

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

WIRELESS CONTROLLER

MODEL NUMBER: 1537

FCC ID: C3K1537 IC: 3048A-1537

REPORT NUMBER: 13U14963C

ISSUE DATE: 2013-07-19

Prepared for MICROSOFT 1 MICROSOFT WAY REDMOND WA, 98052, USA

Prepared by
UL LLC
1285 WALT WHITMAN RD.
MELVILLE, NY 11747, U.S.A.

TEL: (631) 271-6200 FAX: (877) 854-3577

Revision History

Rev.	Issue Date	Revisions	Revised By
	5/21/13	Initial Issue	M. Antola
Α	6/21/13	Updated peak power section with re-measured results.	M. Antola
В	7/3/13	Maximum target output power reduced from 9dBm to 8dBm. Re-measured Peak and Average power and updated sections accordingly.	M. Antola
С	7/19/13	Added clarification to Radiated test section to address testing per 15.407	M. Antola

TABLE OF CONTENTS

1.		ΑТΊ	ΓEST	ATIO	N O	F TE	ST R	ESU	LTS											 . 5
2.	•	TES	ST MI	ЕТНО	DO	LOG	ìΥ													 . 6
3.		FAC	CILIT	IES A	ND	ACC	CRED	ITAT	ION											 . 6
4.		CAI	LIBR	ATIO	N A	ND (JNCE	RTA	INTY	/										 . 6
	4.	1.	MEA	ASUR	ING	INS	TRUI	MEN	Т СА	LIBF	RATIO	ON.								 . 6
	4.2	2.	SAN	1PLE	CAL	LCUI	LATIC)N												 . 6
	4.3	3.	MEA	ASUR	ЕМІ	ENT	UNC	ERTA	AINT	Y										 . 6
5.		EQI	UIPM	ENT	UNE	DER	TES1	-												 . 7
	5.	1.	DES	CRIF	PTIC	N O	F EU	T												 . 7
	5.2	2.	MAX	KIMUI	ИΟ	UTP	UT P	OWE	R											 . 7
	5.3	3.	DES	CRIF	PTIC	N O	FAV	AILAI	BLE .	ANT	ENN	AS.								 . 7
	5.4	4.	SOF	TWA	RE.	AND) FIRN	/WA	RE											 . 7
	5.8	5.	WO	RST-0	CAS	SE C	ONFI	GUR	ATIC	N A	ND N	10D)E							 . 8
	5.6	6.	DES	CRIF	PTIC	N O	F TES	ST SI	ETUI	P										 . 9
6.		TES	A T	ND MI	EAS	URE	MEN	T EC	UIP	MEN	IT									 11
7.	(ON	TIME										/IETI							
		7.1.	1.	ON T	IME	ANI	D DU	TY C	YCL	E RE	ESUL	.TS.	/ETI							 13
		7.1. 7.1.	1. 2.	ON T	IME SUF	: ANI REMI	D DU' ENT N	TY C METH	YCL IOD	E RE	ESUL R PO\	.TS. WEF	/IET I	ND F	PSD					 13 13
		7.1.	1. 2. 3.	ON T MEAS MEAS	IME SUR SUR	E ANI REMI REMI	D DU' ENT N ENT N	TY C METH METH	YCL IOD IOD	E RE FOR FOR	ESUL R PO\ R AV(.TS. WEF G SF	METI R AN PUR	ND F	PPSD S EM	 11SSI	 ONS	 > 1 (13 13 13
		7.1. 7.1. 7.1. 7.1.	1. 2. 3. 4.	ON T MEAS MEAS DUT	IME SUF SUF Y C	E ANI REMI REMI YCLE	D DU ENT N ENT N E PLC	TY C METH METH OTS .	YCL HOD HOD	E RE FOR FOR	ESUL R PO\ R AV(.TS. WEF G SF	METI R R AN PUR	ND F	PPSD S EM	 11SSI	ONS	> 1 (GHz	 13 13 13 14
7. 8.	8. °	7.1. 7.1. 7.1. 7.1. AN 7	1. 2. 3. 4. TENN 802.	ON T MEAS MEAS DUTY	IME SUR SUR Y CY DRT	E ANI REMI REMI YCLE TES	D DU'ENT NENT NE PLO	TY C METH METH OTS SUL	YCL HOD HOD TS	E RE FOR FOR	ESUL R POV R AVO	.TS. WEF G SF	METI R AN PUR	ND F	PPSD S EN	11881	ONS	> 1 (GHz	 13 13 13 14 15
7. 8.	8. ·	7.1. 7.1. 7.1. 7.1. AN 7 8.1.	1. 2. 3. 4. TENN <i>80</i> 2. 1.	ON T MEAS MEAS DUT' IA PC	TIME SUR SUR Y CY DRT MOE B BA	E ANI REMI YCLE TES	D DU'ENT NE PLO THE PLO THE NE NE THE WIDT	TY C METH METH OTS SUL	YCL HOD HOD TS	E RE FOR FOR	ESUL R POV R AVC	.TS. WEF G SF	METI R AN PUR 	ND F	PPSD S EN	11881	ONS	> 1 (GHz	 13 13 13 14 15 15
7. 8.	8. ·	7.1. 7.1. 7.1. 7.1. AN 7	1. 2. 3. 4. FENN 802. 1. 2. 3.	ON T MEAS MEAS DUT' IA PC 11a M 26 dE 99% AVEF	IME SUR SUR Y CY DRT MOL B BAN RAG	E ANI REMI YCLE TES DE IN NDW IDW IE PO	D DU'ENT NENT NE PLO ST RE N THE WIDTH OWE	TY C METH METH DTS SUL: 5.2 H	YCL HOD HOD TS	E RE FOR FOR	ESUL R POV R AVO	.TS. WEF G SF	METI	ND F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 13 14 15 15 15 18 21
7. 8.	8.	7.1. 7.1. 7.1. 7.1. AN 1. 8.1. 8.1. 8.1.	1. 2. 3. 4. TENN 802. 1. 2. 3.	ON T MEAS MEAS DUT' IA PO 11a M 26 dE 99% AVEF OUTI	IME SUR SUR Y CY DRT MOE BAN RAG PUT	E ANI REMI YCLE TES DE IN NDW IDW IE PO	D DU'ENT NE PLO THE NT NE PLO THE WIDTH OWEI WER	TY C METH METH DTS SUL 5.2 H AND	YCL HOD HOD TS	E RE FOR FOR BAN	ESUL R POV R AVO	.TS. WEF G SF	METI	ND F	PPSD S EM	1155	ONS	> 1 (GHz	13 13 13 14 15 15 18 21 22
7.	8.	7.1. 7.1. 7.1. 7.1. AN 8.1. 8.1. 8.1.	1. 2. 3. 4. TENN 802. 1. 2. 3. 4. 5.	ON T MEAS MEAS DUTY IA PC 11a M 26 dE 99% AVEF OUTI PEAM	IME SUR SUR Y CY ORT MOE BAN RAG PUT X EX	E ANI REMI YCLE TES NDW NDW GE PO (CUI	D DU'ENT NE PLO THE PLO THE WIDTH OWER RSIOI	TY C METH METH OTS SUL 5.2 H H AND N	YCL HOD HOD TS GHz	E RE FOR BAN	ESUL R POV R AVO	.TS. WEF 3 SF	R AN PUR	ND F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 13 14 15 15 18 21 22 27
7.	8. 8.2	7.1. 7.1. 7.1. 7.1. AN 8.1. 8.1. 8.1.	1. 2. 3. 4. FENN 802. 1. 2. 3. 4. 5.	ON T MEAS MEAS DUT' IA PO 11a M 26 dE 99% AVEF OUTI PEAM 11n F	CIME SUR SUR Y CY DRT MOL BAN RAG PUT (EX	E ANI REMI YCLE TES NDW NDW GE PO (CUF	D DU'ENT MENT MENT MENT MENT MENT MENT MENT M	TY C METH METH DTS SUL 5.2 H AND N N TH	YCL HOD HOD TS GHz	E RE FOR BAN BAN	SUL R POV R AVO	TS. WEF	METI R AN PUR	ID F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 13 14 15 15 15 18 21 22 27
7.	8.2	7.1. 7.1. 7.1. 7.1. AN 7.1. 8.1. 8.1. 8.1. 8.1. 8.2. 8.2.	1. 2. 3. 4. FENN 802. 1. 2. 3. 4. 5. 802. 1. 2.	ON T MEAS MEAS DUTY IA PC 11a M 26 dE 99% AVEF OUTI PEAM 11n F 26 dE 99%	TIME SUR SURT ODET MOL BAN RAG PUT (EX HT20 BAN BAN	E ANI REMI YCLE TES DE IN NDW GE PO COUR O MC NDW	D DU'ENT NENT NE PLO ST RE NIDTH OWER RSION ODE IN NIDTH	TY C METH METH DTS SUL 5.2 H H R AND N N TH H	YCL HOD HOD TS GHz	E RE FOR BAN	ESUL R POV R AVO	TS. WEF G SF	R AN PUR	ID F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 13 14 15 15 15 18 21 22 27 30 33
7.	8.2	7.1. 7.1. 7.1. 7.1. 8.1. 8.1. 8.1. 8.1.	1. 2. 3. 4. FENN 802. 1. 2. 3. 4. 5. 802. 1. 2. 3.	ON T MEAS MEAS DUTY IA PC 11a M 26 dE 99% AVEF 26 dE 99% AVEF	TIME SUF SUF SUF Y CY DRT MOL BAN BAN BAN BAN RAG	E ANI REMI YCLE TES DE IN NDW GE PO NDW NDW GE PO NDW GE PO	D DU'ENT NENT NE PLO ST RE N THE NIDTH OWER RSION ODE IN NIDTH OWEI ODE IN OWEI OWEI	TY C METH METH DTS SUL 5.2 H H AND N N.TH H	YCL HOD HOD TS GHz	E RE FOR BAN	ESUL R POV R AVO	TS. WEF G SF	R AN PUR	ID F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 13 14 15 15 15 18 21 22 27 30 33 36
7.	8.2	7.1. 7.1. 7.1. 7.1. 7.1. 8.1. 8.1. 8.1.	1. 2. 3. 4. FENN 802. 1. 2. 3. 4. 5. 802. 1. 2. 3.	ON T MEAS MEAS DUTY IA PO 11a M 26 dE 99% AVEF OUTI PEAM 11n F 26 dE 99% AVEF OUTI	IME SUF SUF SUF SUF SUF SUF SUF SUF SUF SUF	TES NDW NDW NDW NDW NDW NDW NDW ND	D DU'ENT MENT MENT MENT MENT MENT MENT MENT M	TY C METH METH DTS SUL: 1 AND N N N AND N AND	YCL HOD HOD TS GHz	E RE FOR FOR BAN SD	SUL R POV R AVC	.TS	R AN PUR	ID F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 14 15 15 15 18 21 22 27 30 33 36 37
7.	8.2	7.1. 7.1. 7.1. 7.1. AN 1. 8.1. 8.1. 8.1. 8.2. 8.2. 8.2. 8.2. 8	1. 2. 3. 4. FENN 802. 1. 2. 3. 4. 5. 802. 1. 2. 3. 4. 5.	ON T MEAS MEAS DUT' IA PC 11a M 26 dE 99% AVEF OUTI PEAM AVEF OUTI PEAM	IME SUR SUR SUR SUR MOL MOL MOL MOL MOL MOL MOL MOL MOL MOL	TES OE IN NOW GE PO NOW GE PO NOW GE PO NOW GE PO (CUI	D DU'ENT NENT NE PLO THE WIDTH OWER RSION ODE IN WIDTH OWER RSION WER RSION	TY C METH METH DTS SUL 5.2 H AND N AND N AND N AND	YCL HOD HOD TS PPS	E RE FOR FOR BAN 	SUL R POV R AVO	.TS	R AN PUR	ID F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 14 15 15 15 18 21 22 27 30 33 36 37 42
 8. 9. 	8.2	7.1. 7.1. 7.1. 7.1. 8.1. 8.1. 8.1. 8.1.	1. 2. 3. 4. FENN 802. 1. 2. 3. 4. 5. 802. 1. 2. 3. 4. 5.	ON T MEAS MEAS DUT' IA PO 11a M 26 dE 99% AVEF OUTI PEAM AVEF OUTI PEAM ED TE	IME SUF SUF Y CV DRT MOL 3 BAN RAG PUT X EX EST	TES OE INDIVIDUA OE POI ONDIVIDUA OF POI OF POI	D DU'ENT MENT MENT MENT MENT MENT MENT MENT M	TY C METH METH DTS SUL 5.2 H H AND N AND N AND N AND	YCL HOD HOD TS PPS	E RE FOR FOR BAN	SUL R POV R AVO	.TS	METI R AN PUR	ID F	PPSD S EM	11881	ONS	> 1 (GHz	13 13 13 14 15 15 15 18 21 22 27 30 33 36 37 42 45

