

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

WIRELESS ACCESSORY RADIO

MODEL NUMBER: 1525

FCC ID: C3K1525 IC: 3048A-1525

REPORT NUMBER: 13U14860-5, Revision B

ISSUE DATE: JUNE 13, 2013

Prepared for MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND WA 98052, U.S.A.

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	05/17/13	Initial Issue	T. LEE
А	06/12/13	Revise EUT name	S.KUWATANI
В	06/13/13	Added a note to explain limits in radiated harmonics data above 1 GHz.	F. Ibrahim

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 79

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	. 5
2.	TEST METHODOLOGY	. 6
3.	FACILITIES AND ACCREDITATION	. 6
4 .	CALIBRATION AND UNCERTAINTY 4.1. MEASURING INSTRUMENT CALIBRATION	
-	4.2. SAMPLE CALCULATION4.3. MEASUREMENT UNCERTAINTY	-
5 5 5	EQUIPMENT UNDER TEST	. 7 . 7 . 7 . 7
5 6.	5.5. WORST-CASE CONFIGURATION AND MODE DESCRIPTION OF TEST SETUP	. 9
7.		
8.	 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 8.1.1. ON TIME AND DUTY CYCLE RESULTS. 8.1.2. DUTY CYCLE PLOTS 8.1.3. MEASUREMENT METHOD FOR POWER AND PPSD. 8.1.4. MEASUREMENT METHOD FOR AVERAGE SPURIOUS EMISSIONS ABOVE 	12 12
	8.1.4. MEASUREMENT METHOD FOR AVERAGE SPURIOUS EMISSIONS ABOVE [•] GHz 14	1
9.		
10.	GHz 14 MEASUREMENT METHODS	14 15 15
10.	GHz 14 MEASUREMENT METHODS	14 15 15 18 21 22

11. RAI	DIATED TEST RESULTS	39
11.1.	LIMITS AND PROCEDURE	39
<i>11.2.</i> 11.2.1 11.2.2		10
12. AC	POWER LINE CONDUCTED EMISSIONS	3
13. MA	XIMUM PERMISSIBLE RF EXPOSURE	57
13.1.	FCC RULES	<u> </u>
13.2.	IC RULES	<u> </u>
13.3.	EQUATIONS	<u>59</u>
13.4.	LIMITS AND IC EXEMPTION	71
13.5.	RF EXPOSURE RESULTS	72
14. SET	ГИР РНОТОЅ	73
14.1.	ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	73
14.2.	RADIATED RF MEASUREMENT SETUP	74
14.3.	RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION	76
14.4.	POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP	79

Page 4 of 79

Pass

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

COMPANY NAME:	MICROSOFT CORPORATIO	DN.				
	ONE MICROSOFT WAY REDMOND, WA 98052, U.S.	Δ				
	REDMOND, WA 30032, 0.0.					
EUT DESCRIPTION:	WIRELESS ACCESSORY R	ADIO				
MODEL:	1525					
SERIAL NUMBER:	SERIAL NUMBER: 0050432165B0 and 0050432165BA (RF);					
	01950291000065330548 (DFS)					
DATE TESTED:	February 14 to April 3, 2013 (I	RF) and May 16 to 17, 2013 (DFS)				
h						
	APPLICABLE STANDARDS					
S	TANDARD	TEST RESULTS				
CFR 47	Part 15 Subpart C	Pass				

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tii (

TIM LEE WISE PROGRAM MANAGER **UL CCS**

Tested By:

Formy Wayper

Tony Wagoner **EMC ENGINEER UL CCS**

UL CCS

Page 5 of 79

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2003, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Wireless Accessory Radio.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	•
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a	9.42	8.75
5180 - 5240	802.11n HT20	9.41	8.73

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an external patch antenna, with a maximum gain of 3.14 dBi at 5 GHz band.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 14.1.23.9.

The EUT driver software installed during testing was 1.0.7.49.

The test utility software used during testing was DutApiBRIDGEETH8782.exe.

