

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

**CERTIFICATION TEST REPORT** 

FOR

WIRELESS CONTROLLER

**MODEL NUMBER: 1537** 

FCC ID: C3K1537 IC: 3048A-1537

**REPORT NUMBER: 13U14963** 

ISSUE DATE: 2013-05-21

Prepared for MICROSOFT 1 MICROSOFT WAY REDMOND WA, 98052, USA

Prepared by UL LLC 1285 WALT WHITMAN RD. MELVILLE, NY 11747, U.S.A. TEL: (631) 271-6200 FAX: (877) 854-3577

R

NVLAP LAB CODE 100255-0

#### **Revision History**

| Rev. | lssue<br>Date | Revisions     | Revised By |
|------|---------------|---------------|------------|
|      | 5/21/13       | Initial Issue | M. Antola  |

Page 2 of 119

# TABLE OF CONTENTS

| 1.             | ATT                                                                       | <b>TESTA</b>                                                                                                                                                    | TION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                    |
|----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2.             | TES                                                                       | ST ME                                                                                                                                                           | THODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                    |
| 3.             | FAC                                                                       | CILITIE                                                                                                                                                         | ES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                    |
| 4.             | CAI                                                                       | LIBRA                                                                                                                                                           | TION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                    |
| 4              | 4.1.                                                                      | MEAS                                                                                                                                                            | SURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                    |
| 4              | 4.2.                                                                      | SAM                                                                                                                                                             | PLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                    |
| 4              | 4.3.                                                                      | MEAS                                                                                                                                                            | SUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                    |
| 5.             | EQ                                                                        | UIPME                                                                                                                                                           | INT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                    |
| 5              | 5.1.                                                                      | DESC                                                                                                                                                            | CRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                    |
| 5              | 5.2.                                                                      | MAXI                                                                                                                                                            | MUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                    |
| 5              | 5.3.                                                                      | DESC                                                                                                                                                            | CRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                    |
| 5              | 5.4.                                                                      | SOFT                                                                                                                                                            | TWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                    |
| 5              | 5.5.                                                                      | WOR                                                                                                                                                             | ST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                    |
| 5              | 5.6.                                                                      | DESC                                                                                                                                                            | CRIPTION OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                    |
| 6.             | TES                                                                       | ST ANI                                                                                                                                                          | D MEASUREMENT EQUIPMENT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                    |
|                |                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| 7.             | ON                                                                        | TIME,                                                                                                                                                           | DUTY CYCLE AND MEASUREMENT METHODS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                    |
| 7.             | 7.1.                                                                      | 1. C                                                                                                                                                            | ON TIME AND DUTY CYCLE RESULTS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                    |
| 7.             |                                                                           | 1. C<br>2. N                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>3                               |
| 7.<br>8.       | 7.1.<br>7.1.<br>7.1.                                                      | 1. C<br>2. N<br>3. E                                                                                                                                            | ON TIME AND DUTY CYCLE RESULTS1<br>//EASUREMENT METHOD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>4                          |
| 8.             | 7.1.<br>7.1.<br>7.1.                                                      | 1. C<br>2. N<br>3. C                                                                                                                                            | DN TIME AND DUTY CYCLE RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>4<br><b>6</b>              |
| 8.             | 7.1.<br>7.1.<br>7.1.<br>8.1.                                              | 1. C<br>2. N<br>3. C<br>FENN<br>802.1<br>1. 6                                                                                                                   | DN TIME AND DUTY CYCLE RESULTS.       1         MEASUREMENT METHOD.       1         DUTY CYCLE PLOTS       1         A PORT TEST RESULTS       1         1g MODE IN THE 2.4 GHz BAND.       1         3 dB BANDWIDTH.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>4<br>6<br>6                     |
| 8.             | 7.1.<br>7.1.<br>7.1.<br><b>AN</b><br>8.1.<br>8.1.<br>8.1.                 | 1. C<br>2. N<br>3. E<br>FENN/<br>802.1<br>1. 6<br>2. 9                                                                                                          | DN TIME AND DUTY CYCLE RESULTS.       1         MEASUREMENT METHOD.       1         DUTY CYCLE PLOTS       1         A PORT TEST RESULTS       1         1g MODE IN THE 2.4 GHz BAND.       1         3 dB BANDWIDTH.       1         99% BANDWIDTH.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>4<br>6<br>6<br>9           |
| 8.             | 7.1.<br>7.1.<br>7.1.<br><b>AN</b><br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1. | 1. C<br>2. M<br>3. E<br>FENN/<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C                                                                                          | DN TIME AND DUTY CYCLE RESULTS. 1   MEASUREMENT METHOD. 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS 1   1 1 g MODE IN THE 2.4 GHz BAND. 1   3 dB BANDWIDTH. 1   99% BANDWIDTH. 1   AVERAGE POWER 2   DUTPUT POWER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>4<br>6<br>6<br>9<br>2<br>3 |
| 8.             | 7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br>FENNA<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F                                                                                  | DN TIME AND DUTY CYCLE RESULTS. 1   MEASUREMENT METHOD. 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS 1   1 1 g MODE IN THE 2.4 GHz BAND. 1   3 dB BANDWIDTH. 1   99% BANDWIDTH. 1   AVERAGE POWER 2   DUTPUT POWER 2   2 SD 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 334<br>669237                        |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br>FENN/<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C                                                                          | ON TIME AND DUTY CYCLE RESULTS. 1   MEASUREMENT METHOD. 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS. 1   1 1g MODE IN THE 2.4 GHz BAND. 1   3 dB BANDWIDTH. 1   99% BANDWIDTH. 1   AVERAGE POWER 2   DUTPUT POWER 2   PSD. 2   DUT-OF-BAND EMISSIONS 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 334<br>66692370                      |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br><b>FENN/</b><br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1<br>1. 6                                                  | DN TIME AND DUTY CYCLE RESULTS. 1   MEASUREMENT METHOD. 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS. 1   1 g MODE IN THE 2.4 GHz BAND. 1   2 dB BANDWIDTH. 1   9% BANDWIDTH. 1   AVERAGE POWER. 2   DUTPUT POWER 2   PSD. 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   3 dB BANDWIDTH. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334 <b>6</b> 6692370 55              |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br><b>FENN/</b><br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1<br>1. 6<br>2. 9                                          | DN TIME AND DUTY CYCLE RESULTS. 1   MEASUREMENT METHOD. 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS 1   1 g MODE IN THE 2.4 GHz BAND. 1   3 dB BANDWIDTH. 1   9% BANDWIDTH. 1   AVERAGE POWER 2   DUTPUT POWER 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   9% BANDWIDTH. 3   9% BANDWIDTH. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 334 <b>6</b> 6692370 558             |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br>FENN/<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1<br>1. 6<br>2. 9<br>3. A                                         | DN TIME AND DUTY CYCLE RESULTS. 1   MEASUREMENT METHOD. 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS. 1   1 g MODE IN THE 2.4 GHz BAND. 1   2 dB BANDWIDTH. 1   9% BANDWIDTH. 1   AVERAGE POWER. 2   DUTPUT POWER 2   PSD. 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   3 dB BANDWIDTH. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334 6 6692370 5581                   |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br><b>FENN/</b><br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>5. F          | ON TIME AND DUTY CYCLE RESULTS 1   MEASUREMENT METHOD 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS 1   1 g MODE IN THE 2.4 GHz BAND 1   2 dB BANDWIDTH 1   9% BANDWIDTH 1   AVERAGE POWER 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   9% BANDWIDTH 3   9% BANDWIDTH 3   AVERAGE POWER 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   9% BANDWIDTH 3   9% BANDWIDTH 3   30% BANDWIDTH 3   30 | 334 <b>6</b> 6692370 558126          |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br><b>FENN/</b><br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C          | DN TIME AND DUTY CYCLE RESULTS.1MEASUREMENT METHOD.1DUTY CYCLE PLOTS1A PORT TEST RESULTS.1I 1g MODE IN THE 2.4 GHz BAND.13 dB BANDWIDTH.19% BANDWIDTH.1VERAGE POWER2DUTPUT POWER2PSD.2DUT-OF-BAND EMISSIONS31n HT20 MODE IN THE 2.4 GHz BAND339% BANDWIDTH.3AVERAGE POWER4DUTPUT POWER4DUTPUT POWER4DUTPUT POWER4DUTPUT POWER4DUTPUT POWER4DUTPUT POWER4DUTPUT POWER4DUTPUT POWER4DUT-OF-BAND EMISSIONS4DUT-OF-BAND EMISSIONS4DUT-OF-BAND EMISSIONS4DUT-OF-BAND EMISSIONS4                                                                                                                                                                                                                                                                                                                                                                                                                                 | 334 <b>6</b> 6692370 5581269         |
| <b>8.</b><br>ε | 7.1.<br>7.1.<br>7.1.<br>7.1.<br>8.1.<br>8.1.<br>8.1.<br>8.1.              | 1. C<br>2. M<br>3. E<br><b>FENN/</b><br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1<br>1. 6<br>2. 9<br>3. A<br>4. C<br>5. F<br>6. C<br>802.1 | ON TIME AND DUTY CYCLE RESULTS 1   MEASUREMENT METHOD 1   DUTY CYCLE PLOTS 1   A PORT TEST RESULTS 1   1 g MODE IN THE 2.4 GHz BAND 1   2 dB BANDWIDTH 1   9% BANDWIDTH 1   AVERAGE POWER 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   9% BANDWIDTH 3   9% BANDWIDTH 3   AVERAGE POWER 2   DUT-OF-BAND EMISSIONS 3   1 n HT20 MODE IN THE 2.4 GHz BAND 3   9% BANDWIDTH 3   9% BANDWIDTH 3   30% BANDWIDTH 3   30 | 334 6 6692370 5581269 4              |

Page 3 of 119

| 8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>8. | 3.2.<br>3.3.<br>3.4.<br>3.5.<br>3.6.<br>802<br>4.1.<br>4.2.<br>4.3.<br>4.4.<br>4.5.<br>4.6. | 99% BANDWIDTH.<br>AVERAGE POWER<br>OUTPUT POWER<br>PSD.<br>OUT-OF-BAND EMISSIONS<br> |     |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----|
| 9. R                                                                 | ADIAT                                                                                       | ED TEST RESULTS                                                                      | 92  |
| 9.1.                                                                 | LIM                                                                                         | ITS AND PROCEDURE                                                                    |     |
| 9.2.                                                                 | TRA                                                                                         | ANSMITTER ABOVE 1 GHz                                                                | 93  |
| 9.3.                                                                 | TX                                                                                          | ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND                                         |     |
| 9.4.                                                                 | TX                                                                                          | ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND                                    |     |
| 9.5.                                                                 | TX                                                                                          | ABOVE 1 GHz 802.11a MODE IN THE 5.8 GHz BAND                                         |     |
| 9.6.                                                                 | TX                                                                                          | ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BAND                                    |     |
| 9.7.                                                                 | WO                                                                                          | RST-CASE BELOW 1 GHz                                                                 |     |
| 10.                                                                  | AC PO                                                                                       | OWER LINE CONDUCTED EMISSIONS                                                        | 105 |
| 11.                                                                  | SETU                                                                                        | P PHOTOS                                                                             | 112 |

## **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME: MICROSOFT<br>1 MICROSOFT WAY<br>REDMOND, WA, 98052, USA |                                            |      |  |  |
|-----------------------------------------------------------------------|--------------------------------------------|------|--|--|
| EUT DESCRIPTION: WIRELESS CONTROLLER                                  |                                            |      |  |  |
| <b>MODEL:</b> 1537                                                    |                                            |      |  |  |
| SERIAL NUMBER: NON-SERIALIZED PRODUCTION UNITS                        |                                            |      |  |  |
| DATE TESTED:                                                          | <b>TE TESTED:</b> 2013-04-08 to 2013-05-09 |      |  |  |
|                                                                       | APPLICABLE STANDARDS                       |      |  |  |
| STANDARD TEST RESULTS                                                 |                                            |      |  |  |
| CFR 47 Part 15 Subpart C Pass                                         |                                            |      |  |  |
| INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pa                            |                                            |      |  |  |
| INDUSTRY CAN                                                          | ADA RSS-GEN Issue 3                        | Pass |  |  |

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation, as described by the referenced documents. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL By:

Tested By:

Bob Deat

Bob DeLisi WiSE Principal Engineer UL LLC

Mirtal At

Mike Antola WiSE Project Lead UL LLC

Page 5 of 119

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/1002550.htm</u>.

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                              | UNCERTAINTY |
|--------------------------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz                  | ± 3.3 dB    |
| Radiated Disturbance, 30 to 1000 MHz                   | ± 4.00 dB   |
| Radiated Emissions, 1-26GHz (worst case, Ground Plane) | ± 5.7dB     |

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 119

# 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/g/n transceiver, Model: 1537.

## 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum average conducted output power as follows:

| Frequency Range | quency Range Mode O |       | Output Power |
|-----------------|---------------------|-------|--------------|
| (MHz)           |                     | (dBm) | (mW)         |
| 2412 - 2462     | 802.11g             | 9.09  | 8.11         |
| 2412 - 2462     | 802.11n HT20        | 9.28  | 8.47         |
| 5745 - 5825     | 802.11a             | 6.00  | 3.98         |
| 5745 - 5825     | 802.11n HT20        | 6.19  | 4.16         |

## 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral antenna, with a maximum gain of 1 dBi.

## 5.4. SOFTWARE AND FIRMWARE

The EUT uses network adapter Atheros AR6006 USB ART\_MDK.

The EUT driver software installed during testing was Atheros, ver. 1.0.1.1019.

The test utility software used during testing was Atheros Radio Test 2 (ART2-GUI), ver. 2.3.

Page 7 of 119

## 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as measured during preliminary testing:

802.11g mode: 6 Mbps 802.11a mode: 6 Mbps 802.11n HT20mode: MCS0

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 8 of 119

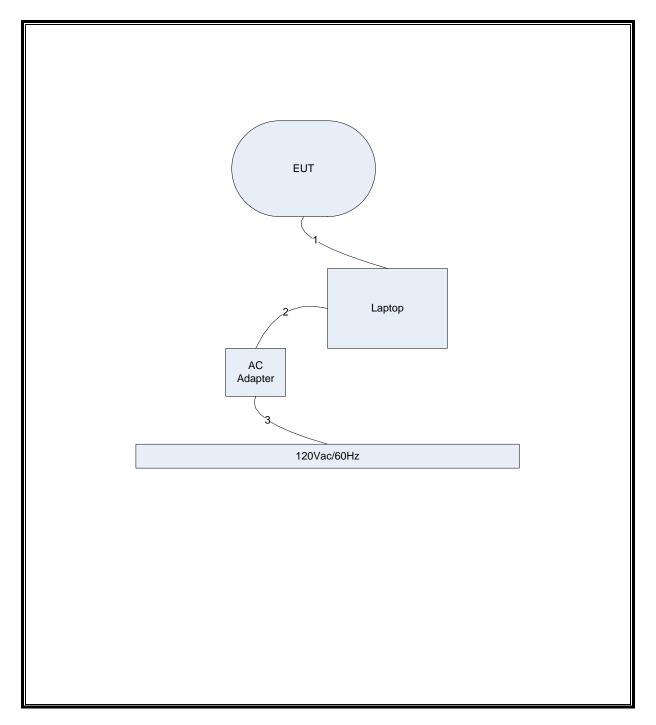
## 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List                |  |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|--|
| Description Manufacturer Model FCC ID |  |  |  |  |  |  |
| Laptop Dell Latitude D830 DoC         |  |  |  |  |  |  |

#### I/O CABLES

|       | I/O Cable List                                              |       |       |            |            |      |  |
|-------|-------------------------------------------------------------|-------|-------|------------|------------|------|--|
| Cable | Cable Port #of identical Connector Cable Type Cable Remarks |       |       |            |            |      |  |
| No    |                                                             | ports | Туре  |            | Length (m) |      |  |
| 1     | USB                                                         | 1     | USB   | Shielded   | <3M        | None |  |
| 2     | DC                                                          | 1     | Mains | Unshielded | <3M        | None |  |
| 3     | AC                                                          | 1     | Mains | Unshielded | <3M        | None |  |


#### TEST SETUP

The EUT is a wireless controller used as a stand-alone device. Test software exercised the radio module.

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 9 of 119

#### SETUP DIAGRAM FOR TESTS



Page 10 of 119

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Radiated Emissions            |                    |                 |            |            |                 |  |  |
|-------------------------------|--------------------|-----------------|------------|------------|-----------------|--|--|
| Description                   | Manufacturer       | Model           | Identifier | Cal Date   | Cal Due<br>Date |  |  |
| 30-1000MHz                    |                    |                 |            |            |                 |  |  |
| EMI Receiver                  | Rohde &<br>Schwarz | ESIB26          | ME5B-081   | 2013-01-29 | 2014-01-31      |  |  |
| Log-P Antenna                 | Schaffner          | UPA6109         | 44068      | 2013-04-03 | 2014-04-03      |  |  |
| Bicon Antenna                 | Schaffner          | VBA6106A        | 54         | 2013-04-03 | 2014-04-03      |  |  |
| Switch Driver                 | HP                 | 11713A          | ME7A-627   | N/A        | N/A             |  |  |
| System Controller             | Sunol<br>Sciences  | SC99V           | 44396      | N/A        | N/A             |  |  |
| Camera Controller             | Panasonic          | WV-CU254        | 44395      | N/A        | N/A             |  |  |
| RF Switch Box                 | UL                 | 1               | 44398      | N/A        | N/A             |  |  |
| Measurement Software          | UL                 | Version 9.5     | 44740      | N/A        | N/A             |  |  |
| Temp/Humidity/Pressure Meter  | Cole Parmer        | 99760-00        | 4268       | 2012-12-22 |                 |  |  |
| Multimeter                    | Fluke              | 83111           | ME5B-305   | 2013-01-28 | 2014-01-31      |  |  |
| Above 1GHz (Band Optimized Sy |                    |                 |            |            |                 |  |  |
| EMI Receiver                  | Rohde &<br>Schwarz | ESIB40          | 34968      | 2013-01-30 |                 |  |  |
| Horn Antenna (1-2 GHz)        | ETS                | 3161-01 (26°)** | 51442      | 2008-03-28 |                 |  |  |
| Horn Antenna (2-4 GHz)        | ETS                | 3161-02 (22°)** | 48107      | 2007-09-27 | See * below     |  |  |
| Horn Antenna (4-8 GHz)        | ETS                | 3161-03 (22°)** | 48106      | 2007-09-27 | See * below     |  |  |
| Horn Antenna (8-12 GHz)       | ETS                | 3160-07 (26°)** | 8933       | 2008-11-24 | See * below     |  |  |
| Horn Antenna (12-18 GHz)      | ETS                | 3160-08 (26°)** | 8932       | 2007-09-27 | See * below     |  |  |
| Horn Antenna (18-26.5 GHz)    | ETS                | 3160-09 (27°)** | 8947       | 2007-09-26 | See * below     |  |  |
| Horn Antenna (26.5-40 GHz)    | ETS                | 3160-10 (27°)** | 73004      | 2007-09-26 | See * below     |  |  |
| Signal Path Controller        | HP                 | 11713A          | 50250      | N/A        | N/A             |  |  |
| Gain Controller               | HP                 | 11713A          | 50251      | N/A        | N/A             |  |  |
| RF Switch / Preamp Fixture    | UL                 | BOMS1           | 50249      | N/A        | N/A             |  |  |
| System Controller             | UL                 | BOMS2           | 50252      | N/A        | N/A             |  |  |
| Measurement Software          | UL                 | Version 9.5     | 44740      | N/A        | N/A             |  |  |
| Temp/Humidity/Pressure Meter  | Cole Parmer        | 99760-00        | 4268       | 2012-12-22 | 2014-12-22      |  |  |
| Multimeter                    | Fluke              | 83111           | ME5B-305   | 2013-01-28 | 2014-01-31      |  |  |

| Radiated Emissions                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |          |                 |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|----------|-----------------|--|--|--|
| Description                                                                                                                                                                  | Manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model | Identifier | Cal Date | Cal Due<br>Date |  |  |  |
| one-time calibration. Only if physic<br>Gain standard horn antennas (standard horn antennas)<br>beyond that which is provided by the<br>or they are used at a distance close | <ul> <li>* - Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration. Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than 2D<sup>2</sup>/λ. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.</li> </ul> |       |            |          |                 |  |  |  |

| Conducted Emissions          |              |                  |            |            |                 |  |  |
|------------------------------|--------------|------------------|------------|------------|-----------------|--|--|
| Description                  | Manufacturer | Model            | Identifier | Cal Date   | Cal Due<br>Date |  |  |
| Conducted Emissions – GP 1   | ·            |                  |            |            |                 |  |  |
|                              | Rohde &      |                  |            |            |                 |  |  |
| EMI Receiver                 | Schwarz      | ESCI 7           | 75141      | 2013-01-30 | 2014-01-31      |  |  |
| LISN                         | Solar        | 9252-50-R-24-BNC | ME5A-636   | 2013-01-31 | 2014-01-31      |  |  |
| Switch Driver                | HP           | 11713A           | 44397      | N/A        | N/A             |  |  |
| RF Switch Box                | UL           | 4                | 44404      | N/A        | N/A             |  |  |
| Measurement Software         | UL           | Version 9.5      | 44736      | N/A        | N/A             |  |  |
| Temp/Humidity/Pressure Meter | Cole Parmer  | 99760-00         | 43734      | 2012-03-13 | 2014-03-13      |  |  |
| Multimeter                   | Fluke        | 87V              | 79648      | 2013-01-29 | 2014-01-31      |  |  |

| Bench Tests                                               |                 |          |       |            |            |  |
|-----------------------------------------------------------|-----------------|----------|-------|------------|------------|--|
| Description Manufacturer Model Identifier Cal Date Cal Du |                 |          |       |            |            |  |
| RF Room 2                                                 |                 |          |       |            |            |  |
| Spectrum Analyzer                                         | Agilent         | E4446A   | 72822 | 2013-01-29 | 2014-01-31 |  |
| Power Sensor                                              | Rohde & Schwarz | NRP-Z81  | 75345 | 2013-01-30 | 2014-01-31 |  |
| Temp/Humidity/Pressure Meter                              | Cole Parmer     | 99760-00 | 4268  | 2012-12-22 | 2014-12-22 |  |

Page 12 of 119

# 7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

#### <u>LIMITS</u>

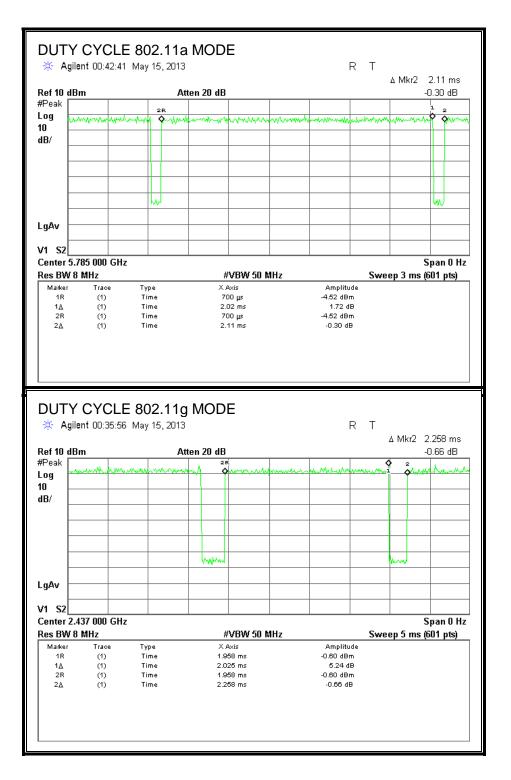
None; for reporting purposes only.