DATE: 2013-07-19

IC: 3048A-1537

9.2	. TRANSMITTER ABOVE 1 GHz	47
	0.2.1. TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND	
g	0.2.2. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND	51
9.3	. WORST-CASE BELOW 1 GHz	55
10.	AC POWER LINE CONDUCTED EMISSIONS	57
11.	SETUP PHOTOS	61

DATE: 2013-07-19

IC: 3048A-1537

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MICROSOFT

1 MICROSOFT WAY

REDMOND, WA, 98052, USA

EUT DESCRIPTION: WIRELESS CONTROLLER

MODEL: 1537

SERIAL NUMBER: NON-SERIALIZED PRODUCTION UNITS

DATE TESTED: 2013-04-08 to 2013-07-03

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E

Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 9

Pass

INDUSTRY CANADA RSS-GEN Issue 3

Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

Bob DeLisi

WiSE Principal Engineer

UL LLC

Mike Antola WiSE Project Lead

Mirtal 2

UL LLC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.4-2003, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Road, Melville, New York, USA.

UL LLC is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/1002550.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB
Radiated Emissions, 1-26GHz (worst case, Ground Plane)	± 5.7dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/n transceiver, Model: 1537.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a	7.99	6.30
5180 - 5240	802.11n HT20	7.85	6.10

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral antenna, with a maximum gain of 1 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT uses network adapter Atheros AR6006 USB ART_MDK.

The EUT driver software installed during testing was Atheros, ver. 1.0.1.1019.

The test utility software used during testing was Atheros Radio Test 2 (ART2-GUI), ver. 2.3.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

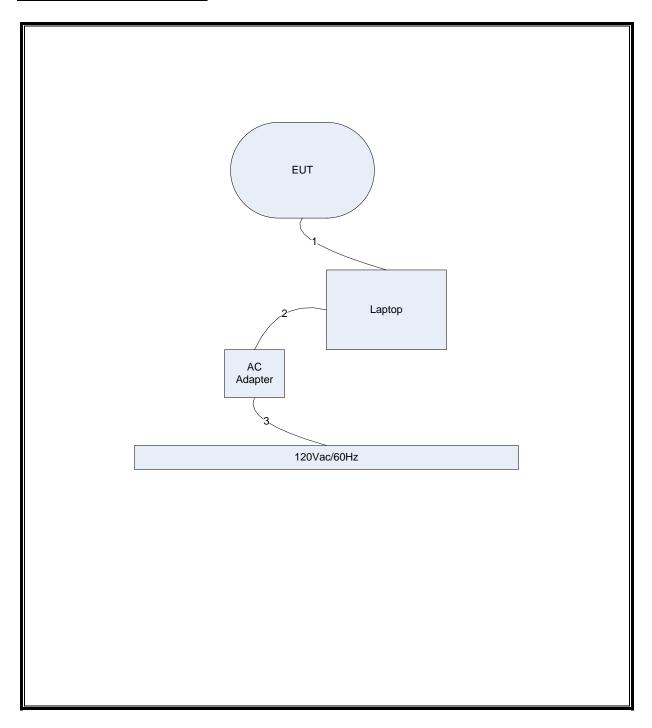
Based on the baseline scan, the worst-case data rates were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model FCC ID							
Laptop Dell Latitude D830 DoC							