Page 7 of 79

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Based on the baseline scan, the worst-case data rates were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0

Radiated emissions for EUT with antenna was performed and passed; therefore, antenna port spurious was not performed.

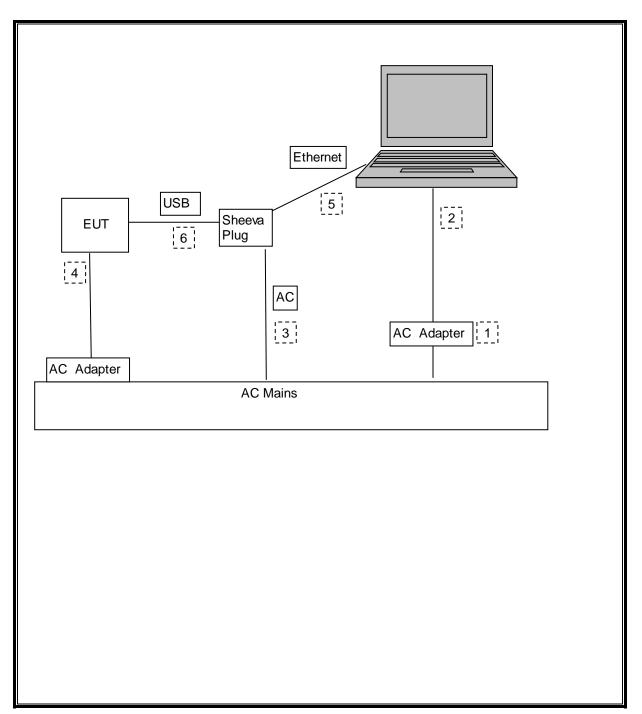
Page 8 of 79

6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop PC	DELL	Vostro 1000	DVT	DoC		
AC-DC Adapter	DELL	LA65NS0-00	CN-ODF263-71615-6C4	DoC		
Sheeva Plug	Globalscale	003-SP1001	1043-002835	N/A		

I/O CABLES


	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	AC	1	USA 3P	Unshielded	1.8	None		
2	DC	1	DC	Unshielded	1.8	None		
3	AC	1	USA 2P	Unshielded	1.5	None		
4	DC	1	DC	Unshielded	1.3	None		
5	Ethernet	1	Ethernet	Unshielded	1	None		
6	USB	1	USB	Unshielded	1.2	None		

TEST SETUP

The EUT is installed in a separate host during the tests. Test software exercised the radio card.

Page 9 of 79

SETUP DIAGRAM FOR TESTS

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

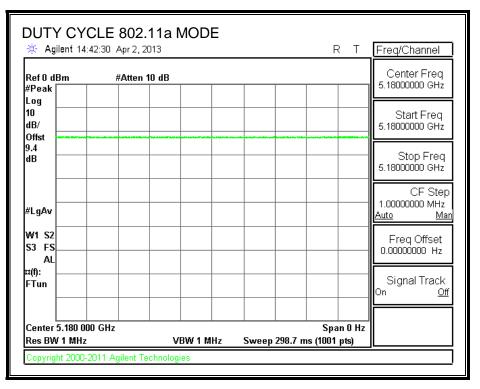
Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
PSA (Conducted)	Agilent	E4446A	C01069	12/20/12	12/20/14	
PSA (Radiated)	Agilent	E4446A	C00986	04/01/13	04/01/14	
Antenna, Horn, 18 GHz	ETS	3117	C01022	02/21/13	02/21/14	
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/13	02/13/14	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/12	10/22/13	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/16/13	01/16/14	
Reject Filter, 5.15-5.35 GHz	Micro-Tronics	BRC13190	N02679	CNR	CNR	
Reject Filter, 5.725-5.825 GHz	Micro-Tronics	BRC13192	N02677	CNR	CNR	
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/13	01/14/14	
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/08/12	08/08/13	
P-Series single channel Power Meter	Agilent / HP	N1911A	T227	10/12/12	10/12/13	
Peak / Average Power Sensor	Agilent / HP	E9323A	T228	10/11/12	10/11/13	