#### PROCEDURE

KDB 558074 D01 Zero-Span Spectrum Analyzer Method.

| 7.1.1. ON | TIME AND DUTY CYCLE RES | ULTS |
|-----------|-------------------------|------|
|           |                         |      |

| Mode         | <b>ON Time</b> | Period | Duty Cycle | Duty  | Duty Cycle               | 1/B         |  |
|--------------|----------------|--------|------------|-------|--------------------------|-------------|--|
|              | В              |        | x          | Cycle | <b>Correction Factor</b> | Minimum VBW |  |
|              | (msec)         | (msec) | (linear)   | (%)   | (dB)                     | (Hz)        |  |
| 802.11a      | 2020.00        | 2110   | 0.957      | 95.7% | 0.19                     | 0.495       |  |
| 802.11g      | 2025.00        | 2258   | 0.897      | 89.7% | 0.47                     | 0.494       |  |
| 802.11n HT20 | 1892.00        | 2067   | 0.915      | 91.5% | 0.38                     | 0.529       |  |


### 7.1.2. MEASUREMENT METHOD

KDB 558074 D01 DTS Measurement Guidance v03 was referenced during testing. Maximum Peak Conducted Power was measured using the method of section 9.1.2, thus method PKPSD is used for power spectral density.

Unwanted emissions within Restricted Bands are measured using traditional radiated procedures.

Page 13 of 119

## 7.1.3. DUTY CYCLE PLOTS



Page 14 of 119

|                |                |               | HT20 MOD                                                                                                        | Ε        |                      |                  |                     |
|----------------|----------------|---------------|-----------------------------------------------------------------------------------------------------------------|----------|----------------------|------------------|---------------------|
| 🔆 🔆 Agilent (  | 00:38:30 N     | /lay 15, 2013 |                                                                                                                 |          | R                    | Т                |                     |
|                |                |               |                                                                                                                 |          |                      | ∆ Mkr2           | 2.067 ms            |
| Ref 10 dBm     |                | Att           | en 20 dB                                                                                                        |          |                      |                  | -1.34 dB            |
| #Peak          | marin          |               | and and a second and a second                                                                                   | Ambarran |                      | and an all and a | un a de la de la de |
| LUG            | and the second | 2R            | - 1997 - 1997 - 1997 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 |          | Y Y                  |                  |                     |
| 10             |                |               |                                                                                                                 |          |                      |                  |                     |
| dB/            |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                | - Wu          |                                                                                                                 |          | hund                 |                  |                     |
|                |                |               |                                                                                                                 |          | - Parkalo            |                  |                     |
| LgAv           |                |               |                                                                                                                 |          |                      |                  |                     |
| -974           |                |               |                                                                                                                 |          |                      |                  |                     |
| W1 S2          |                |               |                                                                                                                 |          |                      |                  |                     |
| Center 2.437 ( | 00 GHz         |               |                                                                                                                 |          |                      |                  | Span 0 Hz           |
| Res BW 8 MH    | z              |               | #VBW 50                                                                                                         | MHz      |                      | Sweep 5 ms       |                     |
| Marker         | Ггасе          | Туре          | X Axis                                                                                                          |          | Amplitude            |                  | · · · ·             |
| 1R             | (1)            | Time<br>Ti    | 1.35 ms                                                                                                         |          | 1.15 dBm             |                  |                     |
| 1∆<br>2R       | (1)<br>(1)     | Time<br>Time  | 1.892 ms<br>1.35 ms                                                                                             |          | -1.54 dB<br>1.15 dBm |                  |                     |
| 2Δ             | (1)            | Time          |                                                                                                                 |          | 1.15 dBm<br>-1.34 dB |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |
|                |                |               |                                                                                                                 |          |                      |                  |                     |

Page 15 of 119

# 8. ANTENNA PORT TEST RESULTS

## 8.1. 802.11g MODE IN THE 2.4 GHz BAND

## 8.1.1.6 dB BANDWIDTH

### <u>LIMITS</u>

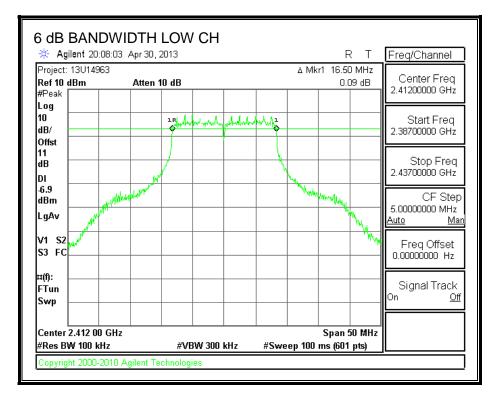
FCC §15.247 (a) (2)

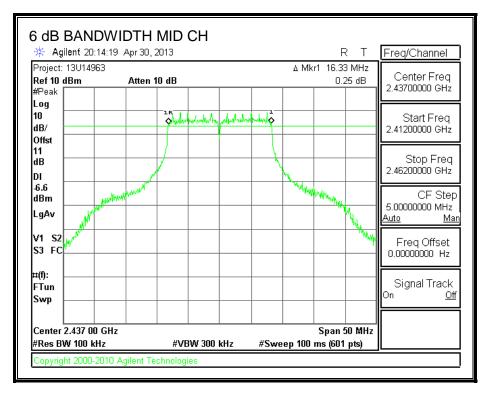
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

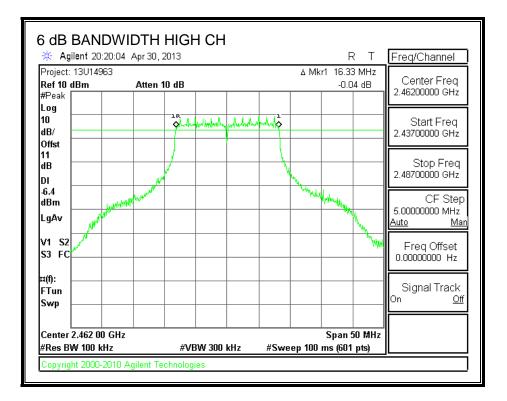
### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with the RBW set to 100 kHz, the VBW  $>= 3 \times RBW$ , peak detector and max hold.


### **RESULTS**


| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 2412      | 16.500         | 0.5           |
| Mid     | 2437      | 16.330         | 0.5           |
| High    | 2462      | 16.330         | 0.5           |

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.


Page 16 of 119

#### 6 dB BANDWIDTH





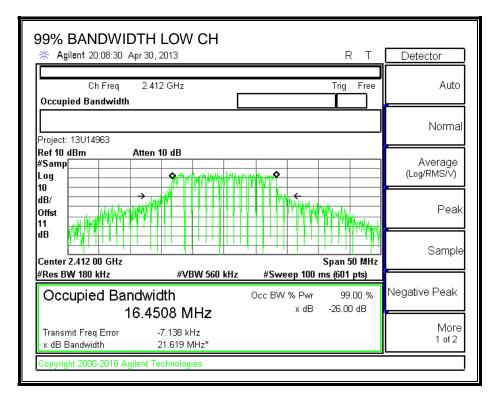
Page 17 of 119

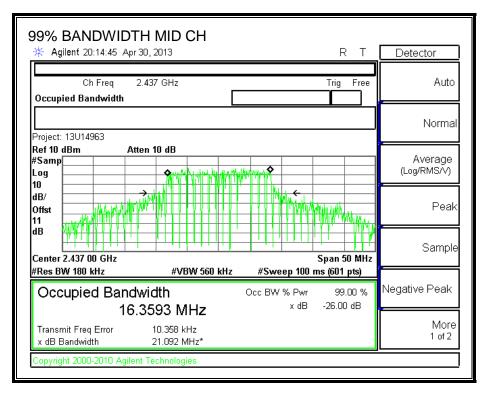


Page 18 of 119

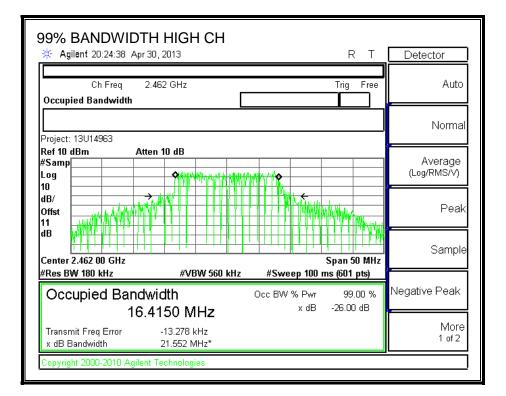
### 8.1.2. 99% BANDWIDTH

#### LIMITS


None; for reporting purposes only.


#### <u>RESULTS</u>

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2412      | 16.4500       |
| Mid     | 2437      | 16.3600       |
| High    | 2462      | 16.4200       |


Page 19 of 119

#### 99% BANDWIDTH





Page 20 of 119



Page 21 of 119

### 8.1.3. AVERAGE POWER

#### **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

#### RESULTS

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 8.87  |
| Mid     | 2437      | 8.94  |
| High    | 2462      | 9.09  |

Page 22 of 119

### 8.1.4. OUTPUT POWER

LIMITS

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

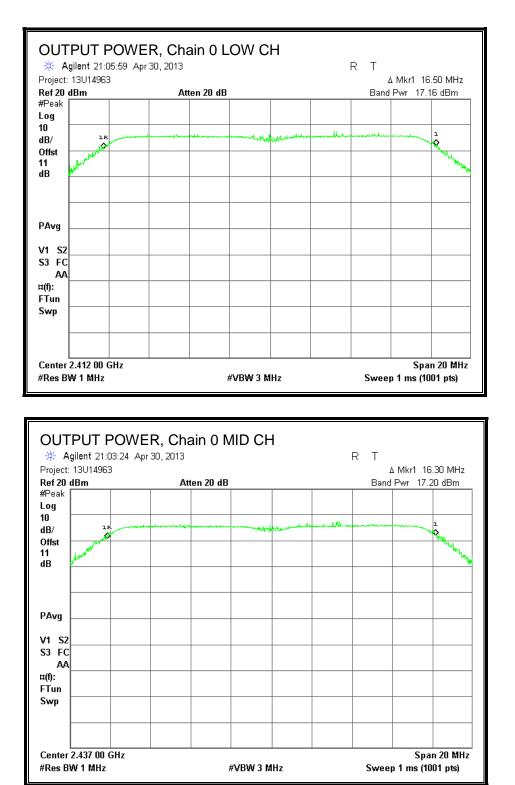
#### **DIRECTIONAL ANTENNA GAIN**

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

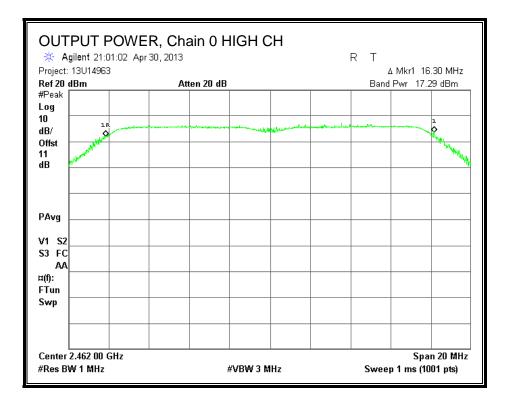
Page 23 of 119

#### **RESULTS**

#### Limits


| Channel | Frequency | Directional | FCC   | IC    | IC    | Max   |
|---------|-----------|-------------|-------|-------|-------|-------|
|         |           | Gain        | Power | Power | EIRP  | Power |
|         |           |             | Limit | Limit | Limit |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm) | (dBm) | (dBm) |
| Low     | 2412      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| Mid     | 2437      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| High    | 2462      | 1.00        | 30.00 | 30    | 36    | 30.00 |

#### Results


| Channel | Frequency | Chain 0 | Total  | Power | Margin |
|---------|-----------|---------|--------|-------|--------|
|         |           | Meas    | Corr'd | Limit |        |
|         |           | Power   | Power  |       |        |
|         | (MHz)     | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 2412      | 17.16   | 17.16  | 30.00 | -12.84 |
| Mid     | 2437      | 17.20   | 17.20  | 30.00 | -12.80 |
| High    | 2462      | 17.29   | 17.29  | 30.00 | -12.71 |

Page 24 of 119

#### OUTPUT POWER, Chain 0



Page 25 of 119



Page 26 of 119

### 8.1.5. PSD

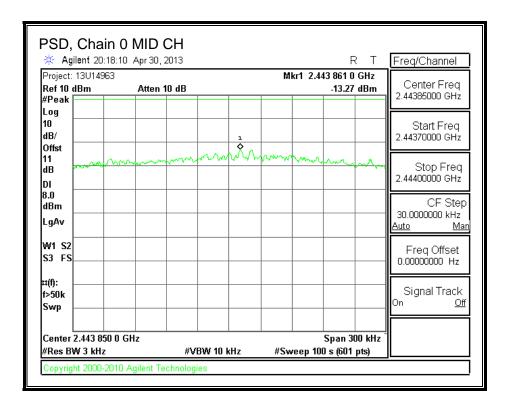
#### <u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.2

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### **RESULTS**


#### **PSD** Results

| Channel | Frequency | Chain 0 | Limit | Margin |
|---------|-----------|---------|-------|--------|
|         |           | Meas    |       |        |
|         | (MHz)     | (dBm)   | (dBm) | (dB)   |
| Low     | 2412      | -13.65  | 8.0   | -21.7  |
| Mid     | 2437      | -13.27  | 8.0   | -21.3  |
| High    | 2462      | -14.49  | 8.0   | -22.5  |

Page 27 of 119

#### PSD, Chain 0

| Agilent 20:11                            | 0 LOW CH<br>20 Apr 30, 2013 |           | R                                | T Freq/Channel                               |
|------------------------------------------|-----------------------------|-----------|----------------------------------|----------------------------------------------|
| Project: 13U14963<br>Ref 10 dBm<br>#Peak | Atten 10 dB                 |           | Mkr1 2.412 587 4 G<br>-13.65 d   | Contor From                                  |
| Log<br>10<br>dB/<br>Offst                |                             | 1         |                                  | Start Freq<br>2.41245000 GHz                 |
| dB                                       | Among and the second second |           | man                              | Stop Freq<br>2.41275000 GHz                  |
| 8.0<br>dBm<br>LgAv                       |                             |           |                                  | CF Step<br>30.0000000 kHz<br><u>Auto Man</u> |
| W1 S2<br>S3 FS                           |                             |           |                                  | Freq Offset<br>0.00000000 Hz                 |
| ¤(f):<br>f>50k<br>Swp                    |                             |           |                                  | Signal Track<br>On <u>Off</u>                |
| Center 2.412 600 (<br>#Res BW 3 kHz      |                             | BW 10 kHz | Span 300<br>#Sweep 100 s (601 pt |                                              |



Page 28 of 119

| · •                               |    | 8 Apr 30, 3 | 2015  |         |      |      |          | F                           |      | Freq/Channel                             |
|-----------------------------------|----|-------------|-------|---------|------|------|----------|-----------------------------|------|------------------------------------------|
| Project: 13<br>Ref 10 dB<br>#Peak |    | Atten '     | 10 dB |         |      | MI   | kr1 2.46 | 65 740 5<br>-14.49          |      | Center Freq<br>2.46575000 GHz            |
| Log<br>10<br>dB/<br>Offst         |    |             |       | 1       |      |      |          |                             |      | Start Freq<br>2.46560000 GHz             |
| dB                                | mm | m           | m     | mph     | ~~~~ | ww.  | ~~~      | <u>~~</u>                   | ∞៹៱∆ | Stop Freq<br>2.46590000 GHz              |
| 8.0<br>dBm                        |    |             |       |         |      |      |          |                             |      | CF Step<br>30.0000000 kHz                |
| W1 S2<br>S3 FS                    |    |             |       |         |      |      |          |                             |      | Auto Mar<br>Freq Offset<br>0.00000000 Hz |
| ¤(f):<br>f>50k<br>Swp             |    |             |       |         |      |      |          |                             |      | Signal Track<br>On <u>Off</u>            |
| Center 2.4<br>#Res BW 3           |    | GHz         | #\    | BW 10 F | (H7  | #514 | eep 10(  | Span 30<br>1 s <i>(</i> 601 |      |                                          |

Page 29 of 119

### 8.1.6. OUT-OF-BAND EMISSIONS

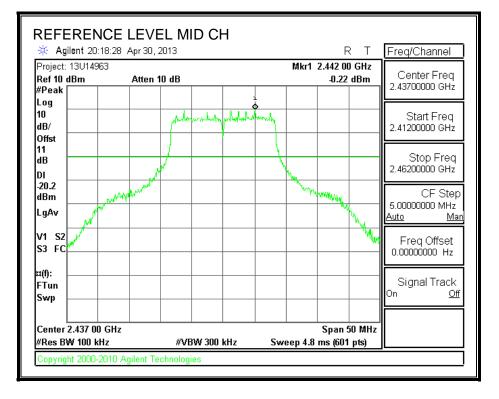
#### **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

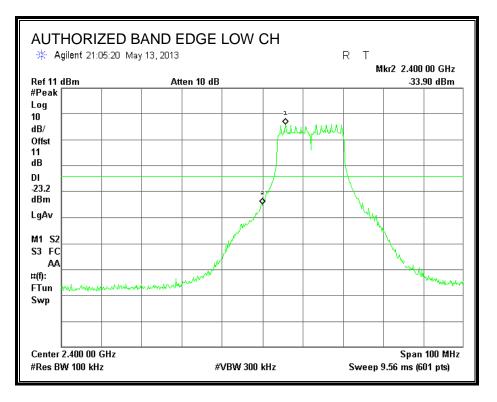
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