I/O CABLES

	I/O Cable List									
Cable	Cable Port # of identical Connector Cable Type Cable Remarks									
No ports Type Length (m)										
1	USB	1	USB	Shielded	<3M	None				
2	DC	1	Mains	Unshielded	<3M	None				
3	AC	1	Mains	Unshielded	<3M	None				

TEST SETUP

The EUT is a wireless controller used as a stand-alone device. Test software exercised the radio module.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Radiated Emissions							
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date		
30-1000MHz							
	Rohde &						
EMI Receiver	Schwarz	ESIB26	ME5B-081		2014-01-31		
Log-P Antenna	Schaffner	UPA6109	44068	2013-04-03			
Bicon Antenna	Schaffner	VBA6106A	54		2014-04-03		
Switch Driver	HP	11713A	ME7A-627	N/A	N/A		
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A		
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A		
RF Switch Box	UL	1	44398	N/A	N/A		
Measurement Software	UL	Version 9.5	44740	N/A	N/A		
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22		
Multimeter	Fluke	83III	ME5B-305	2013-01-28	2014-01-31		
Above 1GHz (Band Optimized Sy							
EMI Receiver	Rohde & Schwarz	ESIB40	34968	2013-01-30	2014-01-31		
Horn Antenna (1-2 GHz)	ETS	3161-01 (26°)**	51442	2008-03-28	See * below		
Horn Antenna (2-4 GHz)	ETS	3161-02 (22°)**	48107	2007-09-27	See * below		
Horn Antenna (4-8 GHz)	ETS	3161-03 (22°)**	48106	2007-09-27	See * below		
Horn Antenna (8-12 GHz)	ETS	3160-07 (26°)**	8933	2008-11-24	See * below		
Horn Antenna (12-18 GHz)	ETS	3160-08 (26°)**	8932	2007-09-27	See * below		
Horn Antenna (18-26.5 GHz)	ETS	3160-09 (27°)**	8947	2007-09-26	See * below		
Horn Antenna (26.5-40 GHz)	ETS	3160-10 (27°)**	73004	2007-09-26	See * below		
Signal Path Controller	HP	11713A	50250	N/A	N/A		
Gain Controller	HP	11713A	50251	N/A	N/A		
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A		
System Controller	UL	BOMS2	50252	N/A	N/A		
Measurement Software	UL	Version 9.5	44740	N/A	N/A		
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22		
Multimeter	Fluke	83III	ME5B-305	2013-01-28	2014-01-31		

Radiated Emissions							
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date		

^{* -} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

** - Number in parentheses denotes antenna beam width.

Conducted Emissions										
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date					
Conducted Emissions – GP 1										
	Rohde &									
EMI Receiver	Schwarz	ESCI 7	75141	2013-01-30	2014-01-31					
LISN	Solar	9252-50-R-24-BNC	ME5A-636	2013-01-31	2014-01-31					
Switch Driver	HP	11713A	44397	N/A	N/A					
RF Switch Box	UL	4	44404	N/A	N/A					
Measurement Software	Measurement Software UL Version 9.5 44736 N/A N/A									
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	2012-03-13	2014-03-13					
Multimeter	Fluke	87V	79648	2013-01-29	2014-01-31					

Bench Tests								
Description Manufacturer Model Identifier Cal Date Date								
RF Room 2								
Spectrum Analyzer	Spectrum Analyzer Agilent E4446A 72822 2013-01-29 2014-01-31							
Power Sensor Rohde & Schwarz NRP-Z81 75345 2013-01-30 2014-01-31								
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22			

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

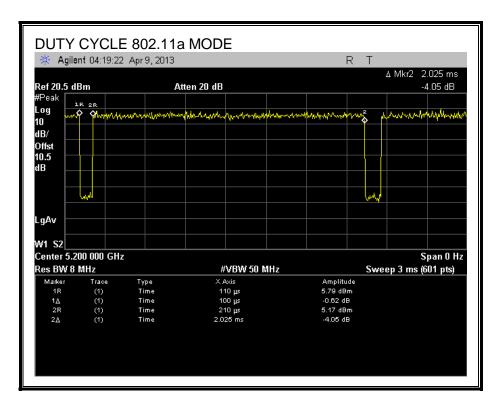
None; for reporting purposes only.

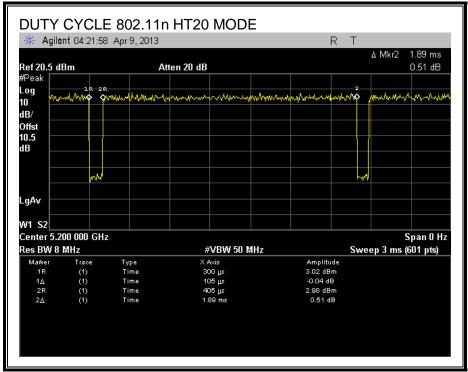
PROCEDURE

KDB 789033 D01 V01r03 Zero-Span Spectrum Analyzer Method.

7.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 20 MHz	2.03	2	0.953	95.3%	0.21	0.494
802.11n HT20	1.89	2	0.947	94.7%	0.23	0.529


7.1.2. MEASUREMENT METHOD FOR POWER AND PPSD


The Duty Cycle is less than 98% and consistent therefore KDB 789033 D01 V01r03 Method SA-2 is used.

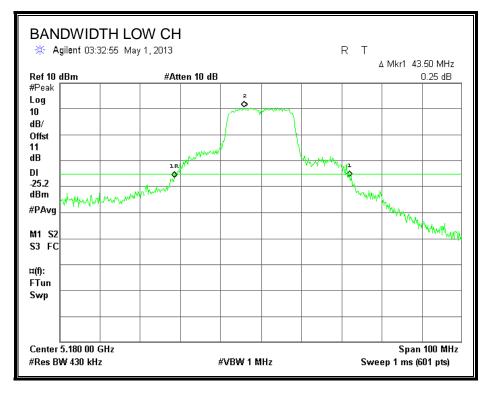
7.1.3. MEASUREMENT METHOD FOR AVG SPURIOUS EMISSIONS > 1 GHz

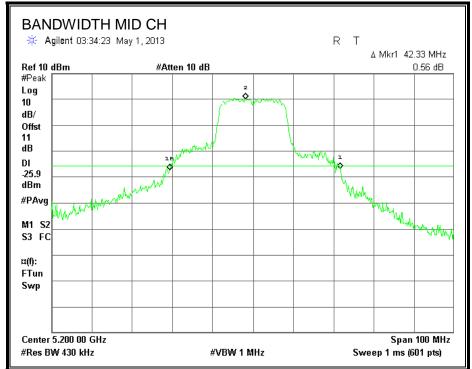
The Duty Cycle is less than 98% and consistent, KDB 789033 D01 V01r03 Method AD with Power RMS Averaging and VB with reduced video bandwidth Averaging and duty cycle correction is used.