Page 11 of 79

8. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

8.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T	
	В		x	Cycle	Correction Factor	Minimum VBW	
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)	
802.11a 20 MHz	100.00	100	1.000	100.0%	0.00	0.010	
802.11n HT20	100.00	100	1.000	100.0%	0.00	0.010	

8.1.2. DUTY CYCLE PLOTS

🐥 Agilent 14:4	13:46 Apr 2, 2013			RT	Freq/Channel
Ref 0 dBm Peak	#Atten 10 d	B			Center Freq 5.18000000 GHz
.og 0 B/ Dffst					Start Freq 5.18000000 GHz
).4 IB					Stop Freq 5.18000000 GHz
LgAv					CF Step 1.00000000 MHz <u>Auto Mar</u>
V1 S2 53 FS AL					Freq Offset 0.00000000 Hz
i(f): Tun					Signal Track On <u>Off</u>
Center 5.180 00 Res BW 1 MHz) GHz	VBW 1 MHz	Sween 493	Span 0 Hz 1 ms (1001 pts)	

Page 13 of 79

8.1.3. MEASUREMENT METHOD FOR POWER AND PPSD

The Duty Cycle is greater than or equal to 98% therefore KDB 789033 Method SA-1 is used.

8.1.4. MEASUREMENT METHOD FOR AVERAGE SPURIOUS EMISSIONS ABOVE 1 GHz

The Duty Cycle is greater than or equal to 98%, KDB 789033 Method AD with Power RMS Averaging is used.

9. MEASUREMENT METHODS

KDB 558074 Measurement Procedure PK2 is used for power and PKPSD is used for power spectral density.

Unwanted emissions within Restricted Bands are measured using traditional radiated procedures.

Page 14 of 79

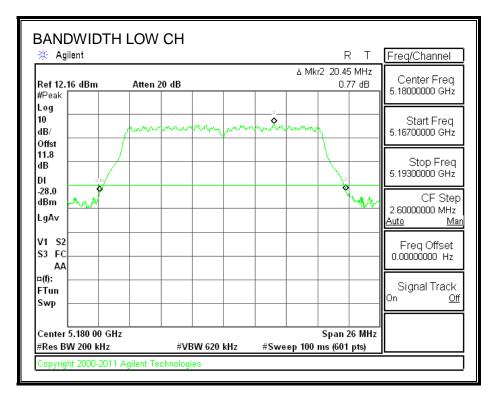
10. ANTENNA PORT TEST RESULTS

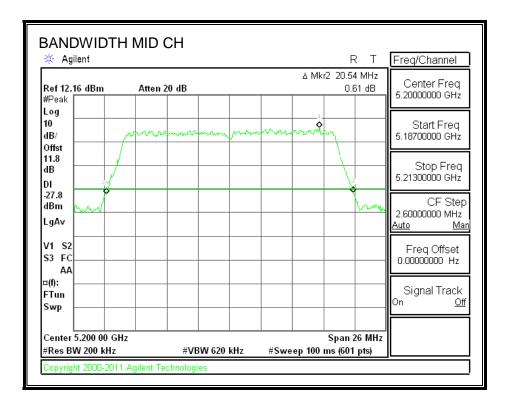
10.1. 802.11a MODE IN THE 5.2 GHz BAND

10.1.1. 26 dB BANDWIDTH

<u>LIMITS</u>

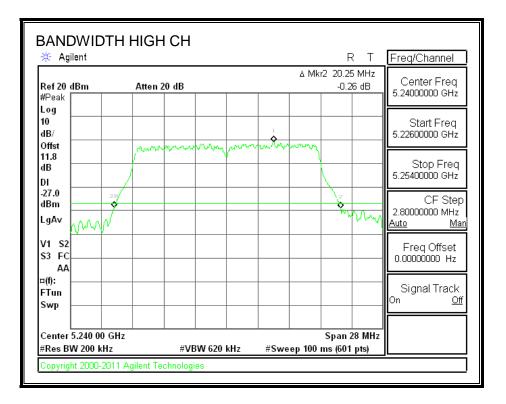
None; for reporting purposes only.


