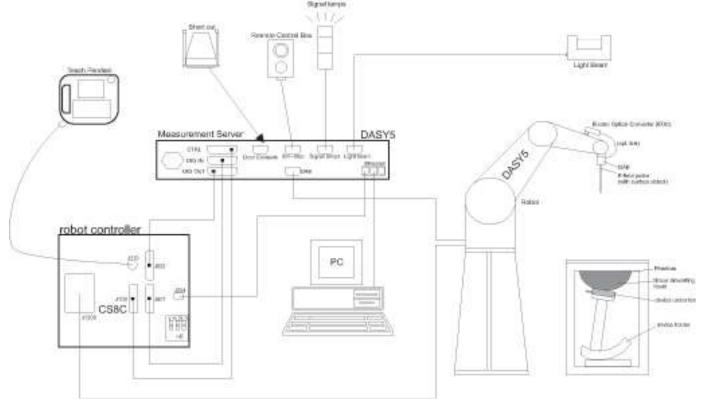
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40000980	2/20/2014
Dielectronic Probe kit	SPEAG	DAK-3.5	1103	2/5/2014
Thermometer	Control Company	4242	122529163	9/19/2014

System Performance Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	HP	8665B	3744A01084	5/7/2014
Power Meter	HP	437B	3125U12345	7/29/2014
Power Sensor	HP	8481A	1926A27048	7/29/2014
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1620606	N/A
Directional coupler	Werlatone	C8060-102	2141	N/A
DC Power Supply	AMETEK	XHR60-18	1318A00530	N/A
Thermometer	EXTECH	445703	T35480662	3/19/2014
Thermometer	EXTECH	445703	T35480666	3/19/2014
E-Field Probe	SPEAG	EX3DV4	3773	4/26/2014
E-Field Probe	SPEAG	EX3DV4	3902	7/12/2014
Data Acquisition Electronics	SPEAG	DAE4	1359	2/8/2014
Data Acquisition Electronics	SPEAG	DAE4	1377	7/15/2014
System Validation Dipole	SPEAG	D750V2	1019	3/5/2014
System Validation Dipole	SPEAG	D835V2	4d117	5/28/2014
System Validation Dipole	SPEAG	D1750V2	1050	5/20/2014
System Validation Dipole	SPEAG	D1900V2	5d140	4/18/2014

Others

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R & S	CMU200	106301	7/3/2014
Base Station Simulator	R & S	CMW500	139915-IG	6/1/2014
Base Station Simulator	R & S	CMW500	124593-SS	7/25/2014


4.2. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports submitted for equipment approval.

Page 8 of 143

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 9 of 143

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

Page 10 of 143

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

			\leq 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	blution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz} \le 5 \text{ mm}$ $4 - 6 \text{ GHz} \le 4 \text{ mm}$
	uniform	grid: Δz _{Zoom} (n)	\leq 5 mm	$\begin{array}{c} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	1 st two po	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm
	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

P1528-2011 for details.

When zoom scan is required and the reported SAR from the area scan based I-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Zdirection.

Page 11 of 143

6.2. Volume Scan Procedures

Step 1: Repeat Step 1-4 in Section 6.1

Step 2: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7. Device Under Test

7.1. General Information

WiFi Direct	 Wi-Fi Direct enabled devices transfer data directly between each other ☑ WiFi Direct WiFi 2.4 GHz (owner) ☑ WiFi Direct WiFi 5 GHz (client)
RF Exposure Condition(s)	Stand-alone
Device dimension	Overall (Length x Width): 274.7mm x 172.5mm
	Overall Diagonal: 319.5mm
	Display Diagonal: 271.5mm
Battery Options	Standard – Lithium-ion battery
	Extended (large capacity)

7.2. Wireless Technologies

Wireless Technology and	GSM: 850 / 1900
Frequency Bands	W-CDMA Band: II / V
	LTE Band 2/ 4 / 5 / 17
	WiFi: 2.4 / 5 GHz
	Bluetooth: 2.4 GHz.
Mode	GSM
	- 🛛 GPRS (GMSK)
	- 🛛 EGPRS (8PSK)
	W-CDMA
	- 🛛 UMTS Rel. 99
	- 🛛 HSDPA (Rel. 6)
	- 🛛 HSUPA (Rel. 6)
	- 🛛 HSPA+ (Rel. 7)
	LTE
	- 🛛 QPSK
	- 🛛 16QAM
	WiFi 2.4GHz
	- 🛛 802.11b
	- 🛛 802.11g
	- 🛛 802.11n (20MHz)
	WiFi 5GHz
	- 🛛 802.11a
	- 🛛 802.11n (20MHz)
	- 🛛 802.11n (40MHz)
	Bluetooth Ver. 3.0
Duty Cycle	GSM GPRS 1 Slot: 12.5%; 2 Slots: 25%, 3 Slots: 37.5%,4 Slots: 50%,
	W-CDMA: 100%
	LTE: 100%
	WiFi 802.11a/b/g/n: 100%
	Bluetooth: 77.52% (DH5)
GPRS Multi-Slot Class	
	Class 10 - Two Up
	🖾 Class 12 - Four Up

Page 13 of 143

7.3. Simultaneous Transmission Condition

RF Exposure Condition	Capable Transmit Configurations
Body (WWAN + Wi-Fi)	GSM + Wi-Fi / BT
	1. GSM 850/1900 + BT (WLAN Antenna B)
	2. GSM 850/1900 + 2.4GHz (WLAN Antenna A)
	3. GSM850/1900 + 5GHz (WLAN Antenna A)
	4. GSM 850/1900 + 2.4GHz (WLAN Antenna A) + BT (WLAN Antenna B)
	5. GSM850/1900 + 5GHz (WLAN Antenna A) + BT (WLAN Antenna B)
	W-CDMA + Wi-Fi / BT
	6. W-CDMA Band 2/5 + BT (WLAN Antenna B)
	7. W-CDMA Band 2/5 + 2.4GHz (WLAN Antenna A)
	8. W-CDMA Band 2/5 + 5GHz (WLAN Antenna A)
	9. W-CDMA Band 2/5 + 2.4GHz (WLAN Antenna A) + BT (WLAN Antenna B)
	10. W-CDMA Band 2/5 + 5GHz (WLAN Antenna A) + BT (WLAN Antenna B)
	LTE + Wi-Fi / BT
	11. LTE Band 2/4/5/17 + BT (WLAN Antenna B)
	12. LTE Band 2/4/5/17 + 2.4GHz (WLAN Antenna A)
	13. LTE Band 2/4/5/17 + 5GHz (WLAN Antenna A)
	14. LTE Band 2/4/5/17 + 2.4GHz (WLAN Antenna A) + BT (WLAN Antenna B)
	15. LTE Band 2/4/5/17 + 5GHz (WLAN Antenna A) + BT (WLAN Antenna B)
Body (WiFi)	SISO (1TX)
	16. 2.4GHz (WLAN Antenna A) + BT (WLAN Antenna B)
	17. 5GHz (WLAN Antenna A) + BT (WLAN Antenna B)
Refer to Appendix for ant	enna locations
Wi-Fi MIMO is supported	in all Wi-Fi bands, but is not possible during BT or WWAN transmission.

Page 14 of 143

7.4. General LTE SAR Test and Reporting Considerations

Item	Description							
Frequency range, Channel Bandwidth,	Bond 2			Channel	Bandwidth			
Numbers and Frequencies	Band 2	20 MHz	15 MHz	10 MHz	5 MHz	3	MHz	1.4 MHz
	Low	18700	18675/	18650/	18625/	18	3615/	18607/
		/1860	1857.5	1855	1852.5	18	351.5	1850.7
	Mid	18900/	18900/	18900/	18900/		8900/	18900/
		1880	1880	1880	1880		880	1880
	High	19100/	19125/	19150/	19175/		9185/	19193/
		1900	1902.5	1905	1907.5	19	908.5	1909.3
	Band 4				Bandwidth			
		20 MHz	15 MHz	10 MHz	5 MHz		MHz	1.4 MHz
	Low	20050/	20025/	20000/	19975/		9965/	19957/
		1720	1717.5	1715	1712.5		711.5	1710.7
	Mid	20175/	20175/	20175/	20175/		0175/	20175/
		1732.5	1732.5	1732.5	1732.5		732.5	1732.5
	High	20300/	20325/	20350/	20375/		0385/	20393/
		1745	1747.5	1750	1752.5	1	753.5	1754.3
	Band 5				Bandwidth			
		20 MHz	15 MHz	10 MHz	5 MHz		MHz	1.4 MHz
	Low			20450/	20425/		0415/	20407/
				829	826.5		25.5	824.7
	Mid			20525/	20525/		0525/	20525/
				836.5	836.5		36.5	836.5
	High			20600/	20625/		0635/	20643/
				844	846.5	8	47.5	848.3
	Band 17			1	Bandwidth			
		20 MHz	15 MHz	10 MHz	5 MHz		MHz	1.4 MHz
	Low				23755/			
	NA: -I			00700/	706.5			
	Mid			23790/	23790/			
	Llink			710	710			
	High				23825/ 713.5			
LTE transmitter and antenna implementation				E and other win TE and other v		•		
Maximum power reduction (MPR)	Та	ble 6.2.3-1: Ma	aximum Powe	er Reduction (M	IPR) for Pow	er Class	3	
	Modulatio	n Cha	nnel bandwid	h / Transmission	n bandwidth (l	RB)	MPR (d	B)
		1.4	3.0	5 10	15	20	1	
		MHz		MHz MHz	MHz	MHz		
	QPSK	>5	>4	>8 >12	> 16	> 18	≤1	
	16 QAM		54	≤8 ≤12	≤ 16	≤ 18 × 10	51	_
	16 QAM		>4	>8 >12	> 16	> 18	≤2	
	MPR Built-in A-MPR (add		vas disabled	during SAR tes	sting			
Power reduction	Yes, refer to	Section 7.6.						
Spectrum plots for RB configurations				ulator was used Illocation and o				

UL Verification Services Inc.

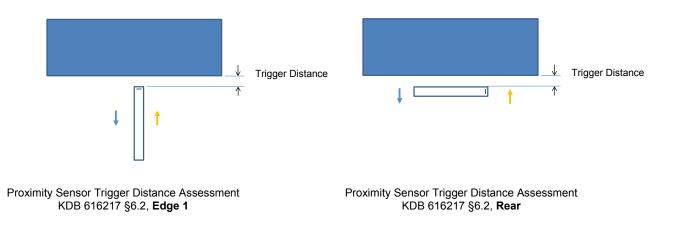
Page 15 of 143

7.5. Output Power Tune-up Limit

			Full Power (dBm)		With Power Reduction					
RF Air Interface	Mode	Lower Limit	Target	Upper Limit	Lower Limit	Target	Upper Limit			
Interface		Tolerance (dB) : -0.5	Power	Tolerance (dB): 0.5	Tolerance (dB) : -0.5	Power	Tolerance (dB): 0.5			
	GPRS 1 Slot	31.3	31.8	32.3	30.2	30.7	31.2			
	GPRS 2 Slots	28.3	28.8	29.3	27.1	27.6	28.1			
	GPRS 3 Slots	26.4	26.9	27.4	25.2	25.7	26.2			
GSM	GPRS 4 Slots	25.2	25.7	26.2	23.9	24.4	24.9			
850	EGPRS 1 Slot	25.8	26.3	26.8	24.8	25.3	25.8			
	EGPRS 2 Slots	22.7	23.2	23.7	21.7	22.2	22.7			
	EGPRS 3 Slots	20.8	21.3	21.8	19.9	20.4	20.9			
	EGPRS 4 Slots	19.7	20.2	20.7	18.5	19.0	19.5			
	GPRS 1 Slot	28.5	29.0	29.5	23.1	23.6	24.1			
	GPRS 2 Slots	25.5	26.0	26.5	20.0	20.5	21.0			
	GPRS 3 Slots	23.7	24.2	24.7	18.0	18.5	19.0			
GSM	GPRS 4 Slots	22.4	22.9	23.4	16.8	17.3	17.8			
1900	EGPRS 1 Slot	25.6	26.1	26.6	19.4	19.9	20.4			
	EGPRS 2 Slots	22.6	23.1	23.6	16.1	16.6	17.1			
	EGPRS 3 Slots	20.5	21.0	21.5	14.2	14.7	15.2			
	EGPRS 4 Slots	19.3	19.8	20.3	12.7	13.2	13.7			
W-CDMA Band V	Rel. 99	21.9	22.4	22.9	19.2	19.7	20.2			
W-CDMA Band II	Rel. 99	22.0	22.5	23.0	12.6	13.1	13.6			
LTE Band 2	QPSK 1 RB	22.1	22.6	23.5	13.1	13.6	14.1			
LTE Band 4	QPSK 1 RB	22.8	23.3	23.8	14.4	14.9	15.4			
LTE Band 5	QPSK 1 RB	22.2	22.7	23.2	19.3	19.8	20.3			
LTE Band 17	QPSK 1 RB	22.3	22.8	23.3	20.2	20.7	21.2			

Page 16 of 143

7.6. Power Reduction by Proximity Sensing


7.6.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

Edge 1 of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The measurement was then repeated for the Rear surface.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

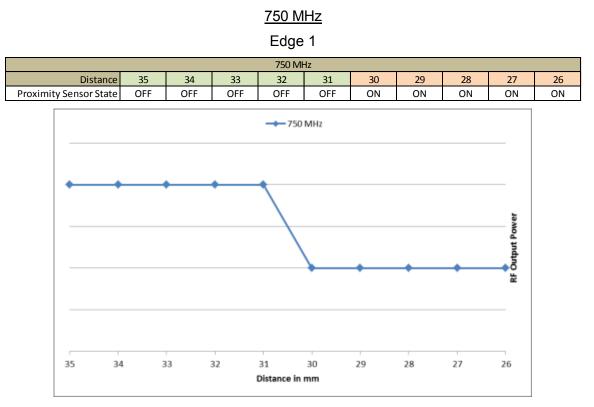
It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

LEGEND

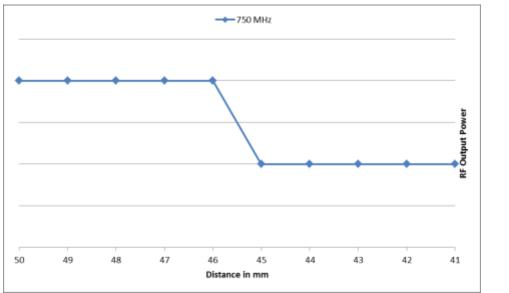
Direction of DUT travel for determination of power reduction triggering point

Direction of DUT travel for determination of full power resumption triggering point

Tissue	Trigger dista	nce - Edge 1	Trigger distance - Rear			
simulating liquid	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom		
750 muscle	30 mm	32 mm	45 mm	57 mm		
850 muscle	28 mm	37 mm	49 mm	53 mm		
1750 muscle	27 mm	36 mm	50 mm	55 mm		
1900 muscle	27 mm	34 mm	45 mm	50 mm		

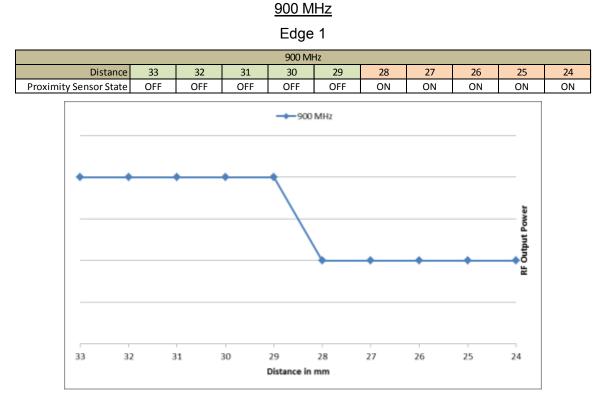

Summary of Trigger Distances

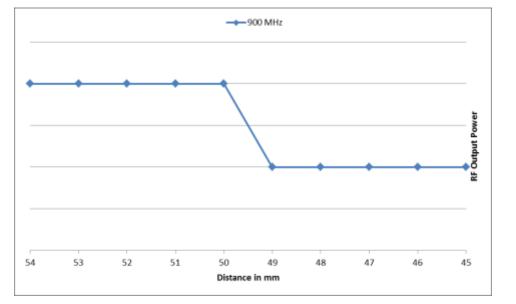
UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 17 of 143

7.6.2. Proximity Sensor Triggering Distance Measurement Results

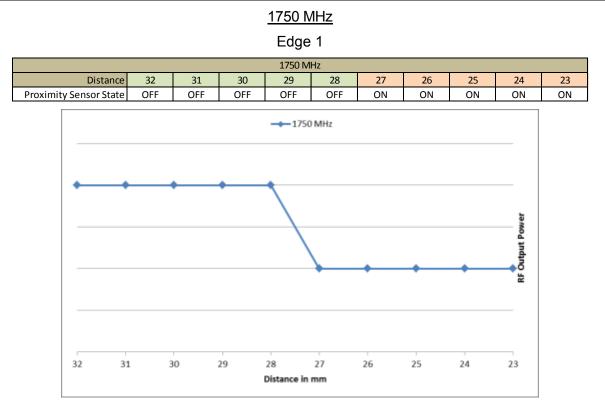
DUT Moving Toward the Phantom


750 MHz											
Distance	50	49	48	47	46	45	44	43	42	41	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	

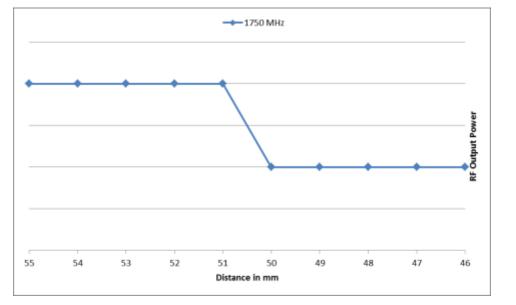

Page 18 of 143

UL Verification Services Inc.

FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

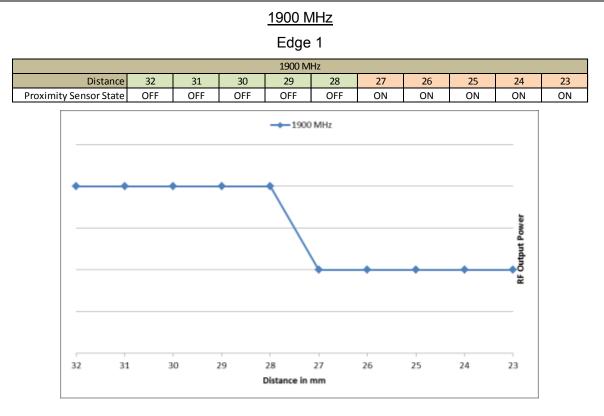


900 MHz											
Distance	54	53	52	51	50	49	48	47	46	45	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	

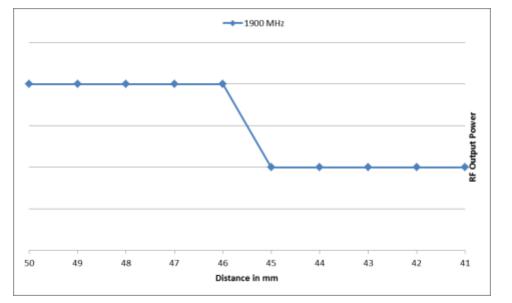


UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 143



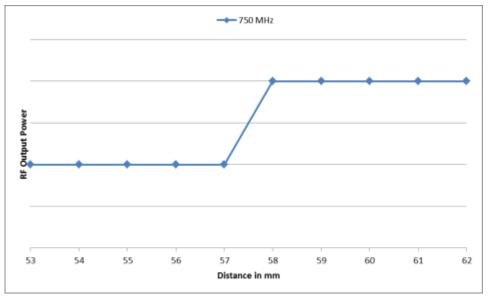
1750 MHz											
Distance	55	54	53	52	51	50	49	48	47	46	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	



UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

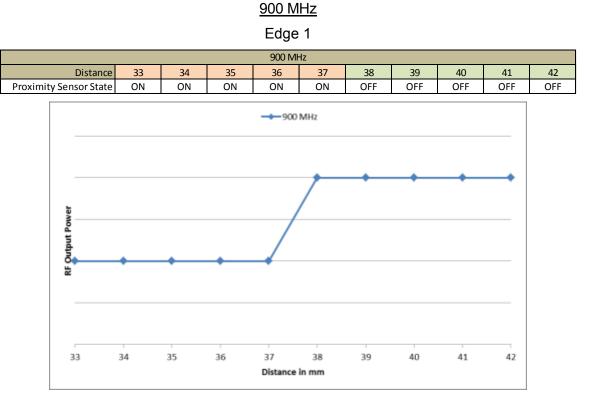
Page 20 of 143

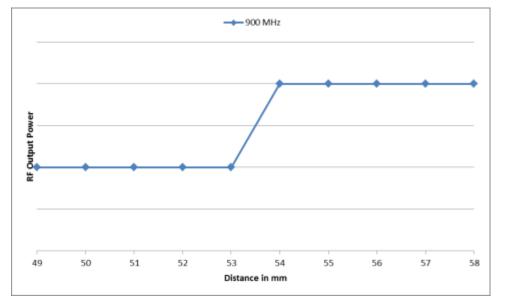

1900 MHz										
Distance	50	49	48	47	46	45	44	43	42	41
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON


UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 143

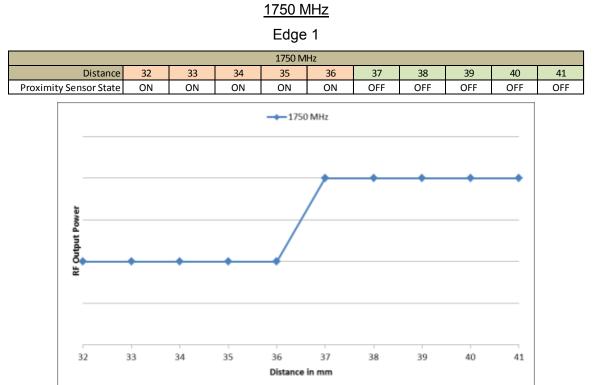
DUT Moving Away from the Phantom


750 MHz										
Distance	53	54	55	56	57	58	59	60	61	62
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

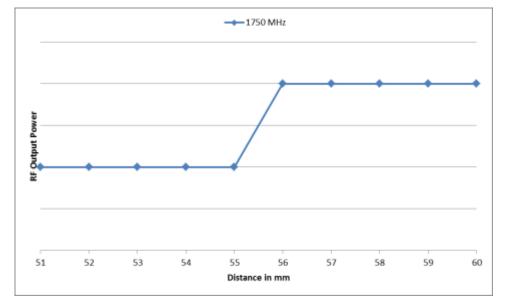

Page 22 of 143

UL Verification Services Inc.

FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

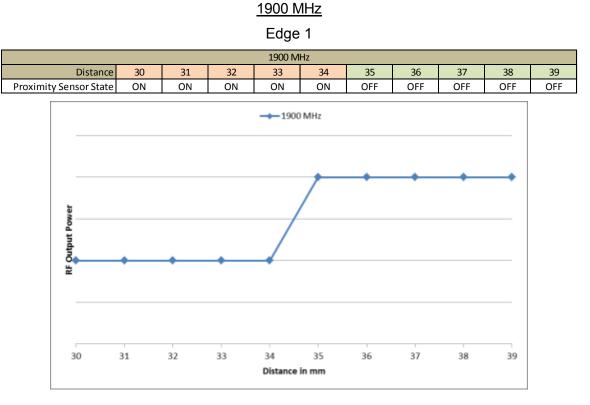


900 MHz										
Distance	49	50	51	52	53	54	55	56	57	58
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

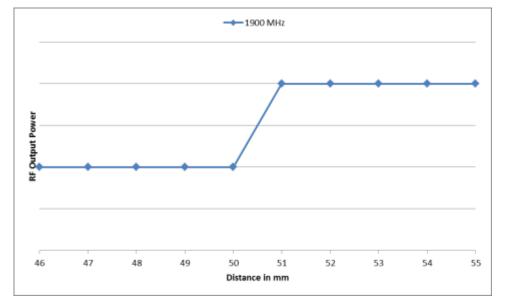


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.

Page 23 of 143



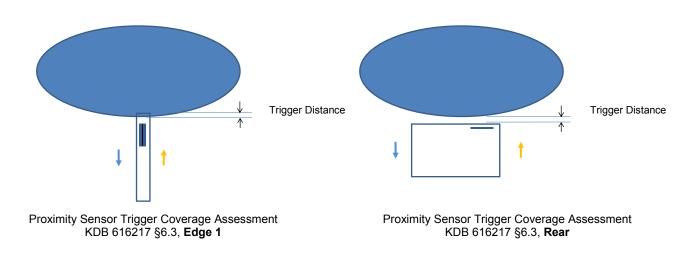
1750 MHz										
Distance	51	52	53	54	55	56	57	58	59	60
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 24 of 143

R	ea	r

1900 MHz										
Distance	46	47	48	49	50	51	52	53	54	55
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF


Page 25 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

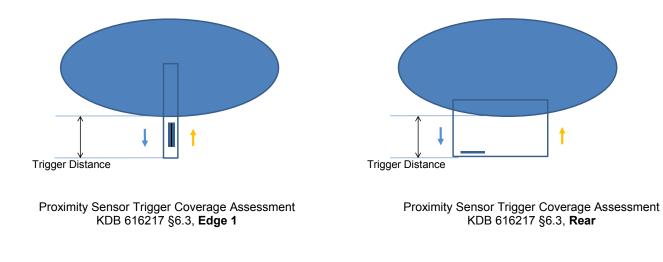
7.6.3. Proximity Sensor Coverage (KDB 616217 §6.3)

The DUT was positioned under the phantom at a distance less than 21 mm for Edge 1(smallest measured trigger distance for this edge) and 11 mm for Rear (smallest measured trigger distance for this surface). The DUT was held perpendicular to the phantom with edge 4 parallel to the phantom's bottom surface.

Coverage Step 1

From a starting position with the DUT >20mm laterally outside the phantom the DUT was moved horizontally toward the phantom as described in KDB 616217 §6.3.

LEGEND


- Direction of DUT travel for determination of power reduction triggering point
- Direction of DUT travel for determination of full power resumption triggering point

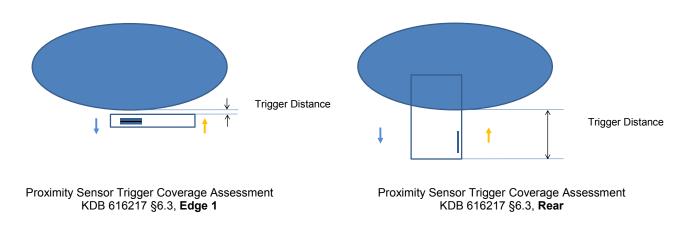
Page 26 of 143

Report No.: 13U15414-17 FCC ID: C3K1573

Coverage Step 2

The DUT was rotated 180° from the previous step and the process repeated

LEGEND


→ Direction of DUT travel for determination of power reduction triggering point

Direction of DUT travel for determination of full power resumption triggering point

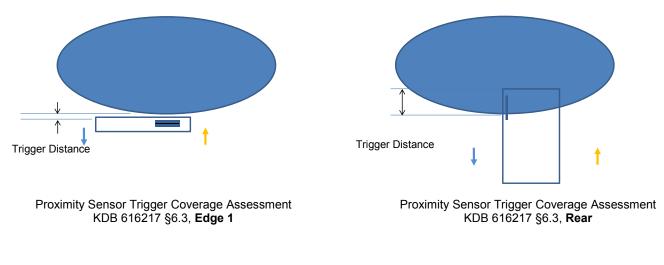
Page 27 of 143

Coverage Step 3

From a starting position with the DUT >20mm laterally outside the phantom the DUT was moved horizontally toward the phantom as described in KDB 616217 §6.3.