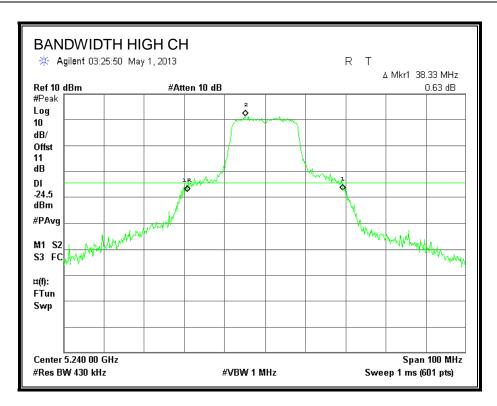
7.1.4. DUTY CYCLE PLOTS

8. ANTENNA PORT TEST RESULTS

8.1. 802.11a MODE IN THE 5.2 GHz BAND

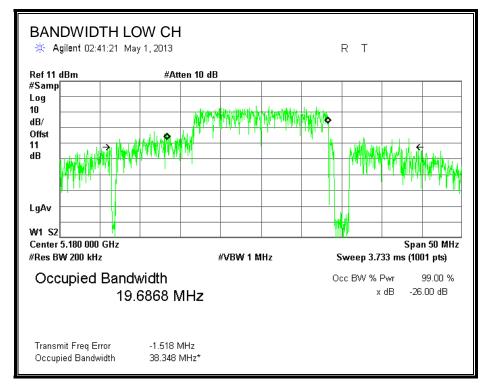

8.1.1. 26 dB BANDWIDTH

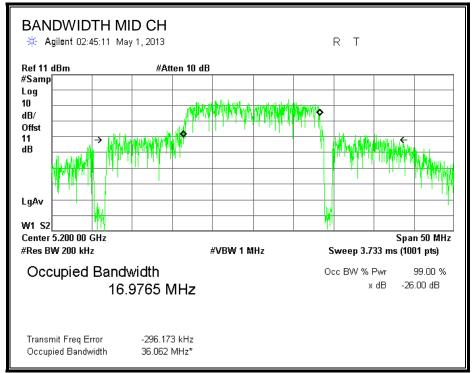

LIMITS

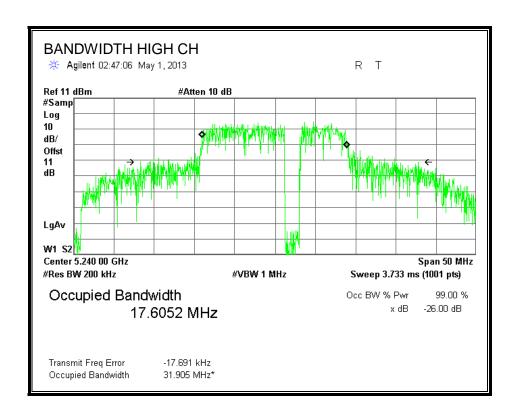

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	43.5
Mid	5200	42.3
High	5240	38.3

26 dB BANDWIDTH


8.1.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	19.7
Mid	5200	17.0
High	5240	17.6

99% BANDWIDTH

8.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	7.3
Mid	5200	7.2
High	5240	7.3

8.1.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

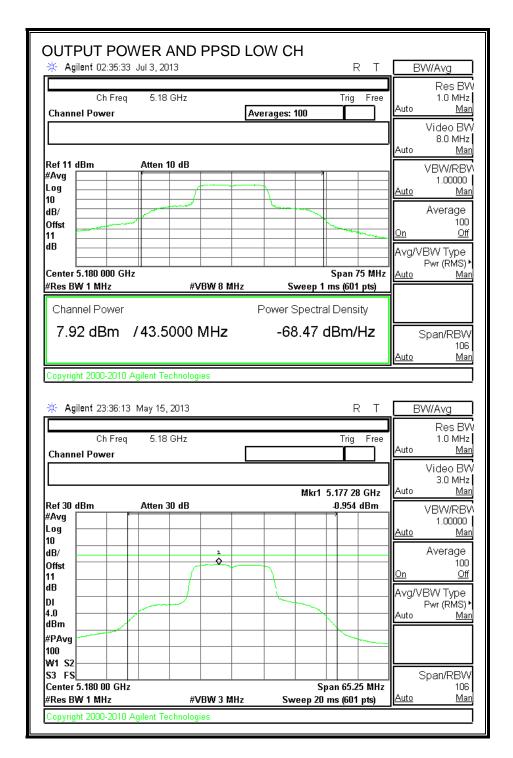
Bandwidth and Antenna Gain

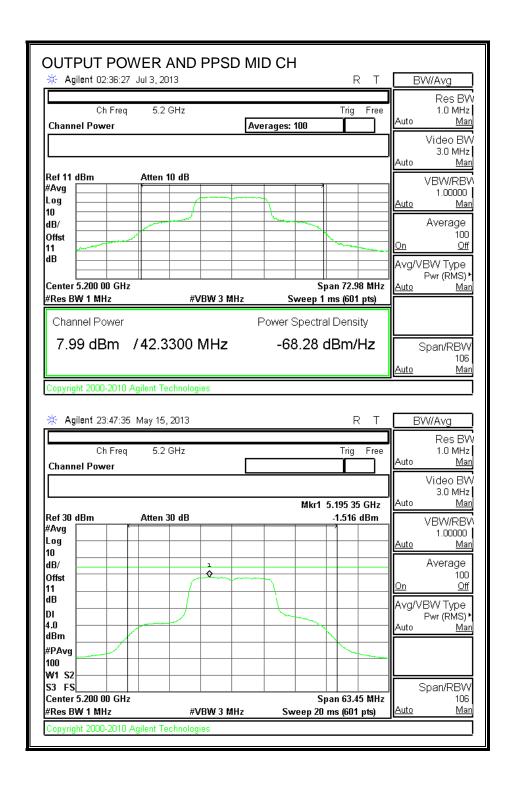
Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	43.5	19.7	1.00
Mid	5200	42.3	17.0	1.00
High	5240	38.3	17.6	1.00

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PSD
		Power	EIRP	IC	Limit	PSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5180	17.00	22.94	21.94	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.30	21.30	17.00	4.00	10.00	4.00

Duty Cycle CF (dB)	0.20	Included in Calculations of Corr'd Power & PSD
--------------------	------	--


Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.92	8.12	17.00	-8.88
Mid	5200	7.99	8.19	17.00	-8.81
High	5240	7.71	7.91	17.00	-9.09

PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-0.95	-0.75	4.00	-4.75
Mid	5200	-1.52	-1.32	4.00	-5.32
High	5240	-2.57	-2.37	4.00	-6.37

OUTPUT POWER AND PPSD

Offst

dΒ

DI

4.0 dBm #PAvg 100 W1 S2 S3 FS

Center 5.240 00 GHz

Copyright 2000-2010 Agilent Technologies

#Res BW 1 MHz

DATE: 2013-07-19

Off

Avg/VBW Type

Pwr (RMS) N

Span/RBW

106

<u>Man</u>

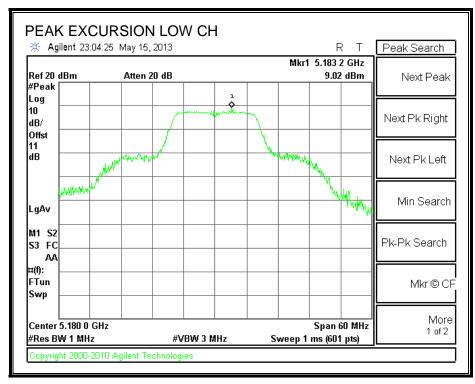
Span 57.45 MHz

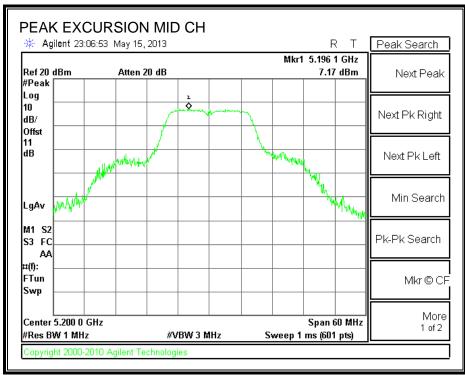
Sweep 20 ms (601 pts)