RESULTS


Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	20.5
Mid	5200	20.5
High	5240	20.3

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 15 of 79


26 dB BANDWIDTH

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

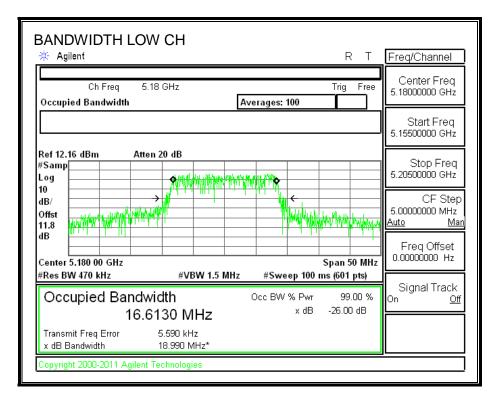
Page 16 of 79

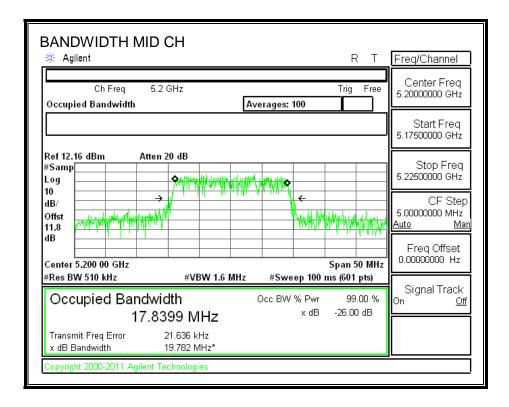
Page 17 of 79

10.1.2. 99% BANDWIDTH

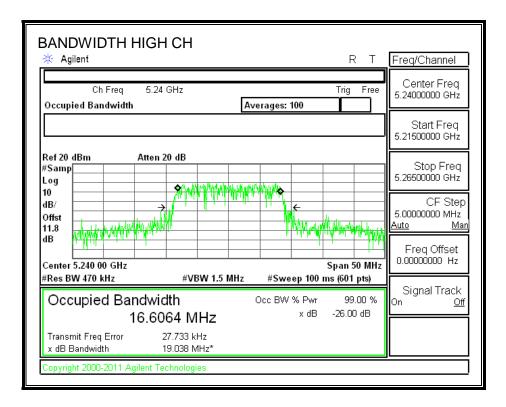
LIMITS

None; for reporting purposes only.


RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	16.6
Mid	5200	17.8
High	5240	16.6

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 18 of 79

99% BANDWIDTH

Page 19 of 79

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 20 of 79

10.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	9.12
Mid	5200	9.33
High	5240	9.90

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 21 of 79

10.1.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 22 of 79

RESULTS

Bandwidth and Antenna Gain

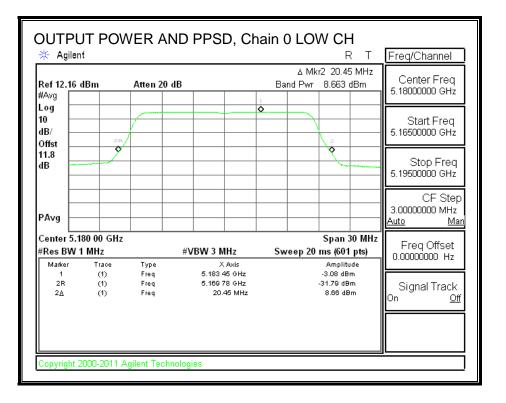
Channel	Frequency	Min	Min	Directional
		26 dB 99%		Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	20.5	16.6	3.14
Mid	5200	20.5	17.8	3.14
High	5240	20.3	16.6	3.14