#### TEST PROCEDURE

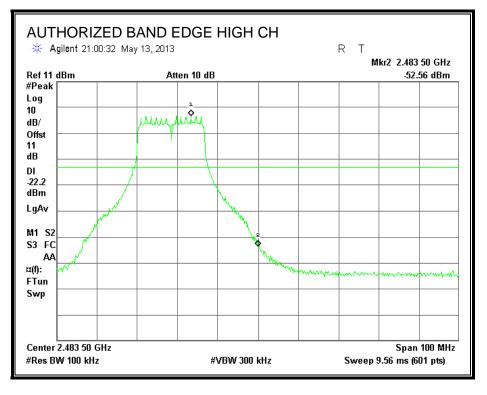

The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 30 of 119

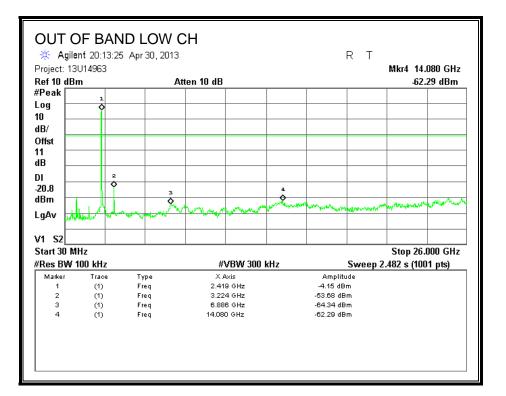

#### **RESULTS**

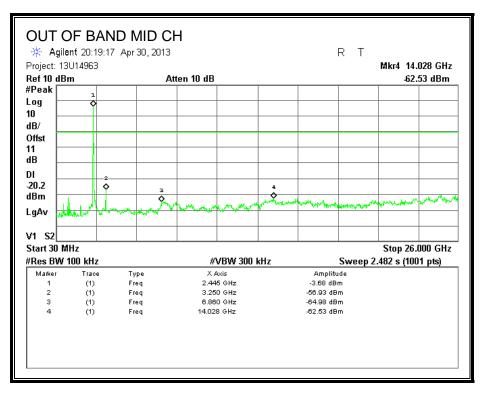
#### **IN-BAND REFERENCE LEVEL**



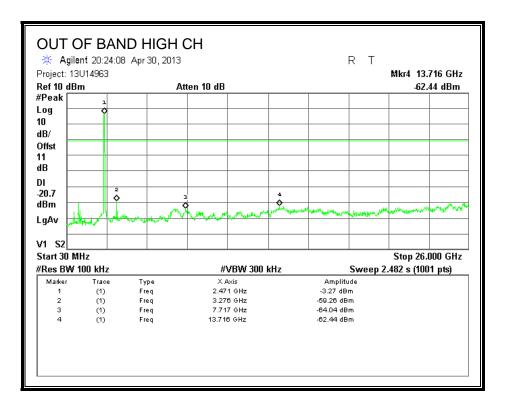

Page 31 of 119

#### LOW CHANNEL BANDEDGE





#### **HIGH CHANNEL BANDEDGE**




#### Page 32 of 119

#### **OUT-OF-BAND EMISSIONS**





Page 33 of 119



Page 34 of 119

### 8.2. 802.11n HT20 MODE IN THE 2.4 GHz BAND

### 8.2.1. 6 dB BANDWIDTH

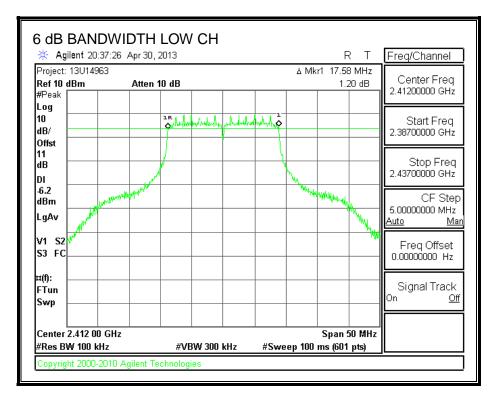
#### <u>LIMITS</u>

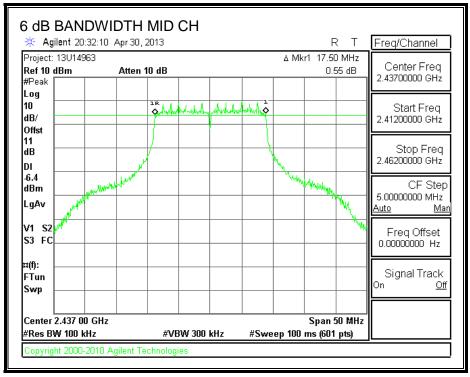
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

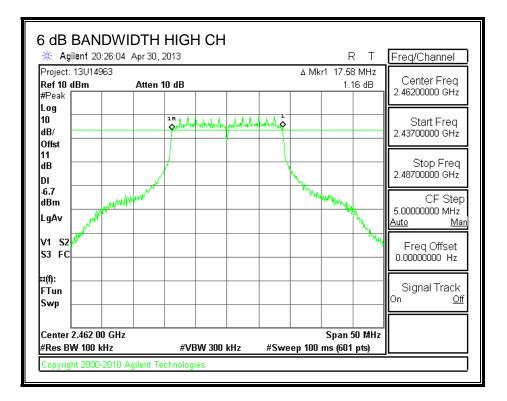
The minimum 6 dB bandwidth shall be at least 500 kHz.

#### TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with the RBW set to 100 kHz, the VBW  $>= 3 \times RBW$ , peak detector and max hold.


#### **RESULTS**

| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 2412      | 17.580         | 0.5           |
| Mid     | 2437      | 17.500         | 0.5           |
| High    | 2462      | 17.580         | 0.5           |


Page 35 of 119

#### 6 dB BANDWIDTH





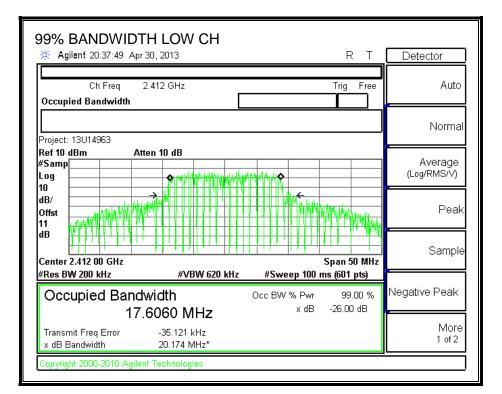
Page 36 of 119

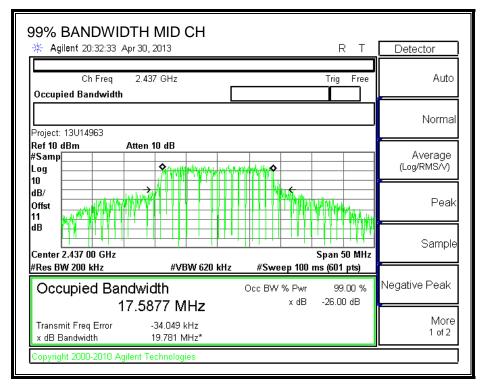


Page 37 of 119

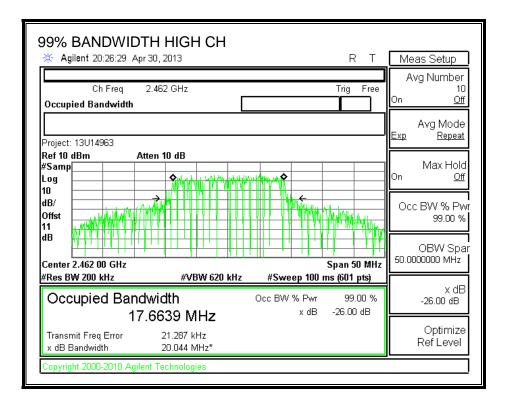
# 8.2.2. 99% BANDWIDTH

# LIMITS


None; for reporting purposes only.


# <u>RESULTS</u>

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2412      | 17.6100       |
| Mid     | 2437      | 17.5900       |
| High    | 2462      | 17.6600       |


Page 38 of 119

#### 99% BANDWIDTH





Page 39 of 119



Page 40 of 119

# 8.2.3. AVERAGE POWER

## **LIMITS**

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

#### **RESULTS**

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 9.28  |
| Mid     | 2437      | 8.85  |
| High    | 2462      | 9.01  |

Page 41 of 119

# 8.2.4. OUTPUT POWER

**LIMITS** 

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

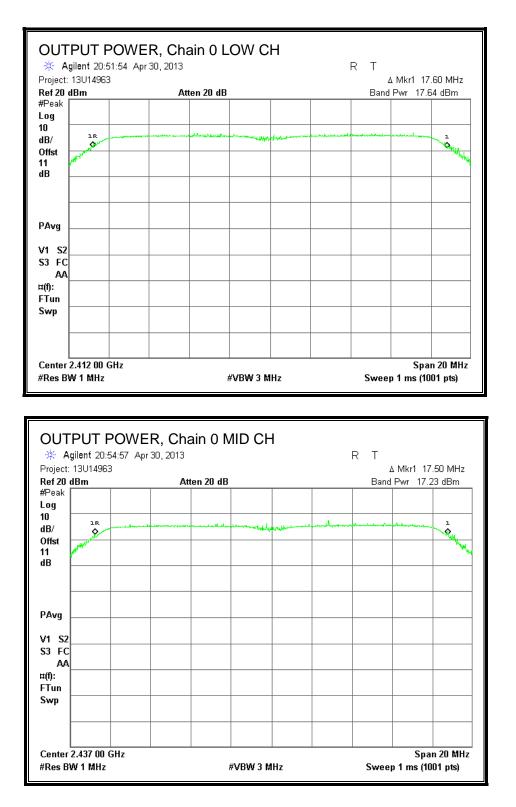
#### **DIRECTIONAL ANTENNA GAIN**

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

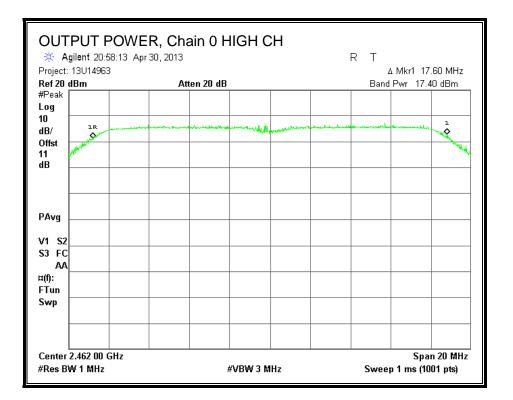
Page 42 of 119

# **RESULTS**

#### Limits


| Channel | Frequency | Directional | FCC   | IC    | IC    | Max   |
|---------|-----------|-------------|-------|-------|-------|-------|
|         |           | Gain        | Power | Power | EIRP  | Power |
|         |           |             | Limit | Limit | Limit |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm) | (dBm) | (dBm) |
| Low     | 2412      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| Mid     | 2437      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| High    | 2462      | 1.00        | 30.00 | 30    | 36    | 30.00 |

#### Results


| Channel | Frequency | Chain 0 | Total  | Power | Margin |
|---------|-----------|---------|--------|-------|--------|
|         |           | Meas    | Corr'd | Limit |        |
|         |           | Power   | Power  |       |        |
|         | (MHz)     | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 2412      | 17.64   | 17.64  | 30.00 | -12.36 |
| Mid     | 2437      | 17.23   | 17.23  | 30.00 | -12.77 |
| High    | 2462      | 17.40   | 17.40  | 30.00 | -12.60 |

Page 43 of 119

## OUTPUT POWER, Chain 0



Page 44 of 119



Page 45 of 119

# 8.2.5. PSD

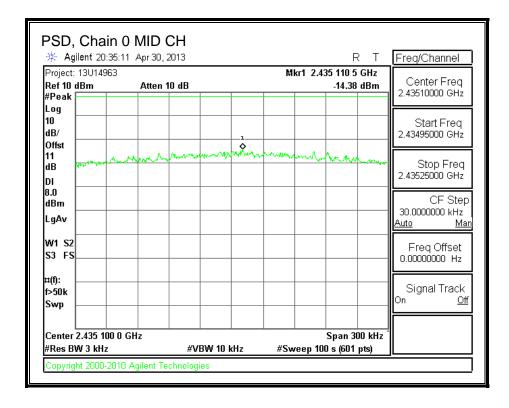
# <u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.2

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

## **RESULTS**


## **PSD** Results

| Channel | Frequency | Chain 0 | Limit | Margin |
|---------|-----------|---------|-------|--------|
|         |           | Meas    |       |        |
|         | (MHz)     | (dBm)   | (dBm) | (dB)   |
| Low     | 2412      | -13.78  | 8.0   | -21.8  |
| Mid     | 2437      | -14.38  | 8.0   | -22.4  |
| High    | 2462      | -14.59  | 8.0   | -22.6  |

Page 46 of 119

# PSD, Chain 0

| DI       2.41650000 GHz         B.0       dBm         LgAv       CF Stel         W1 S2       S3 FS         S3 FS       Signal Track         Center 2.416 350 0 GHz       Span 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSD,<br>🔆 Agi       |           |        | L <b>OW</b><br>Apr 30, 2 |         |         |     |      |          | F    | ? Т   | Freq/Channel                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------|--------------------------|---------|---------|-----|------|----------|------|-------|-------------------------------|
| 10       dB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref 10 (<br>#Peak   |           | 63     | Atten 1                  | 0 dB    |         |     | M    | kr1 2.41 |      |       | Center Freq                   |
| 11<br>dB<br>DI<br>8.0<br>dBm<br>dBm       Stop Freq<br>2.41650000 GHz         12<br>Stop Freq<br>2.41650000 GHz         10<br>CF Stel<br>30,0000000 Hz         11<br>Stop Freq<br>2.41650000 GHz         11<br>Stop Freq<br>2.41650000 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>dB/<br>Offert |           |        |                          |         |         | 1   |      |          |      |       |                               |
| dBm         CF Stej           LgAv         Auto           W1 S2         S3 FS           S3 FS         Freq Offset           u(1):         Signal Track           Swp         Signal Track           Center 2.416 350 0 GHz         Span 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11<br>dB<br>DI      | ada yaqda | un ann | - Anne                   | Moralla | ~~~~+   | man | harm | 10       | ~~~~ | n Mrn | Stop Freq<br>2.41650000 GHz   |
| S3 FS         Image: S3 FS         Image: S3 FS         Image: S1 FS | dBm                 |           |        |                          |         |         |     |      |          |      |       |                               |
| f>50k<br>Swp<br>Center 2.416 350 0 GHz Span 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |           |        |                          |         |         |     |      |          |      |       |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f>50k               |           |        |                          |         |         |     |      |          |      |       | Signal Track<br>On <u>Off</u> |
| #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |           |        | lz                       | #V      | BW 10 F | (Hz | #Sw  |          | •    |       |                               |



UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 47 of 119

| 🔆 Agilent :                          |                  | Apr 30, 2                               | 2013                                     |         |                 |      |          |                     | t T | Freq/Channel                   |
|--------------------------------------|------------------|-----------------------------------------|------------------------------------------|---------|-----------------|------|----------|---------------------|-----|--------------------------------|
| Project: 13U1<br>Ref 10 dBm<br>#Peak | 4963             | Atten 1                                 | 0 dB                                     |         |                 | MI   | kr1 2.45 | 7 565 8<br>-14.59   |     | Center Freq<br>2.45760000 GHz  |
| Log<br>10<br>dB/                     |                  |                                         | 1.                                       |         |                 |      |          |                     |     | Start Freq<br>2.45745000 GHz   |
| Offst<br>11<br>dB<br>DI              | an providence of | n anna an | an a | round   | www.y           | -s-m | mh       | mutu                |     | Stop Freq<br>2.45775000 GHz    |
| 8.0<br>dBm                           |                  |                                         |                                          |         |                 |      |          |                     |     | CF Step<br>30.0000000 kHz      |
| LgAv<br>W1 S2                        |                  |                                         |                                          |         |                 |      |          |                     |     | <u>Auto Mar</u><br>Freq Offset |
| S3 FS                                |                  |                                         |                                          |         |                 |      |          |                     |     | 0.00000000 Hz                  |
| f>50k<br>Swp                         |                  |                                         |                                          |         |                 |      |          |                     |     | Signal Track<br>On <u>Off</u>  |
| Center 2.457<br>#Res BW 3 k          |                  | Hz                                      | #\/I                                     | BW 10 I | (H <sub>7</sub> | #5   | reep 100 | Span 30<br>1 s (601 |     |                                |

Page 48 of 119

# 8.2.6. OUT-OF-BAND EMISSIONS

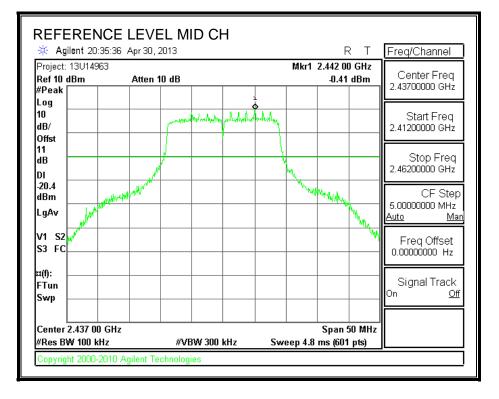
# <u>LIMITS</u>

FCC §15.247 (d)

IC RSS-210 A8.5

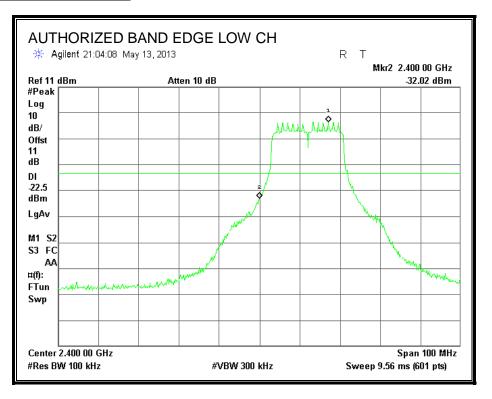
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

# TEST PROCEDURE

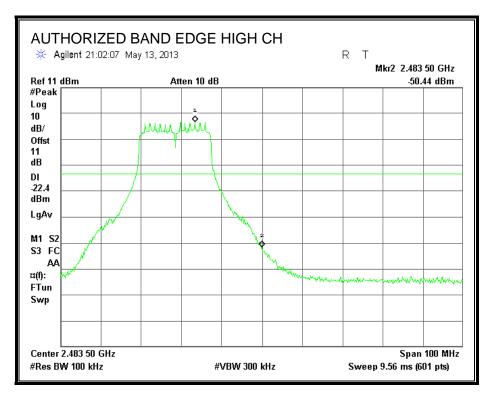

The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 49 of 119

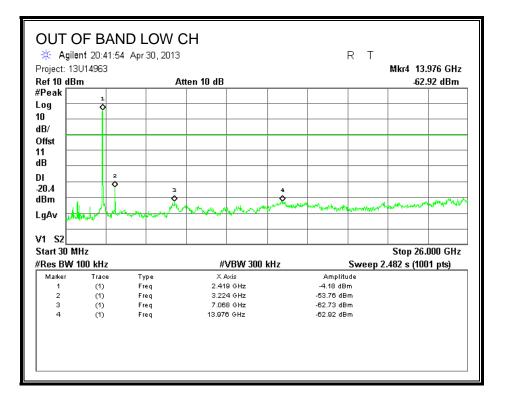

# **RESULTS**

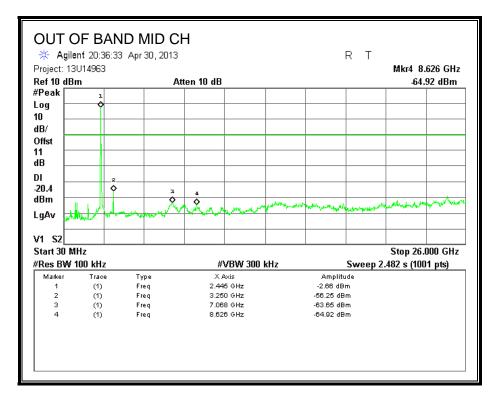
### **IN-BAND REFERENCE LEVEL**



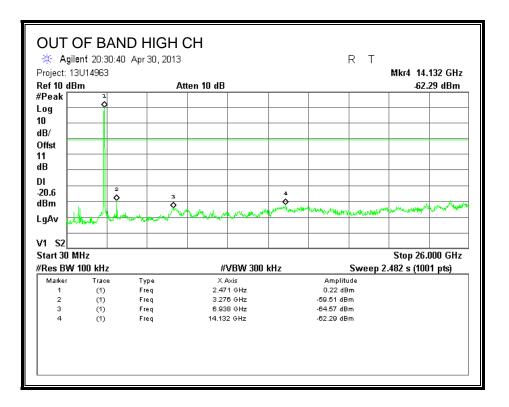

Page 50 of 119

#### LOW CHANNEL BANDEDGE





### **HIGH CHANNEL BANDEDGE**




#### Page 51 of 119

#### **OUT-OF-BAND EMISSIONS**





#### Page 52 of 119



Page 53 of 119

# 8.3. 802.11a MODE IN THE 5.8 GHz BAND

# 8.3.1. 6 dB BANDWIDTH

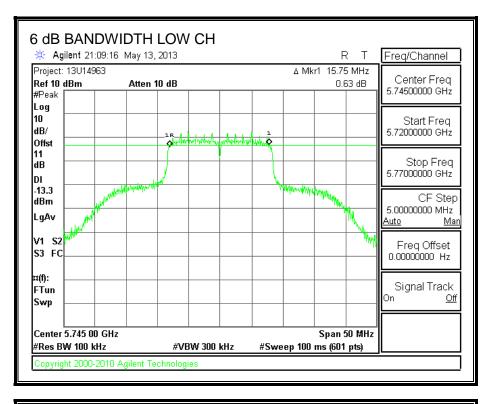
# <u>LIMITS</u>

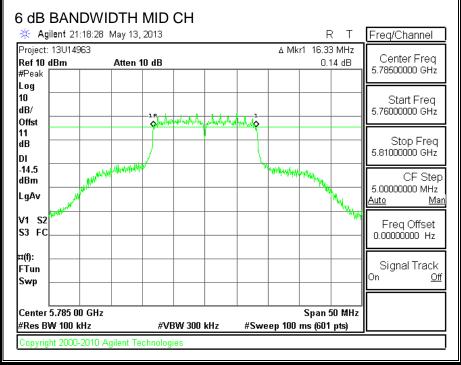
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

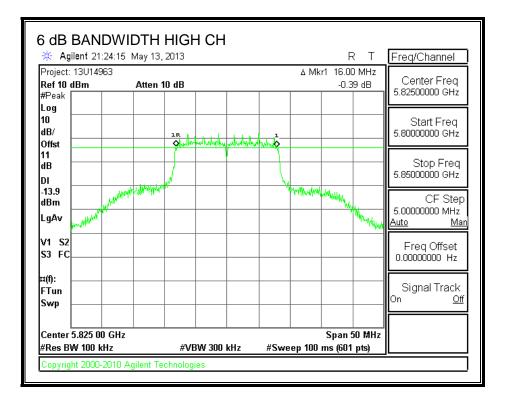
The minimum 6 dB bandwidth shall be at least 500 kHz.

## TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with the RBW set to 100 kHz, the VBW  $>= 3 \times RBW$ , peak detector and max hold.


# <u>RESULTS</u>

| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 5745      | 15.750         | 0.5           |
| Mid     | 5785      | 16.330         | 0.5           |
| High    | 5825      | 16.000         | 0.5           |


Page 54 of 119

# 6 dB BANDWIDTH





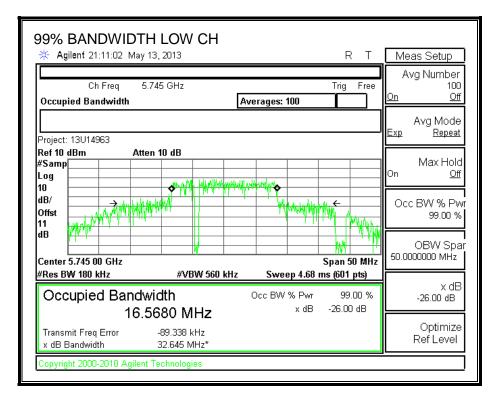
Page 55 of 119



Page 56 of 119

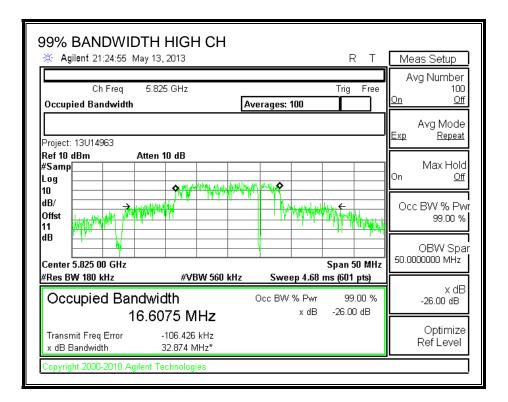
# 8.3.2. 99% BANDWIDTH

# LIMITS


None; for reporting purposes only.

# **RESULTS**

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 5745      | 16.5700       |
| Mid     | 5785      | 16.5100       |
| High    | 5825      | 16.6100       |


Page 57 of 119

#### 99% BANDWIDTH





Page 58 of 119



Page 59 of 119

# 8.3.3. AVERAGE POWER

## **LIMITS**

None; for reporting purposes only.

## TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

#### **RESULTS**

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 5745      | 6.00  |
| Mid     | 5785      | 5.96  |
| High    | 5825      | 5.99  |

Page 60 of 119

# 8.3.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

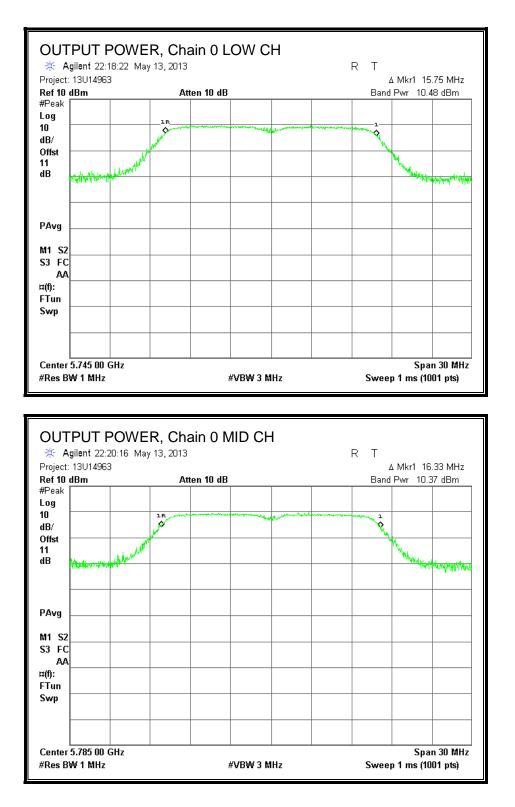
#### DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

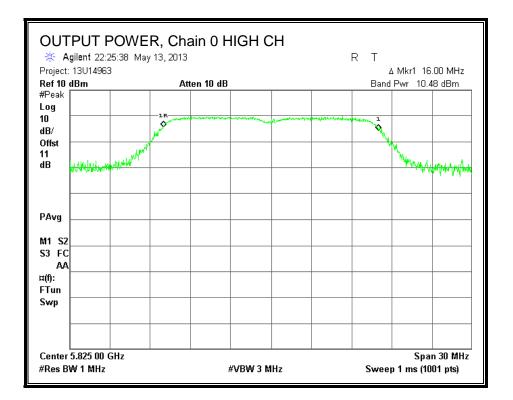
Page 61 of 119

# **RESULTS**

#### Limits


| Channel | Frequency | Directional | FCC   | IC    | IC    | Max   |
|---------|-----------|-------------|-------|-------|-------|-------|
|         |           | Gain        | Power | Power | EIRP  | Power |
|         |           |             | Limit | Limit | Limit |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm) | (dBm) | (dBm) |
| Low     | 5745      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| Mid     | 5785      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| High    | 5825      | 1.00        | 30.00 | 30    | 36    | 30.00 |

#### Results


| Channel | Frequency | Chain 0 | Total  | Power | Margin |
|---------|-----------|---------|--------|-------|--------|
|         |           | Meas    | Corr'd | Limit |        |
|         |           | Power   | Power  |       |        |
|         | (MHz)     | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 5745      | 10.48   | 10.48  | 30.00 | -19.52 |
| Mid     | 5785      | 10.37   | 10.37  | 30.00 | -19.63 |
| High    | 5825      | 10.48   | 10.48  | 30.00 | -19.52 |

Page 62 of 119

## OUTPUT POWER, Chain 0



Page 63 of 119



Page 64 of 119

# 8.3.5. PSD

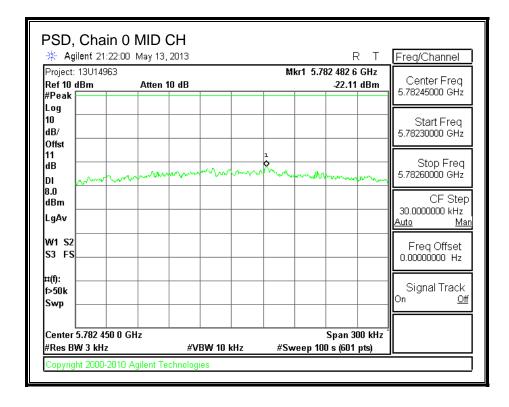
# <u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.2

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

## **RESULTS**


## PSD Results

| Channel | Frequency | Chain 0 | Limit | Margin |
|---------|-----------|---------|-------|--------|
|         |           | Meas    |       |        |
|         | (MHz)     | (dBm)   | (dBm) | (dB)   |
| Low     | 5745      | -20.45  | 8.0   | -28.5  |
| Mid     | 5785      | -22.11  | 8.0   | -30.1  |
| High    | 5825      | -22.23  | 8.0   | -30.2  |

Page 65 of 119

## PSD, Chain 0

| PSD, Chain<br>🔆 Agilent 21:13            |             |                                       | R                             | T Freq/Channel                        |
|------------------------------------------|-------------|---------------------------------------|-------------------------------|---------------------------------------|
| Project: 13U14963<br>Ref 10 dBm<br>#Peak | Atten 10 dB |                                       | Mkr1 5.749 957 5<br>-20.45    | GHz Contor From                       |
| Log<br>10<br>dB/<br>Offst                |             |                                       |                               | Start Freq<br>5.74980000 GHz          |
| 11<br>dB                                 | mmmmmm      | n n n n n n n n n n n n n n n n n n n | Munnman                       | Stop Freq<br>5.75010000 GHz           |
| 8.0<br>dBm<br>LgAv                       |             |                                       |                               | CF Step<br>30.0000000 kHz<br>Auto Man |
| W1 S2<br>S3 FS                           |             |                                       |                               | Freq Offset<br>0.00000000 Hz          |
| ¤(f):<br>f>50k<br>Swp                    |             |                                       |                               | Signal Track                          |
| Center 5.749 950<br>#Res BW 3 kHz        |             | W 10 kHz #                            | Span 30<br>Sweep 100 s (601 p |                                       |



Page 66 of 119

|                                  | Chain 0  <br>ent 21:40:13 |              |           |          |     |          | F                   | ? Т   | Freq/Channel                                 |
|----------------------------------|---------------------------|--------------|-----------|----------|-----|----------|---------------------|-------|----------------------------------------------|
| Project: 1<br>Ref 10 dl<br>#Peak | 13U14963<br>Bm            | Atten 10 d   | B         |          | MI  | kr1 5.82 | 3 092 5<br>-22.23   |       | Center Freq<br>5.82310000 GHz                |
| Log<br>10<br>dB/<br>Offst        |                           |              |           |          |     |          |                     |       | Start Freq<br>5.82295000 GHz                 |
| 11<br>dB<br>DI                   | roman -                   | m            | 1<br>     | maria ma | war |          | m                   | ····· | Stop Freq<br>5.82325000 GHz                  |
| 8.0<br>dBm<br>LgAv               |                           |              |           |          |     |          |                     |       | CF Step<br>30.0000000 kHz<br><u>Auto Man</u> |
| W1 S2<br>S3 FS                   |                           |              |           |          |     |          |                     |       | Freq Offset<br>0.00000000 Hz                 |
| ¤(f):<br>f>50k<br>Swp –          |                           |              |           |          |     |          |                     |       | Signal Track<br>On <u>Off</u>                |
| Center 5<br>#Res BW              | .823 100 0 GH<br>/ 3 kHz  | z            | #VBW 10 F | (Hz      | #Sw |          | Span 3(<br>) s (601 |       |                                              |
| Copyright                        | t 2000-2010 A             | gilent Techn | ologies   |          |     | -        |                     |       |                                              |

Page 67 of 119

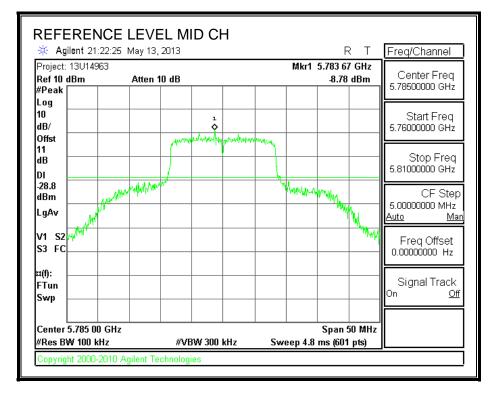
# 8.3.6. OUT-OF-BAND EMISSIONS

# <u>LIMITS</u>

FCC §15.247 (d)

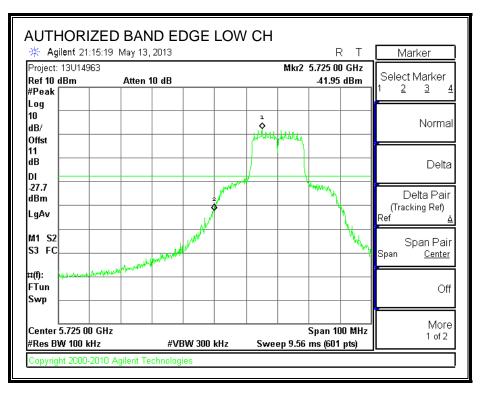
IC RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

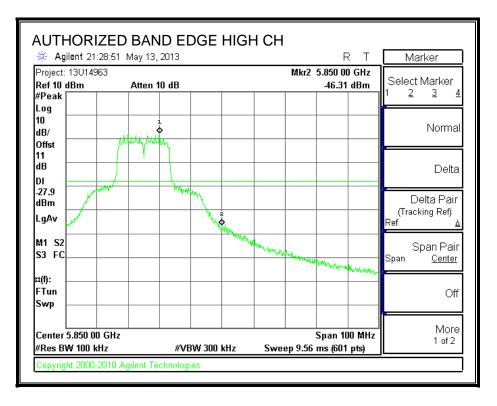

# TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

Page 68 of 119

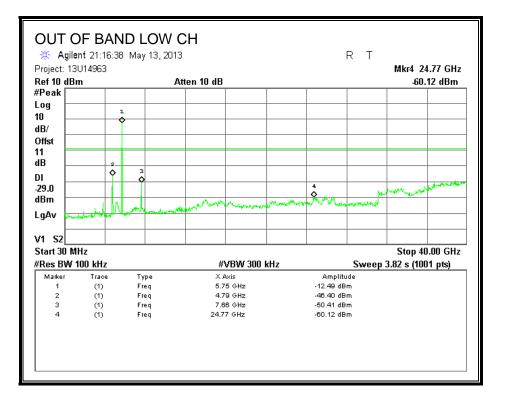

## **RESULTS**

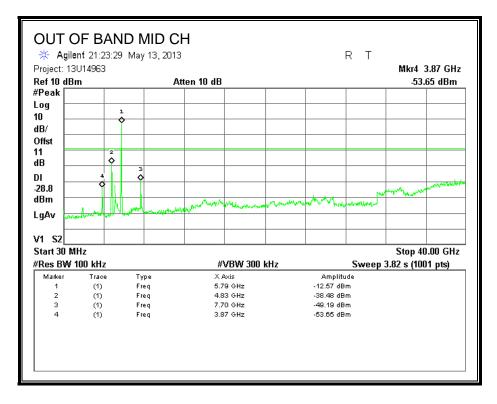
### **IN-BAND REFERENCE LEVEL**



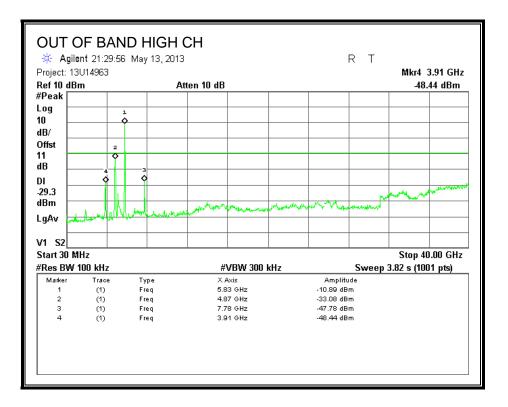

Page 69 of 119

# LOW CHANNEL BANDEDGE





# HIGH CHANNEL BANDEDGE




Page 70 of 119

#### **OUT-OF-BAND EMISSIONS**





#### Page 71 of 119



Page 72 of 119

# 8.4. 802.11n HT20 MODE IN THE 5.8 GHz BAND

## 8.4.1.6 dB BANDWIDTH

## <u>LIMITS</u>

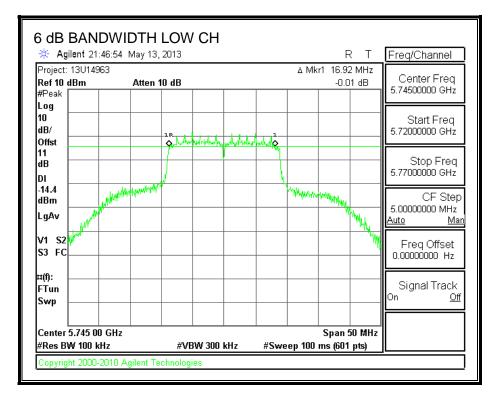
FCC §15.247 (a) (2)

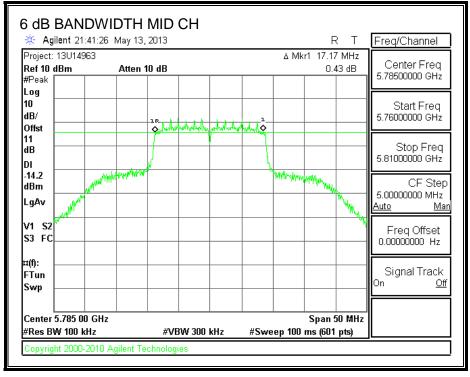
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

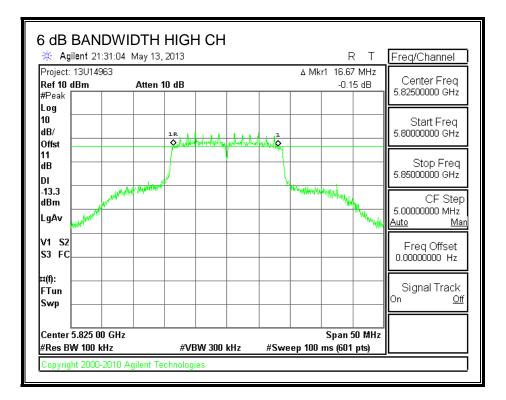
## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with the RBW set between 1% and 5% of the EBW, the VBW  $>= 3 \times RBW$ , peak detector and max hold.


## **RESULTS**


| Channel | Frequency | 6 dB Bandwidth | Minimum Limit |
|---------|-----------|----------------|---------------|
|         | (MHz)     | (MHz)          | (MHz)         |
| Low     | 5745      | 16.920         | 0.5           |
| Mid     | 5785      | 17.170         | 0.5           |
| High    | 5825      | 16.670         | 0.5           |

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.


Page 73 of 119

### 6 dB BANDWIDTH





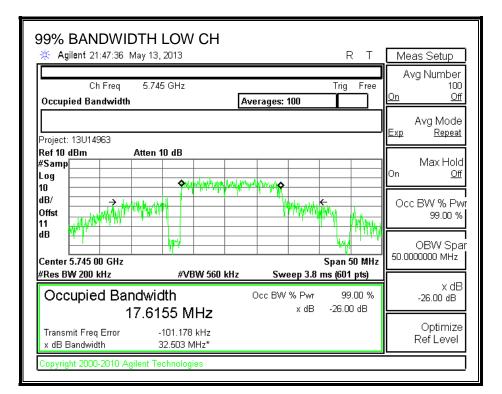
Page 74 of 119

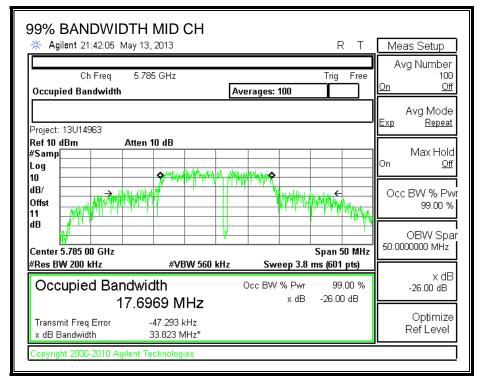


Page 75 of 119

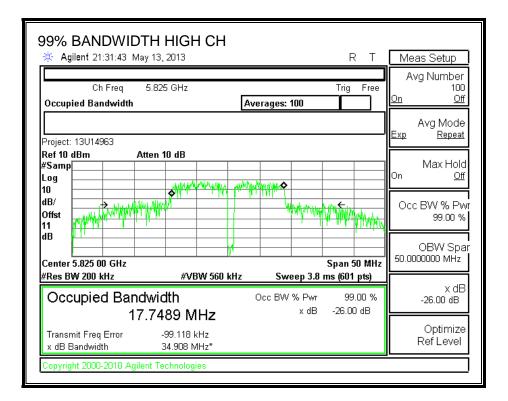
# 8.4.2. 99% BANDWIDTH

### LIMITS


None; for reporting purposes only.


### **RESULTS**

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 5745      | 17.6200       |
| Mid     | 5785      | 17.6900       |
| High    | 5825      | 17.7500       |


Page 76 of 119

### 99% BANDWIDTH





Page 77 of 119



Page 78 of 119

# 8.4.3. AVERAGE POWER

### **LIMITS**

None; for reporting purposes only.

### TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

### RESULTS

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 5745      | 5.96  |
| Mid     | 5785      | 6.16  |
| High    | 5825      | 6.19  |

Page 79 of 119

## 8.4.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

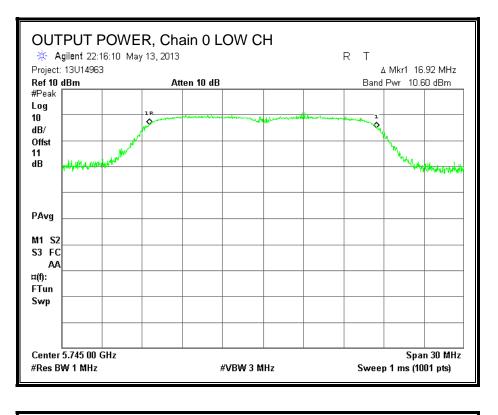
### **DIRECTIONAL ANTENNA GAIN**

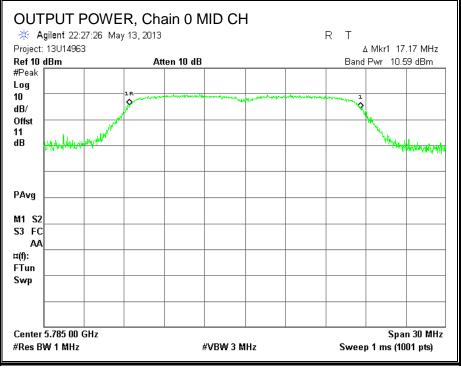
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 80 of 119

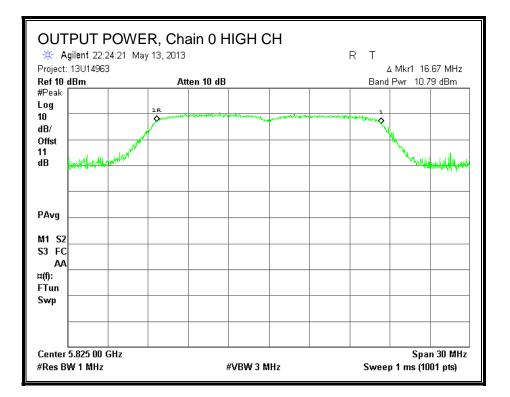
### **RESULTS**

#### Limits


| Channel | Frequency | Directional | FCC   | IC    | IC    | Max   |
|---------|-----------|-------------|-------|-------|-------|-------|
|         |           | Gain        | Power | Power | EIRP  | Power |
|         |           |             | Limit | Limit | Limit |       |
|         | (MHz)     | (dBi)       | (dBm) | (dBm) | (dBm) | (dBm) |
| Low     | 5745      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| Mid     | 5785      | 1.00        | 30.00 | 30    | 36    | 30.00 |
| High    | 5825      | 1.00        | 30.00 | 30    | 36    | 30.00 |


#### Results

| Channel | Frequency | Chain 0 | Total  | Power | Margin |
|---------|-----------|---------|--------|-------|--------|
|         |           | Meas    | Corr'd | Limit |        |
|         |           | Power   | Power  |       |        |
|         | (MHz)     | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 5745      | 10.60   | 10.60  | 30.00 | -19.40 |
| Mid     | 5785      | 10.59   | 10.59  | 30.00 | -19.41 |
| High    | 5825      | 10.79   | 10.79  | 30.00 | -19.21 |


Page 81 of 119

### OUTPUT POWER, Chain 0





Page 82 of 119



Page 83 of 119

## 8.4.5. PSD

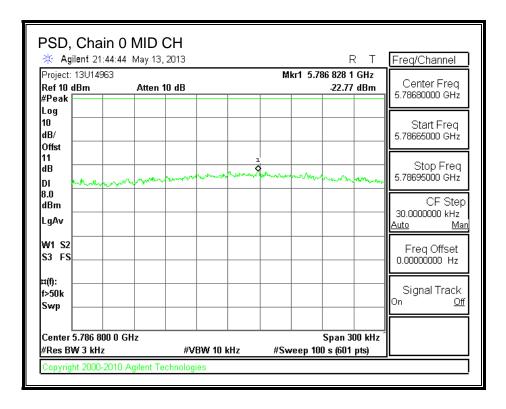
## <u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.2

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### **RESULTS**


### PSD Results

| Channel | Frequency | Chain 0 | Limit | Margin |
|---------|-----------|---------|-------|--------|
|         |           | Meas    |       |        |
|         | (MHz)     | (dBm)   | (dBm) | (dB)   |
| Low     | 5745      | -22.59  | 8.0   | -30.6  |
| Mid     | 5785      | -22.77  | 8.0   | -30.8  |
| High    | 5825      | -22.53  | 8.0   | -30.5  |

Page 84 of 119

### PSD, Chain 0

| •                                        | 0 LOW CH              |               |                                        | RТ                                         | Freq/Channel                                |
|------------------------------------------|-----------------------|---------------|----------------------------------------|--------------------------------------------|---------------------------------------------|
| Project: 13U14963<br>Ref 10 dBm<br>#Peak | -                     |               | Mkr1 5.74                              | 10 542 4 GHz<br>-22.59 dBm                 | Center Freq<br>5.74055500 GHz               |
| Log<br>10<br>dB/<br>Offst                |                       |               |                                        |                                            | Start Freq<br>5.74040500 GHz                |
| 11<br>dB<br>DI                           | man and a second      | 1<br>All Anno | ······································ | monthout                                   | Stop Freq<br>5.74070500 GHz                 |
| 8.0<br>dBm<br>LgAv                       |                       |               |                                        |                                            | CF Step<br>30.000000 kHz<br><u>Auto Man</u> |
| W1 S2<br>S3 FS                           |                       |               |                                        |                                            | Freq Offset<br>0.00000000 Hz                |
| ¤(f):<br>f>50k<br>Swp                    |                       |               |                                        |                                            | Signal Track<br><sup>On <u>Off</u></sup>    |
| Center 5.740 555<br>#Res BW 3 kHz        |                       | BW 10 kHz     | #Sweep 10                              | Span 300 kHz <sup>°</sup><br>) s (601 pts) |                                             |
| Copyright 2000-20                        | 010 Agilent Technolog | ies           |                                        |                                            |                                             |



Page 85 of 119

|                                          | :37 May 13, 2013 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MI4 54               | R T                            | Freq/Channel                                |
|------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|---------------------------------------------|
| Project: 13U14963<br>Ref 10 dBm<br>#Peak | Atten 10 dB      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MKr1 5.4             | 827 478 9 GHz<br>-22.53 dBm    | Center Freq<br>5.82750000 GHz               |
| Log<br>10<br>dB/<br>Offst                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                | Start Freq<br>5.82735000 GHz                |
| 11<br>dB<br>DI<br>8.0                    |                  | 1<br>W. 1. 14 mar 1 | the way was a second | . Marine                       | Stop Freq<br>5.82765000 GHz                 |
| dBm<br>LgAv                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                | CF Step<br>30.000000 kHz<br><u>Auto Mar</u> |
| W1 S2<br>S3 FS                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                | Freq Offset<br>0.00000000 Hz                |
| ¤(f):<br>f>50k<br>Swp                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                | Signal Track<br>On <u>Off</u>               |
| Center 5.827 500<br>#Res BW 3 kHz        |                  | BW 10 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Swoon 1             | Span 300 kHz<br>00 s (601 pts) | ļ                                           |

Page 86 of 119

# 8.4.6. OUT-OF-BAND EMISSIONS

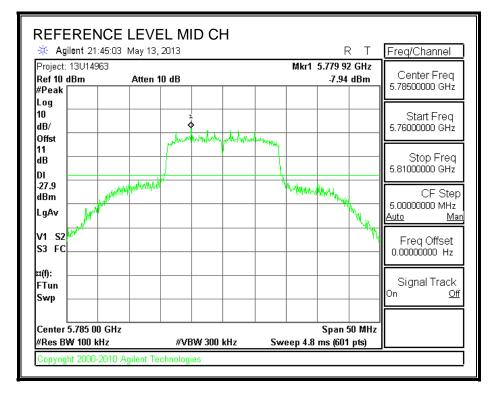
<u>LIMITS</u>

FCC §15.247 (d)

IC RSS-210 A8.5

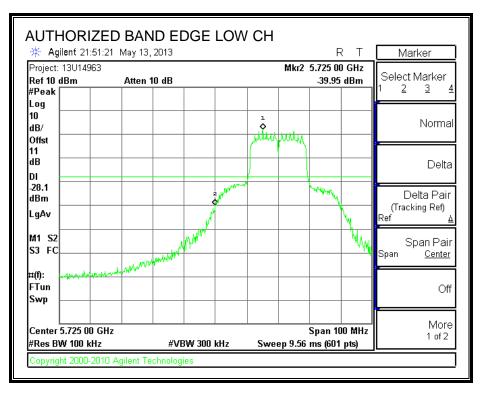
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

## TEST PROCEDURE

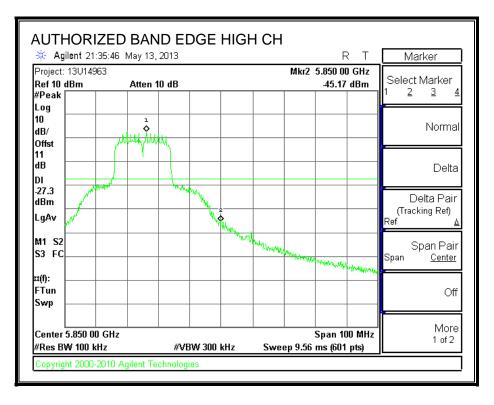

The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 87 of 119

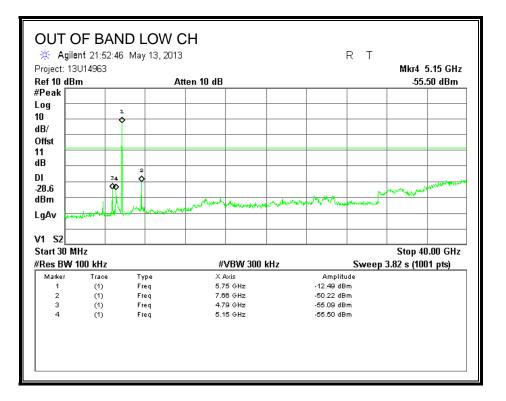

### **RESULTS**

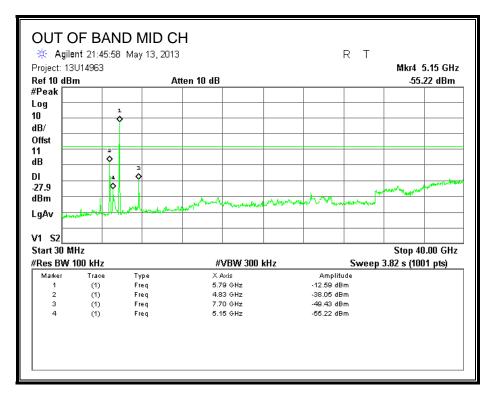
#### **IN-BAND REFERENCE LEVEL**



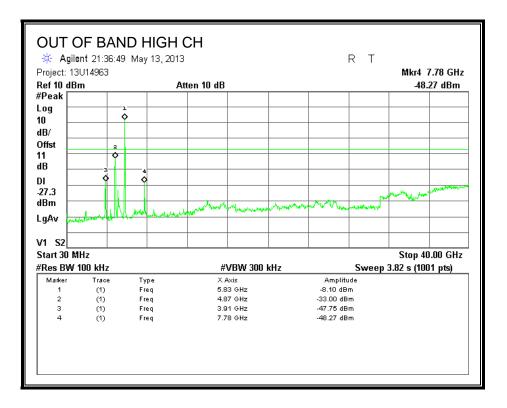

Page 88 of 119

### LOW CHANNEL BANDEDGE





### HIGH CHANNEL BANDEDGE




Page 89 of 119

#### **OUT-OF-BAND EMISSIONS**





#### Page 90 of 119



Page 91 of 119

# 9. RADIATED TEST RESULTS

# 9.1. LIMITS AND PROCEDURE

## <u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

## TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

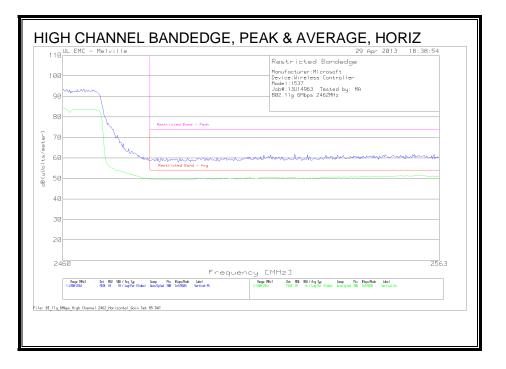
Based on the measured duty cycle of the EUT, the VBW was set to 1 kHz for all final measurements.

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 92 of 119

# 9.2. TRANSMITTER ABOVE 1 GHz

# 9.3. TX ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND


## **RESTRICTED BANDEDGE (LOW CHANNEL)**

|                                                                                                                                                                                                                                             | 29 Apr 2013 18:09:13<br>Restricted Bandedge                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| aa                                                                                                                                                                                                                                          | Monufacturer:Microsoft<br>Device:Wireless Controller<br>Model:1537                                              |
| e                                                                                                                                                                                                                                           | Job#:13U14963 Tested by: MA<br>802.11g 6Mbps 2412MHz                                                            |
| Restricted Band - Peak                                                                                                                                                                                                                      |                                                                                                                 |
| 70                                                                                                                                                                                                                                          |                                                                                                                 |
| 50 Kestr loted Band - Avg                                                                                                                                                                                                                   | man - man |
| 50                                                                                                                                                                                                                                          |                                                                                                                 |
| 40                                                                                                                                                                                                                                          |                                                                                                                 |
| 30                                                                                                                                                                                                                                          |                                                                                                                 |
| 20                                                                                                                                                                                                                                          |                                                                                                                 |
| 2310                                                                                                                                                                                                                                        | 241                                                                                                             |
|                                                                                                                                                                                                                                             | Frequency [MHz]                                                                                                 |
|                                                                                                                                                                                                                                             | Label Range DHtz1 Det FE4 UB4 / Avg Typ Sweep Pits #Supp/Node Label                                             |
| Remot Effect         Det.         RSU         RSU         Light         Seesp         Pils         Esgen/Robel           1/2218-2415         FESK         IN         14         Lagrier (Educa)         Elsacc         568         Lef/NoRE | Harizandal-PA 2.238-205 PEAR IN No / Log-For Oldano .85ake 580 Enf/1088 Harizandal-94                           |

|                 | MC - Melville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Restricted Bandedge                                                                              | 19 Apr 2013 18:13:21 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|
| 00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manufacturer:Microsoft<br>Device:Wireless Controller<br>Model:1537<br>Job#:13U14963 Tested by: M | ۵                    |
| 90              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 802.11g 6Mbps 2412MHz                                                                            | minin                |
| 80              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |
| 70              | tricted Band - Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | J. J.                |
| 60              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | man                  |
|                 | and a stand and a stage of the | www.hall.                                                                                        |                      |
| 50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |
| 40              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |
| 30              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |
| 20              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |
| 2310            | Frequency [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - MUL - 7                                                                                        | 241                  |
|                 | (Mitr] Det 1934 USE / Sun Tun Suren Pita Kiura-Node Label Pance I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrl Det Bill (Ava Jun Sween Pis                                                                  | 15ips/fide Latel     |
| Rang            | 15 PEak IN 1N / Lag-Par (Uldao) .B5acc 508 Inf/M001 Vertical-Pk 2:2305201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PEAK IN IK/Log-Far (Noice) .85ac 588                                                             | Inf/NOH Vertical-Av  |
| Rong<br>1:2318- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                      |

Page 93 of 119

### AUTHORIZED BANDEDGE (HIGH CHANNEL)



| 10UL EMC - Melv               | ville                                                                                                           | 29 Apr 2013 18:43:46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98                            |                                                                                                                 | Restricted Bandedge<br>Monufacturer:Nicrosoft<br>Device:Nicreless Controller<br>Model:1537<br>JobW:13U14963 Tested by: MA<br>802.11g 6Mbps 2462MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \                             | Restricted Bond - Peak                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                            | h.                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60                            | Mannananan                                                                                                      | month and the second se |
|                               | Restricted Bond - Avg                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2460                          |                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Range [Mitz] Det 1984         |                                                                                                                 | equency EMHz]<br>  Renge 1941] Det 1954 UBJ / Ang Tup Seep Pis 195ps/Node Latel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1:2468-2563 PEAK IN           | 9/ USE / Ang Tup Sweep Pits #Sweep/Node Label<br>1 18 / Lag-Pier (Uldaco) Auto/Tpiled 508 Inf/MADH Vertical-Pik | Ronge DHull Det 1958 UBL/Ang 1go Seeng Pits Fispe/Nede Lakel<br>2:24587-2533 PE34 IN 16 /Lag-file Ubland Auto/Galad 398 Enr/19681 Ularitani-An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1g 6Mbps High Channel 2462 Ve | ertical_Gain Set 85.DAT                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

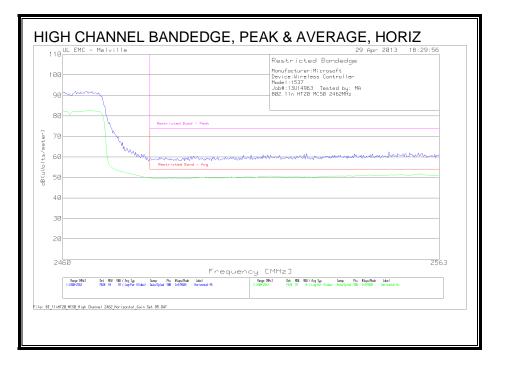
Page 94 of 119

### HARMONICS AND SPURIOUS EMISSIONS

| Device:Wireless Co<br>Model:1537<br>Job#:13U14963 Te:<br>11g 6Mbps Mode<br>Low Channel - 2412 |          |          |           |             |                   |                  |             |                |             |         |        |          |
|-----------------------------------------------------------------------------------------------|----------|----------|-----------|-------------|-------------------|------------------|-------------|----------------|-------------|---------|--------|----------|
| Job#:13U14963 Tes<br>11g 6Mbps Mode                                                           | ested by | er       |           |             |                   |                  |             |                |             |         |        |          |
| 11g 6Mbps Mode                                                                                | ested by |          |           |             |                   |                  |             |                |             |         |        |          |
| 11g 6Mbps Mode                                                                                |          | : MA/RM  |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
| Low Channel - 2412                                                                            |          |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               | 2MHz     |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
| Me                                                                                            | leter    |          | AF-48106  | BOMS        |                   | FCC Part 15      |             | FCC Part 15    |             | Azimuth | Height |          |
| Test Frequency Re                                                                             | eading   | Detector | [dB/m]    | Factor [dB] | dB(uVolts/meter)  | Subpart C 15.209 | Margin (dB) | Subpart C Peak | Margin (dB) |         |        | Polarity |
| 4825.7034                                                                                     | -        |          | 27.1      |             |                   |                  |             |                |             |         |        | Horz     |
| 4824.8517                                                                                     |          |          | 27.1      | -53.54      | 47.05             | -                | -           | 74             | -26.95      | 336     | 381    | Vert     |
| 4825.7034                                                                                     |          |          | 27.1      |             |                   |                  | -25.13      |                |             |         | 340    |          |
| 4824.8517                                                                                     |          |          | 27.1      |             |                   |                  |             |                | -           | 336     | 381    | Vert     |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
| Mid Channel - 2437                                                                            | 7MHz     |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
| Me                                                                                            | eter     |          | AF-48106  | BOMS        |                   | FCC Part 15      |             | FCC Part 15    |             | Azimuth | Height |          |
|                                                                                               |          | Detector |           |             | dB(uVolts/meter)  | Subpart C 15.209 | Margin (dB) |                | Margin (dB) |         | -      | Polarity |
| 4875.022                                                                                      | _        |          | 27.2      |             |                   |                  |             |                |             |         |        | Vert     |
| 4875.3527                                                                                     |          |          | 27.2      |             |                   |                  |             | 74             |             |         | 252    |          |
| 4875.022                                                                                      |          |          | 27.2      |             |                   |                  | -22.51      |                |             |         | 384    |          |
| 4875.3527                                                                                     |          |          | 27.2      |             |                   |                  | -22.51      |                |             | 77      |        | Horz     |
| 40/3.332/                                                                                     | 33.40    | LINAV    | 21.2      | -35.20      | 23.42             | 54               | -24.30      | -              | -           |         | 232    | HUIZ     |
| High Channel - 2462                                                                           | 2MHz     |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          | AF-48106  |             |                   | FCC Part 15      |             | FCC Part 15    |             | Azimuth |        |          |
|                                                                                               | leter    |          |           |             | 10/14/14/14/14/14 |                  |             |                |             |         |        |          |
| 4924.7816                                                                                     | -        |          |           |             |                   | Subpart C 15.209 |             |                |             |         |        | Vert     |
| 4924.7816                                                                                     |          |          | 27.2      |             |                   |                  | -           |                |             |         | 392    |          |
|                                                                                               |          |          | 27.2      |             |                   |                  |             | 74             |             |         |        |          |
| 4924.7816                                                                                     |          |          | 27.2      |             |                   |                  | -22.54      |                | -           |         | 400    |          |
| 4924.4509                                                                                     | 55.41    | LnAv     | 27.2      | -53.34      | 29.27             | 54               | -24.73      | -              | -           | 173     | 392    | Horz     |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
| PK - Peak detector                                                                            |          |          |           |             |                   |                  |             |                |             |         |        |          |
| LnAv - Linear Averag                                                                          | age dete | ector    |           |             |                   |                  |             |                |             |         |        |          |
|                                                                                               |          |          |           |             |                   |                  |             |                |             |         |        |          |
| NOTE: No other em                                                                             | nissions | detected | above the | system nois | e floor.          |                  |             |                |             |         |        |          |