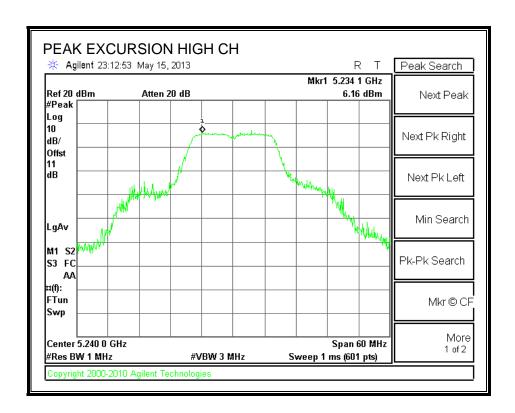
IC: 3048A-1537

#VBW 3 MHz

8.1.5. PEAK EXCURSION


LIMITS

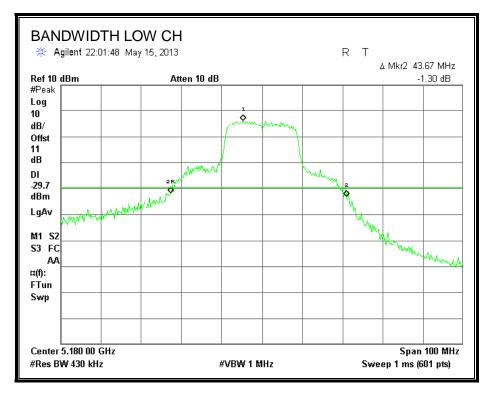

FCC §15.407 (a) (6)

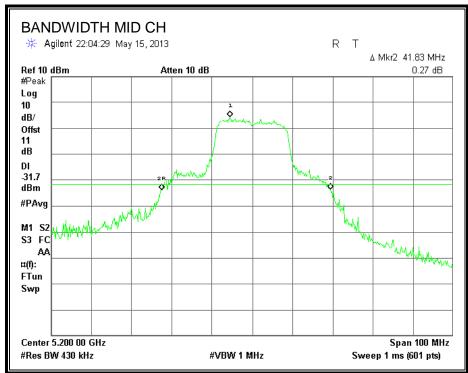

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

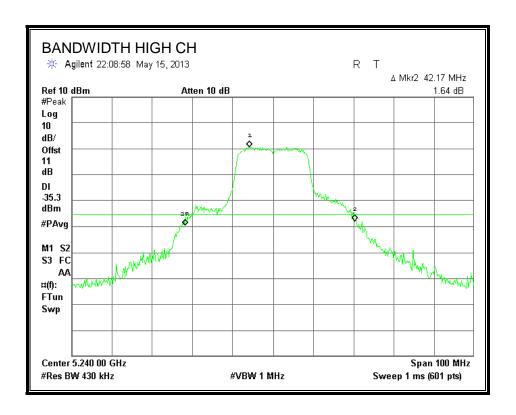
Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Low	5180	9.02	-0.95	0.20	9.77	13	-3.23
Mid	5200	7.17	-1.52	0.20	8.49	13	-4.51
High	5240	6.16	-2.57	0.20	8.53	13	-4.47

PEAK EXCURSION

8.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

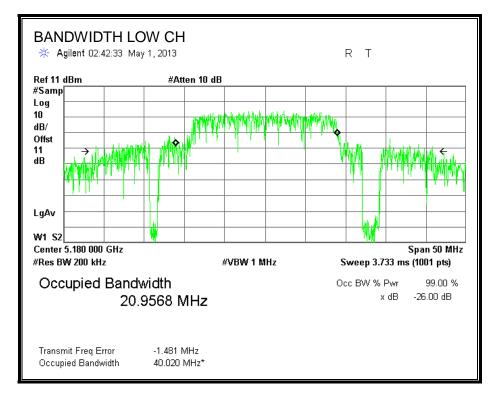

8.2.1. 26 dB BANDWIDTH

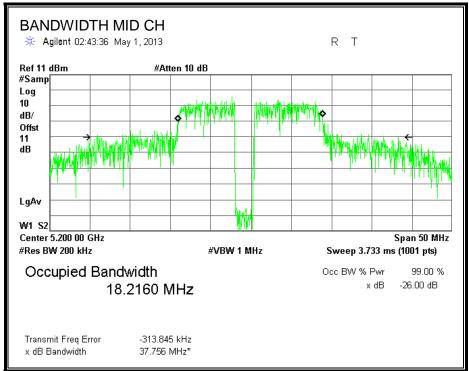

LIMITS

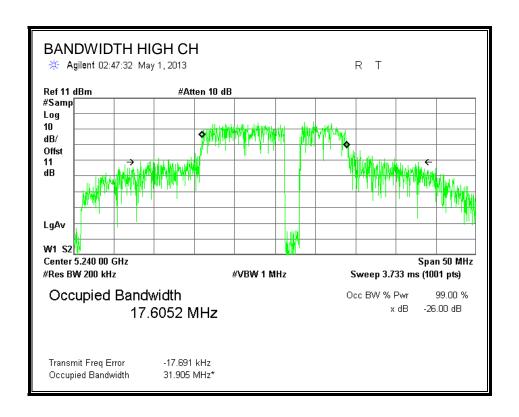

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	43.7
Mid	5200	41.8
High	5240	42.2

26 dB BANDWIDTH


8.2.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	21.0
Mid	5200	18.2
High	5240	17.6

99% BANDWIDTH

8.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	7.2
Mid	5200	7.0
High	5240	7.2

8.2.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

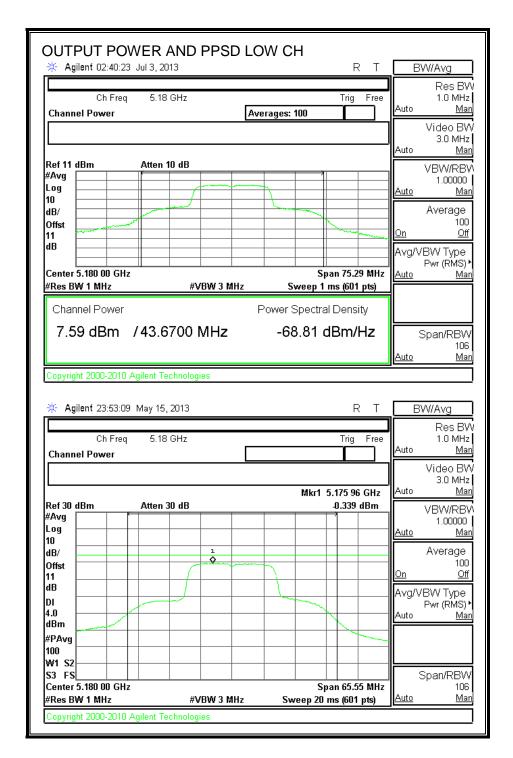
Bandwidth and Antenna Gain

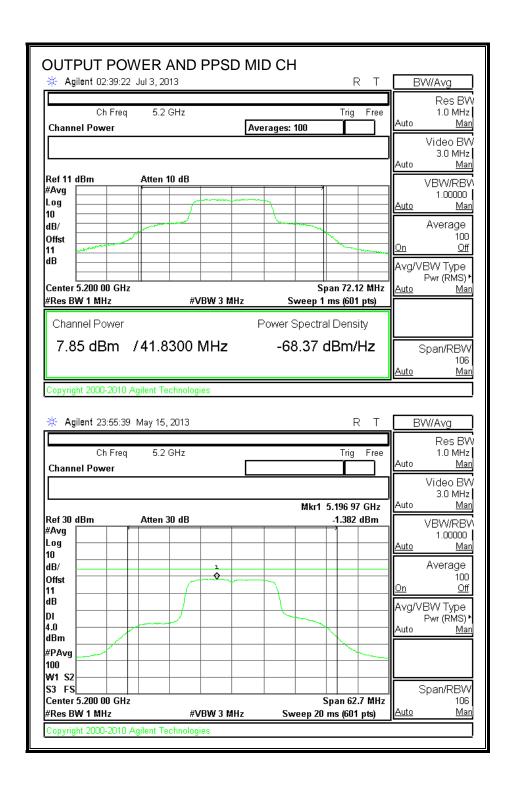
Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	43.7	21.0	1.00
Mid	5200	41.8	18.2	1.00
High	5240	42.2	17.6	1.00

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PSD
		Power	EIRP	IC	Limit	PSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5180	17.00	23.00	22.00	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.61	21.61	17.00	4.00	10.00	4.00

Duty Cycle CF (dB) 0.20	Included in Calculations of Corr'd Power & PSD	
-------------------------	--	--


Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.59	7.79	17.00	-9.21
Mid	5200	7.85	8.05	17.00	-8.95
High	5240	7.63	7.83	17.00	-9.17