LEGEND

Direction of DUT travel for determination of power reduction triggering point


Direction of DUT travel for determination of full power resumption triggering point

Page 28 of 143

Report No.: 13U15414-17 FCC ID: C3K1573

Coverage Step 4

The DUT was rotated 180° from the previous step and the process repeated

LEGEND

Direction of DUT travel for determination of power reduction triggering point

→ Direction of DUT travel for determination of full power resumption triggering point

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FAX: (510) 661-0888

Page 29 of 143

Summary of Proximity Sensor Coverage Distances

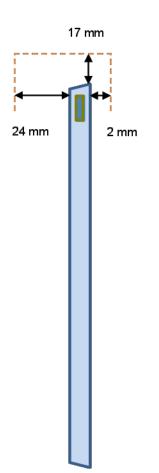
Edge 1

iiquiu	Trigger distance Step 1		Trigger distance Step 2		Trigger o Ste	distance p 3	Trigger distance Step 4		
	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	
750 muscle	6 mm	12 mm	-79 mm	-87 mm	33 mm	36 mm	4 mm	18 mm	
850 muscle	16 mm	13 mm	-79 mm	-89 mm	33 mm	42 mm	2 mm	25 mm	
1750 muscle	6 mm	16 mm	-77 mm	-86 mm	24 mm	40 mm	3 mm	25 mm	
1900 muscle	16 mm	14 mm	-68 mm	-87 mm	24 mm	32 mm	3 mm	25 mm	

Note - A negative distance indicates that the DUT's edge had passed the edge of the phantom

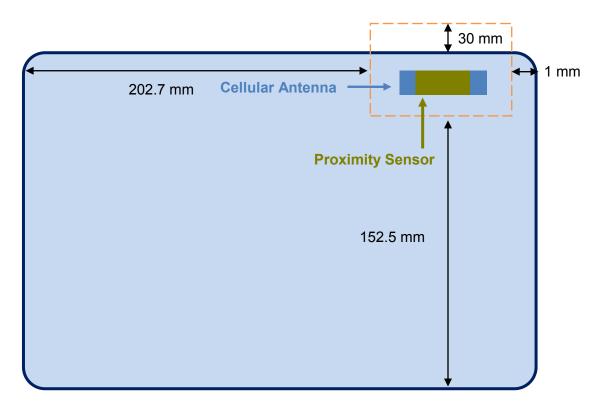
Rear

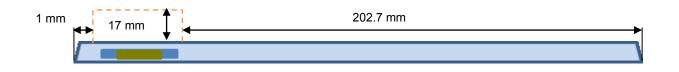
Tissue simulating liquid	Trigger distance Step 1		Trigger distance Step 2		•••	distance p 3	Trigger distance Step 4		
	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	Moving toward phantom	Moving from phantom	
750 muscle	39 mm	42 mm	27 mm	31 mm	73 mm	77 mm	10 mm	5 mm	
850 muscle	32 mm	47 mm	22 mm	29 mm	79 mm	85 mm	4 mm	-1 mm	
1750 muscle	30 mm	39 mm	20 mm	29 mm	72 mm	81 mm	8 mm	4 mm	
1900 muscle	43 mm	44 mm	29 mm	32 mm	77 mm	85 mm	1 mm	11 mm	


Note - A negative distance indicates that the DUT's edge had passed the edge of the phantom

Page 30 of 143

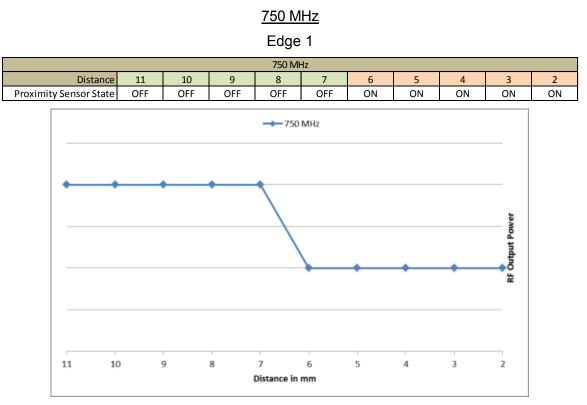
Illustration of Proximity Sensor Coverage Distances



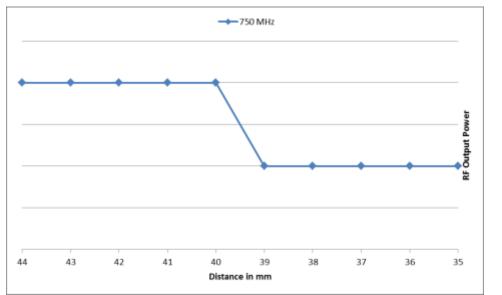


<u>Rear</u>

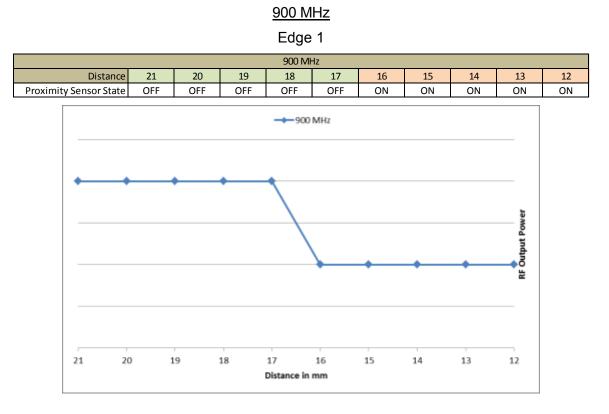
Viewed from the Rear


Viewed from Edge 1

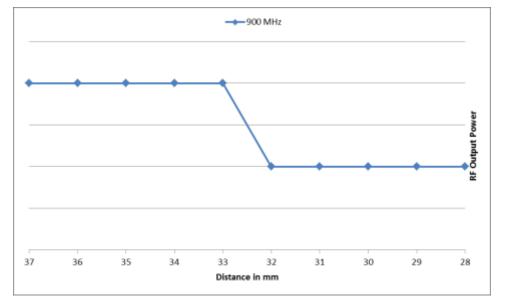
Page 32 of 143


7.6.4. Proximity Sensor Coverage Measurement Results

DUT Moving Toward the Phantom, Step 1

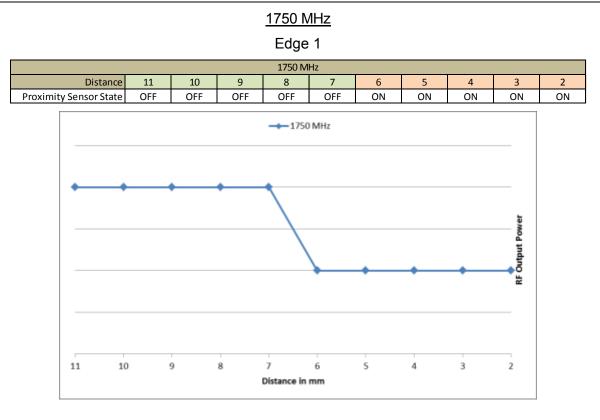

Rear	
i scai	

750 MHz										
Distance	44	43	42	41	40	39	38	37	36	35
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

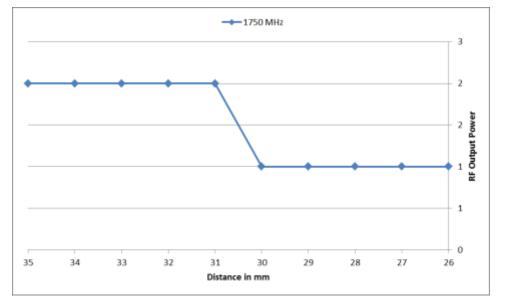


Page 33 of 143

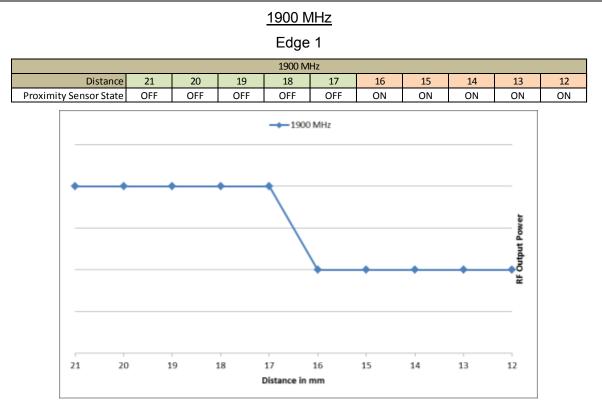
UL Verification Services Inc.



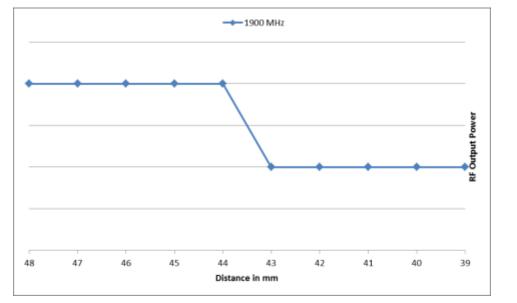
900 MHz											
Distance	37	36	35	34	33	32	31	30	29	28	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 143

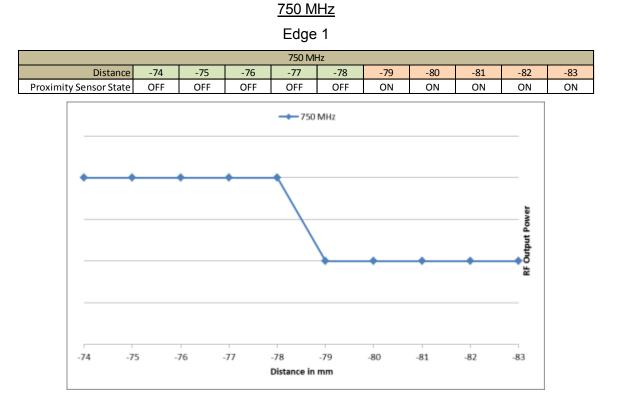

Rear

1750 MHz											
Distance	35	34	33	32	31	30	29	28	27	26	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	

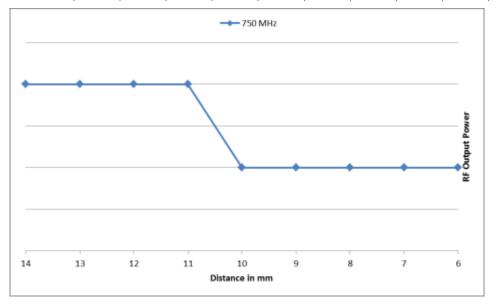


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.

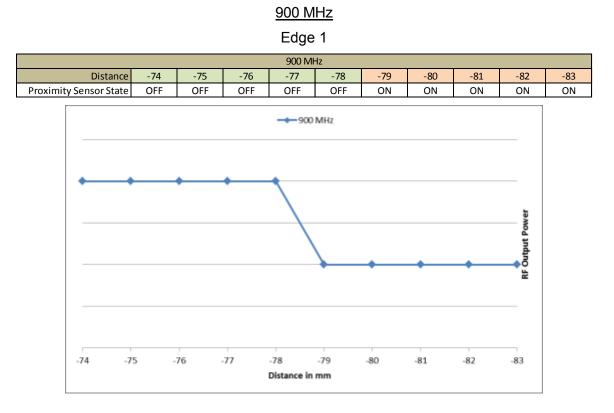
Page 35 of 143


1900 MHz										
Distance	48	47	46	45	44	43	42	41	40	39
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

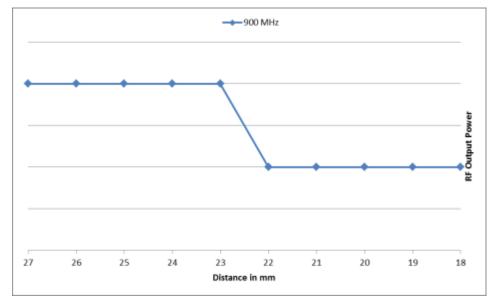
UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.


Page 36 of 143

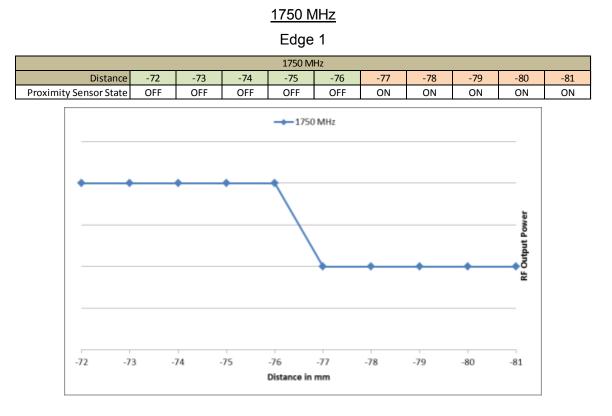
DUT Moving Toward the Phantom, Step 2



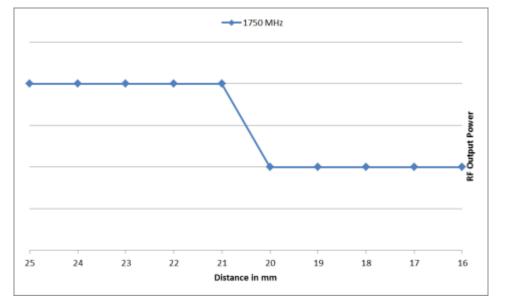
Rear


				750 MI	Ηz					
Distance	15	14	13	12	11	10	9	8	7	6
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

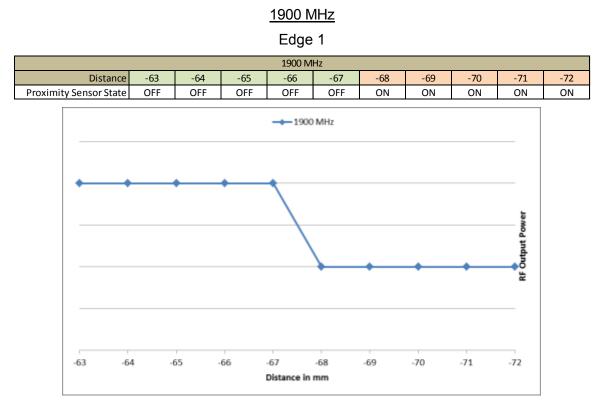
Page 37 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.



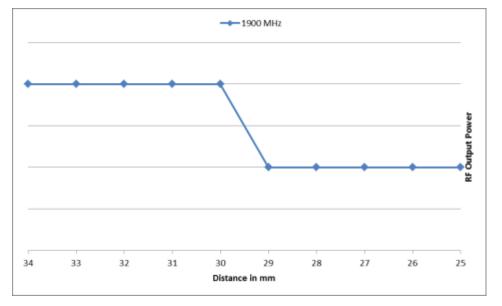
				900 MI	Ηz					
Distance	27	26	25	24	23	22	21	20	19	18
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON



UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.


Page 38 of 143

				1750 M	Hz					
Distance	25	24	23	22	21	20	19	18	17	16
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

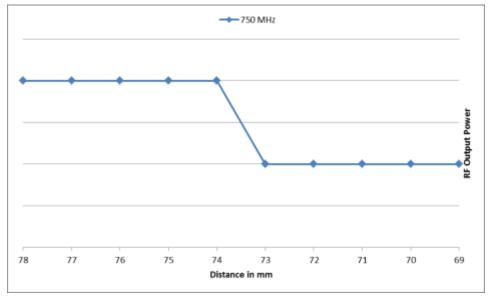


Page 39 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

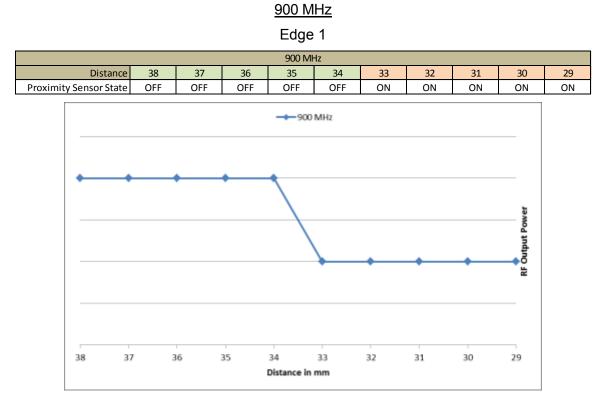
Rear	R	e	а	r
------	---	---	---	---

				1900 M	Hz					
Distance	34	33	32	31	30	29	28	27	26	25
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

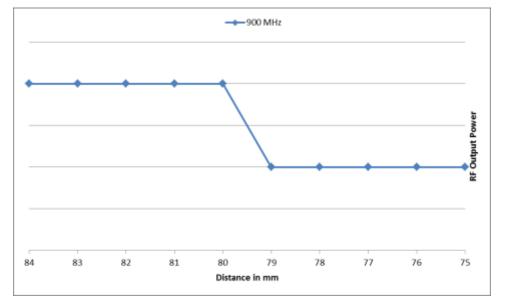
UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 40 of 143

DUT Moving Toward the Phantom, Step 3

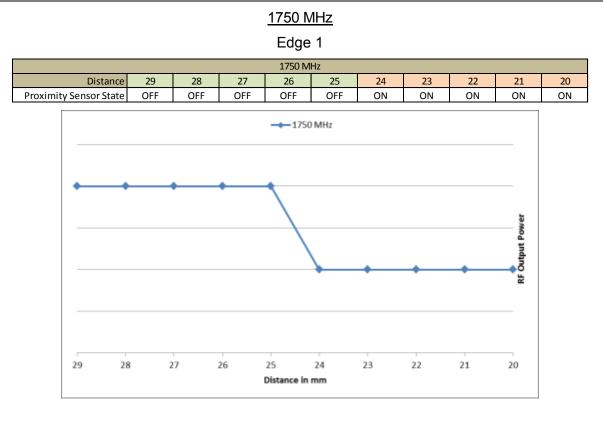

Rear

				750 Mł	Ηz					
Distance	78	77	76	75	74	73	72	71	70	69
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

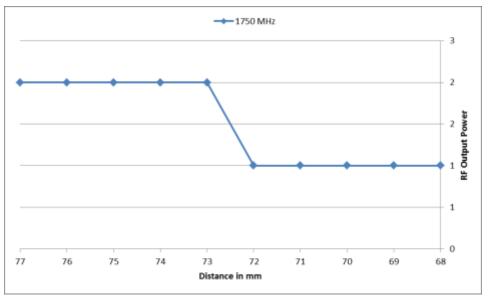


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 41 of 143



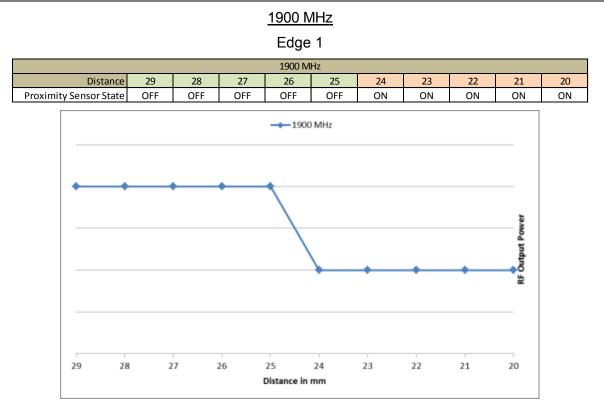
				900 MI	Ηz					
Distance	84	83	82	81	80	79	78	77	76	75
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON


UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 42 of 143

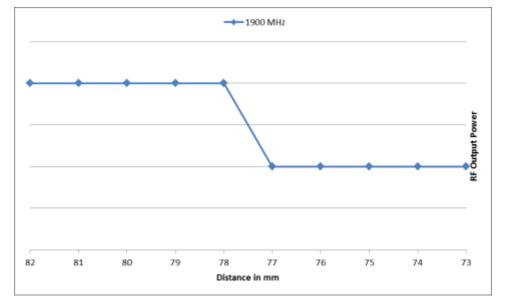
Rear

				1750 M	Hz					
Distance	77	76	75	74	73	72	71	70	69	68
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON



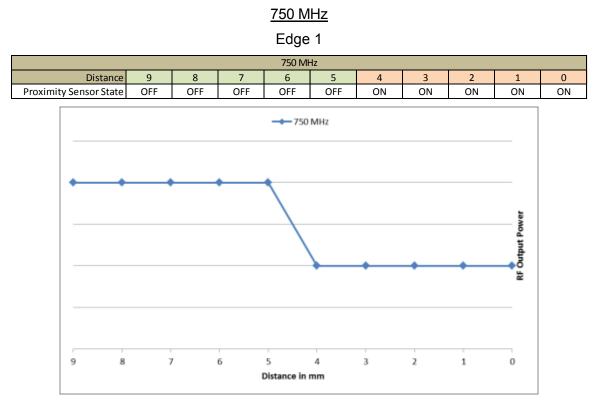
 Page 43 of 143

 UL Verification Services Inc.
 FORM NO: CCSUP4031G

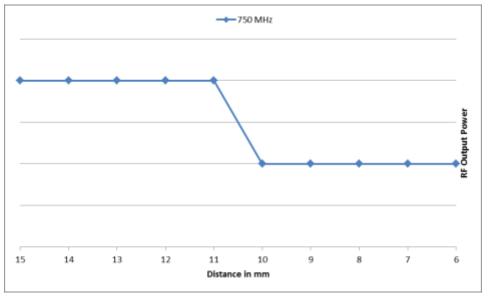

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 Services Inc.

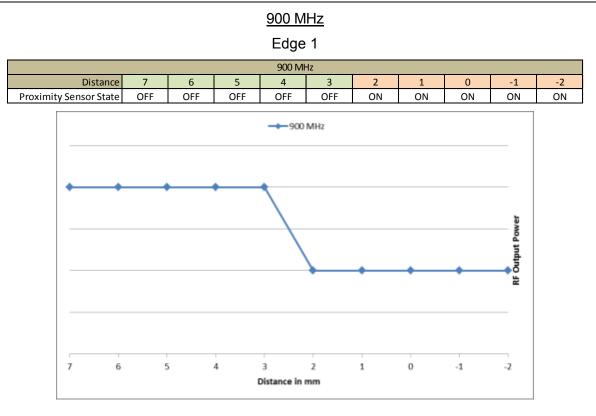
Rear


1900 MHz										
Distance	82	81	80	79	78	77	76	75	74	73
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

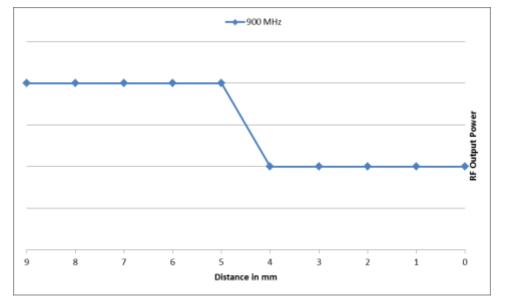
UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 44 of 143

DUT Moving Toward the Phantom, Step 4

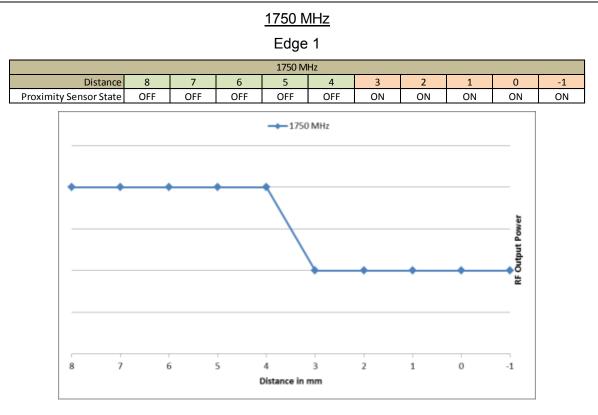

Rear

750 MHz											
Distance	15	14	13	12	11	10	9	8	7	6	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	

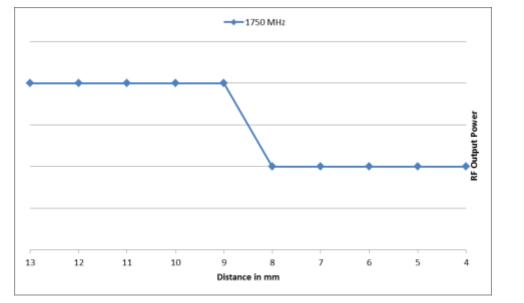


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.

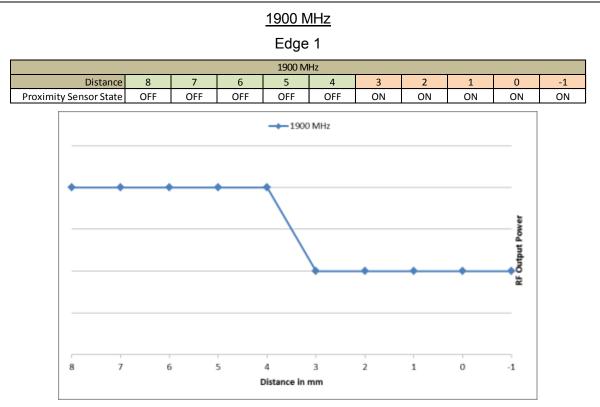
Page 45 of 143



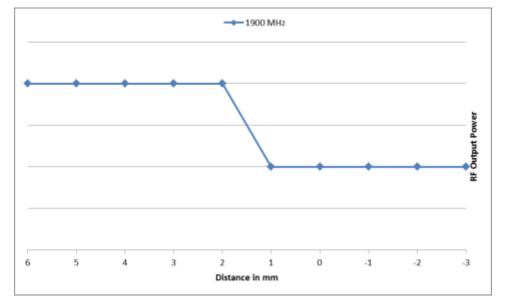
900 MHz											
Distance	9	8	7	6	5	4	3	2	1	0	
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	


UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 46 of 143


Rear

1750 MHz										
Distance	13	12	11	10	9	8	7	6	5	4
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

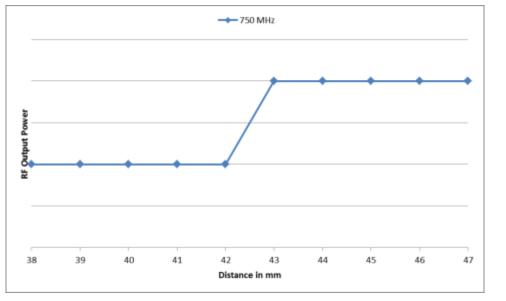

UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 47 of 143

R	ea	ır

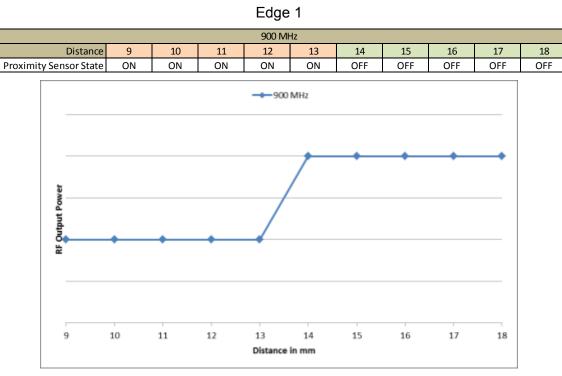
1900 MHz										
Distance	6	5	4	3	2	1	0	-1	-2	-3
Proximity Sensor State	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

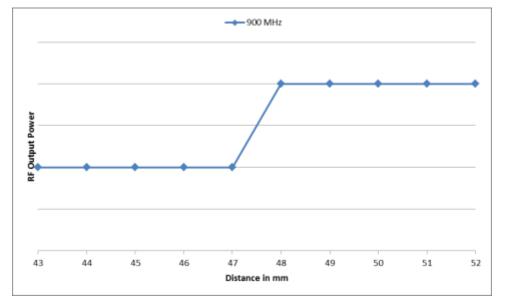
UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 48 of 143

DUT Moving Away From the Phantom, Step 1

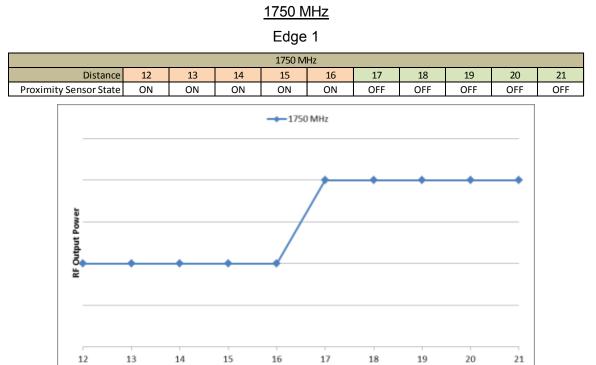
Rear


750 MHz											
Distance	38	39	40	41	42	43	44	45	46	47	
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	

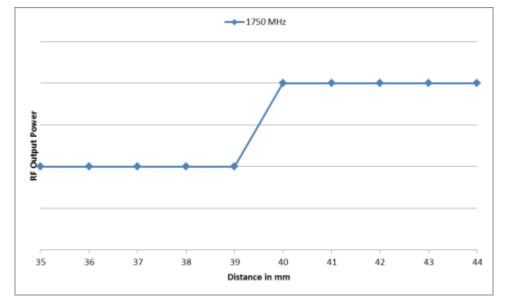

Page 49 of 143

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA

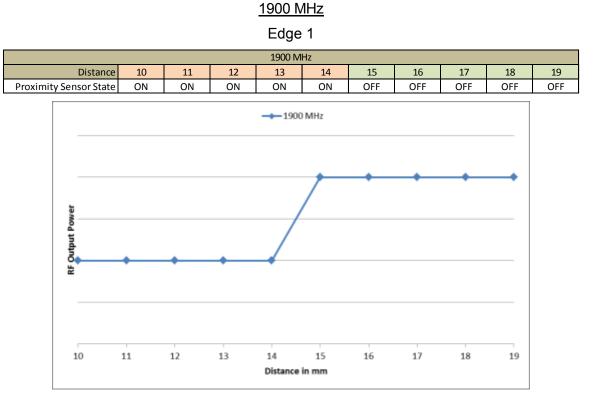
FORM NO: CCSUP4031G FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.