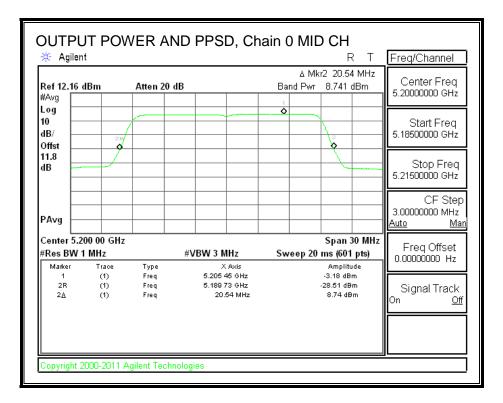
Limits

Channel	Frequency	FCC Power Limit	IC EIRP Limit	Max IC Power	Power Limit	FCC PPSD Limit	IC eirp PSD Limit	PPSD Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	17.00	22.20	19.06	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.51	19.37	17.00	4.00	10.00	4.00
High	5240	17.00	22.20	19.06	17.00	4.00	10.00	4.00

Duty Cycle CF (dB)0.00Included in Calculations of Corr'd Power & PPSD

Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	8.66	8.66	17.00	-8.34
Mid	5200	8.74	8.74	17.00	-8.26
High	5240	9.42	9.42	17.00	-7.59


PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-3.08	-3.08	4.00	-7.08
Mid	5200	-3.18	-3.18	4.00	-7.18
High	5240	-2.02	-2.02	4.00	-6.02

Page 23 of 79

OUTPUT POWER AND PPSD, Chain 0

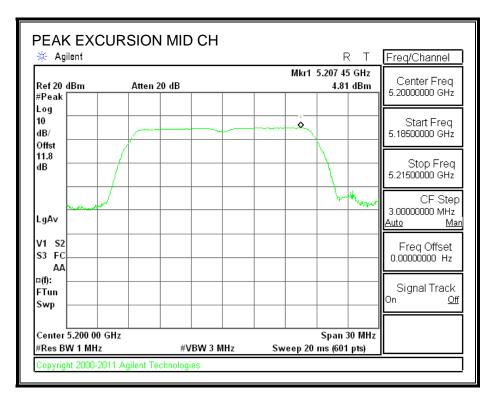
Page 24 of 79

OUTP 🔆 Agile	UT POW	/ER Al	ND PPS	D, Ch	ain 0	HIG	H CH		Freq/C	hannel
Ref 20 dE #Avg	3m	Atten 20	dB				2 20.25 9.415 d			er Freq 1000 GHz
Log — 10 — dB/ —										art Freq 1000 GHz
Offst 11.8 dB	28						8			op Freq 1000 GHz
PAvg –										CF Step 1000 MHz <u>Man</u>
Center 5. #Res BW	240 00 GHz		#VBW 3 N	147	Swoo		Span 3 ns (601			q Offset
Marker 1 2R 2 <u>A</u>	Trace (1) (1) (1) (1)	Type Freq Freq Freq	× 5.246 5.229 :	Axis 70 GHz 88 GHz 25 MHz	Swee		Amplituc -2.02 dBm 30.75 dBn 9.41 dBr	je n n		iooo Hz al Track <u>Off</u>
Copyright	2000-2011 A	gilent Tech	nologies							

Page 25 of 79

10.1.5. PEAK EXCURSION

<u>LIMITS</u>


FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Mid	5200	4.81	-3.18	0.00	7.99	13	-5.01

PEAK EXCURSION

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701H TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

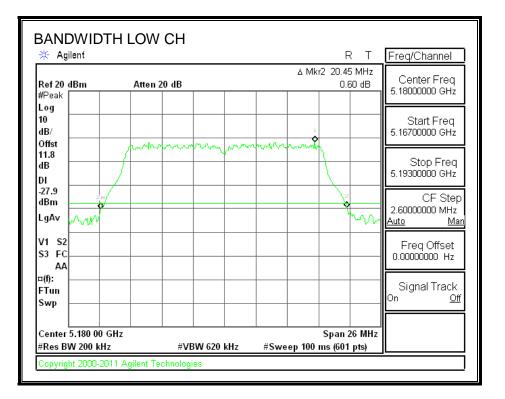
Page 26 of 79

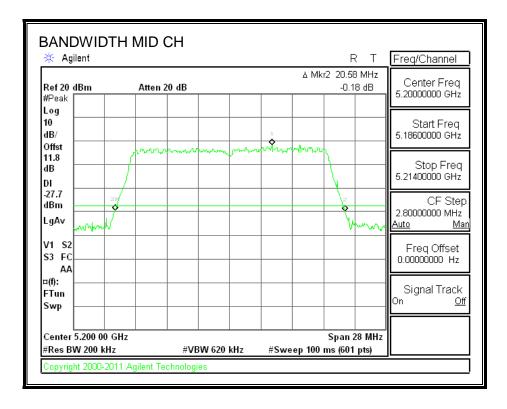
10.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