PSD Results

Channel	Frequency	Chain 0	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-0.34	-0.14	4.00	-4.14
Mid	5200	-1.38	-1.18	4.00	-5.18
High	5240	-1.99	-1.79	4.00	-5.79

OUTPUT POWER AND PPSD

100 W1 S2 S3 FS

Center 5.240 00 GHz

Copyright 2000-2010 Agilent Technologies

#Res BW 1 MHz

DATE: 2013-07-19

IC: 3048A-1537

#VBW 3 MHz

Span/RBW

106

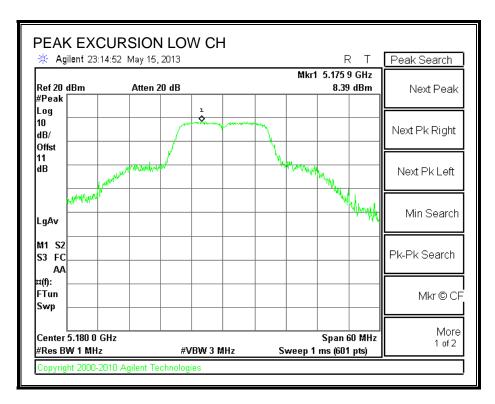
<u>Man</u>

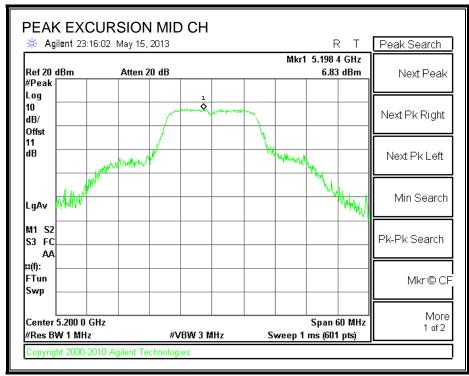
Span 63.3 MHz

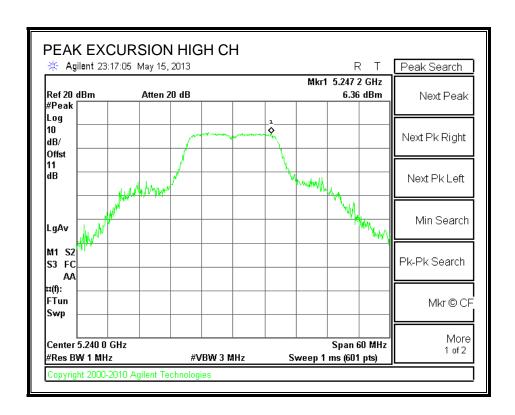
Sweep 20 ms (601 pts)

8.2.5. PEAK EXCURSION

LIMITS


FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Low	5180	8.39	-0.34	0.20	8.53	13	-4.47
Mid	5200	6.83	-1.38	0.20	8.01	13	-4.99
High	5240	6.36	-1.99	0.20	8.15	13	-4.85

PEAK EXCURSION

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205, §15.209 and §15.407(b)

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements (see below).

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Based on the duty cycle of this EUT, the VBW used during all average measurements was 1kHz.

The -27dBm EIRP limit per 15.407(b)(1) was converted to field strength based on the following formula, taken from AS/NZS 4268: 2003:

$$E_{lim} = 20*log_{10} [(\sqrt{30}P_{lim})/d] + 120$$

Where

 E_{lim} = Electric Field Strength Limit, in dB μ V/m

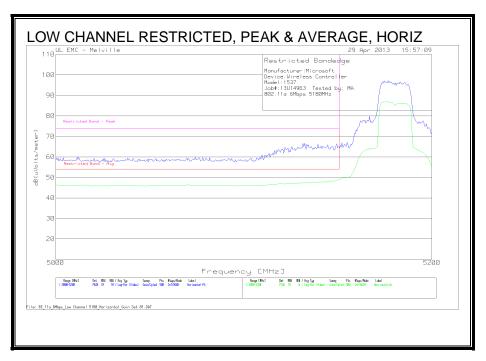
P_{lim} = EIRP Limit, in Watts

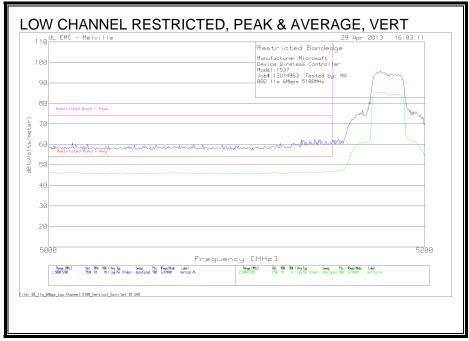
d = Measurement distance, in meters

Sample Calculations

$$E_{lim} = 20*log_{10} [(\sqrt{30*2.0E-6})/3] + 120 = 68.2 dB\mu V/m$$

Where

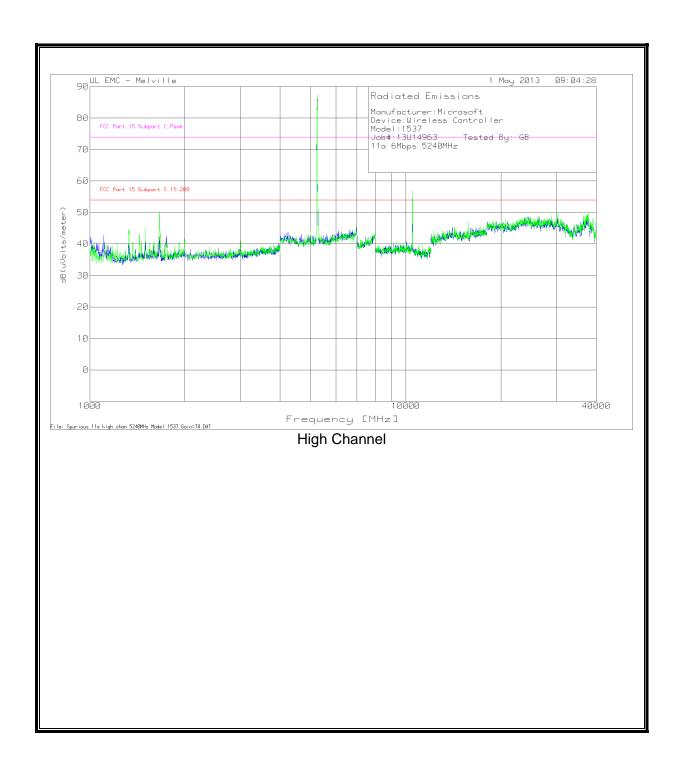

 $P_{lim} = -27dBm (2.0E-6 Watts)$


d = 3 meters

9.2. TRANSMITTER ABOVE 1 GHz

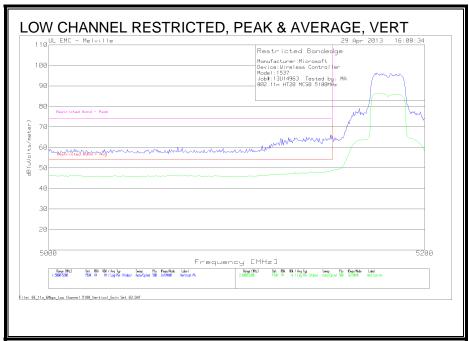
9.2.1. TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)