900 MHz											
Distance	43	44	45	46	47	48	49	50	51	52	
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	

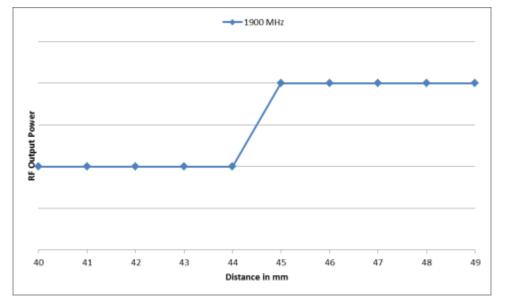

Page 50 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

<u>900 MHz</u>

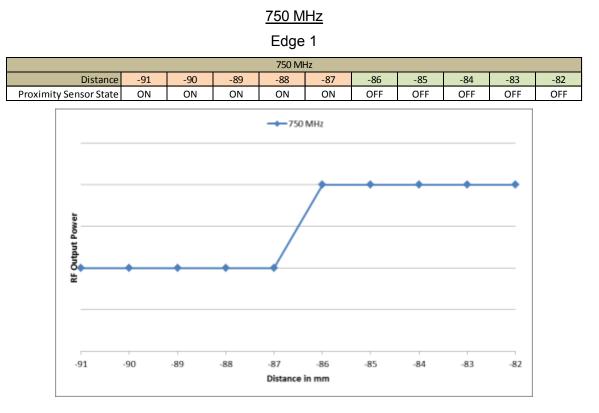


Distance in mm

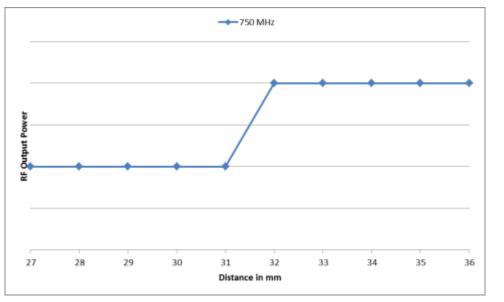
1750 MHz										
Distance 35 36 37 38 39 40 41 42 43 44										44
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF



Page 51 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Rear

1900 MHz										
Distance 40 41 42 43 44 45 46 47 48 49										49
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

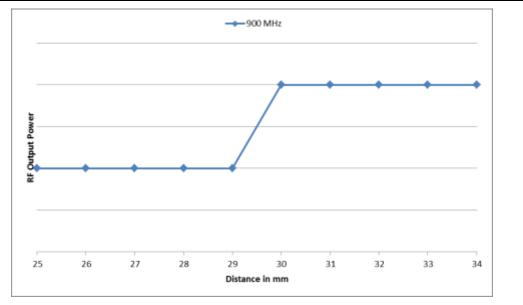


Page 52 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

DUT Moving Away From the Phantom, Step 2

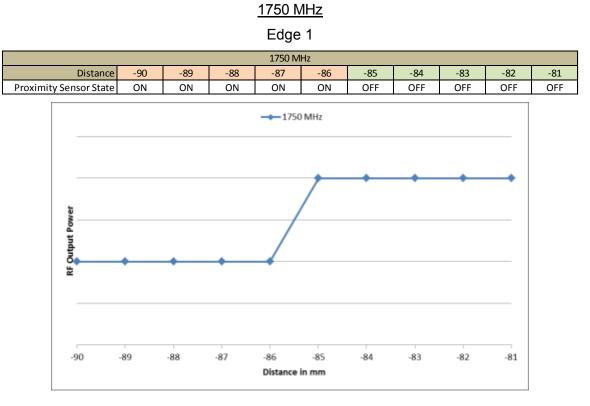
750 MHz										
Distance 27 28 29 30 31 32 33 34 35 36										36
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

Page 53 of 143 UL Verification Services Inc.

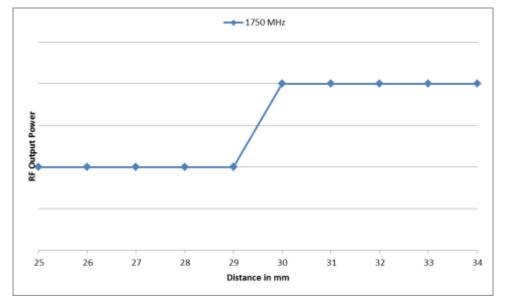

FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Edge 1 900 MHz Distance -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 Proximity Sensor State ON ON ON ON ON OFF OFF OFF OFF OFF Output Power 造 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 Distance in mm

<u>900 MHz</u>


Rear

900 MHz										
Distance 25 26 27 28 29 30 31 32 33 34										34
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

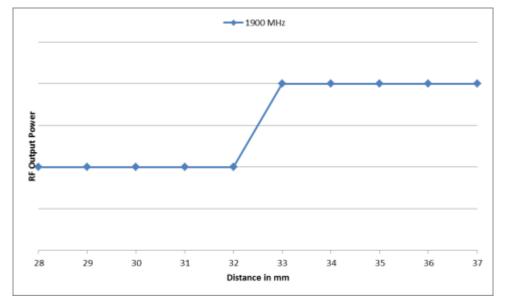


UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 54 of 143



1750 MHz										
Distance 25 26 27 28 29 30 31 32 33 34										34
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

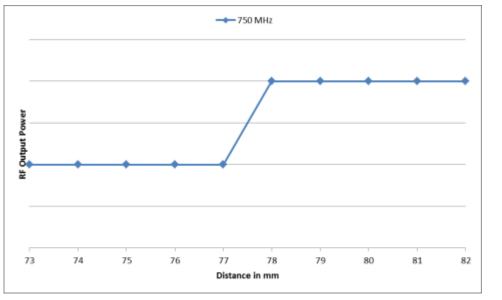

UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 55 of 143

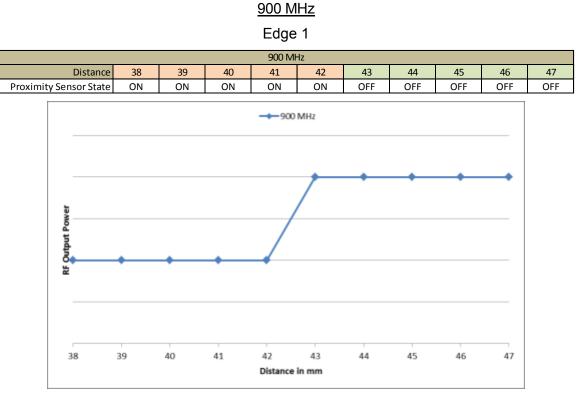
R	ea	r
	υu	

1900 MHz										
Distance 28 29 30 31 32 33 34 35 36 37										
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

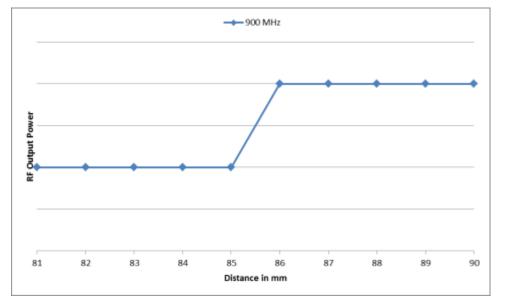
UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 56 of 143

DUT Moving Away From the Phantom, Step 3


Rear

750 MHz										
Distance	73	74	75	76	77	78	79	80	81	82
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

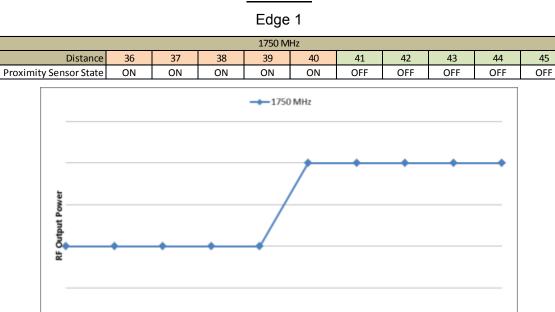


Page 57 of 143

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

900 MHz											
Distance	81	82	83	84	85	86	87	88	89	90	
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	

UL Verification Services Inc. FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 58 of 143

36

37

38

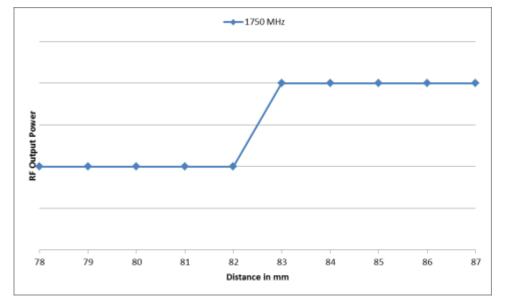
39

Rear

Distance in mm

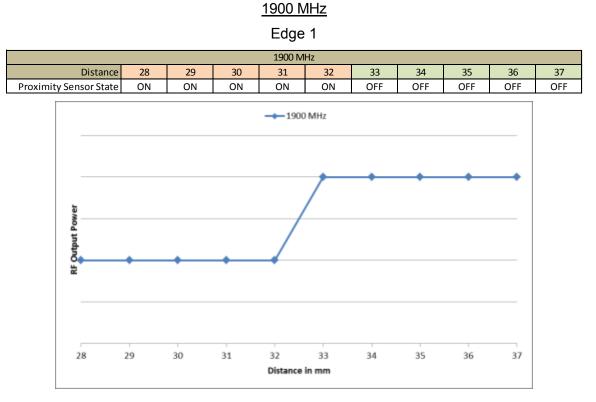
41

42

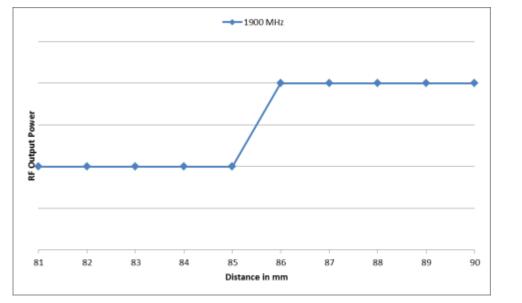

43

44

45

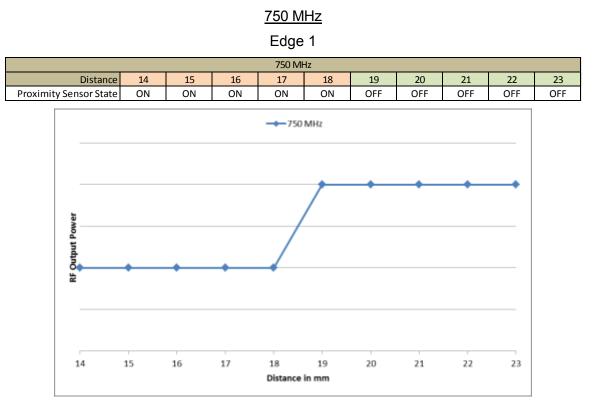

40

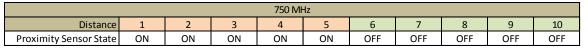
1750 MHz											
Distance	78	79	80	81	82	83	84	85	86	87	
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	

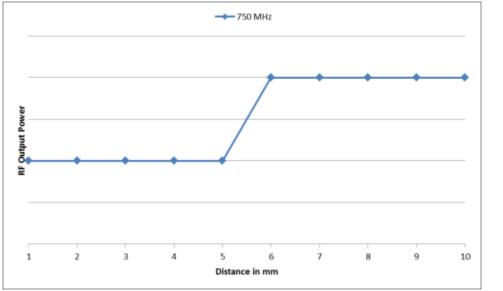

Page 59 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

<u>1750 MHz</u>

Rear

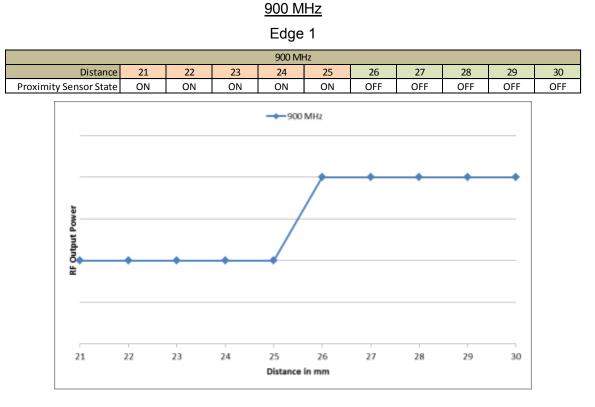

1900 MHz											
Distance	81	82	83	84	85	86	87	88	89	90	
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	

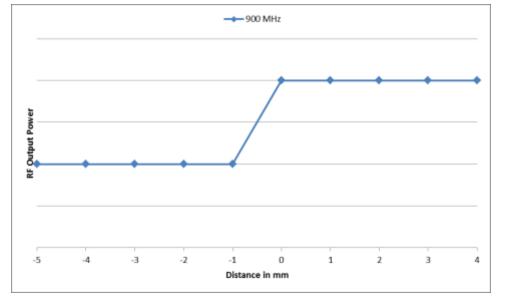



UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.

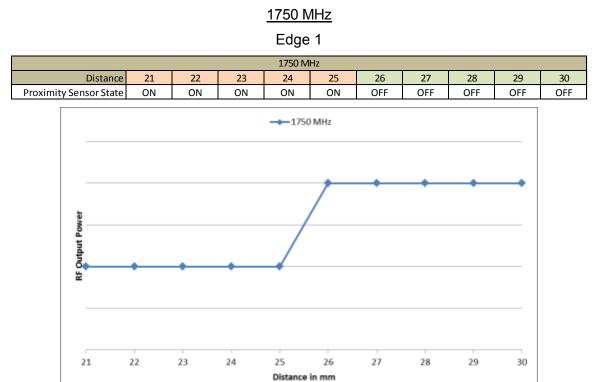
Page 60 of 143

DUT Moving Away From the Phantom, Step 4

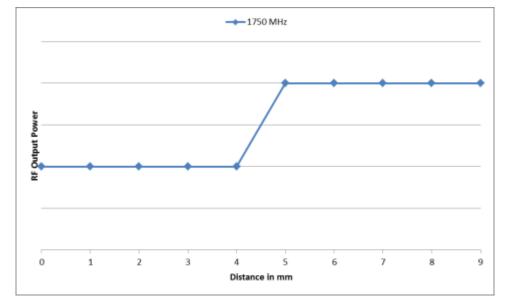




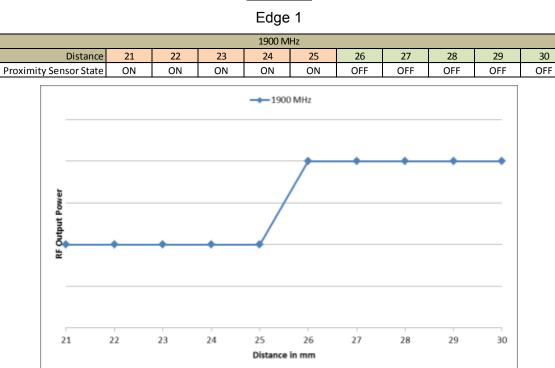
UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 61 of 143

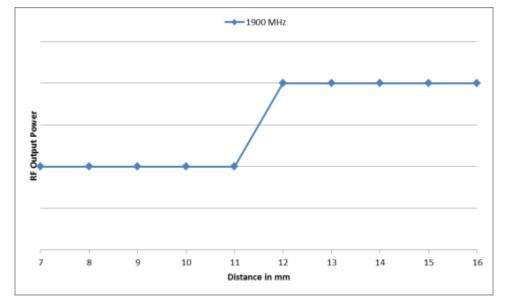
900 MHz											
Distance	-5	-4	-3	-2	-1	0	1	2	3	4	
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	



Page 62 of 143 UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Rear

1750 MHz										
Distance	0	1	2	3	4	5	6	7	8	9
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF



Page 63 of 143 UL Verification Services Inc.

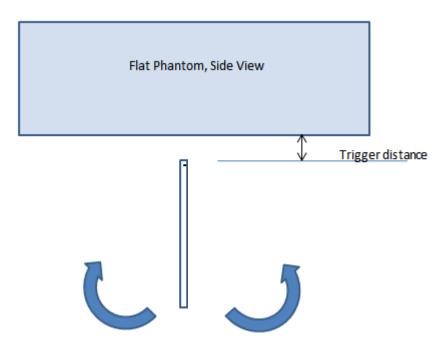
FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

1900 MHz										
Distance	7	8	9	10	11	12	13	14	15	16
Proximity Sensor State	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

 Page 64 of 143

 UL Verification Services Inc.
 FORM NO: CCSUP4031G

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888


 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.
 Services Inc.

<u>1900 MHz</u>

7.6.5. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with edge 1 parallel to the base of the flat phantom for each band.

The EUT was rotated about edge 1 for angles up to +/- 45°. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to +/- 45°.

Proximity sensor tilt angle assessment (Edge 4) KDB 616217 §6.4

Band	Minimum trigger distance measured	Minimum distance at which				Po	ower re	eductio	on stat	us			
(MHz)	according to KDB 616217 §6.2	power reduction was maintained over +/-45°	-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°
750	30	17	On	On	On	On	On	On	On	On	On	On	On
900	28	20	On	On	On	On	On	On	On	On	On	On	On
1750	27	20	On	On	On	On	On	On	On	On	On	On	On
1900	27	20	On	On	On	On	On	On	On	On	On	On	On

The minimum trigger distance measured for any of the steps required in KDB 616217 §6.2, §6.3 and §6.4 was 17mm. Full power SAR measurements for the rear and Edge 1 were performed at 16mm separation distance from the phantom.

UL Verification Services Inc.

Page 65 of 143

8. RF Exposure Conditions

The EUT implements the power reduction scheme for SAR compliance, for specific device configuration and orientations, as described below. The complete description of the implementation and functionality is provided in the "Operational Description of Power Reduction" exhibit.

8.1. Standalone SAR Test Exclusion Considerations

Since the *Dedicated Host Approach* is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied in conjunction with KDB 616217 § 4.3 to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.

Though this device is capable of simultaneous transmission between WLAN and WWAN, standalone SAR test exclusion is, along with the associated SAR Estimation, is only considered for the WWAN antenna in the body of this report, with WLAN-related considerations and test results being leveraged from SAR report 13U15414-10B, submitted under FCC ID C3K1572

Page 66 of 143

SAR Test Exclusion Calculations for WWAN

	Тx	Freq.	Output	Power		Separa	ation Di	stances	s (mm)		Calculated Threshold Value						
Antenna	Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	
		Full	Power,	Proximi	ty Sens	sor Off.	A sense	or trigg	ering o	f 16 mm	is included	for both R	ear and Edg	ge 1.			
Cellular	GPRS 2 Slots	836.6	29.30	213	17.18	20	194.3	155.7	14.4		11.5 -MEASURE-	9.7 -MEASURE-	> 50 mm	> 50 mm	13.9 -MEASURE-	N/A	
Cellular	GPRS 2 Slots	1880	26.50	112	17.18	20	194.3	155.7	14.4		9 -MEASURE-	7.7 -MEASURE-	> 50 mm	> 50 mm	11 -MEASURE-	N/A	
Cellular	W-CDMA V	836.6	22.90	195	17.18	20	194.3	155.7	14.4		10.5 -MEASURE-	8.9 -MEASURE-	> 50 mm	> 50 mm	12.7 -MEASURE-	N/A	
Cellular	W-CDMA II	1880	23.90	245	17.18	20	194.3	155.7	14.4		19.8 -MEASURE-	16.8 -MEASURE-	> 50 mm	> 50 mm	24 -MEASURE-	N/:A	
Cellular	LTE Band 2	1880	24.20	263	17.18	20	194.3	155.7	14.4		21.2 -MEASURE-	18 -MEASURE-	> 50 mm	> 50 mm	25.8 -MEASURE-	N/A	
Cellular	LTE Band 4	1732.5	23.80	240	17.18	20	194.3	155.7	14.4		18.6 -MEASURE-	15.8 -MEASURE-	> 50 mm	> 50 mm	22.6 -MEASURE-	N/A	
Cellular	LTE Band 5	836.6	23.20	209	17.18	20	194.3	155.7	14.4		11.2 -MEASURE-	9.6 -MEASURE-	> 50 mm	> 50 mm	13.7 -MEASURE-	N/:A	
Cellular	LTE Band 17	710	23.30	214	17.18	20	194.3	155.7	14.4		10.6 -MEASURE-	9 -MEASURE-	> 50 mm	> 50 mm	12.9 -MEASURE-	N/A	
						R	educed	Power,	Proxim	ity Sen	sor On						
Cellular	GPRS 2 Slots	836.6	28.10	161	1.18	4					29.5 -MEASURE-	29.5 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	GPRS 2 Slots	1880	21.00	31	1.18	4					8.5 -MEASURE-	8.5 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	W-CDMA V	20.2	20.50	112	1.18	4					3.2 -MEASURE-	3.2 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	W-CDMA II	1880	13.60	23	1.18	4					6.3 -MEASURE-	6.3 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	LTE Band 2	1880	14.10	26	1.18	4					7.1 -MEASURE-	7.1 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	LTE Band 4	1732.5	15.40	35	1.18	4					9.2 -MEASURE-	9.2 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	LTE Band 5	836.6	20.30	107	1.18	4					19.6 -MEASURE-	19.6 -MEASURE-	N/A	N/A	N/A	N/A	
Cellular	LTE Band 17	710	21.20	132	1.18	4					22.2 -MEASURE-	22.2 -MEASURE-	N/A	N/A	N/A	N/A	

Antennas < 50mm to adjacent edges

Note(s):

1. According to KDB 447498, if the calculated threshold value is >3 then SAR testing is required.

Page 67 of 143

Antennas > 50mm to adjacent edges

	Тx	Freq.	Output	Power		Separa	ation Di	istances	s (mm)		Calculated Threshold Value						
Antenna	Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	
		Full	Power,	Proximi	ty Sens	or Off.	A sens	or trigg	ering o	f 16 mm	is included	i for both F	ear and Ed	ge 1.			
Cellular	GPRS 2 Slots	836.6	29.30	213	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	968.6 mW -EXEM PT-	753.4 mW -EXEM PT-	< 50 mm	N/A	
Cellular	GPRS 2 Slots	1880	26.50	112	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	1552 mW -EXEM PT-	1166.1 mW -EXEM PT-	< 50 mm	N/A	
Cellular	W-CDMA V	836.6	22.90	195	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	968.6 mW -EXEM PT-	753.4 mW -EXEM PT-	< 50 mm	N/A	
Cellular	W-CDMA II	1880	23.90	245	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	1552 mW -EXEM PT-	1166.1 mW -EXEM PT-	< 50 mm		
Cellular	LTE Band 2	1880	24.20	263	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	1552 mW -EXEM PT-	1166.1 mW -EXEM PT-	< 50 mm	N/A	
Cellular	LTE Band 4	1732.5	23.80	240	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	1556.6 mW -EXEMPT-	1170.7 mW -EXEM PT-	< 50 mm	N/A	
Cellular	LTE Band 5	836.6	23.20	209	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	968.6 mW -EXEM PT-	753.4 mW -EXEM PT-	< 50 mm	N/A	
Cellular	LTE Band 17	710	23.30	214	17.18	20	194.3	155.7	14.4		< 50 mm	< 50 mm	860.8 mW -EXEM PT-	678.2 mW -EXEM PT-	< 50 mm	N/A	
						R	educed	Power,	Proxim	nity Sens	sor On						
Cellular	GPRS 2 Slots	836.6	28.10	161	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	GPRS 2 Slots	1880	21.00	31	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	W-CDMA V	836.6	20.50	112	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	W-CDMA II	1880	13.60	23	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	LTE Band 2	1880	14.10	26	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	LTE Band 4	1732.5	15.40	35	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	LTE Band 5	836.6	20.30	107	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	
Cellular	LTE Band 17	710	21.20	132	1.18	4					< 50 mm	< 50 mm	N/A	N/A	N/A	N/A	

Note(s):

1. According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

Page 68 of 143

8.2. Required Test Configurations

The table below identifies the standalone WWAN test configurations required for this device according to the findings in Section 8.1:

Test Configurations	Rear	Edge 1 (Top Edge)	Edge 2 (Right Edge)	Edge 3 (Bottom Edge)	Edge 4 (Left Edge)
GSM850 Full Power	Yes	Yes	No	No	Yes
GSM850 w/ Power Reduction	Yes	Yes	No	No	Yes
GSM1900 Full Power	Yes	Yes	No	No	Yes
GSM1900 w/ Power Reduction	Yes	Yes	No	No	Yes
W-CDMA Band V Full Power	Yes	Yes	No	No	Yes
W-CDMA Band V w/ Power Reduction	Yes	Yes	No	No	Yes
W-CDMA Band II Full Power	Yes	Yes	No	No	Yes
W-CDMA Band II w/ Power Reduction	Yes	Yes	No	No	Yes
LTE Band 2 Full Power	Yes	Yes	No	No	Yes
LTE Band 2 w/ Power Reduction	Yes	Yes	No	No	Yes
LTE Band 4 Full Power	Yes	Yes	No	No	Yes
LTE Band 4 w/ Power Reduction	Yes	Yes	No	No	Yes
LTE Band 5 Full Power	Yes	Yes	No	No	Yes
LTE Band 5 w/ Power Reduction	Yes	Yes	No	No	Yes
LTE Band 17 Full Power	Yes	Yes	No	No	Yes
LTE Band 17 w/ Power Reduction	Yes	Yes	No	No	Yes

Note(s):

1. Yes = Testing is required.

2. No = Testing is not required.

8.3. Additional Test Scenarios

The DUT features beveled edges. Additional testing of Edge 1 and Edge 4 was performed with the DUT angled so that the edges were placed flush to the surface of the flat phantom. Since the proximity sensor remains in an active state under these circumstances, testing for these configurations was performed with power reduction active. These test positions are identified as Rear/Edge 1 Slant and Rear/Edge 4 Slant.