Page 95 of 119

# 9.4. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND


### **RESTRICTED BANDEDGE (LOW CHANNEL)**

| 10 UL EMC - Melville                                                                                                               | 29 Apr 2013 18:24:50<br>Restricted Bandedge<br>Monufacturer:Hicrosoft<br>Device:Wireless Controller<br>Model:1537<br>Job8:130/1963 Tested by: MA<br>882:110.HT28 MC58 2412MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30<br>Restricted Bord - Peak                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 70<br>Restricted Band - Reg                                                                                                        | where the second s |
| 10                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2310                                                                                                                               | Frequency [MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Page (1952) Det 1959 1988 / Ang 1ge Seep Pis Kieje/Rode Label<br>1/2016/2413 PDK IN 14 / Lag-Fer (Tubac) "Esse 398 Inf/1988 Himman | Desp. (Hz)         Dit         HB         MB / Apg Sp         Seep         Pits         Spc/Mail         Latel           2.2287-N15         F16         N         /Log We filded         Race 508         Sc/Mail         Retracted or                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 110       | UL EMC - Melville                                  | 29 Apr 2013 18:18:48<br>Restricted Bandedge                                                                                        |
|-----------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 100<br>90 |                                                    | Nonufacturer:Hiprosoft<br>Device:Wireless Controller<br>Node (132)<br>Jobel : J301/433 Tested by: MA<br>682:11n 41/28 4/58 2412/Hz |
| 80        | Restricted Bond - Peak                             |                                                                                                                                    |
| 76        |                                                    |                                                                                                                                    |
| 66        | Restricted Sond - Ava                              |                                                                                                                                    |
| 50        | ]                                                  |                                                                                                                                    |
| 46        | ]                                                  |                                                                                                                                    |
| 30        | ]                                                  |                                                                                                                                    |
| 20        | ]                                                  |                                                                                                                                    |
| 2         | 310<br>Frequency                                   |                                                                                                                                    |
|           |                                                    | e DHu] Det 1954 USH / Ava Tua Sweep Pits 15kos/Node Label                                                                          |
|           | T20 MCS0 Low Channel 2412 Vertical Gain Set 88.DAT |                                                                                                                                    |

Page 96 of 119

### AUTHORIZED BANDEDGE (HIGH CHANNEL)



| 10 UL EMC - Me           | lville                                             |                                    |             | 29 Apr                                                                                                         | 2013 18:34:07 |
|--------------------------|----------------------------------------------------|------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|---------------|
|                          |                                                    |                                    |             | stricted Bandedge                                                                                              |               |
| 80                       |                                                    |                                    | Dev         | nufacturer:Microsoft<br>vice:Wineless Controller<br>Hel:1537                                                   |               |
| mm                       |                                                    |                                    | Job         | del:1537<br>o#:13U14963 Tested by: MA<br>2.11n HT20 MC50 2462MHz                                               |               |
| 90                       | 1                                                  |                                    | 002         | 2.116 6120 6030 2462862                                                                                        |               |
| 80                       |                                                    |                                    |             |                                                                                                                |               |
|                          |                                                    | Restricted Bond - Peak             |             |                                                                                                                |               |
| 70                       |                                                    |                                    |             |                                                                                                                |               |
|                          | 1 miles                                            |                                    |             |                                                                                                                |               |
| 60                       | 1 1140                                             | Restricted Band - Avg              | Mannaharan  | And and a second and a second |               |
| 50                       |                                                    |                                    |             |                                                                                                                |               |
|                          |                                                    |                                    |             |                                                                                                                |               |
| 40                       |                                                    |                                    |             |                                                                                                                |               |
|                          |                                                    |                                    |             |                                                                                                                |               |
| 30                       |                                                    |                                    |             |                                                                                                                |               |
|                          |                                                    |                                    |             |                                                                                                                |               |
| 20                       |                                                    |                                    |             |                                                                                                                |               |
|                          |                                                    |                                    |             |                                                                                                                |               |
| 2460                     |                                                    | Foo                                | quency EMH  |                                                                                                                | 256           |
| Ronge [#ftz] Der         | L REU VEU / Ang Typ<br>X IH 111 / Lag-Flar (Video) |                                    | Renoe DHz   | Det 1934 URI ( Ave Tun Saren Pis Hans/Node                                                                     | Lakel         |
| 1:2468-2563 PE           | ¥ IH 1H / Lag-Pŵr (Uidao)                          | ato/Tpled 508 Inf/MADH Vertical-Pk | 2:2486-2563 | PEAK IM Ik / Log-For (lidee) Acto/Epicel 588 Enf/MOR                                                           | Vertical-Av   |
| L                        |                                                    |                                    |             |                                                                                                                |               |
| InHT28 MCS8 High Channel | 2462_Vertical_Gain Set                             | 85.DAT                             |             |                                                                                                                |               |

Page 97 of 119

### HARMONICS AND SPURIOUS EMISSIONS

| Device:Wireless (<br>Model:1537<br>Job#:13U14963 T<br>11n HT20 MCS0 M |                  |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
|-----------------------------------------------------------------------|------------------|----------|--------------------|-------------|------------------|---------------------------------|-------------|-------------------------------|-------------|-------------------|-----|----------|
| Job#:13U14963 T                                                       | Controlle        | er       |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       |                  |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
| 11n HT20 MCS0 M                                                       | Tested by        | : MA/RM  |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       | lode             |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       |                  |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
| Low Channel - 241                                                     | 12MHz            |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       | Meter            | _        | AF-48106           |             |                  | FCC Part 15                     |             | FCC Part 15                   |             | Azimuth           | -   |          |
|                                                                       | -                |          |                    |             |                  | Subpart C 15.209                | Margin (dB) |                               |             |                   |     |          |
| 4825.2625                                                             |                  |          | 27.1               |             |                  |                                 | -           | 74                            |             |                   |     | Vert     |
| 4824.992                                                              |                  |          | 27.1               |             |                  |                                 |             | / 1                           |             |                   | 150 |          |
| 4825.2625                                                             |                  |          | 27.1               |             |                  |                                 | -23.07      |                               | -           |                   | 338 |          |
| 4824.992                                                              | 55.57            | LnAv     | 27.1               | -53.55      | 29.12            | 54                              | -24.88      | -                             | -           | 216               | 150 | Horz     |
| Mid Channel - 243                                                     | 37MHz            |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       | Meter<br>Reading | Detector | AF-48106<br>[dB/m] |             | dB(uVolts/meter) | FCC Part 15<br>Subpart C 15.209 | Margin (dB) | FCC Part 15<br>Subpart C Peak | Margin (dB) | Azimuth<br>[Degs] | -   | Polarity |
| 4875.0421                                                             |                  |          | 27.2               |             |                  |                                 | -           |                               |             |                   |     | Vert     |
| 4874.1804                                                             |                  |          | 27.2               |             |                  | -                               |             | 74                            |             |                   | 301 | Horz     |
| 4875.0421                                                             |                  |          | 27.2               |             |                  | 54                              | -22.71      | -                             | -           | 188               | 390 | Vert     |
| 4874.1804                                                             | 56.61            | LnAv     | 27.2               | -53.25      | 30.56            | 54                              | -23.44      | -                             | -           | 74                | 301 | Horz     |
|                                                                       |                  |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
| High Channel - 24                                                     | 62MHz            |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       | Meter            | Detertor | AF-48106           |             |                  | FCC Part 15<br>Subpart C 15.209 | Manaia (dD) | FCC Part 15                   | Massia (dB) | Azimuth           | -   | Palacity |
| 4924.4208                                                             | -                |          | 27.2               |             |                  |                                 | Margin (db) |                               |             |                   |     | Vert     |
| 4923.8998                                                             |                  |          | 27.2               |             |                  |                                 | -           | 74                            |             |                   | 336 |          |
| 4924.4208                                                             |                  |          |                    | -53.33      |                  |                                 | -21.94      |                               |             | 173               |     | Vert     |
| 4923.8998                                                             |                  |          | 27.2               |             |                  |                                 |             |                               | -           | 175               |     | Horz     |
| 1525.0550                                                             | 22.2             | 210.00   | 27.2               |             | 25.0             | 5.                              | 2           |                               |             | 1.15              |     |          |
| PK - Peak detecto                                                     | or               |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
| LnAv - Linear Aver                                                    | rage dete        | ector    |                    |             |                  |                                 |             |                               |             |                   |     |          |
|                                                                       |                  |          |                    |             |                  |                                 |             |                               |             |                   |     |          |
| NOTE: No other er                                                     | missions         | detected | above the          | system nois | e floor.         |                                 |             |                               |             |                   |     |          |

Page 98 of 119

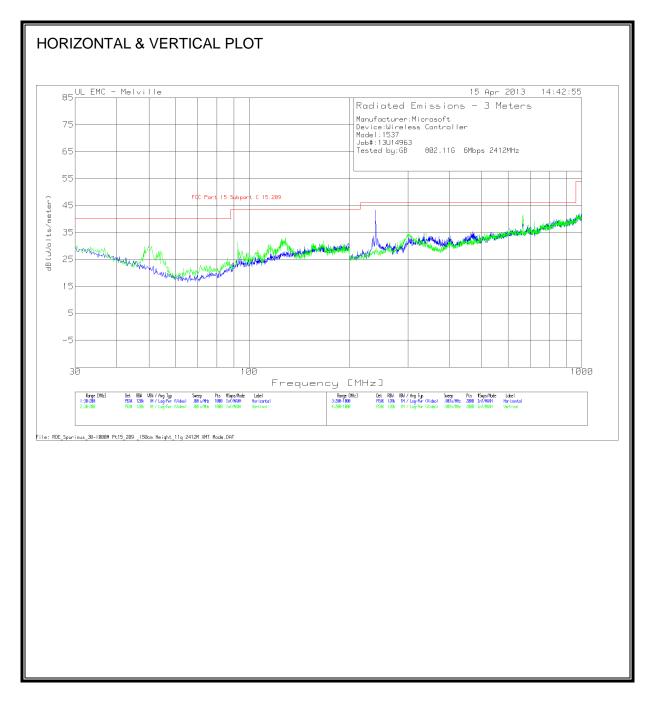
# 9.5. TX ABOVE 1 GHz 802.11a MODE IN THE 5.8 GHz BAND

#### HARMONICS AND SPURIOUS EMISSIONS

| Device:Wireles                       | Aicrosoft  |           |                   |        |                  |                                 |             |                               |             |         |     |          |
|--------------------------------------|------------|-----------|-------------------|--------|------------------|---------------------------------|-------------|-------------------------------|-------------|---------|-----|----------|
|                                      | s Controll | er        |                   |        |                  |                                 |             |                               |             |         |     |          |
| Model:1537                           |            |           |                   |        |                  |                                 |             |                               |             |         |     |          |
| Job#:13U14963                        | Tested     | By: RM/DC |                   |        |                  |                                 |             |                               |             |         |     |          |
| 11a 6Mbps                            |            |           |                   |        |                  |                                 |             |                               |             |         |     |          |
|                                      |            |           |                   |        |                  |                                 |             |                               |             |         |     |          |
| Low Channel - 5                      | 745MHz     |           |                   |        |                  |                                 |             |                               |             |         |     |          |
|                                      | Meter      |           | AF-8933           | BOMS   |                  | FCC Part 15                     |             | FCC Part 15                   |             | Azimuth | -   |          |
| Test Frequency                       | -          |           |                   |        |                  | Subpart C 15.209                | Margin (dB) |                               |             |         |     | Polarity |
| 11490.18                             |            |           | 33.4              |        | 54.52            | -                               | -           |                               |             | 142     |     | Horz     |
| 11489.619                            | 67.17      | PK        | 33.4              | -49.04 | 51.53            | -                               | -           | 74                            | -22.47      | 213     | 244 | Vert     |
| 11490.18                             | 61.29      | LnAv      | 33.4              | -49.05 | 45.84            | 54                              | -8.16       | -                             | -           | 142     | 400 | Horz     |
| 11489.619                            | 60.4       | LnAv      | 33.4              | -49.04 | 44.96            | 54                              | -9.04       | -                             | -           | 213     | 244 | Vert     |
| Test Frequency                       | Meter Re   | Detector  | AF-8947<br>[dB/m] |        | dB(uVolts/mater) | FCC Part 15<br>Subpart C 15.209 | Margin (dB) | FCC Part 15<br>Subpart C Peak | Margin (dB) | Azimuth | -   | Polarity |
| 22979.884                            |            |           | 40.6              |        | 44.63            |                                 |             | 74                            |             | 324     |     | Vert     |
| 22979.884                            |            |           | 40.6              |        | 39.76            |                                 | -           | 74                            | -29.57      |         |     | Horz     |
| 22979.884                            |            |           | 40.6              |        |                  |                                 |             | /4                            | -54.24      | 324     |     | Vert     |
| 22979.884                            |            |           | 40.6              |        |                  |                                 |             | -                             | -           | 199     |     | Horz     |
| 223/3.004                            | 50.66      | LINAV     | 40.6              | -55.25 | 50.55            | 54                              | -15.61      | -                             | -           | 199     | 570 | HOLZ     |
| Mid Channel - 5                      | 785MHz     |           |                   |        |                  |                                 |             |                               |             |         |     |          |
|                                      | Meter      |           | AF-8933           | BOMS   |                  | FCC Part 15                     |             | FCC Part 15                   |             | Azimuth | -   |          |
| Test Frequency                       |            |           |                   |        |                  | Subpart C 15.209                | Margin (dB) |                               |             |         |     | Polarity |
| 11570.441                            |            |           | 33.5              |        | 64.53            |                                 | -           | 74                            | -9.47       | 2       |     | Vert     |
| 11570.621                            |            |           | 33.5              |        |                  |                                 |             | 74                            | -20.41      |         |     | Horz     |
| 11570.441                            |            |           | 33.5              |        | 52.08            |                                 |             |                               | -           | 2       |     | Vert     |
| 11570.621                            | 61.36      | LnAv      | 33.5              | -49.66 | 45.4             | 54                              | -8.6        | -                             | -           | 307     | 381 | Horz     |
| High Channel - 5                     | 825MHz     |           |                   |        |                  |                                 |             |                               |             |         |     |          |
| Test Frequency                       | Meter      | Detector  | AF-8933<br>[dB/m] |        | dB(uVolts/meter) | FCC Part 15<br>Subpart C 15.209 | Margin (dB) | FCC Part 15<br>Subpart C Peak | Margin (dB) | Azimuth | -   | Polarity |
| 11650.822                            | -          |           | 33.6              |        | 64.73            |                                 |             | 74                            | -9.27       | 315     |     | Horz     |
| 11650.822                            |            |           | 33.6              |        |                  |                                 | -           | 74                            |             |         |     | Vert     |
| 11650.822                            |            |           | 33.6              |        | 52.44            |                                 |             |                               |             |         |     | Horz     |
| 11650.822                            |            |           | 33.6              |        | 52.44            |                                 |             |                               | -           | 312     |     | Vert     |
|                                      |            |           |                   |        |                  |                                 |             |                               |             |         |     | -        |
|                                      |            |           |                   |        |                  |                                 |             |                               |             |         |     |          |
|                                      |            | ector     |                   |        |                  |                                 |             |                               |             |         |     |          |
| PK - Peak detect<br>LnAv - Linear Av | erage det  |           |                   |        |                  |                                 |             |                               |             |         |     |          |

Page 99 of 119

# 9.6. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BAND

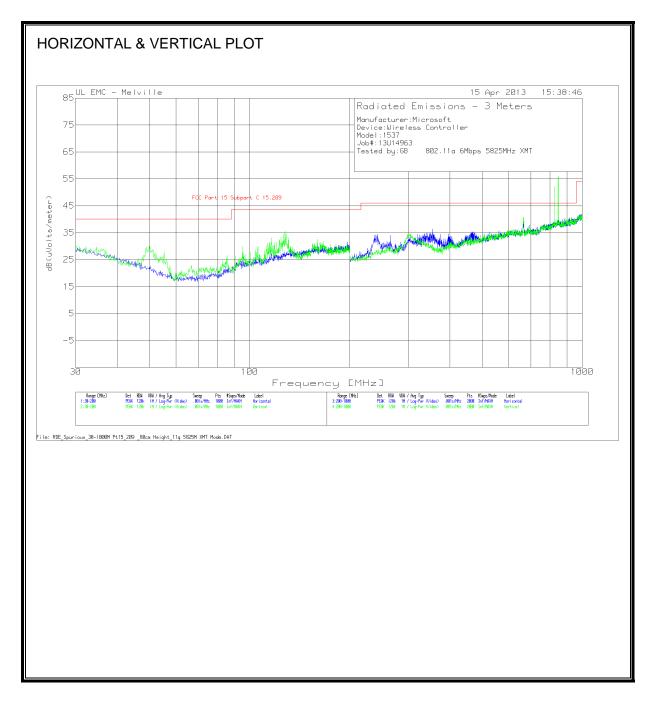

### HARMONICS AND SPURIOUS EMISSIONS

|                             | Nicrosoft        |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
|-----------------------------|------------------|-----------|-------------------|---------------------|----------------------|---------------------------------|-------------|-------------------------------|-------------|-------------------|----------------|------------------|
| Device:Wireles              | s Controll       | er        |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| Model:1537                  |                  |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| Job#:13U14963               | Tested           | By: RM/DC |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| 11n HT20 MCS0               |                  |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| Low Channel - 5             | 745MHz           |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
|                             |                  |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| Test Frequency              | Meter            | Datastas  | AF-8933           |                     | d P(v) (alta (mataa) | FCC Part 15<br>Subpart C 15.209 | Margin (dB) | FCC Part 15                   | Marcia (dB) | Azimuth           |                | Polarity         |
|                             | _                |           | 33.4              |                     | 62.47                |                                 | Margin (ub) | 500part C Peak<br>74          |             | [Degs]<br>310     | [cm]           | Horz             |
| 11491.062                   |                  |           |                   |                     |                      |                                 | -           |                               |             |                   |                |                  |
| 11489.78                    |                  |           | 33.4              |                     |                      |                                 |             |                               | -18.42      |                   |                | Vert             |
| 11491.062                   |                  |           | 33.4              |                     |                      |                                 |             |                               | -           | 310               |                | Horz             |
| 11489.78                    | 61.75            | LnAv      | 33.4              | -49.04              | 46.31                | 54                              | -7.69       | -                             | -           | 307               | 322            | Vert             |
| T F                         | Manag            | D         | AF-8947           |                     |                      | FCC Part 15                     | Manaia (dD) | FCC Part 15                   | Manaia (dD) | Azimuth           | -              | Delecito         |
| Test Frequency<br>22979.739 |                  |           | (dB/m)<br>40.6    |                     |                      | Subpart C 15.209                |             |                               |             | [Degs]<br>351     | • •            | Polarity<br>Vert |
|                             |                  |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| 22979.739                   |                  |           | 40.6              |                     |                      |                                 |             |                               |             | 90                |                | Horz             |
| 22979.739                   |                  |           | 40.6              |                     |                      |                                 |             |                               | -           | 351               |                | Vert             |
| 22979.739                   | 51.56            | LnAv      | 40.6              | -53.3               | 39.06                | 54                              | -14.94      | -                             | -           | 90                | 296            | Horz             |
| Mid Channel - 5             | 785MHz           |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
|                             | Meter            |           | AF-8933           | BOMS                |                      | FCC Part 15                     |             | FCC Part 15                   |             | Azimuth           | Height         |                  |
| Test Frequency              | Reading          | Detector  | [dB/m]            |                     |                      | Subpart C 15.209                | Margin (dB) | Subpart C Peak                | Margin (dB) | [Degs]            | [cm]           | Polarity         |
| 11568.357                   | 77.94            | PK        | 33.5              | -49.51              | 61.93                |                                 | -           | 74                            | -12.07      | 19                | 350            | Vert             |
| 11569.78                    | 67.6             | PK        | 33.5              | -49.64              | 51.46                | -                               | -           | 74                            | -22.54      | 60                | 358            | Horz             |
| 11568.357                   | 61.66            | LnAv      | 33.5              | -49.51              | 45.85                | 54                              | -8.15       | -                             | -           | 19                | 350            | Vert             |
| 11569.78                    | 60.68            | LnAv      | 33.5              | -49.64              | 44.74                | 54                              | -9.26       | -                             | -           | 60                | 358            | Horz             |
| High Channel - 5            | 825MHz           |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
|                             |                  |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| Test Frequency              | Meter<br>Reading | Detector  | AF-8933<br>[dB/m] | BOMS<br>Factor [dB] | dB(uVolts/meter)     | FCC Part 15<br>Subpart C 15.209 | Margin (dB) | FCC Part 15<br>Subpart C Peak | Margin (dB) | Azimuth<br>[Degs] | Height<br>[cm] | Polarity         |
| 11650.701                   | -                |           | 33.6              |                     |                      |                                 |             |                               |             | 309               |                | Horz             |
| 11650.42                    | 74.4             | PK        | 33.6              | -49.79              | 58.21                | -                               | -           | 74                            | -15.79      | 312               | 397            | Vert             |
| 11050.42                    |                  |           | 33.6              |                     |                      |                                 |             | -                             |             | 309               |                | Horz             |
| 11650.701                   |                  |           | 33.6              |                     |                      |                                 |             |                               | -           | 312               |                | Vert             |
|                             | 00.40            |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| 11650.701<br>11650.42       |                  |           |                   |                     |                      |                                 |             |                               |             |                   |                |                  |
| 11650.701                   | tor              | ector     |                   |                     |                      |                                 |             |                               |             |                   |                |                  |