HARMONICS AND SPURIOUS EMISSIONS

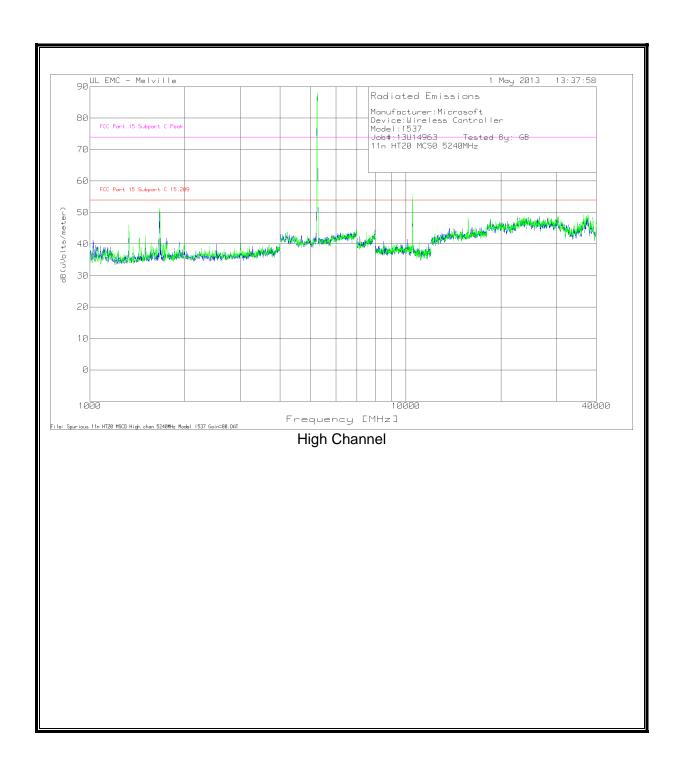
HARMONICS AND SPURIOUS EMISSIONS (CONT)


HARMONICS AND SPURIOUS EMISSIONS (CONT)

	Microsoft													
Device:Wireles	s Controll	er												
Model:1537														
Job#:13U14963	Tastad	By: GB												
11a 6Mbps	Testee	Jy. 05												
Low Channel - 5	180MHz													
	Meter		AF-8932			FCC Part 15 Subpart C	_	FCC Part 15 Subpart C	_		_	Azimuth	_	
	_				dB(uVolts/meter)		(dB)	Peak	(dB)	EIRP Peak		[Degs]	[cm]	Polarity
10364.729		PK	33.3	-47.62	56.87	-	-	-	-	68.2	-11.33	207		Horz
10364.729	77.38	PK	33.3	-47.62	63.06	-	-	-	-	68.2	-5.14	172	100	Vert
15546.413	65.3	PK	37.3	-47.98	54.62	-	-	74	-19.38	-	-	321	173	Horz
15546.894	66.61	PK	37.3	-48.01	55.9	-	-	74	-18.1	-	-	237	278	Vert
15546.413	49.67	LnAv	37.3	-47.98	38.99	54	-15.01	-	-	-	_	321	173	Horz
15546.894	51.02	LnAv	37.3	-48.01	40.31	54	-13.69	-	-	-	_	237	278	Vert
Mid Channel - 5	200044-													
Wild Channel - 3	ZUUIVINZ													
Test Frequency	Meter Reading	Detector	AF-8932 [dB/m]		dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	_	EIRP Peak		Azimuth [Degs]	_	Polarity
10404.81	69.36	PK	33.2	-47.04	55.52	-	-	_	-	68.2	-12.68	112	100	Horz
10396.794	74.3	PK	33.2	-47.19	60.31	-	-	-	-	68.2	-7.89	200	100	Vert
15602.485	64.34	PK	37.3	-47.81	53.83	-	_	74	-20.17		_	242	328	Vert
15591.663	65.75	PK	37.3	-47.82	55.23	_	_	74	-18.77		_	136	384	Horz
15602.485	50.58	LnAv	37.3		40.07		-13.93		-	_	_	242		Vert
15591.663			37.3		39.64		-14.36		-	-	_	136		Horz
High Channel - 5	5240MHz													
Test Frequency	Meter Reading	Detector	AF-8932 [dB/m]		dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	Margin (dB)	EIRP Peak		Azimuth [Degs]	Height [cm]	Polarity
10484.97			33.2		52.11			-		68.2	-16.09	225	100	Horz
10484.97	66.31	PK	33.2	-47.4	52.11		_			68.2	-16.09	225	100	Vert
15727.014			37.4		54.56		_		-19.44			6		Vert
15721.563			37.4		54.01				-19.99		_	153		Horz
15727.014			37.4		39.31		-14.69				_			Vert
			37.4		40.19		-13.81				_	153		Horz
15721.563	32.71													
15721.563														
15721.563 PK - Peak detec														
15721.563		ector												

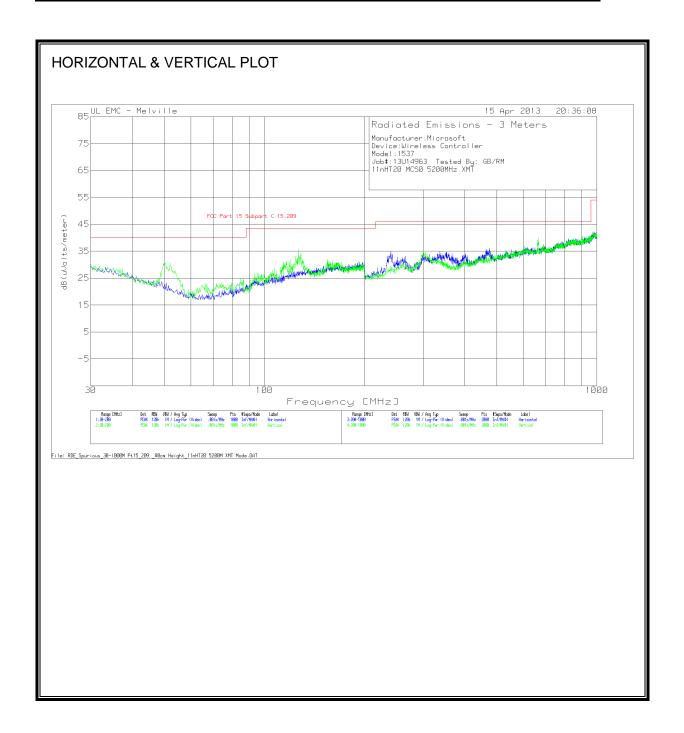

9.2.2. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)



HARMONICS AND SPURIOUS EMISSIONS

HARMONICS AND SPURIOUS EMISSIONS (CONT)



HARMONICS AND SPURIOUS EMISSIONS (CONT)

Device:Wireles	Microsoft													
	s Controll	er												
Model:1537														
Job#:13U14963	Tested	By: GB												
11n HT20 MCS0		Jy. 05												
Low Channel - 5	180MHz													
	Meter		AF-8932			FCC Part 15 Subpart C	_	FCC Part 15 Subpart C	Margin		_	Azimuth	_	
					dB(uVolts/meter)		(dB)	Peak	(dB)	EIRP Peak		[Degs]	[cm]	Polarity
10356.713	75.22	PK	33.3	-48.03	60.49	-	-	-	-	68.2	-7.71	154	100	Horz
10356.713	79.13	PK	33.3	-48.03	64.4	-	-	_	-	68.2	-3.8	172	100	Vert
15541.152	64.98	PK	37.3	-47.56	54.72	-	_	74	-19.28	-	-	286	260	Horz
15533.236	65.23	PK	37.3	-47.59	54.94	-	_	74	-19.06		-	37	358	Vert
15541.152	49	LnAv	37.3	-47.56	38.74	54	-15.26	-	-	-	-	286	260	Horz
15533.236	51.48	LnAv	37.3	-47.59	41.19	54	-12.81	-	-	-	-	37	358	Vert
Mid Channel - 5	2008411-													
Wild Channel - 3	ZOOIVINZ													
Test Frequency	Meter Reading	Detector	AF-8932 [dB/m]		dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	_	EIRP Peak	_	Azimuth [Degs]	_	Polarity
10404.81	68.5	PK	33.2	-47.04	54.66	-	-	-	-	68.2	-13.54	112	100	Horz
10396.794	74.3	PK	33.2	-47.19	60.31	-	-	-	-	68.2	-7.89	200	100	Vert
15596.844	65.32	PK	37.3	-47.8	54.82	-	_	74	-19.18	-	-	227	352	Vert
15605.411	64.4	PK	37.3	-47.84	53.86	_	_	74	-20.14	-	-	171	385	Horz
15596.844			37.3		39.04		-14.96		_	-	-	227		Vert
15605.411			37.3		38.94		-15.06		-	-	-	171	385	Horz
High Channel - 5	240MHz													
Test Frequency	Meter Reading	Detector	AF-8932 [dB/m]		dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin (dB)	FCC Part 15 Subpart C Peak	Margin (dB)	EIRP Peak		Azimuth [Degs]		Polarity
10484.97	66.8	PK	33.2	-47.4	52.6	_	-	-	-	68.2	-15.6		100	Horz
10484.97	66.8	PK	33.2	-47.4	52.6	_	_	-		68.2	-15.6	13	100	Vert
15720			37.4		51.45		_	74	-22.55		_			Horz
15720			37.4		52.18		_		-21.82		_	224		Vert
15720			37.4		37.54		-16.46			-	_			Horz
			37.4		37.62		-16.38		-	-	-	224		Vert
15720														
	tor													
15720		ector												