The DUT also supports attachable keyboards (two types) that may be folded against the rear. Additional testing on the rear was performed with each of the keyboards folded back on the DUT and with power reduction, with the test cases being chosen from the worst-case of the normal Rear-With Power Reduction test configurations

Page 69 of 143

Issue Date: 1/17/2014

9. RF Output Power Measurement

9.1. GSM

GSM850

Full Power

GPRS (GMS	K) - Coding S	Scheme: CS1				
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bu	rst Power (dBm)		
	128	824.2	32.3	29.3	27.4	26.1
	190	836.6	32.3	29.3	27.4	26.2
850	251	848.8	32.1	29.2	27.3	26.1
000			Fra	me Power (dBm)		
	128	824.2	23.3	23.3	18.4	20.1
	190	836.6	23.3	23.3	18.4	20.2
	251	848.8	23.1	23.2	18.3	20.1
EGPRS (8P	SK) - Coding	Scheme: MC	S5			
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bu	rst Power (dBm)		
	128	824.2	26.8	23.7	21.8	20.7
	190	836.6	26.5	23.4	21.6	20.4
850	251	848.8	26.3	23.2	21.4	20.1
000			Fra	me Power (dBm)		
	128	824.2	17.7	17.7	12.8	14.7
	190	836.6	17.4	17.4	12.6	14.4
	251	848.8	17.2	17.2	12.4	14.0

With Power Reduction

GPRS (GMS	K) - Coding S	Scheme: CS1				
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bui	rst Power (dBm)		
	128	824.2	31.2	28.1	26.2	24.9
	190	836.6	31.1	28.0	26.1	24.9
850	251	848.8	30.9	28.0	26.0	24.7
050			Frai	me Power (dBm)		
	128	824.2	22.1	22.1	17.2	18.8
	190	836.6	22.1	22.0	17.1	18.8
	251	848.8	21.9	22.0	16.9	18.6
EGPRS (8PS	SK) - Coding	Scheme: MC	S5			
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
		-	Bui	rst Power (dBm)		-
	128	824.2	25.8	22.7	20.9	19.5
	190	836.6	25.5	22.4	20.6	19.4
850	251	848.8	25.3	22.3	20.4	19.1
000			Frai	me Power (dBm)		
	128	824.2	16.7	16.6	11.9	13.5
	190	836.6	16.4	16.4	11.5	13.3
	251	848.8	16.2	16.3	11.4	13.1

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

GMSK (GPRS) mode with 2 time slots, based on the output power measurements above

• SAR is not required for EGPRS (8PSK) mode because its output power is less than that of GPRS Mode

Page 70 of 143

GSM1900

Full Power

GPRS (GMS	K) - Coding	Scheme: CS1				
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bui	rst Power (dBm)		
	512	1850.2	29.5	26.5	24.7	23.4
	661	1880	29.4	26.4	24.6	23.3
1900	810	1909.8	29.5	26.5	24.7	23.4
1300			Frai	me Power (dBm)		
	512	1850.2	20.5	20.5	15.7	17.4
	661	1880	20.4	20.4	15.6	17.3
	810	1909.8	20.5	20.5	15.7	17.4
EGPRS (8PS	SK) - Coding	Scheme: MC	S5			
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bui	rst Power (dBm)		
	512	1850.2	26.6	23.6	21.5	20.3
	661	1880	26.0	23.0	20.9	19.7
1900	810	1909.8	26.4	23.4	21.3	20.2
1900			Frai	me Power (dBm)		
	512	1850.2	17.6	17.6	12.5	14.3
	661	1880	17.0	17.0	11.9	13.7
	810	1909.8	17.4	17.4	12.3	14.2

With Power Reduction

GPRS (GMS	K) - Coding S	Scheme: CS1				
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bui	rst Power (dBm)		
	512	1850.2	24.1	21.0	19.0	17.7
	661	1880	24.1	21.0	19.0	17.8
1900	810	1909.8	24.1	21.0	19.0	17.8
1300			Frai	me Power (dBm)		
	512	1850.2	15.0	15.0	9.9	11.6
	661	1880	15.0	15.0	10.0	11.7
	810	1909.8	15.0	15.0	10.0	11.7
EGPRS (8PS	SK) - Coding	Scheme: MC	S5			
Band	Ch No.	Freq. (MHz)	1 slot	2 slots	3 slots	4 slots
			Bui	rst Power (dBm)		
	512	1850.2	20.2	17.1	15.2	13.7
	661	1880	20.1	16.9	15.0	13.4
1900	810	1909.8	20.4	17.1	15.1	13.6
1900			Frai	me Power (dBm)		
	512	1850.2	11.2	11.1	6.1	7.7
	661	1880	11.1	10.9	5.9	7.4
	810	1909.8	11.3	11.1	6.0	7.6

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

GMSK (GPRS) mode with 2 time slots, based on the output power measurements above ٠

SAR is not required for EGPRS (8PSK) mode because its output power is less than that of GPRS Mode •

Page 71 of 143

9.2. W-CDMA

Release 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
WCDMA Conorol Sottingo	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

Measured Results

Band	Mode	UL Ch No.	Freq.	Avg Pwr (dBm)			
Daliu	MODE	UL CITINO.	(MHz)	Max. Power	with Pwr Reduction		
	Del 00	4132	826.4	22.8	20.2		
W-CDMA Band V	Rel 99 (RMC, 12.2 kbps)	4183	836.6	22.9	20.0		
Band V	(1110, 12.2 1003)	4233	846.6	22.9	20.0		
	Del 00	9262	1852.4	23.0	13.6		
W-CDMA Band II	Rel 99 (RMC, 12.2 kbps)	9400	1880.0	22.4	13.6		
Dana n	(1110, 12.2 1003)	9538	1907.6	23.0	13.4		

HSDPA

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA			
	Subtest	1	2	3	4			
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2kbps RMC						
	HSDPA FRC	H-Set1	H-Set1					
	Power Control Algorithm	Algorithm 2						
W-CDMA General	βc	2/15	12/15	15/15	15/15			
	βd	15/15	15/15	8/15	4/15			
Settings	Bd (SF)	64						
	βc/βd	2/15	12/15	15/8	15/4			
	βhs	4/15	24/15	30/15	30/15			
	MPR (dB)	0	0	0.5	0.5			
	D _{ACK}	8						
	D _{NAK}	8						
HSDPA	DCQI	8						
Specific	Ack-Nack repetition factor	3						
Settings	CQI Feedback (Table 5.2B.4)	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs=βhs/βc	30/15						

Measured Results

Band	Mode	UL Ch No.	Freq.	Avg Pv	wr (dBm)
Dallu	wode	UL CITINO.	(MHz)	Max. Power	with Pwr Reduction
		4132	826.4	22.8	20.1
	Subtest 1	4183	836.6	22.9	20.0
		4233	846.6	22.8	20.0
		4132	826.4	22.8	20.0
	Subtest 2	4183	836.6	22.9	19.9
W-CDMA		4233	846.6	22.8	19.9
Band V		4132	826.4	22.3	19.6
	Subtest 3	4183	836.6	22.6	19.6
		4233	846.6	22.3	19.6
	Subtest 4	4132	826.4	22.2	19.5
		4183	836.6	22.5	19.6
		4233	846.6	22.2	19.5
	Subtest 1	9262	1852.4	23.0	13.6
		9400	1880.0	22.4	13.3
		9538	1907.6	23.0	13.3
		9262	1852.4	22.9	12.9
	Subtest 2	9400	1880.0	22.6	12.5
W-CDMA		9538	1907.6	23.0	12.6
Band II		9262	1852.4	22.6	12.9
	Subtest 3	9400	1880.0	22.2	12.5
		9538	1907.6	22.6	12.7
		9262	1852.4	22.5	12.9
	Subtest 4	9400	1880.0	22.2	12.5
		9538	1907.6	22.5	12.6

Maximum output power levels that are possible for all subtests reported.

UL Verification Services Inc.

Page 73 of 143

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA	HSPA	HSPA	HSPA	HSPA			
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set1							
	HSUPA Test	HSUPA Loopba	ck						
	Power Control Algorithm	Algorithm2							
	βc	11/15	6/15	15/15	2/15	15/15			
WCDMA General	βd	15/15	15/15	9/15	15/15	15/15			
Settings	βес	209/225	12/15	30/15	2/15	24/15			
Settings	βc/βd	11/15	6/15	15/9	2/15	15/15			
	βhs	22/15	12/15	30/15	4/15	30/15			
				47/15					
	βed	1309/225	94/75	47/15	56/75	134/15			
	CM (dB)	1.0	3.0	2.0	3.0	1.0			
	MPR (dB)	0	2	1	2	0			
	DACK	8							
HSDPA	DNAK	8							
	DCQI	8							
Specific	Ack-Nack repetition factor	3							
Settings	CQI Feedback (Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table 5.2B.4)	2							
	Ahs = β hs/ β c	30/15							
	D E-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81			
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9			
		E-TFCI 11			E-TFCI 11				
HSUPA		E-TFCI PO 4			E-TFCI PO 4				
Specific		E-TFCI 67			E-TFCI 67				
Settings		E-TFCI PO 18			E-TFCI PO 18				
		E-TFCI 71			E-TFCI 71				
	Reference E_TFCIs	E-TFCI PO 23			E-TFCI PO 23				
		E-TFCI 75		E-TFCI 11	E-TFCI 75				
		E-TFCI PO 26		E-TFCI PO 4 E-TFCI PO 26					
		E-TFCI 81		E-TFCI 92 E-TFCI 92					
		E-TFCI PO 27		E-TFCI 92 E-TFCI 81 E-TFCI PO 18 E-TFCI PO 27					

Measured Results

Band	Mode	UL Ch No.	Freq.	Avg Pw	r (dBm)
Danu	Widde		(MHz)	Max. Power	with Reduction
		4132	826.4	22.2	19.3
	Subtest 1	4183	836.6	22.2	19.5
		4233	846.6	22.5	19.6
		4132	826.4	22.2	19.1
	Subtest 2	4183	836.6	22.2	19.5
		4233	846.6	22.0	19.6
W-CDMA		4132	826.4	21.9	19.3
Band V	Subtest 3	4183	836.6	21.9	19.6
Bana v		4233	846.6	22.7	19.7
		4132	826.4	22.8	19.2
	Subtest 4	4183	836.6	22.8	19.2
		4233	846.6	22.6	19.4
		4132	826.4	22.6	19.2
	Subtest 5	4183	836.6	22.6	19.4
		4233	846.6	22.4	19.7
		9262	1852.4	21.2	12.8
	Subtest 1	9400	1880.0	21.2	12.9
		9538	1907.6	21.4	13.2
		9262	1852.4	21.0	10.9
	Subtest 2	9400	1880.0	20.7	11.0
		9538	1907.6	21.1	11.3
		9262	1852.4	22.2	12.6
W-CDMA Band II	Subtest 3	9400	1880.0	21.6	12.2
Dana n		9538	1907.6	22.2	12.3
		9262	1852.4	20.9	11.5
	Subtest 4	9400	1880.0	20.8	11.1
		9538	1907.6	21.1	11.2
		9262	1852.4	23.0	13.3
	Subtest 5	9400	1880.0	22.4	12.9
		9538	1907.6	23.0	13.0

Page 75 of 143

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	nnel bandw	ridth / Tra	ansmission	bandwidth ((RB)	MPR (dB)							
	1.4 MHz													
QPSK	> 5	> 4	>8	> 12	> 16	> 18	≤ 1							
16 QAM	≤ 5	≤ 4	≤ <mark>8</mark>	≤ 12	≤ 1 6	≤ 1 8	≤ 1							
16 QAM	> 5													

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)					
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA					
			3	>5	≤ 1					
			5	>6	≤ 1					
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1					
		00,00	15	>8	≤ 1					
			20	>10	≤ 1					
NO. 04			5	>6	≤ 1					
NS_04	6.6.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4					
NS_05	6.6.3.3.1	1	10,15,20	≥ <mark>5</mark> 0	≤ 1					
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a					
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2					
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ <mark>3</mark>					
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2					
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3					
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5					
NS_32										
Note 1: A	pplies to the lower	block of Band 23, i.e	a carrier place	d in the 2000-20	10 MHz region.					

UL Verification Services Inc.

Page 76 of 143

LTE Band 2 Measured Results

LIE Band								Avg Pw	r (dBm)			
Dened	BW	Mada	RB	RB	Target		Full Power			Power Redu	ction	
Band	(MHz)	Mode	Allocation	Size	MPR	18700	18900	19100	18700	18900	19100	
						1860 MHz	1880 MHz	1900 MHz	1860 MHz	1880 MHz	1900 MHz	
			1	0	0	22.9	23.0	23.1	14.1	14.1	14.0	
			1	49	0	22.8	22.4	23.1	13.6	13.7	13.5	
			1	99	0	22.7	22.9	23.1	14.0	14.0	13.6	
		QPSK	50	0	1	22.0	21.9	22.4	12.9	12.9	12.8	
			50	24	1	21.8	21.7	22.3	12.7	12.6	12.6	
			50	50	1	21.8	21.8	22.2	12.7	12.6	12.5	
LTE	20		100	0	1	21.9	21.9	22.3	12.7	12.7	12.6	
Band 2	20		1	0	1	22.5	22.4	22.6	13.6	13.3	13.3	
			1	49	1	22.5	21.8	22.6	13.2	12.9	12.7	
			1	99	1	22.3	22.2	22.5	13.5	13.2	12.8	
		16QAM	50	0	2	21.0	21.0	21.6	11.8	11.8	11.9	
			50	24	2	21.0	20.8	21.5	11.6	11.6	11.7	
			50	50	2	21.0	20.8	21.4	11.6	11.6	11.6	
			100	0	2	20.9	21.0	21.6	11.7	11.7	11.8	
	BW		RB	RB	Target	A	vg Pwr (dBr	n)	A	vg Pwr (dBr	n)	
Band	(MHz)	Mode	Allocation	Size	Target MPR	18675	18900	19125	18675	18900	19125	
	(11112)		Allocation			1857.5 MHz	1880 MHz	1902.5 MHz	1857.5 MHz	1880 MHz	1902.5 MHz	
			1	0	0	23.2	23.0	23.5	14.1	13.9	14.0	
			1	37	0	23.1	22.5	23.2	13.6	13.5	13.6	
		QPSK	1	74	0	23.2	22.9	23.2	13.7	13.7	13.6	
			36	0	1	22.4	21.9	22.8	12.8	12.9	12.7	
			36	16	1	22.4	21.7	22.5	12.6	12.7	12.6	
			36	35	1	22.4	21.8	22.4	12.6	12.6	12.6	
LTE	15		75	0	1	22.4	21.9	22.5	12.7	12.7	12.6	
Band 2	10	16QAM	15	1	0	1	22.7	22.1	22.6	13.2	13.0	12.9
				1	37	1	22.7	21.7	22.4	12.9	12.6	12.5
			1	74	1	22.7	22.1	22.4	13.0	12.8	12.4	
			36	0	2	21.5	21.1	21.8	11.9	11.8	11.9	
			36	16	2	21.4	21.0	21.7	11.7	11.6	11.7	
			36	35	2	21.5	21.0	21.6	11.7	11.6	11.7	
			75	0	2	21.4	21.1	21.7	11.8	11.7	11.7	
	BW		RB	RB	Target		vg Pwr (dBr			vg Pwr (dBr		
Band	(MHz)	Mode	Allocation	Size	MPR	18650	18900	19150	18650	18900	19150	
					0	1855 MHz	1880 MHz	1905 MHz	1855 MHz	1880 MHz	1905 MHz	
			1	0	0	23.2	22.7	23.4	13.8	13.7	13.6	
			1	24	0	23.2	22.4	23.1	13.6	13.4	13.5	
		0001	1	49	0	23.3	22.7	23.1	13.6	13.6	13.4	
		QPSK	25	0	1	22.4	21.7	22.4	12.6	12.6	12.5	
			25	12	1	22.4	21.6	22.3	12.5	12.5	12.4	
			25	24	1	22.5	21.6	22.3	12.5	12.5	12.4	
LTE Band 2	10		50	0	1	22.4	21.7	22.4	12.6	12.6	12.4	
Band 2			1	0	1	22.3	22.2	22.3	12.4	12.7	12.9	
			1	24	1	22.4	21.9	22.0	12.3	12.5	12.7	
		400.004	1	49	1	22.5	22.2	22.0	12.3	12.6	12.6	
		16QAM	25	0	2	21.6	21.0	21.7	11.8	11.6	11.6	
			25	12	2	21.6	20.9	21.6	11.7	11.5	11.5	
			25	24	2	21.7	20.9	21.6	11.7	11.5	11.5	
			50	0	2	21.6	20.9	21.6	11.7	11.5	11.5	

Page 77 of 143

LTE Band 2 Measured Results continued

Bay Band BW Metho RB Allocation RB Allocation <th></th> <th></th> <th></th> <th></th> <th>lucu</th> <th></th> <th></th> <th></th> <th></th> <th>r (dRm)</th> <th></th> <th></th>					lucu					r (dRm)		
Band Band Band Mine 				DD	DD	Taraat			Avyrw		Power Podu	otion
NorN	Band		Mode				10005		10175			
Harrow Image: Problem Image: Problem Imag		(11112)		Allocation	0126							
LTE Band 2 FM (MHz) Amote A				1	0	0						
LTE Band 2OPSK124023.322.723.3 21.613.713.613.5Band 2120122.321.622.412.512.412.4120122.321.622.412.512.412.41211122.321.622.212.512.412.4120122.112.1622.212.512.412.412.41112.112.1612.212.512.612.212.512.812.912.812.512.812.812.512.812.812.512.812.512.812.512.812.512.811.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						-						
LTE Band00122111221111211 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						-						
LTE Band 2 5 12 6 1 22.3 21.6 22.4 12.5 12.4 12.4 12.4 LTE Band 2 5			0.001/			-						
LTE Band 2 6 12 11 1 22.3 21.5 22.2 12.5 12.4 12.4 Band 2 1 0 1 22.3 21.6 22.2 12.5 12.4 12.9 1 12 1 22.1 21.8 22.8 12.2 12.5 12.8 11.5 11			QPSK		-							
LTE Band 2 5 1 26 0 1 22.3 21.6 22.2 12.5 12.4 12.4 Band 2 1 0 1 22.1 21.8 22.8 12.2 12.6 12.8 10 24 1 22.1 21.7 22.7 12.2 12.5 12.8 11 24 0 2 21.4 20.0 21.4 11.5												
Band 2 5 1 0 1 22.1 21.8 22.8 12.2 12.6 12.9 1 12 1 22.1 21.7 22.8 12.3 12.5 12.8 160AM 12 0 2 21.4 20.0 21.4 11.5 <td></td>												
Band 2 I 0 1 22.1 21.8 22.8 12.2 12.6 12.9 1 1 1 21.1 21.7 22.7 12.2 12.6 12.8 1 12 0 2 21.4 21.0 22.8 12.3 12.5 12.8 12 0 2 21.4 21.0 21.4 11.5 11.6 11.5 <td< td=""><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		5										
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Band 2	-										
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				1	12	1						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				1	24	1	22.3	21.9	22.8	12.3	12.5	12.8
Band BW (MHz) Mode 112 25 111 25 2 0 2 2 2 1 2 1 2 2 1 2 2 2 1 2 1 2 2 1 2 2 2 1 2 1 2 2 1 2 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 2			16QAM	12	0	2	21.4	21.0	21.4	11.5	11.5	11.5
Band BW (MH2) Mode RB Allocation RB Size Target MPR Target MPR <				12	6	2	21.4	20.9	21.4	11.5	11.5	11.5
				12	11	2	21.5	20.9	21.5	11.6	11.5	11.5
$ \begin{tabular}{ c c c c c c c } \hline Here $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$				25	0	2	21.6	20.9	21.4	11.6	11.5	11.4
Band (MHz) Mode Allocation Size MPR 16515 MHz 18800 MHz 19915 18615 18900 19185 1800 MHz 19080 MHz 1300 MHZ<				DD		Townst	A		n)	A	vg Pwr (dBr	n)
LTE Band 2 BW (MHz) BW (MLz) BU (MLz) BW (MLz) BW (MLz) BU (MLz)	Band		Mode			-	18615	18900	19185	18615	18900	19185
LTE Band 2 BW (MHz) Mode RB Allocation RB Allocation RB Size RB Allocation All				Allocation	Size	IVIPR	1851.5 MHz	1880 MHz	1908.5 MHz	1851.5 MHz	1880 MHz	1908.5 MHz
LTE Band 2 A Band 2 A A A A A A A A A A A A A				1	0	0	23.2	22.6	23.3	13.6	13.6	13.5
LTE Band 2 A QPSK 8 0 1 22.3 21.6 22.3 12.5 12.4 12.3 Band 2 3 7 1 22.3 21.6 22.3 12.6 12.4 12.3 Band 2 15 0 1 22.3 21.6 22.3 12.6 12.4 12.3 160 1 22.3 21.6 22.3 12.6 12.4 12.3 160 1 22.3 21.6 22.3 12.6 12.4 12.3 160 1 0 1 22.3 22.0 22.1 12.5 12.8 12.2 1 1 14 1 22.3 22.0 22.1 12.6 12.7 12.0 8 4 2 21.4 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5				1	7	0	23.1	22.4	23.2	13.4	13.4	13.3
LTE Band 2 A QPSK 8 0 1 22.3 21.6 22.3 12.5 12.4 12.3 Band 2 3 7 1 22.3 21.6 22.3 12.6 12.4 12.3 Band 2 15 0 1 22.3 21.6 22.3 12.6 12.4 12.3 160 1 22.3 21.6 22.3 12.6 12.4 12.3 17<0			QPSK	1	14	0	23.2	22.5	23.2	13.5	13.4	13.3
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				8		1						
LTE Band 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4						1						
LTE Band 2 3 15 0 1 22.3 21.6 22.3 12.6 12.4 12.3 Band 2 1 0 1 22.3 22.0 22.2 12.5 12.8 12.2 1 7 1 22.3 22.0 22.1 12.5 12.7 12.1 16QAM 8 0 2 21.4 20.9 21.5 11.5 11.5 11.5 11.3 16QAM 8 4 2 21.4 20.8 21.4 11.5 11.4 11.2 8 4 2 21.5 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5 20.8 21.4 11.5 11.4 11.2 15 0 23.1 1800 19193 18607 1800 19193 1913 1913 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						1						
Band 2 3 1 0 1 22.3 22.0 22.2 12.5 12.8 12.2 1 7 1 22.2 21.9 22.1 12.5 12.8 12.1 16QAM 8 0 2 21.4 20.9 22.1 12.6 12.7 12.0 16QAM 8 0 2 21.4 20.9 21.5 11.5 11.5 11.3 8 4 2 21.4 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5 20.8 21.4 11.5 11.4 11.2 15 0 2 21.5 20.8 21.4 11.5 11.4 11.2 1607 1800 19193 18607 1890 19193 18607 1890 19193 1607 10 0 </td <td>ITE</td> <td></td>	ITE											
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		3	16QAM		-							
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	20.10											
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
Band BW (MHz) Mode RB Allocation RB Size Flaget MPR 18607 18900 19193 18607 18900 19193 Image: Imag				15	0	2						
LTE Band 2 1.4 Allocauon Image: Minesting and the state interval and the state state interval and the s	Band		Mode									
LTE Band 2 1.4 16QAM 1 1 0 0 0 23.1 22.5 23.2 13.4 13.4 13.2 13.1 1 1 2 0 23.0 22.5 23.2 13.4 13.3 13.1 13.1 13.4 13.3 13.1 13.4 13.3 13.1 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.2 13.4 13.3 13.2 13.2 13.2 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.4 13.3 13.2 13.2 13.2 13.4 13.3 13.2 13.2 13.2 13.2 13.2 13.2 13.2	Danu	(MHz)	WIDUE	Allocation	Size	MPR						
LTE Band 2 1.4 1.4 1.4 1.4 1.5 0 23.0 22.5 23.2 13.4 13.3 13.1 1.4 1.5 0 23.0 22.4 23.1 13.4 13.3 13.1 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 13.3 13.2 1.4 1.4 13.3 13.2 1.4 1.4 13.3 13.2 1.4 1.4 1.4 13.3 13.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4				1	0	0						
LTE Band 2 1.4 1.4 1.4 1.5 0 23.1 22.5 23.2 13.4 13.3 13.1 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 13.4 13.3 13.2 14 14.4 14.4 14.4 14.4 14.4 14.4 14.4												
LTE Band 2 1.4 QPSK 3 0 0 23.0 22.4 23.1 13.4 13.3 13.2 3 1 0 23.0 22.4 23.1 13.4 13.3 13.2 3 2 0 23.0 22.4 23.1 13.4 13.3 13.2 6 0 1 22.1 21.6 22.3 12.5 12.4 12.2 6 0 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.8 3 0 1 22.4 21.7 22.5 12.7 12.5 12.2 3 1 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.8 22.5 12.6 12.5 12.2 1 2.5 12.2 12.5 12.2 1 2.5 12.2 12.5 12.2 1 2.5 12.5 12.2 1 2.5 12.2 12.5 12.2 1 2.5 12.2 12.5 12.2 1 2.5 12.5 12.2 1 2.5 12.2 12.5 12.2 1 2.5 12.2 12.5 12.2 1 2.5 12.5 12.5 12.2 1 2.5 12.5 12.5 12.2 1 2.5 12.5 12.5 12.5 12.5 12.2 1 2 2 4 21.8 22.5 12.6 12.5 12.5 12.2 1 2 2 4 21.8 22.5 12.6 12.5 12.5 12.2 1 2 2 4 21.8 22.5 12.6 12.5 12.5 12.2 1 2 2 5 12.5 12.5 12.5 12.5 12.2 1 2 2 5 12.5 12.5 12.5 12.5 12.5 12.5 12												
LTE Band 2 1.4 1.4 1.4 1.3 1 0 23.0 22.4 23.1 13.4 13.3 13.2 3 2 0 23.0 22.4 23.1 13.4 13.3 13.2 6 0 1 22.1 21.6 22.3 12.5 12.4 12.2 1 0 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.8 3 0 1 22.4 21.7 22.5 12.7 12.5 12.2 3 1 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.8 22.5 12.6 12.5			OPer									
LTE Band 2 1.4 1.2 1.4 1.2 1.4 1.2 1.2 1.4 1.2 1.2 1.4 1.2 1.2 1.4 1.2 1			QF SK									
LTE Band 2 1.4 6 0 1 22.1 21.6 22.3 12.5 12.4 12.2 Band 2 1.4 1 0 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.8 16QAM 3 0 1 22.4 21.7 22.5 12.7 12.5 12.2 3 1 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.8 22.5 12.6 12.5 12.2												
Band 2 1.4 1 0 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.1 12.7 12.2 11.9 1 2 1 22.5 21.4 22.1 12.7 12.1 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.8 16QAM 3 0 1 22.4 21.7 22.5 12.7 12.5 12.2 3 1 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.7 22.5 12.6 12.5 12.2						1						
Band 2 1 0 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.2 12.7 12.2 11.9 1 2 1 22.5 21.4 22.1 12.7 12.1 11.9 1 5 1 22.5 21.4 22.2 12.7 12.2 11.8 16QAM 3 0 1 22.4 21.7 22.5 12.7 12.2 11.8 3 1 1 22.4 21.7 22.5 12.7 12.5 12.2 3 2 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.8 22.5 12.6 12.5 12.2		1.4										
1 5 1 22.5 21.4 22.2 12.7 12.2 11.8 16QAM 3 0 1 22.4 21.7 22.5 12.7 12.5 12.2 3 1 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.8 22.5 12.6 12.5 12.2	Band 2											
16QAM 3 0 1 22.4 21.7 22.5 12.7 12.5 12.2 3 1 1 22.4 21.7 22.5 12.6 12.5 12.2 3 2 1 22.4 21.8 22.5 12.6 12.5 12.2												
31122.421.722.512.612.512.232122.421.822.512.612.512.2												
<u>3 2 1 22.4 21.8 22.5 12.6 12.5 12.2</u>			16QAM									
						1						
6 0 2 21.1 21.0 21.6 11.2 11.5 11.3			Ŀ		2		22.4	21.8	22.5	12.6	12.5	12.2
				6	0	2	21.1	21.0	21.6	11.2	11.5	11.3