Page 100 of 119

# 9.7. WORST-CASE BELOW 1 GHz

## SPURIOUS EMISSIONS 30 TO 1000 MHz (2.4GHZ WORST-CASE CONFIGURATION)




Page 101 of 119

| manalactorer.     | licrosoft              |          |                |                                         |                           |                  |        |               |        |                  |
|-------------------|------------------------|----------|----------------|-----------------------------------------|---------------------------|------------------|--------|---------------|--------|------------------|
| Device:Wireles    |                        |          |                |                                         |                           |                  |        |               |        |                  |
| Model:1537        |                        |          |                |                                         |                           |                  |        |               |        |                  |
| Job#:13U14963     |                        |          |                |                                         |                           |                  |        |               |        |                  |
| Tested by:GB      | 02.11G 6Mbps 2         | 412MHz   |                |                                         |                           |                  |        |               |        |                  |
|                   |                        |          |                |                                         |                           |                  |        |               |        |                  |
| Vertical 30 - 20  | OMHz                   |          |                |                                         |                           |                  |        |               |        |                  |
|                   |                        |          | AF-43441       | GL-3M                                   |                           | FCC Part 15      | Margin | Azimuth       | Height |                  |
| Test Frequency    | Meter Reading          | Detector | [dB/m]         | [dB]                                    |                           | Subpart C 15.209 | (dB)   | [Degs]        | [cm]   | Polarity         |
| 49.8281           |                        |          | 10.2           |                                         |                           |                  | -13.44 |               |        | Vert             |
| 92.45             |                        |          | 9.8            |                                         |                           |                  | -22.14 |               |        | Vert             |
| 128.7             | 13.98                  | QP       | 13.8           | 0.5                                     | 28.28                     | 43.5             | -15.22 | 136           | 117    | Vert             |
|                   |                        |          |                |                                         |                           |                  |        |               |        |                  |
| Horizontal 200    | - 1000MHz              |          |                | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                           |                  |        |               |        |                  |
| <b>T F</b>        | Marker Baradian        |          | AF-44067       |                                         |                           |                  | -      | Azimuth       | -      | Deletis          |
| 240.015           | Meter Reading<br>17.18 |          | [dB/m]<br>11.2 | [dB]<br>0.8                             | dB(uVolts/meter)<br>29.18 |                  | -16.82 | [Degs]<br>128 | [cm]   | Polarity<br>Horz |
| 664.5499          |                        |          | 20.1           |                                         |                           |                  | -16.82 |               |        | Horz             |
| 004.5455          | 12.03                  | ų,       | 20.1           | 1.0                                     | 54.75                     |                  | -11.27 | 212           | 105    | 1012             |
| Vertical 200 - 10 | DOOMHz                 |          |                |                                         |                           |                  |        |               |        |                  |
|                   |                        |          | AF-44067       | GL-3M                                   |                           | FCC Part 15      | Margin | Azimuth       | Height |                  |
| Test Frequency    | Meter Reading          | Detector | [dB/m]         | [dB]                                    | dB(uVolts/meter)          | Subpart C 15.209 | -      | [Degs]        | [cm]   | Polarity         |
| 664.6561          | 17.04                  | QP       | 20.1           | 1.9                                     | 39.04                     | 46               | -6.96  | 343           | 102    | Vert             |
|                   |                        |          |                |                                         |                           |                  |        |               |        |                  |
|                   |                        |          |                |                                         |                           |                  |        |               |        |                  |
| QP - Quasi-Peak   | detector               |          |                |                                         |                           |                  |        |               |        |                  |

Page 102 of 119

## SPURIOUS EMISSIONS 30 TO 1000 MHz (5.8GHZ WORST-CASE CONFIGURATION)



Page 103 of 119

| Non-state of the second | Device:Wireless C<br>Model:1537<br>Job#:13U14963 |               |           |          |       |                   |                  |        |         |        |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|-----------|----------|-------|-------------------|------------------|--------|---------|--------|----------|
| Model:1537         Image: Model:1537 <th< td=""><td>Model:1537<br/>Job#:13U14963</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                       | Model:1537<br>Job#:13U14963                      |               |           |          |       |                   |                  |        |         |        |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Job#:13U14963                                    |               |           |          |       |                   |                  |        |         |        |          |
| Vertical $30 - 200$ Hz         AF-43441         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Pola           S0.0801         20.32         PK         10.1         0.1         30.52         40         -9.48         229         100         Vert           128.1882         21.28         PK         10.1         0.1         30.52         40.5         -9.48         229         100         Vert           128.1882         21.28         PK         13.8         0.5         35.58         43.5         7.92         126         100         Vert           40rizontal 200-1000MHz         F         F         F         FCC Part 15         Margin         Azimuth         Height         F           1665.1303         13.5         QP         20.1         1.9         35.5         466         10.5         62         162         Horz           Vertical 200-1000Hz         F         QP         20.1         1.9         35.5         466         10.5         62         162         Horz           Vertical 200-1000Hz         F         QP         20.1         1.9         35.9         466         10.5         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |               |           |          |       |                   |                  |        |         |        |          |
| Vertical $30 - 200$ Hz         AF-43441         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Pola           S0.0801         20.32         PK         10.1         0.1         30.52         40         -9.48         229         100         Vert           128.1882         21.28         PK         10.1         0.1         30.52         40.5         -9.48         229         100         Vert           128.1882         21.28         PK         13.8         0.5         35.58         43.5         7.92         126         100         Vert           40rizontal 200-1000MHz         F         F         F         FCC Part 15         Margin         Azimuth         Height         F           1665.1303         13.5         QP         20.1         1.9         35.5         466         10.5         62         162         Horz           Vertical 200-1000Hz         F         QP         20.1         1.9         35.5         466         10.5         62         162         Horz           Vertical 200-1000Hz         F         QP         20.1         1.9         35.9         466         10.5         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tested by:GB 802                                 | 2.11a 6Mbps 5 | 825MHz XN | IT       |       |                   |                  |        |         |        |          |
| Test Frequency         Meter Reading         Detector         AF-43441<br>[dB/m]         GL-3M<br>[dB]         dB(uVolts/meter)         FCC Part 15         Margin<br>(dB)         Azimuth<br>[Degs]         Height<br>[cm]         Pola           50.0801         20.32         PK         10.1         0.1         30.52         40         -9.48         229         100         Vert           128.1882         21.28         PK         13.8         0.5         35.58         43.5         -7.92         126         100         Vert           Horizontal 200-1000MHz         FCC Part 15         Margin<br>(dB)         Azimuth<br>(dB/m]         Af-4067         GL-3M         AB(uVolts/meter)         Subpart C 15.209         Margin<br>(dB)         Azimuth<br>(Degs]         Height<br>(cm]         Pola           Fest Frequency         Meter Reading         Detector         [dB/m]         [dB]         AB(uVolts/meter)         Subpart C 15.209         (dB)         Zimuth<br>(Degs]         [cm]         Pola           665.1303         13.5         QP         20.1         1.9         35.5         46         -10.5         62         162         Horz           Vertical 200 - 1UOMHz         Imagin         Azimuth         Aright         Af-4067         GL-3M         Subpart C 15.209         (dB) <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |               |           |          |       |                   |                  |        |         |        |          |
| Test Frequency         Meter Reading         Detector         [dB/m]         [dB]         dB(uVolts/meter)         Subpart C 15.209         (dB)         [Degs]         [cm]         Pola           50.0801         20.32         PK         10.1         0.1         30.52         40         -9.48         229         100         Vert           128.1882         21.28         PK         13.8         0.5         35.58         43.5         -7.92         126         100         Vert           Horizontal 200 - 1000MHz         FCC Part 15         Margin         Azimuth         Height         FCC Part 15         Margin         Azimuth         Height         Folgen         Folgen         FCC Part 15         Margin         Azimuth         Height         Folgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vertical 30 - 200M                               | 1Hz           |           |          |       |                   |                  |        |         |        |          |
| 50.0801         20.32         PK         10.1         0.1         30.52         40         -9.48         229         100         Vert           128.1882         21.28         PK         13.8         0.5         35.58         43.5         -7.92         126         100         Vert           Horizontal 200 - 1000MHz         AF-44067         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Pola           665.1303         13.5         QP         20.1         1.9         35.5         46         -10.5         62         162         Horizontal 200 - 1000MHz           //ertical 200 - 1000MHz         AF-44067         GL-3M         dB(uVolts/meter)         Subpart C15.209         (dB)         IDetest Frequency         Margin         Azimuth         Height         Pola           //ertical 200 - 1000MHz         AF-44067         GL-3M         dB(uVolts/meter)         Subpart C15.209         (dB)         IDetest         [cm]         Pola           845.9         9.04         QP         22.8         2.1         33.94         46         -12.06         343         154         Vert           8247.         8.94         QP         22.4         2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |               |           | AF-43441 | GL-3M |                   | FCC Part 15      | Margin | Azimuth | Height |          |
| 128.1882       21.28       PK       13.8       0.5       35.58       43.5       -7.92       126       100       Vert         Horizontal 200 - 1000MHz       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test Frequency M                                 | Aeter Reading | Detector  | [dB/m]   | [dB]  | dB(uVolts/meter)  | Subpart C 15.209 | (dB)   | [Degs]  | [cm]   | Polarity |
| Arrow Meter Reading         Detector         AF-44067<br>[dB/m]         GL-3M<br>[dB]         dB(uVolts/meter)         FCC Part 15<br>Subpart C 15.209         Margin<br>(dB)         Azimuth<br>(dB)         Height<br>(cm]         Pola           665.1303         13.5         QP         20.1         1.9         35.5         46         -10.5         62         162         Horz           //ertical 200 - 100000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.0801                                          | 20.32         | PK        | 10.1     | 0.1   | 30.52             | 40               | -9.48  | 229     |        |          |
| AF-44067         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Cm         Pola           665.1303         13.5         QP         20.1         1.9         35.5         46         -10.5         62         162         Horz           //ertical 200 - 1000         Vertical 2000 - 10000         Vertical 2000 - 10000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128.1882                                         | 21.28         | PK        | 13.8     | 0.5   | 35.58             | 43.5             | -7.92  | 126     | 100    | Vert     |
| AF-44067         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Cm         Pola           665.1303         13.5         QP         20.1         1.9         35.5         46         -10.5         62         162         Horz           //ertical 200 - 1000         Vertical 2000 - 10000         Vertical 2000 - 10000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |               |           |          |       |                   |                  |        |         |        |          |
| Test Frequency         Meter Reading         Detector         [dB/m]         [dB]         dB(uVolts/meter)         Subpart C 15.209         (dB)         [Degs]         [cm]         Pola           665.1303         13.5         QP         20.1         1.9         35.5         46         -10.5         62         162         Horz           //ertical 200-1UUUMHz         AF-44067         GL-3M         FCC Part 15         Margin         Azimuth         Height         Pola           Rest Frequency         Meter Reading         Detector         [dB/m]         [dB]         dB(uVolts/meter)         Subpart C 15.209         (dB)         Margin         Azimuth         Height         Pola           845.9         9.04         QP         22.8         2.1         33.94         46         -12.06         343         154         Vert           824.7         8.94         QP         22.4         2.1         33.44         446         -12.56         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         2222         131         Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Horizontal 200 - 10                              | 000MHz        |           |          |       |                   |                  |        |         |        |          |
| 665.1303       13.5       QP       20.1       1.9       35.5       46       -10.5       62       162       Horz         //ertical 200-1       OMHz       Image: Constraint of the state of the                                                                                                                                    |                                                  |               |           |          |       |                   |                  | -      |         |        |          |
| Vertical 200 - 1000MHz         AF-44067         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Pola           Rest Frequency         Meter Reading         Detector         [dB/m]         [dB]         dB(uVolts/meter)         Subpart C 15.209         (dB)         [Degs]         [cm]         Pola           845.9         9.04         QP         22.8         2.1         33.94         446         -12.06         343         154         Vert           824.7         8.94         QP         22.4         2.1         33.44         446         -12.56         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | -             |           |          |       |                   |                  |        |         |        | Polarity |
| Fest Frequency         Meter Reading         Detector         AF-44067         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Pola           845.9         9.04         QP         22.8         2.1         33.94         46         -12.05         343         154         Vert           824.7         8.94         QP         22.4         2.1         33.44         446         -12.05         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 665.1303                                         | 13.5          | QP        | 20.1     | 1.9   | 35.5              | 46               | -10.5  | 62      | 162    | Horz     |
| Fest Frequency         Meter Reading         Detector         AF-44067         GL-3M         dB(uVolts/meter)         FCC Part 15         Margin         Azimuth         Height         Pola           845.9         9.04         QP         22.8         2.1         33.94         46         -12.05         343         154         Vert           824.7         8.94         QP         22.4         2.1         33.44         446         -12.05         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |               |           |          |       |                   |                  |        |         |        |          |
| Fest Frequency         Meter Reading         Detector         [dB/m]         [dB]         dB(uVolts/meter)         Subpart C 15.209         (dB)         [Degs]         [cm]         Pola           845.9         9.04         QP         22.8         2.1         33.94         46         -12.06         343         154         Vert           824.7         8.94         QP         22.4         2.1         33.44         46         -12.56         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert           1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vertical 200 - 1000                              | OMHz          |           | 15 44057 |       |                   | 500 D            |        |         |        |          |
| 845.9         9.04         QP         22.8         2.1         33.94         46         -12.06         343         154         Vert           824.7         8.94         QP         22.4         2.1         33.44         46         -12.56         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |               |           |          |       | 10(1)(1)(1)(1)(1) |                  | -      |         | _      |          |
| 824.7         8.94         QP         22.4         2.1         33.44         46         -12.56         251         132         Vert           664.99         15.39         QP         20.1         1.9         37.39         46         -8.61         222         131         Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | -             |           |          |       |                   |                  |        |         |        |          |
| 664.99 15.39 QP 20.1 1.9 37.39 46 -8.61 222 131 Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |               | •         |          |       |                   |                  |        |         |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |               |           |          |       |                   |                  |        |         |        |          |
| PK - Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 004.33                                           | 15.55         | ųr        | 20.1     | 1.9   | 57.55             | 40               | -0.01  | 222     | 151    | vert     |
| PK - Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |               |           |          |       |                   |                  |        |         |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PK - Peak detector                               | r             |           |          |       |                   |                  |        |         |        |          |
| QP - Quasi-Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |               |           |          |       |                   |                  |        |         |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | elector       |           |          |       |                   |                  |        |         |        |          |

Page 104 of 119

# **10. AC POWER LINE CONDUCTED EMISSIONS**

## LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

| Frequency of Emission (MHz) | Conducted L | .imit (dBuV) |
|-----------------------------|-------------|--------------|
|                             | Quasi-peak  | Average      |
| 0.15-0.5                    | 66 to 56 *  | 56 to 46 *   |
| 0.5-5                       | 56          | 46           |
| 5-30                        | 60          | 50           |

\* Decreases with the logarithm of the frequency.

## TEST PROCEDURE

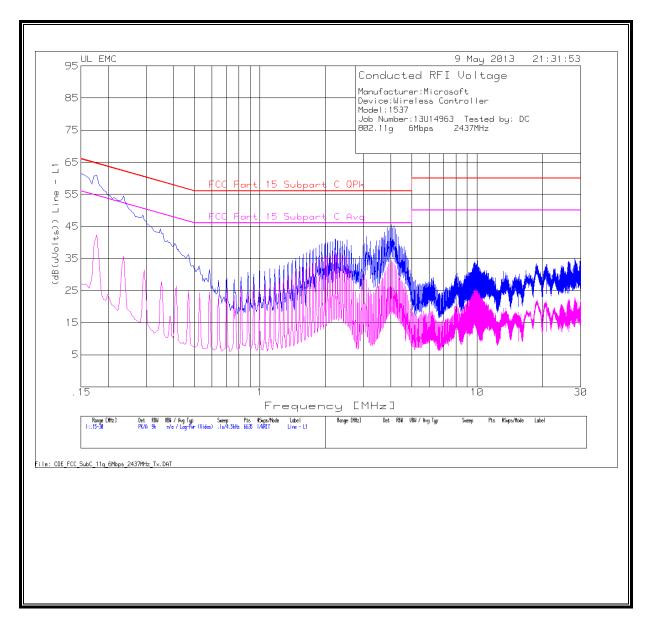
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