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (5.2GHZ BAND WORST-CASE CONFIGURATION)

Manufacturer:1	Microsoft									
Device:Wireles	s Controller									
Model:1537										
Job#:13U14963	Tested By: GB/R	М								
11nHT20 MCS0	5200MHz XMT									
Vertical 30 - 20	OMHz									
			AF-43441	GL-3M		FCC Part 15		Azimuth	Height	
Test Frequency	Meter Reading	Detector	[dB/m]	[dB]	dB(uVolts/meter)	Subpart C 15.209	Margin (dB)	[Degs]	[cm]	Polarity
50.0249	18.45	QP	10.2	0.1	28.75	40	-11.25	270	100	Vert
113.8404	15.56	QP	12.5	0.4	28.46	43.5	-15.04	42	102	Vert
126.5521	. 17	QP	13.7	0.5	31.2	43.5	-12.3	52	103	Vert
Horizontal 200	- 1000MHz									
			AF-44067			FCC Part 15		Azimuth	_	
	Meter Reading			[dB]		Subpart C 15.209			[cm]	Polarity
240.0015		-	11.2							Horz
665.0524	14.01	QP	20.1	1.9	36.01	46	-9.99	337	110	Horz
Vertical 200 - 1	OOOMHZ		45 44057	01.314		500 D . 45				
T . F		5	AF-44067		15/ 1/ 1/ /	FCC Part 15		Azimuth	_	
665.0372	Meter Reading 15.44		[dB/m] 20.1	[dB] 1.9		Subpart C 15.209 46			[cm]	Polarity Vert
665.0372	15.44	QP	20.1	1.9	37.44	46	-8.56	360	101	vert
OD O: D	detector									

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

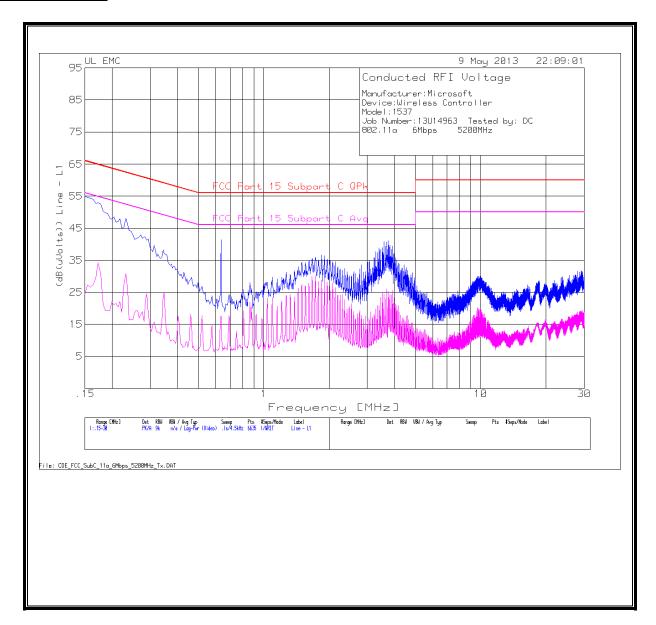
Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

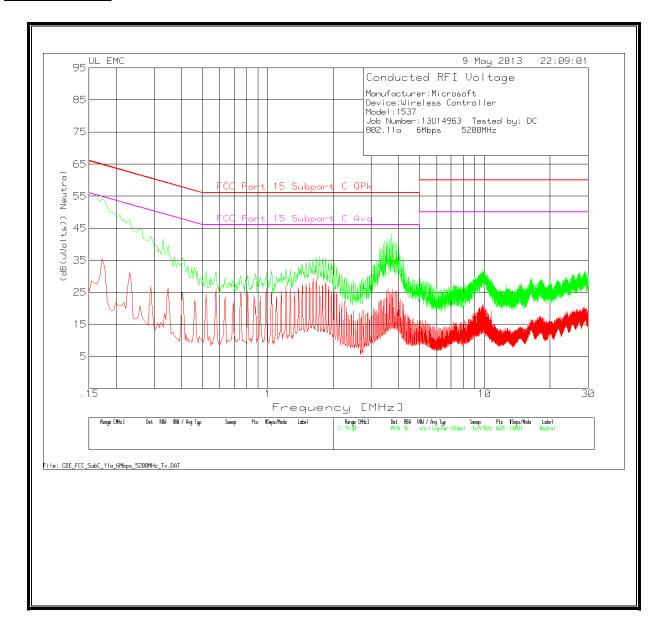
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


6 WORST EMISSIONS

Manufacturer:N	Microsoft							
Device:Wireles	s Controller							
Model:1537								
Job Number:13	U14963 Tested I	by: DC						
802.11a 6Mbp	s 5200MHz							
Line-L1.15-30	MHz							
			5A636 L1		FCC Part 15		FCC Part 15	
Test Frequency	Meter Reading	Detector	[dB]	(dB(uVolts))	Subpart C QPk	Margin (dB)	Subpart C Avg	Margin (dB)
0.15	44.92	PK	10	54.92	66	-11.08	56	-1.08
0.15	14.48	Av	10	24.48	66	-41.52	56	-31.52
0.1725	42.89	PK	10	52.89	64.84	-11.95	54.84	-1.95
0.1725	24.24	Av	10	34.24	64.84	-30.6	54.84	-20.6
0.231	38.05	PK	10	48.05	62.41	-14.36	52.41	-4.36
0.231	20.87	Av	10	30.87	62.41	-31.54	52.41	-21.54
0.636	31.33	PK	10	41.33	56	-14.67	46	-4.67
0.636	7.64	Av	10	17.64	56	-38.36	46	-28.36
1.8465	26.59	PK	10.1	36.69	56	-19.31	46	-9.31
1.8465	18.77	Av	10.1	28.87	56	-27.13	46	-17.13
3.75	30.93	PK	10.1	41.03	56	-14.97	46	-4.97
3.75	15.23	Av	10.1	25.33	56	-30.67	46	-20.67
Neutral .15 - 30	NALI-							
Neutral.13-30	IVITIZ		5A636					
			L4Neut		FCC Part 15		FCC Part 15	
Tast Fraguancy	Meter Reading	Detector		(dB(uVolte))	Subpart C QPk	Margin (dB)		Margin (dR)
0.1635	45.05		10	55.05	65.28	-10.23	55.28	-0.23
0.1635			10	27.57	65.28	-37.71	55.28	-27.71
0.2085	39.25		10	49.25	63.26	-14.01	53.26	-4.01
0.2085	11.01		10	21.01	63.26	-42.25		
0.33			10	41.67	59.45	-17.78		-7.78
0.33			10	14.01	59.45	-45.44	49.45	-35.44
0.5775			10.1	31.7	56	-24.3		-14.3
0.5775	15.99		10.1	26.09	56	-29.91	46	-19.91
	26.06		10.1	36.16	56	-19.84	46	-9.84
1.734			10.1	27.13	56	-28.87	46	-18.87
1.734 1.734	17.03	Av	10.1					
	17.03 33.02		10.1	43.22	56	-12.78	46	-2.78
1.734		PK			56 56	-12.78 -31.34	46 46	-2.78 -21.34
1.734 3.7005	33.02 14.46	PK	10.2	43.22				

LINE 1 RESULTS

LINE 2 RESULTS