Page 78 of 143

LTE Band 4 Measured Results

		irea Resi						Avg Pw	r (dBm)			
	BW		RB	RB	Target		Full Power			Power Redu	ction	
Band	(MHz)	Mode	Allocation	Size	MPR	20050	20175	20300	20050	20175	20300	
						1720 MHz	1732.5 MHz	1745 MHz	1720 MHz	1732.5 MHz	1745 MHz	
			1	0	0	23.6	23.8	23.6	15.0	15.4	15.0	
			1	49	0	23.8	23.4	23.4	15.2	15.0	14.7	
			1	99	0	23.5	23.3	23.8	15.1	14.9	15.1	
		QPSK	50	0	1	22.8	22.8	22.5	14.0	14.2	13.9	
			50	24	1	22.8	22.7	22.4	14.1	14.0	13.9	
			50	50	1	22.8	22.4	22.6	14.0	13.9	14.0	
LTE	20		100	0	1	22.7	22.7	22.6	14.1	14.1	14.0	
Band 4	20		1	0	1	22.9	23.3	23.3	14.5	14.7	14.2	
			1	49	1	23.1	22.9	23.1	14.7	14.2	14.0	
			1	99	1	22.9	22.8	23.5	14.6	14.1	14.2	
		16QAM	50	0	2	22.1	22.0	21.6	13.1	13.2	12.8	
			50	24	2	22.2	21.7	21.6	13.2	13.0	12.8	
			50	50	2	22.1	21.5	21.8	13.1	12.9	12.9	
			100	0	2	22.1	21.8	21.7	13.1	13.0	12.9	
	BW		RB	RB	Target	A	vg Pwr (dBn			vg Pwr (dBn		
Band	(MHz)	Mode	Allocation	Size	MPR	20025	20175	20325	20025	20175	20325	
	(1717.5 MHz	1732.5 MHz	1747.5 MHz	1717.5 MHz	1732.5 MHz	1747.5 MHz	
			1	0	0	23.8	23.6	23.5	14.7	15.3	14.9	
			1	37	0	23.8	23.6	23.5	15.0	14.8	14.8	
		QPSK	1	74	0	23.8	23.4	23.6	15.2	14.7	15.0	
			36	0	1	22.8	22.9	22.5	14.1	14.1	13.9	
			36	16	1	23.0	22.7	22.7	14.2	13.9	13.8	
			36	35	1	23.1	22.5	22.7	14.3	13.8	13.9	
LTE	15		75	0	1	23.0	22.7	22.6	14.2	13.9	13.9	
Band 4		16QAM	5	1	0	1	22.7	22.9	22.7	13.9	14.2	14.3
			1	37	1	22.9	22.5	22.7	14.2	13.8	14.2	
			1	74	1	22.9	22.4	22.7	14.3	13.7	14.3	
			36	0	2	21.9	22.1	21.7	13.0	13.1	12.9	
			36	16	2	22.1	21.9	21.7	13.0	12.9	12.9	
			36	35	2	22.2	21.7	21.9	13.1	12.9	13.0	
			75	0	2	22.1	21.9	21.6	13.0	12.9	12.9	
	BW		RB	RB	Target		vg Pwr (dBn			vg Pwr (dBn	,	
Band	(MHz)	Mode	Allocation	Size	MPR	20000	20175	20350	20000	20175	20350	
			1	0	0	1715 MHz	1732.5 MHz	1750 MHz	1715 MHz	1732.5 MHz	1750 MHz	
			1	24	0	23.3 23.7	23.7 23.5	23.5 23.6	14.7 15.0	14.9 14.7	14.9 14.9	
			1	49	0	23.7	23.3	23.0	15.0	14.7	14.9	
		QPSK	25	<u>49</u> 0	1	23.0	23.3	23.7	13.7	14.0	13.8	
		QF ON	25 25	12	1	22.7	22.7	22.6	13.7	14.1	13.8	
			25 25	24	1	22.0	22.6	22.0	13.9	13.9	13.8	
1 TE			25 50	0	1	23.0	22.5	22.7		13.9	13.8	
LTE Band 4	10		50 1	0	1	22.0	22.0	22.7	13.9 13.5	13.9	13.6	
Dana 4			1	24	1	22.3	22.7		13.5		13.6	
			1					22.4		14.2		
		16QAM	25	49	1	22.9	22.3	22.5	14.1	14.1	13.6	
				0	2	21.7	21.9	21.7	12.8	12.9	12.8	
			25 25	12	2	21.9	21.7	21.8	12.9	12.8	12.9	
			25 50	24	2	22.0	21.6	21.9	13.1	12.8	12.9	
			50	0	2	21.9	21.7	21.8	12.9	12.8	12.8	

Page 79 of 143

LTE Band 4 Measured Results continued

				lucu				Avg Pw	r (dRm)			
	BW		RB	RB	Torget		Full Power	Avyrw		Power Redu	otion	
Band	(MHz)	Mode	Allocation	Size	Target MPR	19975	20175	20375	19975	20175	20375	
	(1011 12)		Allocation	0126		1712.5 MHz	1732.5 MHz	20375 1752.5 MHz	1712.5 MHz	1732.5 MHz	20375 1752.5 MHz	
			1	0	0	23.5	23.6	23.7	14.6	15.0	14.8	
			1	12	0	23.6	23.5	23.7	14.0	14.9	14.8	
			1	24	0	23.0	23.5	23.7	14.7			
		QPSK		0	1	23.7				14.9	14.9	
		QPSK	12	-			22.7	22.8	13.7	13.9	13.8	
			12	6	1	22.6	22.6	22.7	13.8	13.9	13.8	
			12	11	1	22.7	22.6	22.9	13.9	13.9	13.9	
LTE Band 4	5		25	0	1	22.6 22.5	22.6	22.8	13.8	13.9	13.9	
Dallu 4	Dallu 4		1	0 12	1	22.5	23.1 23.0	22.5 22.6	13.4 13.5	13.9 13.9	14.3 14.3	
			1	24	1	22.0	23.0	22.0	13.9	13.9	14.3	
		16QAM	12	0	2	23.0	23.1	22.0	12.6	14.0	14.4	
		IUQAN	12	6	2	21.3	21.9	21.0	12.0	12.8	12.8	
			12	0 11	2	21.7	21.8	21.9	12.7	12.8	12.8	
					2	21.0	21.7			12.0		
			25	0	2		vg Pwr (dBr	21.9	12.8	vg Pwr (dBn	12.8	
Band	BW Mode		RB	RB	Target	19965	20175	20385	19965	20175	20385	
Dana	(MHz)	Wiede	Allocation	Size	MPR	1711.5 MHz	1732.5 MHz	1753.5 MHz	1711.5 MHz	1732.5 MHz	1753.5 MHz	
			1	0	0	23.2	23.6	23.8	14.5	14.8	14.9	
			1	7	0	23.3	23.4	23.7	14.5	14.7	14.9	
		QPSK	1	14	0	23.5	23.5	23.7	14.7	14.8	14.9	
			8	0	1	22.2	22.6	22.8	13.5	13.9	13.9	
			8	4	1	22.3	22.5	22.8	13.6	13.9	13.9	
			8	7	1	22.4	22.5	22.8	13.7	13.9	13.9	
LTE	0		15	0	1	22.3	22.5	22.8	13.6	13.9	13.9	
Band 4	3	16QAM		1	0	1	22.1	22.9	22.6	13.3	13.9	14.1
			1	7	1	22.2	22.8	22.5	13.4	13.8	14.1	
			1	14	1	22.4	22.8	22.5	13.6	13.8	14.2	
			8	0	2	21.4	21.7	21.8	12.5	12.8	12.8	
			8	4	2	21.5	21.7	21.8	12.6	12.8	12.9	
			8	7	2	21.6	21.7	21.9	12.6	12.8	12.9	
			15	0	2	21.5	21.7	21.8	12.5	12.8	12.8	
	BW		RB	RB	Target		vg Pwr (dBr			vg Pwr (dBn		
Band	(MHz)	Mode	Allocation	Size	MPR	19957	20175	20393	19957	20175	20393	
					0	1710.7 MHz			1710.7 MHz			
			1	0	0	23.2 23.3	23.5	23.8	14.3	14.9	14.9	
			1	 5	0	23.3	23.4 23.4	23.7 23.7	14.4 14.4	14.8 14.8	14.9 14.9	
		QPSK	3	0	0	23.3	23.4	23.7	14.4	14.8	14.9	
		QPON	3	1	0	23.1	23.4	23.6	14.4	14.8	14.8	
			3	2	0	23.2	23.4	23.6	14.4	14.8	14.8	
LTE			6	0	1	23.2	23.4	23.0	13.5	14.8	14.8	
Band 4	1.4		1	0	1	22.2	22.3	22.6	13.7	13.6	13.0	
			1	2	1	22.0	22.3	22.5	13.8	13.5	14.1	
			1	5	1	22.0	22.3	22.5	13.8	13.6	14.1	
		16QAM	3	0	1	22.4	22.7	22.9	13.7	13.9	14.0	
			3	1	1	22.4	22.7	22.9	13.7	13.9	14.0	
			3	2	1	22.4	22.6	22.9	13.7	13.9	14.0	
			6	0	2	21.4	21.8	22.0	12.3	12.9	12.6	
L	1	1	, v		-							

Page 80 of 143

LTE Band 5 Measured Results

LIE Band								Avg Pw	r (dBm)			
Dand	BW	Mada	RB	RB	Target		Full Power			Power Redu	ction	
Band	(MHz)	Mode	Allocation	Size	MPR	20450	20525	20600	20450	20525	20600	
						829 MHz	836.5 MHz	844 MHz	829 MHz	836.5 MHz	844 MHz	
			1	0	0	23.1	23.0	23.2	20.0	20.3	20.3	
			1	24	0	22.8	23.0	22.9	20.0	20.2	20.1	
			1	49	0	23.2	22.9	22.8	20.1	20.1	20.0	
		QPSK	25	0	1	21.8	21.8	21.9	19.3	19.3	19.3	
			25	12	1	21.8	21.8	21.9	19.3	19.3	19.3	
			25	24	1	21.8	21.9	21.7	19.2	19.2	19.3	
LTE	10		50	0	1	22.0	22.0	22.1	19.3	19.3	19.3	
Band 5	10		1	0	1	22.4	22.1	22.2	19.8	19.9	19.2	
			1	24	1	21.8	22.1	21.7	19.2	19.6	19.0	
			1	49	1	22.1	21.9	21.9	19.1	19.6	19.0	
		16QAM	25	0	2	21.2	21.3	21.3	18.8	18.6	18.5	
			25	12	2	21.0	21.1	21.0	18.5	18.4	18.5	
			25	24	2	21.1	21.1	21.1	18.4	18.4	18.5	
			50	0	2	21.1	21.1	21.0	18.5	18.4	18.5	
	BW		RB	RB	Target	A	vg Pwr (dBn	n)		vg Pwr (dBr	n)	
Band	(MHz)	Mode	Allocation	Size	MPR	20425	20525	20625	20425	20525	20625	
	()					826.5 MHz	836.5 MHz	846.5 MHz	826.5 MHz	836.5 MHz	846.5 MHz	
			1	0	0	23.1	23.0	22.8	20.3	20.3	20.2	
			1	12	0	22.6	23.0	22.7	20.3	20.3	20.2	
			1	24	0	22.6	23.0	22.9	20.3	20.2	20.3	
		QPSK	12	0	1	21.8	22.2	21.8	19.4	19.4	19.4	
			12	6	1	21.6	22.2	21.8	19.3	19.3	19.3	
			12	11	1	21.7	22.2	21.8	19.3	19.3	19.3	
LTE	5		25	0	1	21.6	22.1	21.8	19.3	19.3	19.3	
Band 5	Ŭ			1	0	1	22.1	22.1	22.5	20.0	19.6	19.2
			1	12	1	21.6	22.1	22.4	19.9	19.4	19.1	
			1	24	1	21.7	22.2	22.5	19.9	19.3	19.1	
		16QAM	12	0	2	21.0	21.2	21.0	18.6	18.4	18.2	
			12	6	2	20.9	21.1	21.0	18.5	18.3	18.2	
			12	11	2	20.8	21.1	21.1	18.5	18.3	18.2	
			25	0	2	20.9	21.3	21.0	18.5	18.3	18.3	
Devel	BW	Maria	RB	RB	Target		vg Pwr (dBr			vg Pwr (dBr		
Band	(MHz)	Mode	Allocation	Size	MPR	20415	20525	20635	20415 825.5 MHz	20525	20635 847.5 MHz	
			1	0	0	825.5 MHz 23.0	836.5 MHz 23.1	847.5 MHz 22.9	20.3	836.5 MHz 20.3	20.3	
			1	7	0	23.0	23.1	22.9	20.3	20.3	20.3	
			1	14	0	22.7	23.0	22.0	20.2	20.3	20.2	
		QPSK	8	0	1	21.7	22.9	23.0	19.3	19.2	19.3	
			8	4	1	21.7	22.2	21.0	19.3	19.2	19.3	
			8	7	1	21.7	22.1	21.9	19.3	19.2	19.3	
LTE			15	0	1	21.8	22.1	21.9	19.3	19.2	19.3	
Band 5	3		1	0	1	21.0	22.1	21.9	19.3	19.2	19.0	
20.100			1	7	1	22.0	21.9	21.3	19.7	19.2	19.0	
			1	14	1	21.8	21.9	21.0	19.7	19.1	19.0	
		16QAM	8	0	2	21.0	21.9	22.0	19.7	19.1	19.0	
			8	4	2	21.1	21.3	21.1	18.6	18.3	18.2	
			8	7	2	21.0	21.2	21.1	18.6	18.3	18.3	
			15	0	2	20.9	21.2	21.1	18.5	18.3	18.2	
			10	U	۷	20.9	21.2	21.0	10.0	10.0	10.2	

Page 81 of 143

LTE Band 5 Measured Results continued

								Avg Pw	r (dBm)		
Band	BW	Mode	RB	RB	Target		Full Power		with	Power Redu	iction
Danu	(MHz)	Woue	Allocation	Size	MPR	20407	20525	20643	20407	20525	20643
						824.7 MHz	836.5 MHz	848.3 MHz	824.7 MHz	836.5 MHz	848.3 MHz
			1	0	0	23.2	23.2	23.2	20.2	20.2	20.3
			1	2	0	23.2	23.1	23.2	20.2	20.2	20.2
		QPSK	1	5	0	23.1	23.1	23.2	20.2	20.2	20.2
			3	0	0	23.2	23.0	23.2	20.2	20.2	20.1
			3	1	0	23.2	23.0	23.2	20.2	20.2	20.1
			3	2	0	23.1	23.0	23.2	20.2	20.2	20.1
LTE	1.4		6	0	1	22.2	22.1	22.3	19.3	19.3	19.1
Band 5	1.4		1	0	1	22.4	22.2	22.3	19.1	19.1	19.0
			1	2	1	22.3	22.1	22.3	19.1	19.1	18.9
			1	5	1	22.4	22.1	22.3	19.1	19.1	18.9
		16QAM	3	0	1	22.5	22.1	22.5	19.5	19.4	19.3
			3	1	1	22.4	22.1	22.4	19.5	19.4	19.3
			3	2	1	22.4	22.1	22.5	19.5	19.4	19.3
			6	0	2	21.4	21.3	21.5	18.6	18.4	18.4

Page 82 of 143

LTE Band 17 Measured Results

						Avg Pw	rr (dBm)		
Band	BW	Mode	RB	RB	Target	Full Power	with Power Reduction		
Бапо	(MHz)	wode	Allocation	20100		23790			
						710 MHz	710 MHz		
			1	0	0	23.3	21.2		
			1	25	0	23.0	20.8		
			1	49	0	23.0	20.6		
		QPSK	25	0	1	22.1	23790 710 MHz 21.2 20.8 20.6 19.9 20.0 20.0 20.1 19.8 20.1 19.6 19.0 19.1 19.0 18.9		
			25	12	1	22.1	With Power Reduction 23790 710 MHz 21.2 20.8 20.6 19.9 20.0 20.0 20.1 19.8 20.1 19.0 19.1 19.0 19.1 19.0 19.1 19.0 19.1 19.0 19.1 19.0 19.1 20.1 20.1 19.0 19.1 19.0 19.1 19.0 18.9 vr (dBm) 20.7 21.1 20.7 21.1 20.0 20.2 20.1 20.0 19.3 19.9 19.8 19.0		
			25	25	1	22.3	20.0		
LTE	10		50	0	1	22.3	19.9		
Band 17	10		1	0	1	22.3	19.8		
			1	25	1	21.8	20.1		
			1	49	1	21.9	19.6		
		16QAM	25	0	2	21.2	19.0		
			25	12	2	21.0	19.1 19.0		
			25	25	2	21.0	20.0 20.0 19.9 19.8 20.1 19.6 19.0 19.1 19.0 18.9 (dBm) 23790 710 MHz 20.7 21.1 21.1 21.1 20.0 20.2		
			50	0	2	20.9	18.9		
	BW		RB	RB offset	Target MPR	Avg Pwr (dBm)			
Band	(MHz)	Mode	Allocation			23790	23790		
	()		7	eneer		710 MHz	710 MHz		
			1	0	0	22.9	20.7		
			1	12	0	22.7	21.1		
			1	24	0	22.6	21.1		
		QPSK	12	0	1	22.1	20.0		
			12	7	1	22.0	20.2		
			12	13	1	21.8	20.1		
LTE	5		25	0	1	21.9	20.0		
Band 17	5		1	0	1	21.6	19.3		
			1	12	1	21.5	19.9		
			1	24	1	21.5	19.8		
		16QAM	12	0	2	21.1	19.0		
			12	7	2	21.0	19.2		
			12	13	2	20.8	19.1		
			25	0	2	20.9	19.1		

Note(s):

10/5 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB941225 D05 SAR for LTE Devices v02r02

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ad
raiget requency (initz)	ε _r	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

Target Frequency (MHz)	He	ead	Во	У	
raiget requency (Mirz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

Page 84 of 143

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequen	cy (MHz)				
(% by weight)	4	450		35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

MSL/HSL750 (Body and Head liquids for 700 - 800 MHz)

Item	Head Tissue Simulation Liquids HSL750 Muscle (body) Tissue Simulation Liquids MSL750
Туре No	SL AAH 075
Manufacturer	SPEAG
The item is composed of the follo	wing ingredients:
H ² O	Water, 35 – 58%
Sucrese	Sugar, white, refined, 40-60%
NaCl	Sodium Chloride, 0-6%
Hydroxyethel-cellulsoe	Medium Viscosity (CAS# 9004-62-0), <0.3%
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1-0.7%

MSL/HSL1750 (Body and Head liquids for 1700 – 1800 MHz)

Item	Head Tissue Simulation Liquids HSL1750
	Muscle (body) Tissue Simulation Liquids MSL1750
Type No	SL AAM 175
Manufacturer	SPEAG
-The item is composed of the follo	wing ingredients:
H ² O	Water, 52 – 75%
C8H18O3	Diethylene glycol monobutyl ether (DGBE), 25-48%
NaCl	Sodium Chloride, <1.0%

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

UL Verification Services Inc.

Page 85 of 143

10.2. Tissue Dielectric Parameter Check Results

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

SAR Room 2 Liquid Parameters Date Tested Freq. (MHz) Measured Target Delta (%) Limit ±(%) 51.6300 Relative Permittivity (cr) 51.63 53.44 -3.39 5 e' Body 1750 e" 15.5600 Conductivity (σ) 1.51 1.49 1.88 5 e' 51.8000 Relative Permittivity (ε_r) 51.80 53.54 -3.26 5 10/23/2013 Body 1710 e" 1.48 1.29 15.5700 Conductivity (σ) 1.46 5 Relative Permittivity (c_r) 51.62 5 e' 51.6200 53.43 -3.38 Body 1755 e" 15.5700 Conductivity (o) 1.52 1.49 2.02 5 e' 52.5900 Relative Permittivity (c_r) 52.59 53.30 -1.33 5 Body 1900 5 e" 14.5000 Conductivity (σ) 1.53 1.52 0.78 e' 52.8000 Relative Permittivity (cr) 52.80 53.30 -0.94 5 10/27/2013 Body 1850 14.3700 1.48 -2.75 5 e" Conductivity (σ) 1.52 e' 52.5600 Relative Permittivity (c_r) 52.56 53.30 -1.39 5 Body 1910 14.5200 e" Conductivity (o) 1.54 1.52 1.45 5 e' 53.1200 Relative Permittivity (c_r) 53.12 53.44 -0.60 5 Body 1750 e" 14.8800 Conductivity (σ) 1.45 1.49 -2.57 5 53.2500 Relative Permittivity (cr) 53.25 53.54 -0.55 5 e' 10/27/2013 Body 1710 5 e' 14.7600 1 4 0 1.46 -3.98 Conductivity (σ) Relative Permittivity (c_r) 53.10 53.43 -0.61 5 e' 53.1000 Body 1755 e" 14.8900 Conductivity (σ) 1.45 1.49 -2.43 5 Relative Permittivity (c_r) 5 e' 52.1100 52.11 53.44 -2.49 Body 1750 e" 15.5300 1.51 1.49 1.68 5 Conductivity (o) 52.2700 Relative Permittivity (c_r) 52.27 53.54 -2.38 5 e' 10/30/2013 Body 1710 e" 15.4300 Conductivity (o) 1.47 1.46 0.38 5 5 52.1000 Relative Permittivity (c_r) 52.10 53.43 -2.49 e' Body 1755 e" 15.5500 Conductivity (σ) 1.52 1.49 1.89 5 53.1500 Relative Permittivity (ε_r) 53.15 53.30 -0.28 5 e' Body 1900 e" 1.57 1.52 5 14.8400 3.14 Conductivity (σ) Relative Permittivity (c_r) e' 53.3600 53.36 53.30 0.11 5 10/30/2013 Body 1850 e" 1.52 -0.31 5 14.7300 Conductivity (σ) 1.52 Relative Permittivity (c_r) e' 53.1200 53.12 53.30 -0.34 5 Body 1910 e" 14.8900 Conductivity (o) 1.58 1.52 4.04 5 e' 52.4900 Relative Permittivity (c_r) 52.49 53.30 -1.52 5 Body 1900 e" 14,4000 Conductivity (σ) 1.52 1.52 0.09 5 e' 52.6700 Relative Permittivity (ε_r) 52.67 53.30 -1.18 5 11/8/2013 Body 1850 e" 14.2600 1.47 -3.50 5 1.52 Conductivity (o) 52.46 5 e' 52.4600 Relative Permittivity (c_r) 53.30 -1.58 Body 1910 e" 14.4400 Conductivity (σ) 1.53 1.52 0.89 5

UL Verification Services Inc.

Page 86 of 143

Issue Date: 1/17/2014

SAR Room 2 continued

Date Tested	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 1900	e'	52.2000	Relative Permittivity (ε_r):	52.20	53.30	-2.06	5
	Body 1900	e"	14.2600	Conductivity (o):	1.51	1.52	-0.89	5
11/25/2013	Body 1850	e'	52.3800	Relative Permittivity (c _r):	52.38	53.30	-1.73	5
11/25/2015	B00y 1030	e"	14.1500	Conductivity (σ):	1.46	1.52	-4.24	5
	Body 1910	e'	52.1500	Relative Permittivity (ε_r):	52.15	53.30	-2.16	5
	Body 1910	e"	14.3100	Conductivity (σ):	1.52	53.30 -2.06 5 1.52 -0.89 5 53.30 -1.73 5 1.52 -4.24 5	5	
	Head 2550	e'	38.2800	Relative Permittivity (ε_r):	38.28	39.07	-2.03	5
	Head 2000	e"	13.9000	Conductivity (σ):	1.97	1.91	3.29	5
12/5/2013	Head 2500	e'	38.4600	Relative Permittivity (c _r):	38.46	39.14	-1.73	5
		e"	13.8200	Conductivity (σ):	1.92	1.85	3.62	5
	Head 2600	e'	38.0300	Relative Permittivity (ε_r):	38.03	39.01	-2.51	5
	Tieau 2000	e"	14.1100	Conductivity (σ):	2.04	1.96	3.96	5
	Body 1900	e'	51.3200	Relative Permittivity (ε_r):	51.32	53.30	-3.71	5
		e"	14.8800	Conductivity (σ):	1.57	1.52	3.42	5
12/13/2013	Body 1850	e'	51.5200	Relative Permittivity (ε_r):	51.52	53.30	-3.34	5
12/13/2013	B00y 1850	e"	14.6900	Conductivity (σ):	1.51	1.52	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5
	Body 1910	e'	51.3000	Relative Permittivity (ε_r):	51.30	53.30	-3.75	5
	Body 1910	e"	14.9100	Conductivity (σ):	1.58	1.52	4.18	5
	Body 1900	e'	52.5200	Relative Permittivity (ε_r):	52.52	53.30	-1.46	5
	Body 1900	e"	14.6000	Conductivity (σ):	1.54	1.52	1.48	5
12/16/2013	Body 1850	e'	52.6900	Relative Permittivity (c _r):	52.69	53.30	-1.14	5
12/10/2013	Body 1850	e"	14.4500	Conductivity (o):	1.49	1.52	-2.21	5
	Body 1910	e'	52.4800	Relative Permittivity (c _r):	52.48	53.30	-1.54	5
	Body 1910	e"	14.6300	Conductivity (σ):	1.55	1.52	2.22	5

Page 87 of 143

Date Tested	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Pody 750	e'	54.7900	Relative Permittivity (c _r):	54.79	55.55	-1.36	5
	BOUY 750	e"	23.3300	Conductivity (σ):	0.97	0.96	1.02	5
10/23/2013	Rody 700	e'	55.3500	Relative Permittivity (c _r):	55.35	55.74	-0.70	5
10/23/2013	Body 700	e"	23.7100	Conductivity (σ):	0.92	0.96	-3.79	5
	Rody 700	e'	54.3500	Relative Permittivity (c _r):	54.35	55.39	-1.88	5
	Body 790	e"	22.9900	Conductivity (σ):	1.01	0.97	4.52	5
	Pody 835	e'	53.0000	Relative Permittivity (c _r):	53.00	55.20	-3.99	5
	DOUY 000	e"	21.7700	Conductivity (o):	1.01	0.97	4.20	5
10/20/2012	Dedy 820	e'	53.1500	Relative Permittivity (c _r):	53.15	55.28	-3.85	5
10/26/2013	BOUY 620	e"	21.8500	Conductivity (σ):	1.00	0.97	2.87	5
10/23/2013 10/28/2013 10/31/2013 11/11/2013 11/11/2013	Dady 950	e'	52.8300	Relative Permittivity (c _r):	52.83	55.16	-4.22	5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.7100	Conductivity (o):	1.03	0.99	3.94	5	
	Darks 005	e'	54.3500	Relative Permittivity (ɛ _r):	54.35	55.20	-1.54	5
	BODY 835	e"	21.7500	Conductivity (o):	1.01	0.97	4.11	5
40/04/0040	Dedu 000	e'	54.5000	Relative Permittivity (c _r):	54.50	55.28	-1.41	5
10/31/2013	Body 820	e"	21.8300	Conductivity (o):	1.00	0.97	2.77	5
		e'	54.2300	Relative Permittivity (c _r):	54.23	55.16	-1.68	5
	BODY 850	e"	21.7000	Conductivity (o):	1.03	0.99	3.90	5
	Dedu 025	e'	54.4100	Relative Permittivity (c _r):	54.41	55.20	-1.43	5
	Body 835	e"	21.8400	Conductivity (o):	1.01	0.97	4.54	5
44/44/0040	Dedu 000	e'	54.5600	Relative Permittivity (c _r):	54.56	55.28	-1.30	5
11/11/2013	BODY 820	e"	21.8900	Conductivity (o):	1.00	0.97	3.06	5
	Dady 950	e'	54.2600	Relative Permittivity (c _r):	54.26	55.16	-1.63	5
	BODY 850	e"	21.7800	Conductivity (o):	54.79 55.55 -1.36 0.97 0.96 1.02 55.35 55.74 -0.70 0.92 0.96 -3.79 54.35 55.39 -1.88 1.01 0.97 4.52 53.00 55.20 -3.99 1.01 0.97 4.20 53.15 55.28 -3.85 1.00 0.97 2.87 52.83 55.16 -4.22 1.03 0.99 3.94 54.35 55.20 -1.54 1.01 0.97 2.77 54.23 55.16 -1.68 1.03 0.99 3.90 54.41 55.20 -1.43 1.01 0.97 4.77 54.23 55.16 -1.63 1.03 0.99 3.90 54.41 55.20 -1.43 1.01 0.97 3.06 54.26 55.16 -1.63 1.03 0.99 4.28 53.59 55.55 -3.52 0.97 0.96 0.72 54.15 55.74 -2.85 0.92 0.96 -3.96 53.19 55.28 -1.41 0.98 0.97 1.50 54.36 55.28 -1.41 0.98 0.97 1.50 54.23 55.16 -1.68	4.28	5	
	Dedu 750	e'	53.5900	Relative Permittivity (c _r):	53.59	55.55	-3.52	5
	BOUY 750	e"	23.2600	Conductivity (σ):	0.97	0.96	0.72	5
11/11/2012	Dedy 700	e'	54.1500	Relative Permittivity (c _r):	54.15	55.74	-2.85	5
11/11/2013	BODY 700	e"	23.6700	Conductivity (σ):	0.92	0.96	-3.96	5
	Dedu 700	e'	53.1900	Relative Permittivity (c _r):	53.19	55.39	-3.98	5
	Body 790	e"	22.8600	Conductivity (o):	1.00	0.97	3.93	5
	Dody 025	e'	54.3600	Relative Permittivity (c _r):	54.36	55.20	-1.52	5
	BOOX 832	e"	21.4800	Conductivity (o):	1.00	0.97	2.81	5
11/05/0040	Dedu 000	e'	54.5000	Relative Permittivity (c _r):	54.50	55.28	-1.41	5
11/25/2013	BOOX 820	e"	21.5600	Conductivity (o):	0.98	0.97	1.50	5
	Dedu 050	e'	54.2300	Relative Permittivity (c _r):	54.23	55.16	-1.68	5
	Body 850	e"	21.4100	Conductivity (o):	1.01	0.99	2.51	5

11. System Performance Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm ± 0.5 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm ± 0.5 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm. For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

Custom Dinala	Carial Na	Cal Data		Т	Target SAR Values (mW/g)			
System Dipole	Serial No.	Cal. Date	Freq. (MHz)	1g/10g	Head	Body		
D750) (0	1019	03/05/2013	750	1g	8.50	8.68		
D750V3	1019	05/05/2015	750	10g	5.59	5.75		
D925\/2	4-14-4-7	E (00/0010	005	1g	9.54	9.40		
D835V2	4d117	5/28/2013	835	10g	g Head 8.50 5.59 9.54 6.21 36.5 19.4 41.2 19.4	6.16		
D4750\/0	4050	04/00/0040	4750	1g	36.5	37.1		
D1750V2	1050	04/20/2013	1750	10g	19.4	20.1		
D 1000) /0	Ed140	4/18/2013	1900	1g	41.2	Body 8.68 5.75 9.40 6.16 37.1		
D1900V2	5d140	4/16/2013	1900	10g	21.5	22.0		

UL Verification Services Inc.