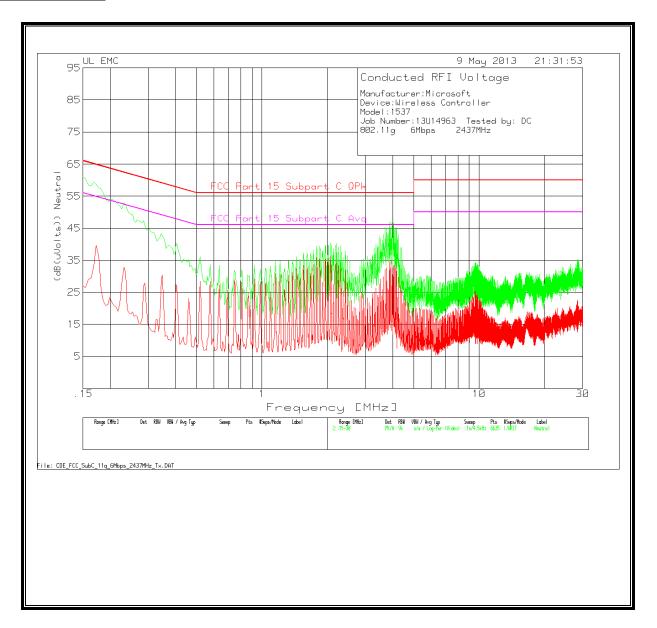
Page 105 of 119

### RESULTS – 2.4GHz BAND


### **<u>6 WORST EMISSIONS</u>**

|                                                                                                                                                                                   | Aicrosoft                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device:Wireles                                                                                                                                                                    |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| Model:1537                                                                                                                                                                        | scontroner                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
|                                                                                                                                                                                   | U14963 Tested I                                                                                                                                                              | by: DC                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| 802.11g 6Mbp                                                                                                                                                                      |                                                                                                                                                                              | Jy. DC                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| SU2.11g Bivibp:                                                                                                                                                                   | 5 2457MHZ                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
|                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| Line - L1 .15 - 30                                                                                                                                                                | MHZ                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| _                                                                                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      | 5A636 L1                                                                            |                                                                                                                                                              | FCC Part 15                                                                                                                                           |                                                                                                                                                                   | FCC Part 15                                                                                                                                  |                                                                                                                                                                    |
|                                                                                                                                                                                   | Meter Reading                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              | Subpart C QPk                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| 0.15                                                                                                                                                                              | 51.48                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                  | 61.48                                                                                                                                                        | 66                                                                                                                                                    | -4.52                                                                                                                                                             | 56                                                                                                                                           | 5.48                                                                                                                                                               |
| 0.15                                                                                                                                                                              | 17.15                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                  | 27.15                                                                                                                                                        | 66                                                                                                                                                    | -38.85                                                                                                                                                            | 56                                                                                                                                           | -28.85                                                                                                                                                             |
| 0.177                                                                                                                                                                             | 50.81                                                                                                                                                                        | PK                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 60.81                                                                                                                                                        | 64.63                                                                                                                                                 | -3.82                                                                                                                                                             | 54.63                                                                                                                                        | 6.18                                                                                                                                                               |
| 0.177                                                                                                                                                                             | 32.34                                                                                                                                                                        | Av                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 42.34                                                                                                                                                        | 64.63                                                                                                                                                 | -22.29                                                                                                                                                            | 54.63                                                                                                                                        | -12.29                                                                                                                                                             |
| 0.2355                                                                                                                                                                            | 44.4                                                                                                                                                                         | PK                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 54.4                                                                                                                                                         | 62.25                                                                                                                                                 | -7.85                                                                                                                                                             | 52.25                                                                                                                                        | 2.15                                                                                                                                                               |
| 0.2355                                                                                                                                                                            | 25.63                                                                                                                                                                        | Av                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 35.63                                                                                                                                                        | 62.25                                                                                                                                                 | -26.62                                                                                                                                                            | 52.25                                                                                                                                        | -16.62                                                                                                                                                             |
| 0.2895                                                                                                                                                                            | 38.43                                                                                                                                                                        | PK                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 48.43                                                                                                                                                        | 60.54                                                                                                                                                 | -12.11                                                                                                                                                            | 50.54                                                                                                                                        | -2.11                                                                                                                                                              |
| 0.2895                                                                                                                                                                            | 18.27                                                                                                                                                                        | Av                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 28.27                                                                                                                                                        | 60.54                                                                                                                                                 | -32.27                                                                                                                                                            | 50.54                                                                                                                                        | -22.27                                                                                                                                                             |
| 0.348                                                                                                                                                                             | 34.28                                                                                                                                                                        | PK                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 44.28                                                                                                                                                        | 59.01                                                                                                                                                 | -14.73                                                                                                                                                            | 49.01                                                                                                                                        | -4.73                                                                                                                                                              |
| 0.348                                                                                                                                                                             | 14.69                                                                                                                                                                        | Av                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 24.69                                                                                                                                                        | 59.01                                                                                                                                                 | -34.32                                                                                                                                                            | 49.01                                                                                                                                        | -24.32                                                                                                                                                             |
| 4.029                                                                                                                                                                             | 35.25                                                                                                                                                                        | PK                                                                                                                                                                                                                                                                                                                                                   | 10.2                                                                                | 45.45                                                                                                                                                        | 56                                                                                                                                                    | -10.55                                                                                                                                                            | 46                                                                                                                                           | -0.55                                                                                                                                                              |
| 4.029                                                                                                                                                                             | 24.05                                                                                                                                                                        | Av                                                                                                                                                                                                                                                                                                                                                   | 10.2                                                                                | 34.25                                                                                                                                                        | 56                                                                                                                                                    | -21.75                                                                                                                                                            | 46                                                                                                                                           | -11.75                                                                                                                                                             |
| 0.159                                                                                                                                                                             | 39.66                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 49.66                                                                                                                                                        | 65.52                                                                                                                                                 | -15.86                                                                                                                                                            | 55.52                                                                                                                                        | -5.86                                                                                                                                                              |
| 0.1536                                                                                                                                                                            | 40.92                                                                                                                                                                        | QP                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 50.92                                                                                                                                                        | 65.8                                                                                                                                                  | -14.88                                                                                                                                                            | 55.8                                                                                                                                         | -4.88                                                                                                                                                              |
| 0.1734                                                                                                                                                                            | 40.5                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 50.5                                                                                                                                                         | 64.8                                                                                                                                                  | -14.3                                                                                                                                                             | 54.8                                                                                                                                         | -4.3                                                                                                                                                               |
| 0.2328                                                                                                                                                                            | 33.05                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                  | 43.05                                                                                                                                                        | 62.35                                                                                                                                                 | -19.3                                                                                                                                                             | 52.35                                                                                                                                        | -9.3                                                                                                                                                               |
| 0.2859                                                                                                                                                                            | 25.27                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                  | 35.27                                                                                                                                                        | 60.64                                                                                                                                                 | -25.37                                                                                                                                                            | 50.64                                                                                                                                        | -15.37                                                                                                                                                             |
| 0.3453                                                                                                                                                                            | 23.06                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                  | 33.06                                                                                                                                                        | 59.07                                                                                                                                                 | -26.01                                                                                                                                                            | 49.07                                                                                                                                        | -16.01                                                                                                                                                             |
| 4.0308                                                                                                                                                                            | 22.74                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      | 10.2                                                                                | 32.94                                                                                                                                                        | 55.67                                                                                                                                                 | -23.06                                                                                                                                                            | 45.07                                                                                                                                        | -13.06                                                                                                                                                             |
| 4.0500                                                                                                                                                                            | 22.14                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                    | 10.2                                                                                | 52.54                                                                                                                                                        | 50                                                                                                                                                    | -25.00                                                                                                                                                            | 40                                                                                                                                           | -15.00                                                                                                                                                             |
| Neutral .15 - 30                                                                                                                                                                  | MH-                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
| Neutral 15-50                                                                                                                                                                     | 141112                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | 5A636                                                                               |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
|                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      | DADDD                                                                               |                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                                    |
|                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      | 1.41                                                                                |                                                                                                                                                              | 500 B-++ 45                                                                                                                                           |                                                                                                                                                                   | 500 B 45                                                                                                                                     |                                                                                                                                                                    |
| <b>-</b>                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      | L4Neut                                                                              | (10(1)(1))                                                                                                                                                   | FCC Part 15                                                                                                                                           | Marchine (4172)                                                                                                                                                   | FCC Part 15                                                                                                                                  | Manaria (40)                                                                                                                                                       |
|                                                                                                                                                                                   | Meter Reading                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      | [dB]                                                                                |                                                                                                                                                              | Subpart C QPk                                                                                                                                         |                                                                                                                                                                   | Subpart C Avg                                                                                                                                |                                                                                                                                                                    |
| 0.15                                                                                                                                                                              | 50.84                                                                                                                                                                        | PK                                                                                                                                                                                                                                                                                                                                                   | [dB]<br>10.1                                                                        | 60.94                                                                                                                                                        | Subpart C QPk<br>66                                                                                                                                   | -5.06                                                                                                                                                             | Subpart C Avg<br>56                                                                                                                          | 4.94                                                                                                                                                               |
| 0.15                                                                                                                                                                              | 50.84<br>16.64                                                                                                                                                               | PK<br>Av                                                                                                                                                                                                                                                                                                                                             | [dB]<br>10.1<br>10.1                                                                | 60.94<br>26.74                                                                                                                                               | Subpart C QPk<br>66<br>66                                                                                                                             | -5.06<br>-39.26                                                                                                                                                   | Subpart C Avg<br>56<br>56                                                                                                                    | 4.94                                                                                                                                                               |
| 0.15<br>0.15<br>0.1815                                                                                                                                                            | 50.84<br>16.64<br>47.19                                                                                                                                                      | PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                                                       | [dB]<br>10.1<br>10.1<br>10                                                          | 60.94<br>26.74<br>57.19                                                                                                                                      | Subpart C QPk<br>66<br>66<br>64.42                                                                                                                    | -5.06<br>-39.26<br>-7.23                                                                                                                                          | Subpart C Avg<br>56<br>56<br>54.42                                                                                                           | 4.94<br>-29.26<br>2.77                                                                                                                                             |
| 0.15<br>0.15<br>0.1815<br>0.1815                                                                                                                                                  | 50.84<br>16.64<br>47.19<br>15.75                                                                                                                                             | PK<br>Av<br>PK<br>Av                                                                                                                                                                                                                                                                                                                                 | [dB]<br>10.1<br>10.1<br>10<br>10                                                    | 60.94<br>26.74<br>57.19<br>25.75                                                                                                                             | Subpart C QPk<br>66<br>66<br>64.42<br>64.42                                                                                                           | -5.06<br>-39.26<br>-7.23<br>-38.67                                                                                                                                | Subpart C Avg<br>56<br>56<br>54.42<br>54.42                                                                                                  | 4.94<br>-29.26<br>2.77<br>-28.67                                                                                                                                   |
| 0.15<br>0.15<br>0.1815<br>0.1815<br>0.231                                                                                                                                         | 50.84<br>16.64<br>47.19<br>15.75<br>42.85                                                                                                                                    | PK<br>Av<br>PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                                           | [dB]<br>10.1<br>10.1<br>10<br>10<br>10                                              | 60.94<br>26.74<br>57.19<br>25.75<br>52.85                                                                                                                    | Subpart C QPk<br>66<br>64.42<br>64.42<br>64.42                                                                                                        | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56                                                                                                                       | Subpart C Avg<br>56<br>56<br>54.42<br>54.42<br>52.41                                                                                         | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44                                                                                                                           |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231                                                                                                                                        | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86                                                                                                                           | PK<br>Av<br>PK<br>Av<br>PK<br>Av                                                                                                                                                                                                                                                                                                                     | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10                                        | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86                                                                                                           | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41                                                                                               | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55                                                                                                             | Subpart C Avg<br>56<br>54.42<br>54.42<br>52.41<br>52.41                                                                                      | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55                                                                                                                 |
| 0.15<br>0.1815<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285                                                                                                                     | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33                                                                                                                  | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                               | [dB]<br>10.1<br>10.1<br>10<br>10<br>10                                              | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33                                                                                                  | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67                                                                                      | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56                                                                                                                       | Subpart C Avg<br>56<br>54.42<br>54.42<br>52.41<br>52.41<br>50.67                                                                             | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34                                                                                                        |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231                                                                                                                                        | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86                                                                                                                           | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                               | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10                                        | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86                                                                                                           | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41                                                                                               | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55                                                                                                             | Subpart C Avg<br>56<br>54.42<br>54.42<br>52.41<br>52.41                                                                                      | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34                                                                                                        |
| 0.15<br>0.1815<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285                                                                                                                     | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33                                                                                                                  | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av                                                                                                                                                                                                                                                                                                         | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10                                  | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33                                                                                                  | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67                                                                                      | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34                                                                                                   | Subpart C Avg<br>56<br>54.42<br>54.42<br>52.41<br>52.41<br>50.67                                                                             | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62                                                                                              |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285                                                                                                                      | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05                                                                                                         | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                   | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10                            | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05                                                                                         | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67<br>60.67                                                                             | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62                                                                                         | Subpart C Avg<br>56<br>54.42<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67                                                                    | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71                                                                                     |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435                                                                                                   | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2                                                                                        | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av                                                                                                                                                                                                                                                                                             | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10                      | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2                                                                        | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12                                                           | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92                                                                     | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12                                                  | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92                                                                           |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435<br>0.3435                                                                                         | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6                                                                                | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK                                                                                                                                                                                                                                                                                       | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10          | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8                                                                | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.2<br>56                                             | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2                                                             | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46                                            | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8                                                                    |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921                                                                                | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68                                                                       | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av                                                                                                                                                                                                                                                                                 | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>20.2  | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88                                                       | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>56                                      | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12                                                   | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>46                                      | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12                                                          |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921<br>3.921                                                                       | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01                                                              | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>QP                                                                                                                                                                                                                                                                           | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>102<br>10.2 | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88                                                       | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>56<br>65.8                              | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-9.2<br>-21.12<br>-17.69                                 | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>46<br>55.8                                       | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69                                                 |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921<br>3.921<br>0.1536                                                                      | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98                                                     | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>QP<br>QP                                                                                                                                                                                                                                                                     | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08                                     | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>59.58<br>65.8<br>65.8                         | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-9.2<br>-21.12<br>-17.69<br>-14.82                       | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>46<br>55.8<br>55.9                               | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82                                        |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921<br>3.921<br>0.1536<br>0.1518                                                            | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94                                            | PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>PK<br>Av<br>QP<br>QP<br>QP                                                                                                                                                                                                                                                                           | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94                            | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63                            | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69             | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>46<br>55.8<br>55.9<br>54.63                      | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69                               |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921<br>3.921<br>0.1536<br>0.1518<br>0.177<br>0.2265                                         | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94<br>29.42                                   | PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           PK           QP           QP           QP           QP           QP           QP                                                                                                                                   | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94<br>39.42                   | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63<br>62.58                   | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69<br>-23.16           | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>49.12<br>46<br>55.8<br>55.9<br>54.63<br>52.58          | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69<br>-13.16                     |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921<br>3.921<br>0.1536<br>0.1518<br>0.177<br>0.2265<br>0.2868                               | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94<br>29.42<br>26.85                          | PK           Av           QP           QP | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94<br>39.42<br>36.85          | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63<br>62.58<br>60.62          | -5.06<br>-39.26<br>-7.23<br>-38.67<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69<br>-23.16<br>-23.77 | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>55.8<br>55.9<br>54.63<br>52.58<br>50.62          | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69<br>-13.16<br>-13.77           |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435<br>0.3435<br>0.3435<br>3.921<br>0.1536<br>0.1518<br>0.177<br>0.2265<br>0.2868<br>0.3471           | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94<br>29.42<br>26.85<br>23.08                 | PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           QP           QP | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94<br>39.42<br>36.85<br>33.08 | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63<br>62.58<br>60.62<br>59.03 | -5.06<br>-39.26<br>-7.23<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69<br>-23.16<br>-23.77<br>-25.95 | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>55.8<br>55.9<br>54.63<br>52.58<br>50.62<br>49.03 | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69<br>-13.16<br>-13.77<br>-15.95 |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.3435<br>0.3435<br>3.921<br>3.921<br>0.1536<br>0.1518<br>0.177<br>0.2265<br>0.2868                               | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94<br>29.42<br>26.85                          | PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           QP           QP | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94<br>39.42<br>36.85          | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63<br>62.58<br>60.62<br>59.03 | -5.06<br>-39.26<br>-7.23<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69<br>-23.16<br>-23.77<br>-25.95 | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>55.8<br>55.9<br>54.63<br>52.58<br>50.62          | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69<br>-13.16<br>-13.77<br>-15.95 |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435<br>0.3435<br>0.3435<br>3.921<br>0.1536<br>0.1518<br>0.177<br>0.2265<br>0.2868<br>0.3471<br>3.9192 | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94<br>29.42<br>26.85<br>23.08<br>27.48        | PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           QP           QP | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94<br>39.42<br>36.85<br>33.08 | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63<br>62.58<br>60.62<br>59.03 | -5.06<br>-39.26<br>-7.23<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69<br>-23.16<br>-23.77<br>-25.95 | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>55.8<br>55.9<br>54.63<br>52.58<br>50.62<br>49.03 | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69<br>-13.16<br>-13.77<br>-15.95 |
| 0.15<br>0.1815<br>0.1815<br>0.231<br>0.231<br>0.285<br>0.285<br>0.285<br>0.3435<br>0.3435<br>0.3435<br>3.921<br>0.1536<br>0.1518<br>0.177<br>0.2265<br>0.2868<br>0.3471           | 50.84<br>16.64<br>47.19<br>15.75<br>42.85<br>22.86<br>37.33<br>17.05<br>33.41<br>19.2<br>36.6<br>24.68<br>38.01<br>40.98<br>37.94<br>29.42<br>26.85<br>23.08<br>27.48<br>tor | PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           PK           Av           QP           QP | [dB]<br>10.1<br>10.1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1     | 60.94<br>26.74<br>57.19<br>25.75<br>52.85<br>32.86<br>47.33<br>27.05<br>43.41<br>29.2<br>46.8<br>34.88<br>48.11<br>51.08<br>47.94<br>39.42<br>36.85<br>33.08 | Subpart C QPk<br>66<br>64.42<br>64.42<br>62.41<br>60.67<br>60.67<br>59.12<br>59.12<br>59.12<br>56<br>65.8<br>65.9<br>64.63<br>62.58<br>60.62<br>59.03 | -5.06<br>-39.26<br>-7.23<br>-9.56<br>-29.55<br>-13.34<br>-33.62<br>-15.71<br>-29.92<br>-9.2<br>-21.12<br>-17.69<br>-14.82<br>-16.69<br>-23.16<br>-23.77<br>-25.95 | Subpart C Avg<br>56<br>54.42<br>52.41<br>52.41<br>50.67<br>50.67<br>49.12<br>49.12<br>46<br>55.8<br>55.9<br>54.63<br>52.58<br>50.62<br>49.03 | 4.94<br>-29.26<br>2.77<br>-28.67<br>0.44<br>-19.55<br>-3.34<br>-23.62<br>-5.71<br>-19.92<br>0.8<br>-11.12<br>-7.69<br>-4.82<br>-6.69                               |

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.


Page 106 of 119

### LINE 1 RESULTS

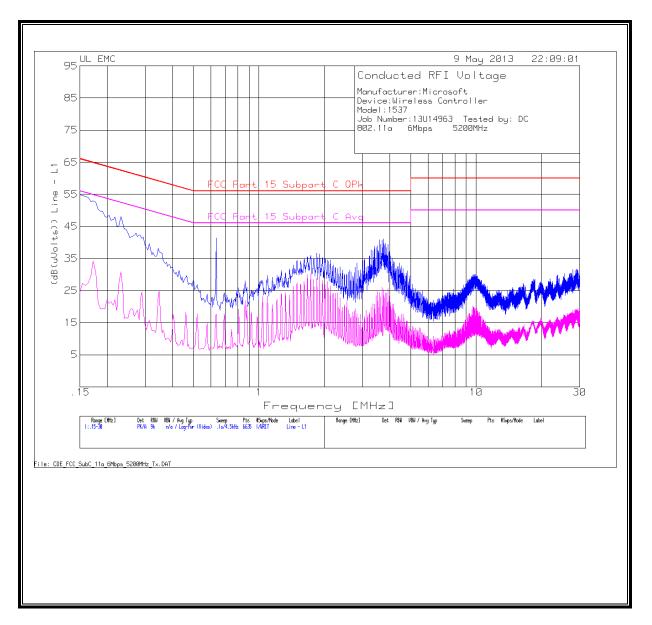


Page 107 of 119

### LINE 2 RESULTS

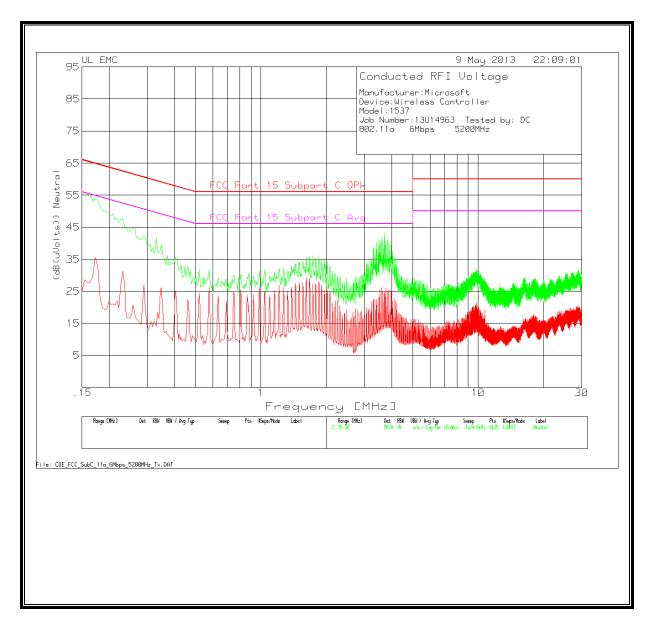


Page 108 of 119


### **RESULTS – 5GHz BAND**

#### **<u>6 WORST EMISSIONS</u>**

| Device:Wireless Controller         Image: Controler <th>Margin (dB)<br/>-1.08<br/>-31.52</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Margin (dB)<br>-1.08<br>-31.52 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Job Number:13U14963 Tested by: DC         A         A         A           802.11a 6Mbps 5200MHz         A         A         A           Line - L1 .15 - 30 MHz         A         A         A           Test Frequency         Meter Reading         Detector         [dB]         (dB(uVolts))         Subpart C QPk         Margin (dB)         Subpart C Avg         M           0.15         44.92         PK         10         54.92         66         -11.08         56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.08                          |
| 802.11a         6Mbps         5200MHz         Image: Constraint of the state of the s | -1.08                          |
| 802.11a         6Mbps         5200MHz         Image: Constraint of the state of the s | -1.08                          |
| Line-L1.15-30MHz 5A636L1<br>Test Frequency Meter Reading Detector [dB] (dB(uVolts)) Subpart C QPk Margin (dB) Subpart C Avg M<br>0.15 44.92 PK 10 54.92 66 -11.08 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.08                          |
| Test Frequency     Meter Reading     Detector     5A636 L1<br>[dB]     FCC Part 15<br>(dB(uVolts))     FCC Part 15<br>Subpart C QPk     FCC Part 15<br>Margin (dB)     FCC Part 15<br>Subpart C Avg     M       0.15     44.92     PK     10     54.92     66     -11.08     56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.08                          |
| Test Frequency     Meter Reading     Detector     5A636 L1<br>[dB]     FCC Part 15<br>(dB(uVolts))     FCC Part 15<br>Subpart C QPk     FCC Part 15<br>Margin (dB)     FCC Part 15<br>Subpart C Avg     M       0.15     44.92     PK     10     54.92     66     -11.08     56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.08                          |
| 0.15 44.92 PK 10 54.92 66 -11.08 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.08                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| 0.15 14.48 Av 10 24.48 55 41.52 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -31 52                         |
| 0.15 14.40 AV 10 24.40 00 -41.52 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
| 0.1725 42.89 PK 10 52.89 64.84 -11.95 54.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.95                          |
| 0.1725 24.24 Av 10 34.24 64.84 -30.6 54.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -20.6                          |
| 0.231 38.05 PK 10 48.05 62.41 -14.36 52.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.36                          |
| 0.231 20.87 Av 10 30.87 62.41 -31.54 52.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -21.54                         |
| 0.636 31.33 PK 10 41.33 56 -14.67 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.67                          |
| 0.636 7.64 Av 10 17.64 56 -38.36 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.36                         |
| 1.8465 26.59 PK 10.1 36.69 56 -19.31 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -9.31                          |
| 1.8465 18.77 Av 10.1 28.87 56 -27.13 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17.13                         |
| 3.75 30.93 PK 10.1 41.03 56 -14.97 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.97                          |
| 3.75 15.23 Av 10.1 25.33 56 -30.67 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -20.67                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| Neutral .15 - 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
| 5A636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| L4Neut FCC Part 15 FCC Part 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| Test Frequency Meter Reading Detector [dB] (dB(uVolts)) Subpart C QPk Margin (dB) Subpart C Avg M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /largin (dB)                   |
| 0.1635 45.05 PK 10 55.05 65.28 -10.23 55.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.23                          |
| 0.1635 17.57 Av 10 27.57 65.28 -37.71 55.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -27.71                         |
| 0.2085 39.25 PK 10 49.25 63.26 -14.01 53.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.01                          |
| 0.2085 11.01 Av 10 21.01 63.26 -42.25 53.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -32.25                         |
| 0.33 31.67 PK 10 41.67 59.45 -17.78 49.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.78                          |
| 0.33 4.01 Av 10 14.01 59.45 -45.44 49.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -35.44                         |
| 0.5775 21.6 PK 10.1 31.7 56 -24.3 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -14.3                          |
| 0.5775 15.99 Av 10.1 26.09 56 -29.91 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -19.91                         |
| 1.734 26.06 PK 10.1 36.16 56 -19.84 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9.84                          |
| 1.734 17.03 Av 10.1 27.13 56 -28.87 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -18.87                         |
| 3.7005 33.02 PK 10.2 43.22 56 -12.78 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.78                          |
| 3.7005 14.46 Av 10.2 24.66 56 -31.34 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -21.34                         |
| PK - Peak detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| Av - Average detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |


Page 109 of 119

### LINE 1 RESULTS



Page 110 of 119

### LINE 2 RESULTS



Page 111 of 119