Page 89 of 143

11.3. System Performance Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Room 2

	System	Dipole	т		М	easured Resu	ults	Target	Delta	Est./Zoom	Plot								
Date Tested	Type Serial #		T.S. Liquid		Area Scan	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	±10 %	Ratio ±3 %	No.								
10/23/2013	D1900V2	5d140	BODY	1g	4.03	4.00	40.00	41.50	-3.61	0.74									
10/23/2013	D1900V2	50140	BODI	10g	2.02	2.09	20.90	22.00	-5.00										
10/27/2013	D1900V2	5d140	BODY	1g	3.94	4.01	40.10	41.50	-3.37	-1.78									
10/21/2013	D1300V2	50140	DODI	10g	1.97	2.09	20.90	22.00	-5.00										
10/27/2013	D1750V2	1050	BODY	1g	3.68	3.74	37.40	37.10	0.81	-1.63									
10/21/2013	0175072	1050	BODI	10g	1.97	1.99	19.90	20.10	-1.00										
10/30/2013	D1900V2	5d140	BODY	1g	4.09	4.04	40.40	41.50	-2.65	1.22									
10/30/2013	D1300V2	50140	50140	50140	50140	50140	50140	50140	50140	00140	DODI	10g	2.050	2.11	21.10	22.00	-4.09		
10/30/2013	D1750V2	1050	BODY	1g	3.84	3.84	38.40	37.10	3.50	0.00	1, 2								
10/30/2013	D1730V2	1050	BODI	10g	2.06	2.04	20.40	20.10	1.49		1, 2								
11/8/2013	D1900V2	5d140	BODY	1g	4.20	4.20	42.00	41.50	1.20	0.00									
11/0/2013	D1900V2	50140	BODI	10g	2.100	2.19	21.90	22.00	-0.45										
11/25/2013	D1900V2	5d140	BODY	1g	4.01	4.01	40.10	41.50	-3.37	0.00									
11/25/2015	D1900V2	50140	BODI	10g	2.00	2.10	21.00	22.00	-4.55										
12/13/2013	D1900V2	5d140	BODY	1g	4.00	3.96	39.60	41.50	-4.58	1.00	3, 4								
12/13/2013	D1300VZ	50140	10 BODA	10g	1.99	2.06	20.60	22.00	-6.36		5, 4								
12/16/2013	D1900V2	5d140	BODY	1g	4.10	4.09	40.90	41.50	-1.45	0.24									
12/10/2013	D1300VZ	50140	DODI	10g	2.06	2.14	21.40	22.00	-2.73										

SAR Room 3

	System	Dipole	Т.5		М	easured Resi	ults	Torgot	Delta	Est./Zoom	Plot	
Date Tested Type	Туре	Serial #	Liqu		Area Scan	Zoom Scan	Normalize to 1 W	Target (Ref. Value)		Ratio ±3 %	No.	
10/23/2013	D750V3	1019	BODY	1g	0.89	0.84	8.39	8.68	-3.34	5.84	5, 6	
10/23/2013	D750V5	1019	BODI	10g	0.60	0.56	5.59	5.75	-2.78		5, 0	
10/28/2013	D750V3	1019	BODY	1g	0.94	0.85	8.48	8.68	-2.30	9.40		
10/20/2013	D730V3	D730V3	1019	BODI	10g	0.63	0.57	5.65	5.75	-1.74		
10/28/2013	D835V2	4d117	4d117	BODY	1g	0.96	0.95	9.48	9.40	0.85	1.35	
10/20/2013	D03372			40117		10g	0.65	0.62	6.24	6.16	1.30	
11/11/2013	D835V2	4d117	BODY	1g	0.98	0.98	9.78	9.40	4.04	0.41	7, 8	
11/11/2013	D03372	40117	BODI	10g	0.66	0.64	6.44	6.16	4.55		7,0	
11/11/2013	D750V3	1019	BODY	1g	0.86	0.86	8.57	8.68	-1.27	0.81		
11/11/2013	D730V3	1019	5001	10g	0.59	0.57	5.72	5.75	-0.52			
11/25/2013	D835V2	4d117	BODY	1g	0.98	0.96	9.63	9.40	2.45	2.03		
11/23/2013	D03372	HUIII	6001	10g	0.66	0.64	6.35	6.16	3.08			

Page 90 of 143

12. **SAR Test Results**

12.1. GSM850

		Pwr	Dist.				r (dBm)	1-g SAR	R (W/kg)	Plot
Test Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
	GPRS			128	824.2	28.1	28.1	1.170	1.170	
Rear	2 Slots	on	0	190	836.6	28.1	28.0	1.280	1.310	
	2 01010			251	848.8	28.1	28.0	1.360	1.392	1
	0000			128	824.2	28.1	28.1	0.912	0.912	
Edge 1	GPRS 2 Slots	on	0	190	836.6	28.1	28.0	1.010	1.034	
	2 01013			251	848.8	28.1	28.0	1.060	1.085	
	0000			128	824.2	28.1	28.1	0.900	0.900	
Rear/Edge 1 slant	GPRS 2 Slots	on	0	190	836.6	28.1	28.0	0.948	0.970	
Sidiit	2 01013			251	848.8	28.1	28.0	0.983	1.006	
	0000			128	824.2	29.3	29.3			
Rear/Edge 4 slant	GPRS 2 Slots	on	0	190	836.6	29.3	29.3	0.367	0.367	
Sidiit	2 31013			251	848.8	29.3	29.2			
				128	824.2	29.3	29.3			
Rear	GPRS 2 Slots	off	16	190	836.6	29.3	29.3	0.224	0.224	
	2 31015			251	848.8	29.3	29.2			
				128	824.2	29.3	29.3			
Edge 1	GPRS	off	16	190	836.6	29.3	29.3	0.153	0.153	
	2 Slots			251	848.8	29.3	29.2			
				128	824.2	29.3	29.3			
Edge 4	GPRS	off	0	190	836.6	29.3	29.3	0.382	0.382	
_	2 Slots			251	848.8	29.3	29.2			

With Keyboard Attached

		Pwr	Dist.				r (dBm)	1-g SAF	R (W/kg)	Plot
Test Position	Mode	Reduction	Ch # [Freq (MHz)] Tupo up		Meas.	Scaled	No.			
Deer w/ Touch	CDDC			128	824.2	28.1	28.1			
	2 Slots	on	0	190	836.6	28.1	28.0			
				251	848.8	28.1	28.0	0.757	0.775	
	0000	GPRS 2 Slots on			128	824.2	28.1	28.1		
Rear w/ Type Keyboard	GPRS 2 Slots		0	190	836.6	28.1	28.0			
Reyboard				251	848.8	28.1	28.0	0.595	0.609	

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

· ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

· ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

· ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

12.2. GSM1900

		Pwr	Dist.				r (dBm)	1-g SAR	R (W/kg)	Plot
Test Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
				512	1850.2	21.0	21.0	0.823	0.823	
Rear	GPRS 2 Slots	on	0	661	1880	21.0	21.0	0.755	0.755	
	2 01010			810	1909.8	21.0	21.0	0.718	0.718	
	0000			512	1850.2	21.0	21.0	1.120	1.120	
Edge 1	GPRS 2 Slots	on	0	661	1880	21.0	21.0	0.996	0.996	
	2 01013			810	1909.8	21.0	21.0	0.935	0.935	
	0000			512	1850.2	21.0	21.0	1.410	1.410	2
Rear/Edge 1 slant	GPRS 2 Slots	on	0	661	1880	21.0	21.0	1.280	1.280	
Sidiit	2 01013			810	1909.8	21.0	21.0	1.180	1.180	
	0000			512	1850.2	26.5	26.5			
Rear/Edge 4 slant	GPRS 2 Slots	on	0	661	1880	26.5	26.4	0.080	0.081	
Sidiit	2 01013			810	1909.8	26.5	26.5			
				512	1850.2	26.5	26.5			
Rear	GPRS 2 Slots	off	16	661	1880	26.5	26.4	0.255	0.261	
	2 31015			810	1909.8	26.5	26.5			
				512	1850.2	26.5	26.5			
Edge 1	GPRS	off	16	661	1880	26.5	26.4	0.361	0.369	
	2 Slots			810	1909.8	26.5	26.5			
				512	1850.2	26.5	26.5			
Edge 4	GPRS	off	0	661	1880	26.5	26.4	0.183	0.187	
5	2 Slots		0	810	1909.8	26.5	26.5			

With Keyboard Attached

		Pwr	Dist.				r (dBm)	1-g SAR	R (W/kg)	Plot	
Test Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	
Deer w/ Touch	CDDC			512	1850.2	21.0	21.0				
Rear w/ Touch Keyboard	GPRS 2 Slots	on	0	661	1880	21.0	21.0	0.463	0.463		
				810	1909.8	21.0	21.0				
Dear / Trans	0000	GPRS on 2 Slots			512	1850.2	21.0	21.0			
Rear w/ Type Keyboard			0	661	1880	21.0	21.0	0.339	0.339		
				810	1909.8	21.0	21.0				

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

 $\cdot \leq$ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

· ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

Page 92 of 143

12.3. W-CDMA Band V

		Pwr	Dist.			Power	r (dBm)	1-g SAF	R (W/kg)	Plot
Test Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
				4132	826.4	20.2	20.2	1.430	1.430	3
Rear	Rel 99 RMC	on	0	4183	836.6	20.2	20.0	1.150	1.204	
				4233	846.6	20.2	20.0	1.110	1.162	
				4132	826.4	20.2	20.2			
Edge 1	Rel 99 RMC	on	0	4183	836.6	20.2	20.0	0.633	0.663	
				4233	846.6	20.2	20.0			
				4132	826.4	20.2	20.2			
Rear/Edge 1 slant	Rel 99 RMC	on	0	4183	836.6	20.2	20.0	0.670	0.702	
Sidiri				4233	846.6	20.2	20.0			
				4132	826.4	20.2	20.2			
Rear/Edge 4 slant	Rel 99 RMC	on	0	4183	836.6	20.2	20.0	0.401	0.420	
Sidiri				4233	846.6	20.2	20.0			
				4132	826.4	22.9	22.8			
Rear	Rel 99 RMC	off	16	4183	836.6	22.9	22.9	0.283	0.283	
				4233	846.6	22.9	22.9			
				4132	826.4	22.9	22.8			
Edge 1	Rel 99 RMC	off	16	4183	836.6	22.9	22.9	0.189	0.189	
				4233	846.6	22.9	22.9			
				4132	826.4	22.9	22.8			
Edge 4	Rel 99 RMC	off	16	4183	836.6	22.9	22.9	0.550	0.550	
				4233	846.6	22.9	22.9			

With Keyboard Attached

		Pwr	Dist.				r (dBm)	1-g SAR	R (W/kg)	Plot
Test Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
				4132	826.4	20.2	20.2	0.848	0.848	
Rear w/ Touch Keyboard	Rel 99 RMC	on	0	4183	836.6	20.2	20.0			
				4233	846.6	20.2	20.0			
				4132	826.4	20.2	20.2	0.617	0.617	
Rear w/ Type Keyboard	Rel 99 RMC	Rel 99 RMC on	0	4183	836.6	20.2	20.0			
Reyboard				4233	846.6	20.2	20.0			

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

• ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

· ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

UL Verification Services Inc.

Page 93 of 143

12.4. W-CDMA Band II

		Pwr	Dist.			Power	r (dBm)	1-g SAF	R (W/kg)	Plot
Test Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
				9262	1852.4	13.6	13.6	0.694	0.688	
Rear	Rel 99 RMC	on	0	9400	1880.0	13.6	13.6	0.939	0.939	
				9538	1907.6	13.6	13.4	0.832	0.871	
				9262	1852.4	13.6	13.6	0.884	0.876	
Edge 1	Rel 99 RMC	on	0	9400	1880.0	13.6	13.6	1.150	1.150	
				9538	1907.6	13.6	13.4	0.976	1.022	
Deer/Edge 4				9262	1852.4	13.6	13.6	1.110	1.100	
Rear/Edge 1 slant	Rel 99 RMC	on	0	9400	1880.0	13.6	13.6	1.380	1.380	4
Sidiri				9538	1907.6	13.6	13.4	1.200	1.257	
				9262	1852.4	13.6	13.6			
Rear/Edge 4 slant	Rel 99 RMC	on	0	9400	1880.0	13.6	13.6	0.096	0.096	
Sian				9538	1907.6	13.6	13.4			
				9262	1852.4	23.0	23.0			
Rear	Rel 99 RMC	off	16	9400	1880.0	23.0	22.4	0.666	0.765	
				9538	1907.6	23.0	23.0			
				9262	1852.4	23.0	23.0	0.673	0.673	
Edge 1	Rel 99 RMC	off	16	9400	1880.0	23.0	22.4	0.992	1.139	
				9538	1907.6	23.0	23.0	1.120	1.120	
				9262	1852.4	23.0	23.0			
Edge 4	Rel 99 RMC	off	0	9400	1880.0	23.0	22.4	0.590	0.677	
				9538	1907.6	23.0	23.0			

With Keyboard Attached

		Pwr	Dist.				r (dBm)	1-g SAR	R (W/kg)	Plot
Test Position	Mode	Reduction	(mm)	Ch #. Freq. (MHz)		Tune-up limit	Meas.	Meas.	Scaled	No.
Deer w/ Touch				9262	1852.4	13.6	13.6			
Rear w/ Type	Rel 99 RMC Rel 99 RMC	c on	0	9400	1880.0	13.6	13.6	0.504	0.504	
				9538	1907.6	13.6	13.4			
				9262	1852.4	13.6	13.6			
		9 RMC on		9400	1880.0	13.6	13.6	0.373	0.373	
				9538	1907.6	13.6	13.4			

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

• ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

· ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

Page 94 of 143

12.5. LTE Band 2 (BW=20 MHz)

Test		Pwr	Dist.				RB	Power	(dBm)	1-g SA	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
						1	0	14.1	14.1	0.813	0.813	
				18700	1860	50	0	13.1	12.9	0.572	0.599	
						100	0	13.1	12.7			
						1	0	14.1	14.1	0.997	0.997	
Rear	QPSK	on	0	18900	1880	50	0	13.1	12.9	0.818	0.857	
						100	0	13.1	12.7	0.783	0.859	
						1	0	14.1	14.1	0.890	0.890	
				19100	1900	50	0	13.1	12.8	0.621	0.668	
						100	0	13.1	12.6			
						1	0	14.1	14.1	1.000	1.000	
				18700	1860	50	0	13.1	12.9	0.711	0.745	
						100	0	13.1	12.7			
						1	0	14.1	14.1	1.060	1.060	
Edge 1	Edge 1 QPSK on 0	0 18	18900	1880	50	0	13.1	12.9	0.913	0.956		
						100	0	13.1	12.7	0.920	1.009	
						1	0	14.1	14.1	1.120	1.120	
				19100	1900	50	0	13.1	12.8	0.782	0.842	
						100	0	13.1	12.6			
						1	0	14.1	14.1	1.290	1.290	
				18700	1860	50	0	13.1	12.9	0.928	0.972	
						100	0	13.1	12.7			
Rear/						1	0	14.1	14.1	1.420	1.420	5
Edge 1	QPSK	on	0	18900	1880	50	0	13.1	12.9	1.190	1.246	
slant						100	0	13.1	12.7	1.170	1.283	
						1	0	14.1	14.1	1.400	1.400	
				19100	1900	50	0	13.1	12.7	0.987	1.082	
						100	0	13.1	12.6			
Rear/						1	0	14.1	14.1	0.144	0.144	
Edge 4	QPSK	on	0	18900	1880	50	0	13.1	12.9	0.100	0.105	
slant						100	0	13.1	12.7			

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1 mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- \cdot ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 2. Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:
 - Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
 - Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
 - Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 95 of 143

SAR Test Results for LTE Band 2 continued

Test		Pwr	Dist.				RB	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
						1	0	23.5	22.9	0.501	0.575	
				18700	1860	50	0	23.5	22.0	0.396	0.559	
						100	0	23.5	21.9			
						1	0	23.5	23.0	0.868	0.974	
Rear	QPSK	off	16	18900	1880	50	0	23.5	21.9	0.663	0.958	
						100	0	23.5	21.9	0.572	0.827	
						1	0	23.5	23.1	0.538	0.590	
				19100	1900	50	0	23.5	22.4	0.443	0.571	
						100	0	23.5	22.3	0.535	0.705	
						1	0	23.5	22.9	0.784	0.900	
		1.	18700	1860	50	0	23.5	22.0	0.604	0.853		
					100	0	23.5	21.9				
					1	0	23.5	23.0	1.120	1.257		
Edge 1	QPSK	off	16	18900	1880	50	0	23.5	21.9	0.884	1.278	
						100	0	23.5	21.9	0.840	1.214	
						1	0	23.5	23.1	1.140	1.250	
				19100	1900	50	0	23.5	22.4	0.647	0.833	
						100	0	23.5	22.3	0.857	1.130	
						1	0	23.5	22.9	0.599	0.688	
				18700	1860	50	0	23.5	22.0	0.489	0.691	
						100	0	23.5	21.9			
						1	0	23.5	23.0	1.040	1.167	
Edge 4	Edge 4 QPSK off 0	0	18900	1880	50	0	23.5	21.9	0.772	1.116		
					100	0	23.5	21.9	0.654	0.945		
					1	0	23.5	23.1	0.595	0.652		
				19100	1900	50	0	23.5	22.4	0.514	0.662	
						100	0	23.5	22.3	0.574	0.757	

Note(s):

1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

2. Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:

- Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.

Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 96 of 143

SAR Test Results for LTE Band 2 continued

With Keyboard Attached

Test		Pwr	Dist.	01- #	" Freg.		RB	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	(MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
Rear w/						1	0	14.1	14.1	0.600	0.600	
Touch	QPSK	on	0	18900	1880	50	0	13.1	12.9			
Keyboard						100	0	13.1	12.7			
Rear w/						1	0	14.1	14.1	0.458	0.458	
Туре	QPSK	on	0	18900	1880	50	0	13.1	12.9			
Keyboard						100	0	13.1	12.7			

Note(s):

1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- \cdot ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

• ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

2. Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:

- Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
 Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is
- not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
 Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

12.6. LTE Band 4 (BW=20 MHz)

Test		Pwr	Dist.				RB	Power	(dBm)	1-g SA	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
						1	49	15.4	15.2	0.897	0.933	
				20050	1720.0	50	24	14.4	14.1	0.697	0.745	
						100	0	14.4	14.1			
						1	0	15.4	15.4	1.040	1.040	
Rear	QPSK	on	0	20175	1732.5	50	0	14.4	14.2	0.907	0.950	
						100	0	14.4	14.1	0.899	0.963	
						1	99	15.4	15.1	0.969	1.048	
				20300	1745.0	50	50	14.4	14.0	0.766	0.846	
						100	0	14.4	14.0			
						1	49	15.4	15.2	0.809	0.841	
				20050	1720.0	50	24	14.4	14.1	0.636	0.680	
						100	0	14.4	14.1			
						1	0	15.4	15.4	0.914	0.914	
Edge 1	Edge 1 QPSK on	0	20175	5 1732.5	50	0	14.4	14.2	0.746	0.781		
						100	0	14.4	14.1	0.770	0.825	
					1745.0	1	99	15.4	15.1	0.918	0.993	
				20300		50	50	14.4	14.0	0.728	0.804	
						100	0	14.4	14.0			
						1	49	15.4	15.2	1.100	1.144	
				20050	1720.0	50	24	14.4	14.1	0.869	0.929	
						100	0	14.4	14.1			
Rear/						1	0	15.4	15.4	1.240	1.240	6
Edge 1	QPSK	on	0	20175	1732.5	50	0	14.4	14.2	1.060	1.110	
slant						100	0	14.4	14.1	1.060	1.136	
						1	99	15.4	15.1	1.230	1.330	
	20	20300	1745.0	50	50	14.4	14.0	0.979	1.081			
						100	0	14.4	14.0			
Rear/						1	0	15.4	15.4	0.188	0.188	
Edge 4	QPSK	on	0	20175	1732.5	50	0	14.4	14.2	0.151	0.158	
slant						100	0	14.4	14.1			

Note(s):

2.

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:

Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.

- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 98 of 143

SAR Test Results for LTE Band 4 continued

Test		Pwr	Dist.				RB	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Position	Mode	Reduction		Ch #.	Freq. (MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
						1	0	23.8	23.8	0.658	0.658	
Rear	QPSK	off	16	20175	1732.5	50	0	22.8	22.8	0.560	0.560	
						100	0	22.8	22.7			
						1	0	23.8	23.8	0.679	0.679	
Edge 1	QPSK	off	16	20175	1732.5	50	0	22.8	22.8	0.563	0.563	
						100	0	22.8	22.7			
						1	49	23.8	23.8	1.220	1.220	
				20050	1720.0	50	0	22.8	22.8	0.848	0.848	
						100	0	22.8	22.7			
						1	0	23.8	23.8	1.230	1.230	
Edge 4	QPSK	off	0	20175	1732.5	50	0	22.8	22.8	1.070	1.070	
					100	0	22.8	22.7	0.966	0.984		
						1	99	23.8	23.8	0.893	0.893	
				20300	1745.0	50	50	22.8	22.6	0.673	0.711	
						100	0	22.8	22.6			

With Keyboard Attached

Test		Pwr	Dist.		Freg.		RB	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	(MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
Rear w/						1	0	15.4	15.4	0.590	0.590	
Touch	QPSK	on	0	20175	1732.5	50	0	14.4	14.2			
Keyboard						100	0	14.4	14.1			
Rear w/						1	0	15.4	15.4	0.449	0.449	
Туре	QPSK	on	0	20175	1732.5	50	0	14.4	14.2			
Keyboard						100	0	14.4	14.1			

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 2. Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:
 - Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
 - Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
 - Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 99 of 143

12.7. LTE Band 5 (BW=10 MHz)

Test		Pwr	Dist.				RB	Power	(dBm)	1-g SA	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	Freq. (MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
						1	49	20.3	20.1	1.000	1.047	
				20450	829.0	25	0	19.3	19.3	1.120	1.120	
						50	0	19.3	19.3			
						1	0	20.3	20.3	1.020	1.020	
Rear	QPSK	on	0	20525	836.6	25	0	19.3	19.3	0.889	0.889	
						50	0	19.3	19.3	0.932	0.932	
						1	0	20.3	20.3	1.390	1.390	7
				20600	844.0	25	0	19.3	19.3	0.964	0.964	
						50	0	19.3	19.3			
						1	0	20.3	20.3	0.605	0.605	
Edge 1	QPSK	on	0	20525	836.6	25	0	19.3	19.3	0.495	0.495	
						50	0	19.3	19.3			
						1	49	20.3	20.1	0.791	0.828	
				20450	829.0	25	0	19.3	19.3	0.756	0.756	
						50	0	19.3	19.3			
Rear/						1	0	20.3	20.3	0.812	0.812	
Edge 1	QPSK	on	0	20525	836.6	25	0	19.3	19.3	0.686	0.686	
slant						50	0	19.3	19.3	0.698	0.698	
						1	0	20.3	20.3	0.951	0.951	
				20600	844.0	25	0	19.3	19.3	0.712	0.712	
						50	0	19.3	19.3			
Rear/						1	0	20.3	20.3	0.410	0.410	
Edge 4	QPSK	on	0	20525	836.6	25	0	19.3	19.3	0.296	0.296	
slant						50	0	19.3	19.3			
						1	0	23.2	23.2	0.462	0.462	
Rear	QPSK	off	16	20600	844.0	25	0	22.2	21.9	0.368	0.392	
						50	0	22.2	22.1			
						1	0	23.2	23.2	0.294	0.294	
Edge 1	QPSK	off	16	20600	844.0	25	0	22.2	21.9	0.235	0.252	
						50	0	22.2	22.1			
						1	0	23.2	23.2	0.659	0.659	
Edge 4	QPSK	off	16	20600	844.0	25	0	22.2	21.9	0.504	0.540	
						50	0	22.2	22.1			

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

· ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria: 2.

Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.

Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 100 of 143

FORM NO: CCSUP4031G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

SAR Test Results for LTE Band 5 continued

With Keyboard Attached

Test		Pwr	Dist.		Freg.		RB	Power	(dBm)	1-g SAI	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	(MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
Rear w/						1	0	20.3	20.30	0.713	0.713	
Touch	QPSK	on	0	20600	844	25	0	19.3	19.30			
Keyboard						50	0	19.3	19.30			
Rear w/						1	0	20.3	20.30	0.558	0.558	
Туре	QPSK	on	0	20600	844	25	0	19.3	19.30			
Keyboard						50	0	19.3	19.30			

Note(s):

1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

• ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

2. Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:

- Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

12.8. LTE Band 17 (BW=10 MHz)

Test		Pwr	Dist.				RB	Power	(dBm)	1-g SA	R (W/kg)	Plot
Position	Mode	Back-off	(mm)	Ch #.	Freq. (MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
						1	0	21.2	21.2	1.350	1.350	8*
Rear	QPSK	on	0	23790	710.0	25	25	20.2	20.0	0.754	0.799	
						50	0	20.2	19.9			
						1	0	21.2	21.2	0.536	0.536	
Edge 1	QPSK	on	0	23790	710.0	25	25	20.2	20.0	0.485	0.514	
						50	0	20.2	19.9			
Rear/						1	0	21.2	21.2	1.060	1.060	
Edge 1	QPSK	on	0	23790	710.0	25	25	20.2	20.0	0.780	0.826	
slant						50	0	20.2	19.9			
Rear/						1	0	21.2	21.2	0.356	0.356	
Edge 4	QPSK	on	0	23790	710.0	25	25	20.2	20.0	0.248	0.263	
slant						50	0	20.2	19.9			
						1	0	23.3	23.3	0.323	0.324	
Rear	QPSK	off	16	23790	710.0	25	25	22.3	22.3	0.184	0.186	
						50	0	22.3	22.3			
						1	0	23.3	23.3	0.176	0.177	
Edge 1	QPSK	off	16	23790	710.0	25	25	22.3	22.3	0.121	0.122	
						50	0	22.3	22.3			
						1	0	23.3	23.3	0.558	0.561	
Edge 4	QPSK	off	16	23790	710.0	25	25	22.3	22.3	0.218	0.220	
						50	0	22.3	22.3			

*: The worst-case SAR configuration for LTE Band 17 is not the initial measurement shown here, but a repeated measurement with a value of 1.44 W/kg. The repeated result was therefore used to represent LTE Band 17 in the worst-case SAR plots submitted, and is also the value used for simultaneous transmission SAR analysis in the corresponding test position.

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria: 2.
 - Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
 - Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 102 of 143

SAR Test Results for LTE Band 17 continued

With Keyboard Attached

Test		Pwr	Dist.		Freq.		RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Position	Mode	Reduction	(mm)	Ch #.	(MHz)	RB Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	No.
Rear w/						1	0	21.2	21.2	0.941	0.941	
Touch	QPSK	on	0	23790	710	25	25	20.2	20.0			
Keyboard						50	0	20.2	19.9			
Rear w/						1	0	21.2	21.2	0.575	0.575	
Туре	QPSK	on	0	23790	710	25	25	20.2	20.0			
Keyboard						50	0	20.2	19.9			

Note(s):

1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

• ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

2. Per KDB 941225 D05 SAR for LTE Devices, SAR test reduction is applied using the following criteria:

- Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

13. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

13.1. The Highest Measured SAR Configuration in Each Frequency Band

Frequency Band (MHz)	Air Interface	Stand-alone	Repeated SAR (Yes/No)
700	LTE Band 17	1.35 W/kg	Yes
	GSM 850	1.36 W/kg	No
850	W-CDMA Band V	1.43 W/kg	Yes
	LTE Band 5	1.39 W/kg	No
1700	LTE Band 4	1.24 W/kg	Yes
	GSM 1900	1.41 W/kg	No
1900	W-CDMA Band II	1.38 W/kg	No
	LTE Band 2	1.42 W/kg	Yes

13.2. Repeated Measurement Results

Frequency band	Test Position	Mode	Pwr	Dist.	Ch #.	Freq.	Meas. SA	AR (W/kg)	Largest to Smallest SAR
Trequency band	Test Toshion	Mode	Back-off	(mm)	0π <i>π</i> .	(MHz)	Original	Repeated	Ratio
LTE Band 17	Rear	QPSK RB1/0	on	0	23790	710.0	1.350	1.440	1.07
W-CDMA Band V	Rear	RMC Rel. 99	on	0	4132	826.4	1.430	1.350	1.06
LTE Band 4	Rear/Edge 1 slant	QPSK RB1/0	on	0	20175	1732.5	1.240	1.240	1.00
LTE Band 2	Rear/Edge 1 slant	QPSK RB1/0	on	0	18900	1880.0	1.420	1.350	1.05

Note(s):

 Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

Page 104 of 143

14. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance v05, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR¹ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

A new threshold of 0.04 is also introduced in the draft KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $(SAR_1 + SAR_2)^{1.5} / Ri < 0.04$

Page 105 of 143

14.1. Estimated SAR for Simultaneous Transmission SAR Analysis

Considerations for SAR estimation

- 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- 2. Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation:
 - When the separation distance from the antenna to an adjacent edge is \leq 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations.
 - When the separation distance from the antenna to an adjacent edge is > 5 mm but \leq 50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation.
 - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg
- Test positions Edge 2 and Edge 3 are inherently compliant as they consist of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR values < 1.2 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these two test positions.
- 4. All Wi-Fi and Bluetooth SAR values- measured or estimated- used in this report were taken from SAR report 13U15414-10B, submitted under FCC ID C3K1572

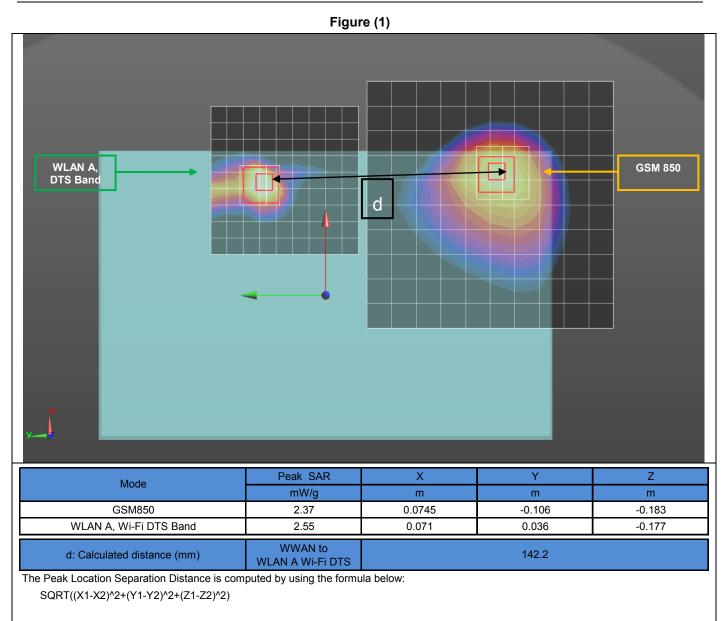
Antenna	Тx	Freq.	Output	Power		Separ	ation Di	istances	s (mm)		Estimated 1-g SAR Value (W/kg)						
Antenna	Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	
		Full	Power,	Proximi	ity Sens	sor Off.	A sens	or trigg	ering o	f 16 mm	n is included	l for both R	ear and Ed	ge 1.			
Cellular	GPRS 2 Slots	836.6	32.00	396	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	GPRS 2 Slots	1880	29.00	199	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	W-CDMA V	836.6	23.50	224	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	W-CDMA II	1880	23.50	224	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	LTE Band 2	1880	24.50	282	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	LTE Band 4	1732.5	24.50	282	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	LTE Band 5	836.6	24.50	282	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-	N/A	
Cellular	LTE Band 17	710	23.50	224	17.18	20	194.3	155.7	14.4		-MEASURE-	-MEASURE-	0.400	0.400	-MEASURE-		

14.1.1. Estimated SAR for WWAN

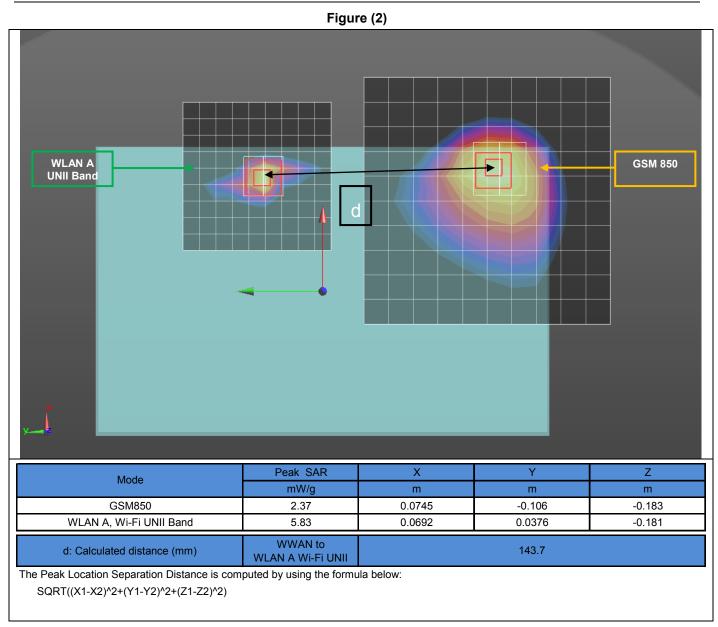
Page 106 of 143

14.2. Sum of the SAR for GSM850, Wi-Fi, and BT

RF		Test	Simu	ultaneous Trar	nsmission Sce	nario	∑ 1-g SAR	SPLSR
Exposure condition		Position	GSM 850	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	1.392	1.355			2.747	Yes
	Rear	WWAN + Wi-Fi (UNII)	1.392		1.372		2.764	Yes
		WWAN + BT	1.392			0.165	1.557	No
		WWAN + Wi-Fi 1(DTS)	1.085	0.425			1.510	No
	Edge 1	WWAN + Wi-Fi 1(UNII)	1.085		0.336		1.421	No
		WWAN + BT	1.085			0.165	1.250	No
		WWAN + Wi-Fi (DTS)	0.382	0.400			0.782	No
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	0.382		0.400		0.782	No
		WWAN + Wi-Fi (UNII)	0.382			0.400	0.782	No
		WWAN + Wi-Fi (DTS)	0.224	0.389			0.613	No
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	0.224		0.407		0.631	No
	Slam	WWAN + BT	0.224			0.165	0.389	No
		WWAN + Wi-Fi (DTS)	0.367	0.400			0.767	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.367		0.400		0.767	No
	olant	WWAN + BT	0.367			0.400	0.767	No


SAR to Peak Location Separation Ratio (SPLSR)

Case #	Case Test # Position	Test Position	GSM	WLAN A	combination WLAN A	WLAN B	∑ 1-g SAR (mW/g)	Calculated distance (mm)	SPLSR (≤ 0.04)	Volume Scan (Yes/ No)	Figure
1	Rear	WWAN + Wi-Fi (DTS)	850 1.392	DTS Band 1.355	UNII Band	Bluetooth	2.747	142.2	0.032	No	1
I	Real	WWAN + Wi-Fi (UNII)	1.392		1.372		2.764	143.7	0.032	No	2


Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

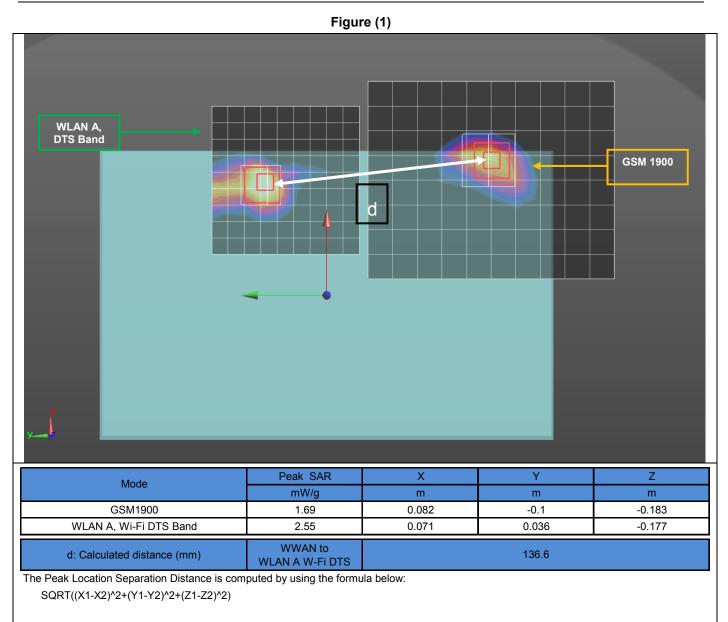
Page 107 of 143

Page 108 of 143

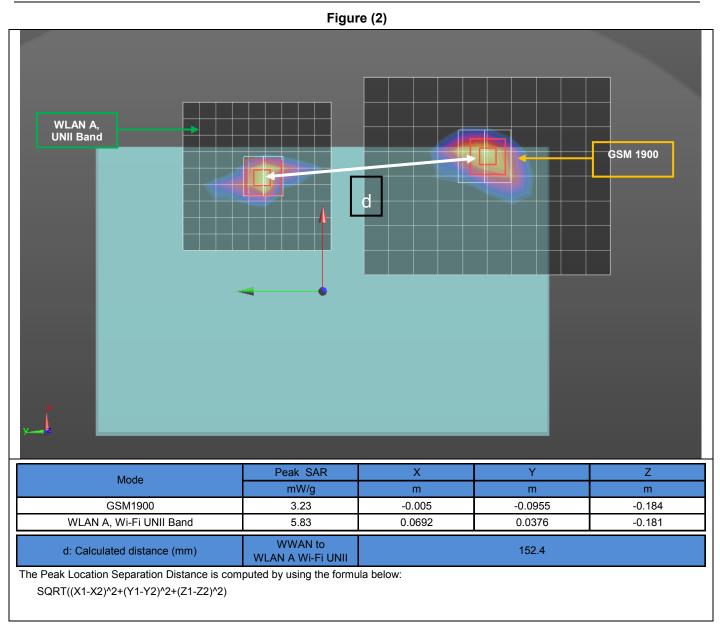
Page 109 of 143

14.3. Sum of the SAR for GSM1900, Wi-Fi, and BT

RF		Test	Simu	ultaneous Trar	nsmission Sce	nario	Σ 1-g SAR	SPLSR
Exposure condition		Position	GSM 1900	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	0.823	1.355			2.178	Yes
	Rear	WWAN + Wi-Fi (UNII)	0.823		1.372		2.195	Yes
		WWAN + BT	0.823			0.165	0.988	No
		WWAN + Wi-Fi 1(DTS)	1.120	0.425			1.545	No
	Edge 1	WWAN + Wi-Fi 1(UNII)	1.120		0.336		1.456	No
		WWAN + BT	1.120			0.165	1.285	No
		WWAN + Wi-Fi (DTS)	0.183	0.400			0.583	No
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	0.183		0.400		0.583	No
		WWAN + Wi-Fi (UNII)	0.183			0.400	0.583	No
		WWAN + Wi-Fi (DTS)	1.410	0.389			1.799	Yes
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	1.410		0.407		1.817	Yes
	Siant	WWAN + BT	1.410			0.165	1.575	No
	Deer/Edra 4	WWAN + Wi-Fi (DTS)	0.080	0.400			0.480	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.080		0.400		0.480	No
	Sidin	WWAN + BT	0.080			0.400	0.480	No


SAR to Peak Location Separation Ratio (SPLSR)

Case	Test	Test Position	Worst-case combination			∑ 1-g SAR	Calculated	SPLSR	Volume		
# Position	Position		GSM1900	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	distance (mm)	(≤ 0.04)	Scan (Yes/ No)	Figure
Rear	WWAN + Wi-Fi (DTS)	0.823	1.355			2.178	136.6	0.024	No	1	
2	Real	WWAN + Wi-Fi (UNII)	0.823		1.372		2.195	138.2	0.024	No	2
2	Rear/Edge 1	WWAN + Wi-Fi (DTS)	1.410	0.389			1.799	150.7	0.016	No	3
	slant	WWAN + Wi-Fi (UNII)	1.410		0.407		1.817	159.6	0.015	No	4


Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.


Page 110 of 143

Page 111 of 143

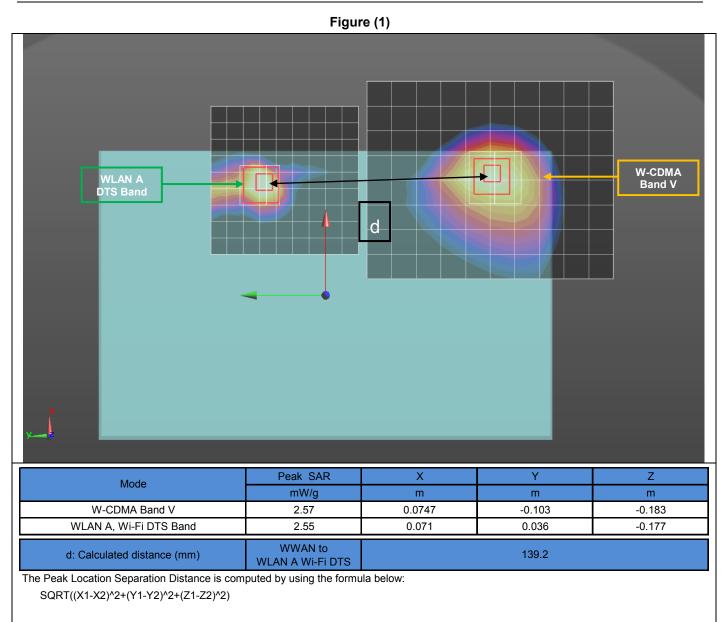
Page 112 of 143

	Figur	re (4)		
WLAN A UNII Band				GSM 1900
Mode	Peak SAR mW/g	X m	Y m	Z m
GSM1900	1.69	0.082	-0.1	-0.183
WLAN A, Wi-Fi UNII Band	3.79	-0.022	0.021	-0.184
d: Calculated distance (mm)	WWAN TO WLAN A Wi-Fi UNII		159.6	
The Peak Location Separation Distance is com SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)	puted by using the formu	ıla below:		

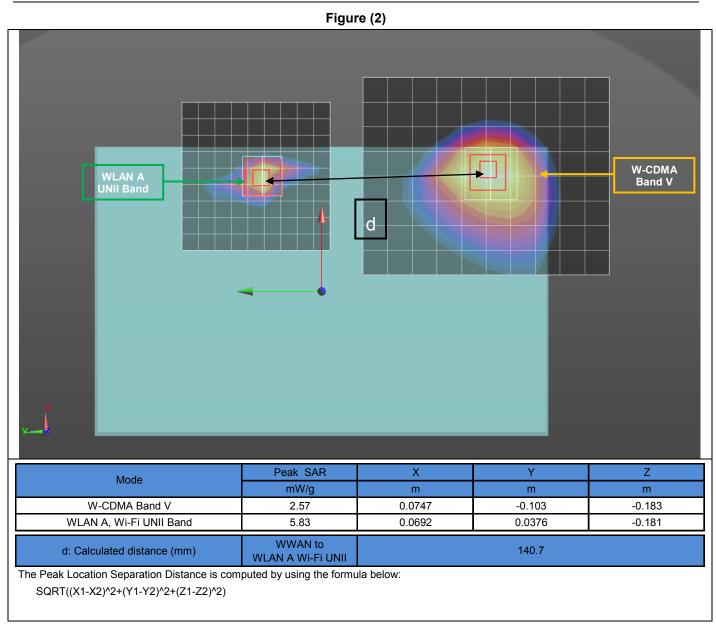
Page 114 of 143

14.4. Sum of the SAR for W-CDMA Band V, Wi-Fi, and BT

RF Exposure		Test		Iltaneous Trar	nsmission Sce	nario	Σ 1-g SAR	SPLSR
condition		Position	W-CDMA Band V	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	1.430	1.355			2.785	Yes
	Rear	WWAN + Wi-Fi (UNII)	1.430		1.372		2.802	Yes
		WWAN + BT	1.430			0.165	1.595	No
		WWAN + Wi-Fi 1(DTS)	0.633	0.425			1.058	No
	Edge 1	WWAN + Wi-Fi 1(UNII)	0.633		0.336		0.969	No
		WWAN + BT	0.633			0.165	0.798	No
		WWAN + Wi-Fi (DTS)	0.550	0.400			0.950	No
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	0.550		0.400		0.950	No
		WWAN + BT	0.550			0.400	0.950	No
		WWAN + Wi-Fi (DTS)	0.702	0.389			1.091	No
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	0.702		0.407		1.109	No
	Slant	WWAN + BT	0.702			0.165	0.867	No
		WWAN + Wi-Fi (DTS)	0.420	0.400			0.820	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.420		0.400		0.820	No
	olant	WWAN + BT	0.420			0.400	0.820	No


SAR to Peak Location Separation Ratio (SPLSR)

Case #	Test Position	Test Position	W-CDMA	Worst-case WLAN A	WLAN A	WLAN B	∑ 1-g SAR (mW/g)	Calculated distance	SPLSR (≤ 0.04)	Volume Scan	Figure
		Band V	DTS Band	UNII Band	Bluetooth	· · · · ·	(mm)		(Yes/ No)		
3	Rear	WWAN + Wi-Fi (DTS)	1.430	1.355			2.785	139.2	0.033	No	1
5	itedi	WWAN + Wi-Fi (UNII)	1.430		1.372		2.802	140.7	0.033	No	2


Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

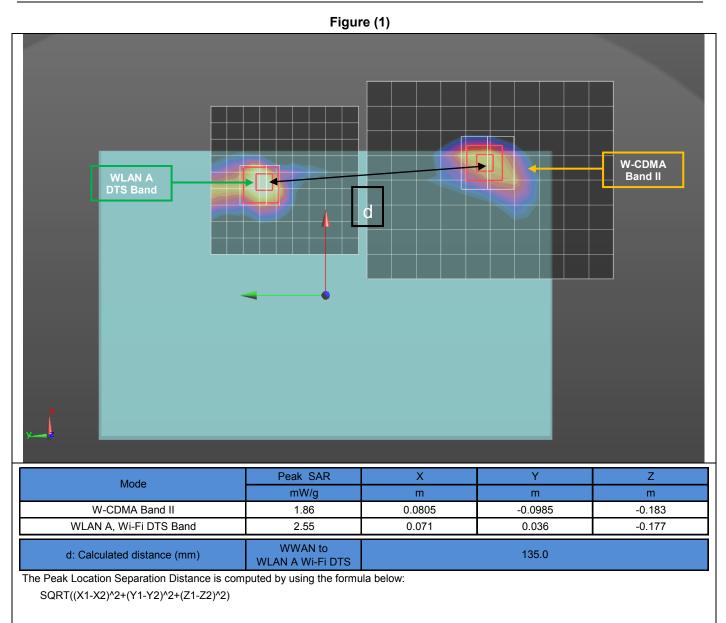
Page 115 of 143

Page 116 of 143

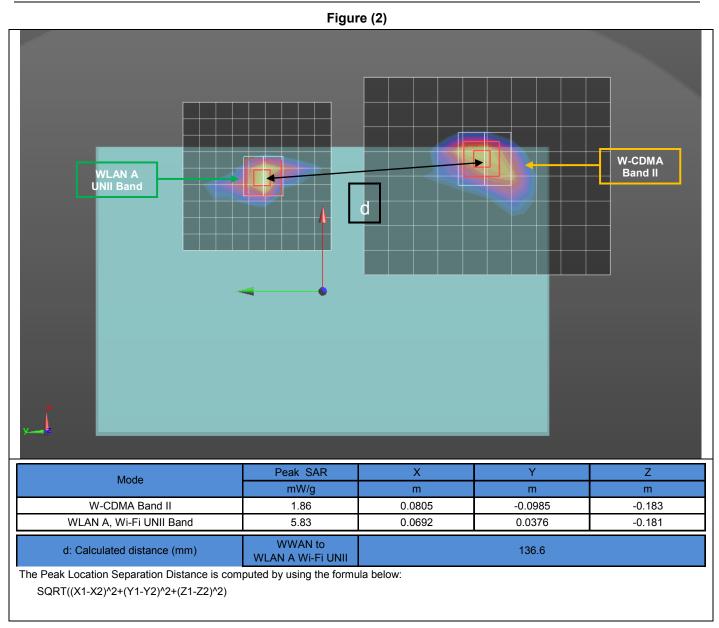
Page 117 of 143

14.5. Sum of the SAR for W-CDMA Band II, Wi-Fi, and BT

RF Exposure		Test	Sim	ultaneous Trar	smission Scer	nario	∑ 1-g	SPLSR
condition		Position	W-CDMA Band II	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	SAR (mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	0.939	1.355			2.294	Yes
	Rear	WWAN + Wi-Fi (UNII)	0.939		1.372		2.311	Yes
		WWAN + BT	0.939			0.165	1.104	No
		WWAN + Wi-Fi 1(DTS)	1.150	0.425			1.575	No
	Edge 1	Edge 1 WWAN + Wi-Fi 1(UNII)			0.336		1.486	No
		WWAN + BT	1.150			0.165	1.315	No
		WWAN + Wi-Fi (DTS)	0.677	0.400			1.077	No
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	0.677		0.400		1.077	No
		WWAN + Wi-Fi (UNII)	0.677			0.400	1.077	No
		WWAN + Wi-Fi (DTS)	1.380	0.389			1.769	Yes
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	1.380		0.407		1.787	Yes
		WWAN + BT	1.380			0.165	1.545	No
	Deer/Edet 4	WWAN + Wi-Fi (DTS)	0.096	0.400			0.496	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.096		0.400		0.496	No
		WWAN + BT	0.096			0.400	0.496	No


SAR to Peak Location Separation Ratio (SPLSR)

Case	Test		Worst-case combination			∑ 1-g SAR	Calculated	SPLSR	Volume		
# Position	Position		W-CDMA Band II	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	distance (mm)	(≤0.04)	Scan (Yes/ No)	Figure
Rear	WWAN + Wi-Fi (DTS)	0.939	1.355			2.294	135.0	0.026	No	1	
4	Real	WWAN + Wi-Fi (UNII)	0.939		1.372		2.311	136.6	0.026	No	2
4	Rear/Edge 1	WWAN + Wi-Fi (DTS)	1.380	0.389			1.769	149.5	0.016	No	3
	slant	WWAN + Wi-Fi (UNII)	1.380		0.407		1.787	116.3	0.021	No	4


Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 118 of 143

Page 119 of 143

Page 120 of 143

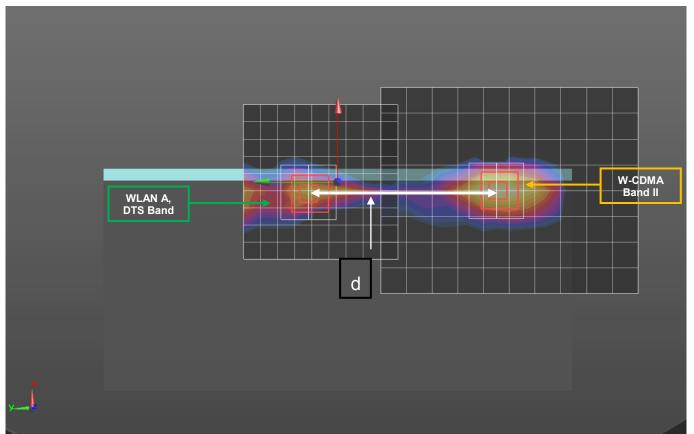
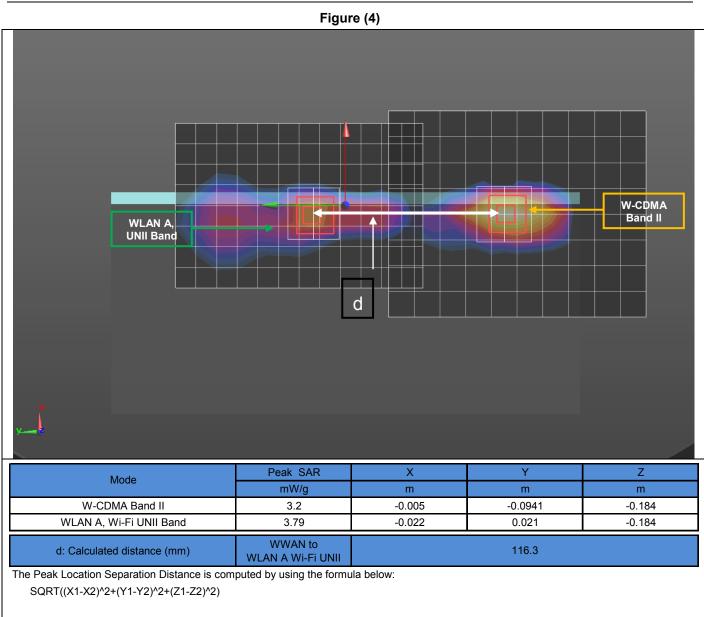



Figure (3)

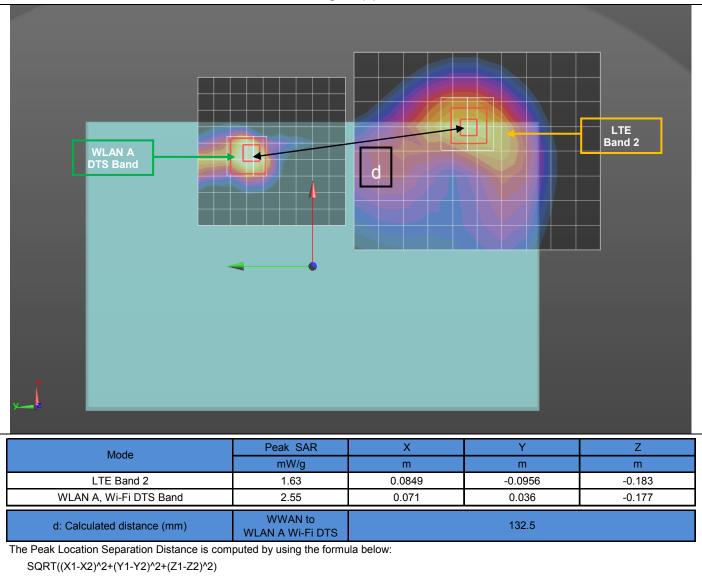
Mode	Peak SAR	Х	Y	Z			
Mode	mW/g	m	m	m			
W-CDMA Band II	3.2	-0.005	-0.0941	-0.184			
WLAN A, Wi-Fi DTS Band	2.96	0.075	0.0322	-0.182			
d: Calculated distance (mm) WWAN to 149.5							

Page 121 of 143

14.6. Sum of the SAR for LTE Band 2, Wi-Fi, and BT

RF		Test	Simu	ultaneous Trar	smission Sce	nario	∑ 1-g SAR	SPLSR
Exposure condition		Position	LTE Band 2	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	0.997	1.355			2.352	Yes
	Rear	WWAN + Wi-Fi (UNII)	0.997		1.372		2.369	Yes
		WWAN + BT	0.997			0.165	1.162	No
		WWAN + Wi-Fi 1(DTS)	1.278	0.425			1.703	Yes
	Edge 1	WWAN + Wi-Fi 1(UNII)	1.278		0.336		1.614	Yes
		WWAN + BT	1.278			0.165	1.443	No
		WWAN + Wi-Fi (DTS)	1.064	0.400			1.464	No
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	1.064		0.400		1.464	No
		WWAN + BT	1.064			0.400	1.464	No
	Deer/Edge 1	WWAN + Wi-Fi (DTS)	1.420	0.389			1.809	Yes
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	1.420		0.407		1.827	Yes
	Sidin	WWAN + BT	1.420			0.165	1.585	No
		WWAN + Wi-Fi (DTS)	0.144	0.400			0.544	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.144		0.400		0.544	No
	Jiant	WWAN + BT	0.144			0.400	0.544	No

SAR to Peak Location Separation Ratio (SPLSR)


Case	Test			Worst-case	combination		Σ1-g SAR	Calculated	SPLSR	Volume	
#	Position	Position	LTE Band 2	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	distance (mm)	(≤0.04)	Scan (Yes/ No)	Figure
	Rear	WWAN + Wi-Fi (DTS)	0.997	1.355			2.352	132.5	0.027	No	1
Real	Real	WWAN + Wi-Fi (UNII)	0.997		1.372		2.369	134.1	0.027	No	2
5	Edge 1	WWAN + Wi-Fi (DTS)	1.278	0.425			1.703	114.3	0.019	No	3
5	Luge i	WWAN + Wi-Fi (UNII)	1.278		0.336		1.614	102.8	0.020	No	4
	Rear/Edge 1	WWAN + Wi-Fi (DTS)	1.420	0.389			1.809	149.5	0.016	No	5
	slant	WWAN + Wi-Fi (UNII)	1.420		0.407		1.827	116.3	0.021	No	6

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Page 123 of 143

Page 124 of 143

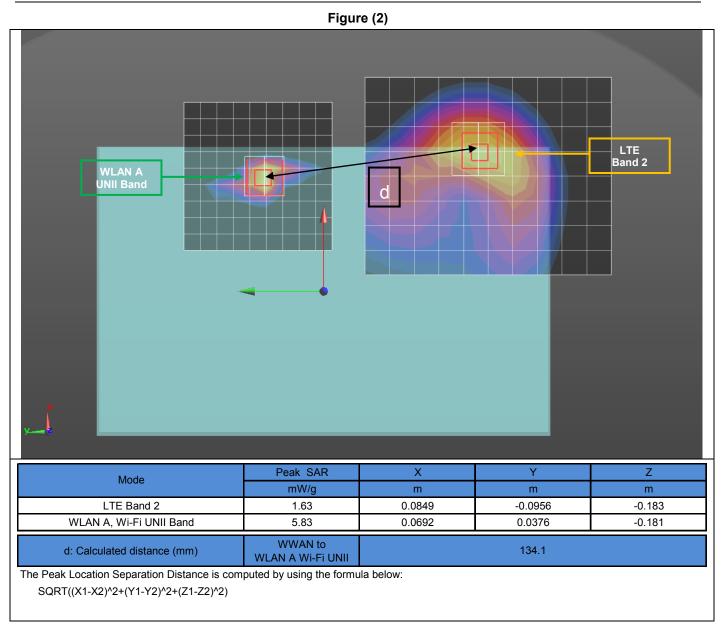
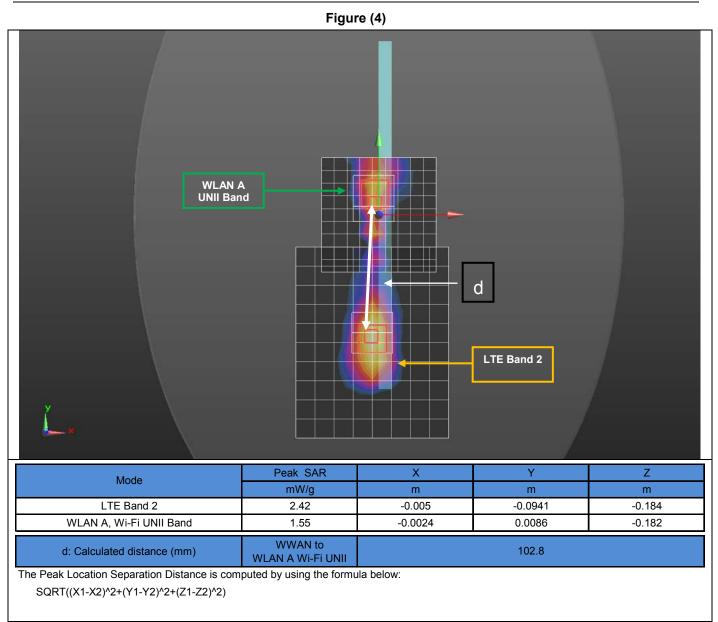
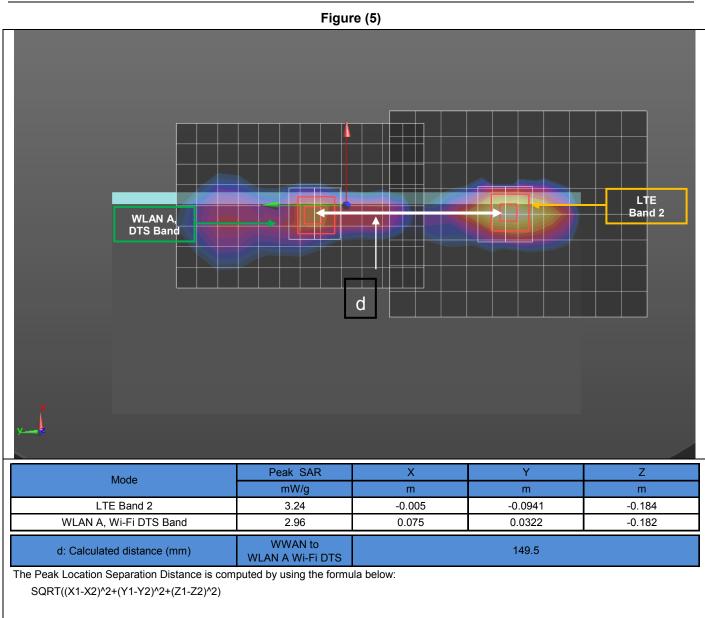



Figure (3)


Page 125 of 143

WLAN A DTS Band			d LTE Band 2	
Mode	Peak SAR	Х	Y	Z
LTE Band 2	mW/g	m	m	m -0.184
	2.42 0.908	-0.005 -0.0036	-0.0941 0.0202	-0.184 -0.184
WLAN A, Wi-Fi DTS Band		-0.0030	0.0202	-0.104
	WWAN to		114.3	

Page 126 of 143

Page 127 of 143

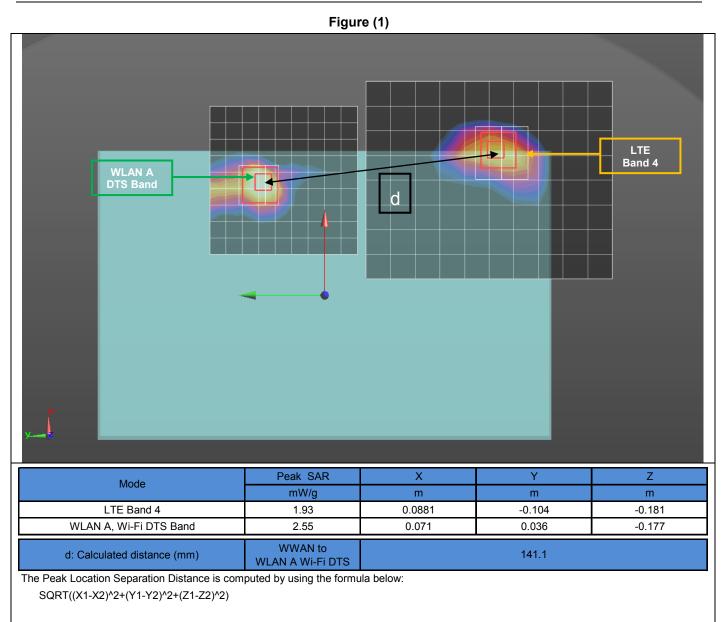
Page 128 of 143

	Figur	re (6)		
WLAN A, UNII Band				LTE Band 2
Mode	Peak SAR mW/g	X m	Y m	Z m
LTE Band 2	3.24	-0.005	-0.0941	-0.184
WLAN A, Wi-Fi UNII Band	3.79	-0.022	0.021	-0.184
d: Calculated distance (mm)	WWAN to WLAN A Wi-Fi UNII		116.3	
The Peak Location Separation Distance is com SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)	puted by using the formu	lla below:		

Page 129 of 143

14.7. Sum of the SAR for LTE Band 4, Wi-Fi, and BT

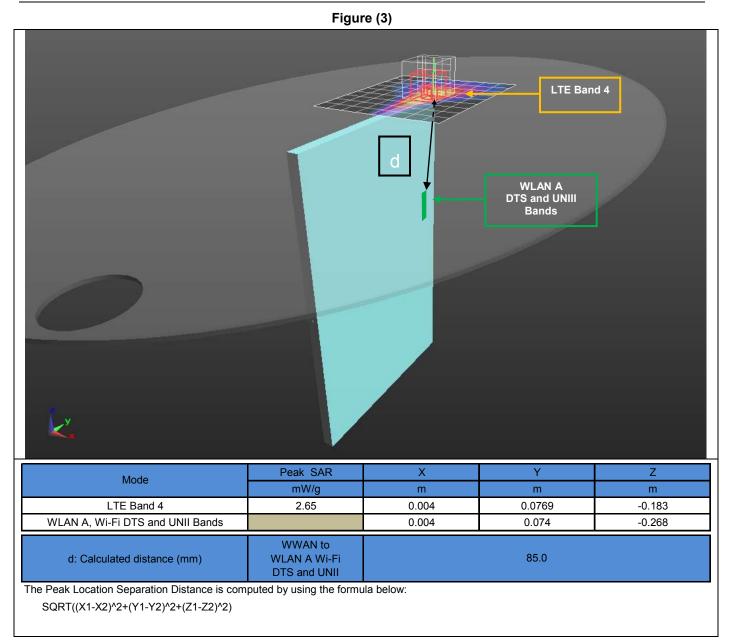
RF	Test		Simu	ultaneous Trar	∑ 1-g SAR	SPLSR		
Exposure condition		Position	LTE Band 4	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	1.048	1.355			2.403	Yes
	Rear	WWAN + Wi-Fi (UNII)	1.048		1.372		2.420	Yes
		WWAN + BT	1.048			0.165	1.213	No
		WWAN + Wi-Fi 1(DTS)	0.993	0.425			1.418	No
	Edge 1	WWAN + Wi-Fi 1(UNII)	0.993		0.336		1.329	No
		WWAN + BT	0.993			0.165	1.158	No
		WWAN + Wi-Fi (DTS)	1.230	0.400			1.630	Yes
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	1.230		0.400		1.630	Yes
		Position Band 4 DTS Band UNII Band Blueto WWAN + Wi-Fi (DTS) 1.048 1.355 WWAN + Wi-Fi (UNII) 1.048 1.355 WWAN + Wi-Fi (UNII) 1.048 1.372	0.400	1.630	Yes			
		WWAN + Wi-Fi (DTS)	1.330	0.389			1.719	Yes
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	1.330		0.407		1.737	Yes
	Slant	WWAN + BT	1.330			0.165	1.495	No
		WWAN + Wi-Fi (DTS)	0.188	0.400			0.588	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.188		0.400		0.588	No
	olant	WWAN + BT	0.188			0.400	0.588	No

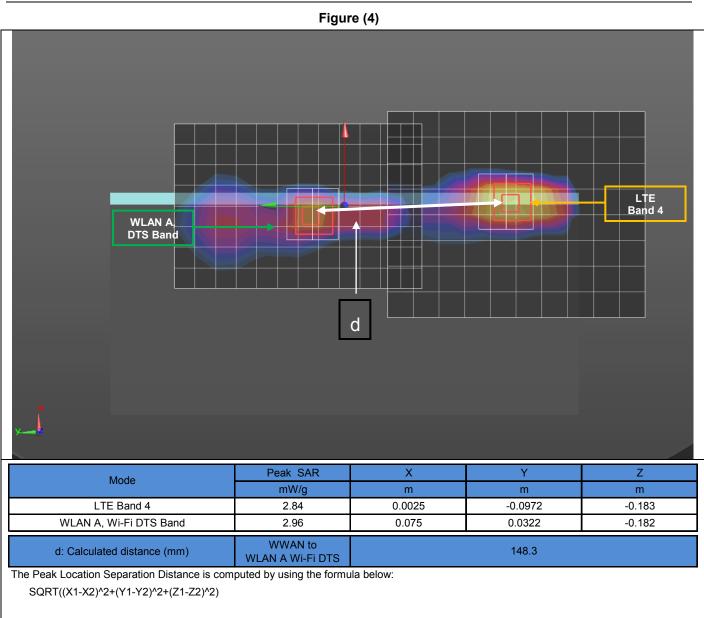

SAR to Peak Location Separation Ratio (SPLSR)

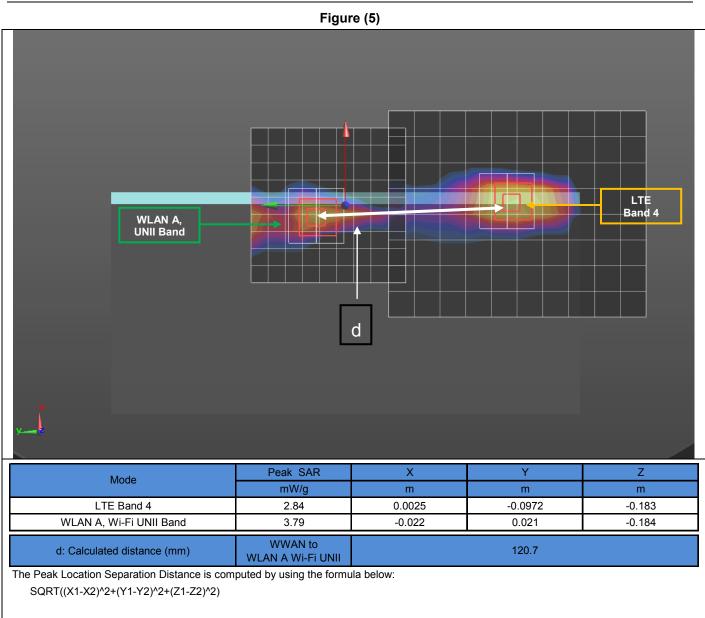
Case	Test	Test Position	Worst-case combination				Σ1-g SAR	Calculated	SPLSR	Volume	
#	Position		LTE Band 2	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	distance (mm)	(≤ 0.04)	Scan (Yes/ No)	Figure
	Rear	WWAN + Wi-Fi (DTS)	1.048	1.355			2.403	141.1	0.026	No	1
	itedi	WWAN + Wi-Fi (UNII)	1.048		1.372		2.420	142.9	0.026	No	2
6	Edge 4	WWAN + Wi-Fi (DTS)	1.230	0.400			1.630	85.0	0.024	No	3
0	Luge 4	WWAN + Wi-Fi (UNII)	1.230		0.400		1.630	85.0	0.024	No	3
	Rear/Edge 1	WWAN + Wi-Fi (DTS)	1.330	0.389			1.719	148.3	0.015	No	4
	slant	WWAN + Wi-Fi (UNII)	1.330		0.407		1.737	120.7	0.019	No	5

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.


Page 130 of 143


Page 131 of 143


Page 132 of 143

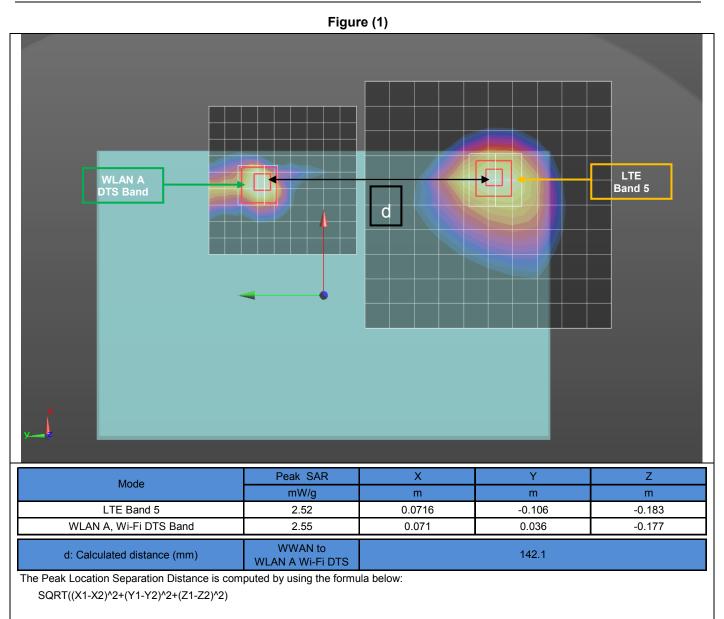
Page 133 of 143

Page 134 of 143

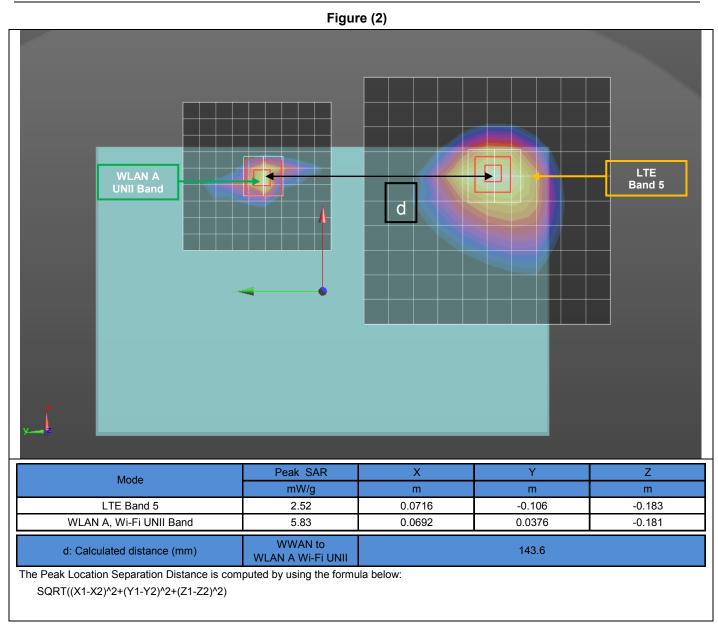
Page 135 of 143

14.8. Sum of the SAR for LTE Band 5, Wi-Fi, and BT

RF	Test		Simu	ultaneous Trar	T 1 a SAP			
Exposure condition		Position	LTE Band 5	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	1.390	1.355			2.745	Yes
	Rear	WWAN + Wi-Fi (UNII)	1.390		1.372		2.762	Yes
		WWAN + BT	1.390			0.165	1.555	No
		WWAN + Wi-Fi 1(DTS)	0.605	0.425			1.030	No
	Edge 1	WWAN + Wi-Fi 1(UNII)	0.605		0.336		0.941	No
		WWAN + BT	0.605			0.165	0.770	No
		WWAN + Wi-Fi (DTS)	0.659	0.400			1.059	No
Standalone	Edge 4	WWAN + Wi-Fi 1(UNII)	0.659		WLAN A DTS BandWLAN A UNII BandWLAN B Bluetooth1.355-1.372-0.1650.1650.4250.3360.1650.165	1.059	No	
		WWAN + Wi-Fi (UNII)	0.659			0.400	2.745 Yes 2.762 Yes 1.555 No 1.030 No 0.941 No 0.770 No 1.059 No	No
	Deers/Educe 4	WWAN + Wi-Fi (DTS)	0.951	0.389			1.340	No
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	0.951		0.407		1.358	No
	Slant	WWAN + BT	0.951			0.165	1.116	No
		WWAN + Wi-Fi (DTS)	0.410	0.400			0.810	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.410		0.400		0.810	No
	olant	WWAN + BT	0.410			0.400	0.810	No


SAR to Peak Location Separation Ratio (SPLSR)

Case Test # Position	Test	Test Position	Worst-case combination				Σ1-g SAR	Calculated	SPLSR	Volume	
	Position		LTE Band 5	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	distance (mm)	(≤0.04)	Scan (Yes/ No)	Figure
7 Rear	Door	WWAN + Wi-Fi (DTS)	1.390	1.355			2.745	142.1	0.032	No	1
	Real	WWAN + Wi-Fi (UNII)	1.390		1.372		2.762	143.5	0.032	No	2


Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

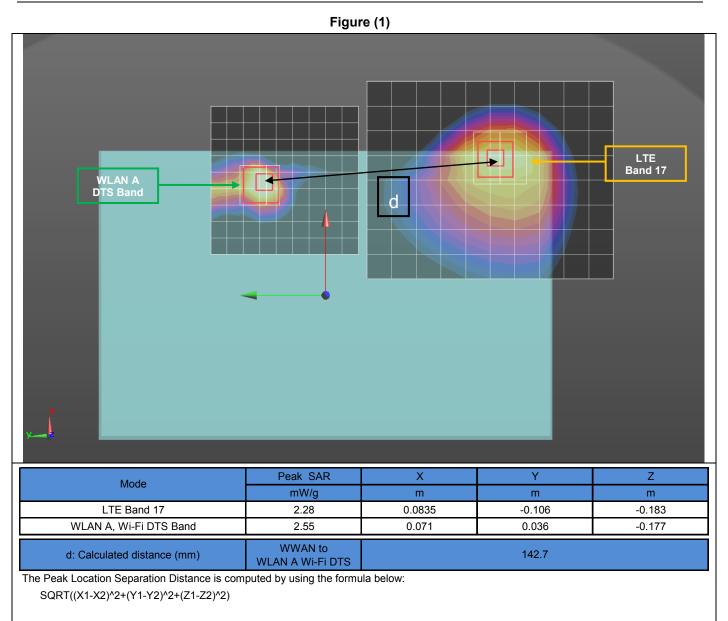
Page 136 of 143

Page 137 of 143

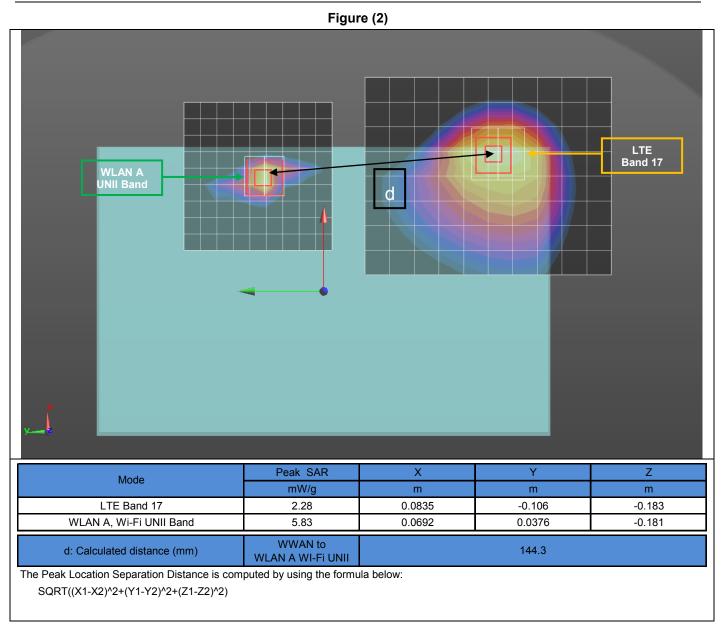
Page 138 of 143

14.9. Sum of the SAR for LTE Band 17, Wi-Fi, and BT

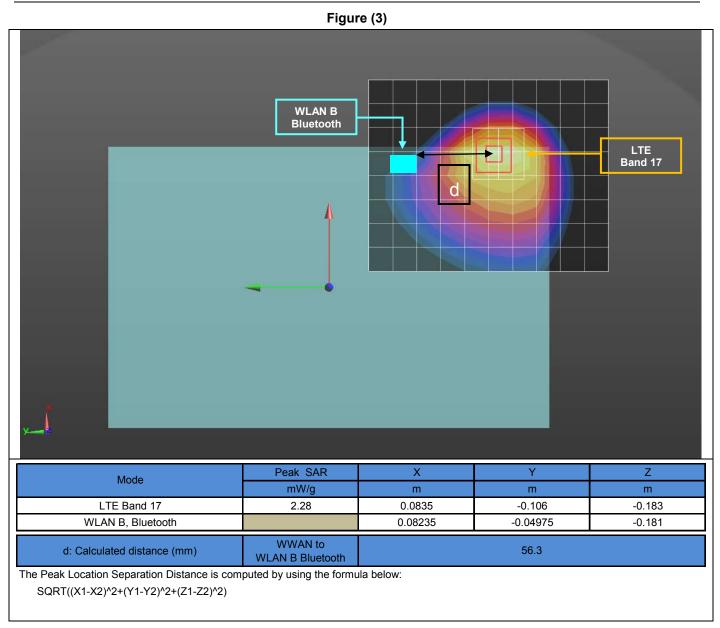
RF	Test		Simu	ultaneous Trar	∑ 1-g SAR	SPLSR		
Exposure condition		Position	LTE Band 17	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	(Yes/ No)
		WWAN + Wi-Fi (DTS)	1.440	1.355			2.795	Yes
	Rear	WWAN + Wi-Fi (UNII)	1.440		1.372		2.812	Yes
		WWAN + BT	1.440			0.165	1.605	Yes
		WWAN + Wi-Fi 1(DTS)	0.536	0.425			0.961	No
	Edge 1	WWAN + Wi-Fi 1(UNII)	0.536		0.336		0.872	No
		WWAN + BT	0.536			0.165	0.701	No
	Edge 4	WWAN + Wi-Fi (DTS)	0.561	0.400			0.961	No
Standalone		WWAN + Wi-Fi 1(UNII)	0.561		0.400		0.961	No
		WWAN + BT	0.561			0.400	0.961	No
	Deer/Edge 1	WWAN + Wi-Fi (DTS)	1.060	0.389			1.449	No
	Rear/Edge 1 slant	WWAN + Wi-Fi 1(UNII)	1.060		0.407		1.467	No
	Sidin	WWAN + BT	1.060			0.165	1.225	No
		WWAN + Wi-Fi (DTS)	0.356	0.400			0.756	No
	Rear/Edge 4 slant	WWAN + Wi-Fi (UNII)	0.356		0.400		0.756	No
	olan	WWAN + BT	0.356			0.400	0.756	No


SAR to Peak Location Separation Ratio (SPLSR)

Case #	Test	Test Position	Worst-case combination				∑ 1-g SAR	Calculated	SPLSR	Volume	
	Position		LTE Band 17	WLAN A DTS Band	WLAN A UNII Band	WLAN B Bluetooth	(mW/g)	distance (mm)	(≤0.04)	Scan (Yes/ No)	Figure
		WWAN + Wi-Fi (DTS)	1.440	1.355			2.795	144.3	0.032	No	1
8	Rear	WWAN + Wi-Fi (UNII)	1.440		1.372		2.812	142.7	0.033	No	2
		WWAN + BT	1.440			0.165	1.605	56.3	0.036	No	3


Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.


Page 139 of 143

Page 140 of 143

Page 141 of 143

Page 142 of 143

15. Appendixes

Refer to separated files for the following appendixes.

- 15.1. DUT and SAR setup Photos
- **15.2.** System Performance Check Plots
- 15.3. Highest SAR Test Plots
- 15.4. Calibration Certificate for E-Field Probe EX3DV4 SN 3773
- 15.5. Calibration Certificate for E-Field Probe EX3DV4 SN 3902
- 15.6. Calibration Certificate for D750V3 SN 1019
- 15.7. Calibration Certificate for D835V2 SN 4d117
- 15.8. Calibration Certificate for D1750V2- SN 1050
- 15.9. Calibration Certificate for D1900V2- SN 5d140

END OF REPORT

Page 143 of 143