10.2.1. 26 dB BANDWIDTH

LIMITS

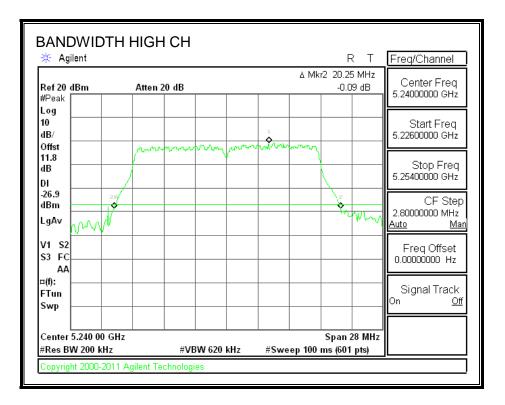
None; for reporting purposes only.


RESULTS


Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	20.5
Mid	5200	20.6
High	5240	20.3

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 27 of 79


26 dB BANDWIDTH

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

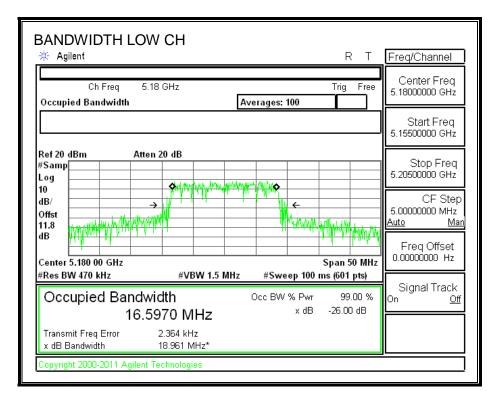
Page 28 of 79

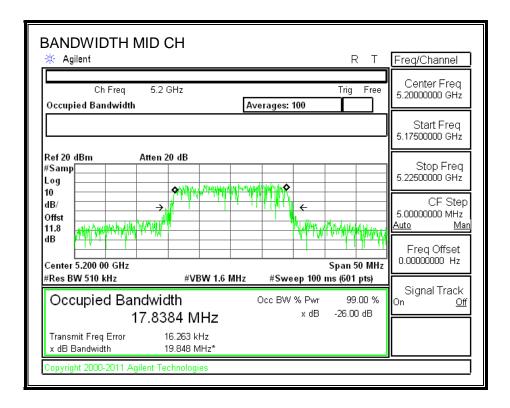
Page 29 of 79

10.2.2. 99% BANDWIDTH

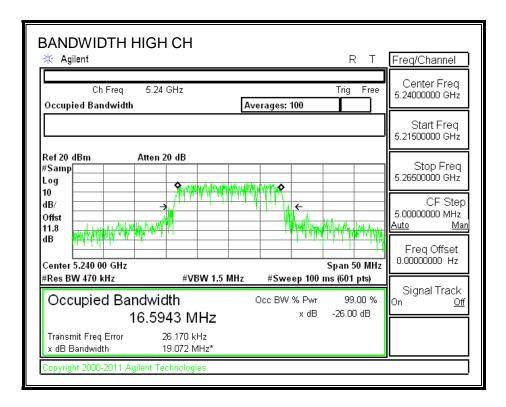
LIMITS

None; for reporting purposes only.


RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	16.6
Mid	5200	17.8
High	5240	16.6

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 30 of 79

99% BANDWIDTH

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701H TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 32 of 79

10.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	9.01
Mid	5200	9.10
High	5240	9.63

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 33 of 79

10.2.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 34 of 79

RESULTS

Bandwidth and Antenna Gain

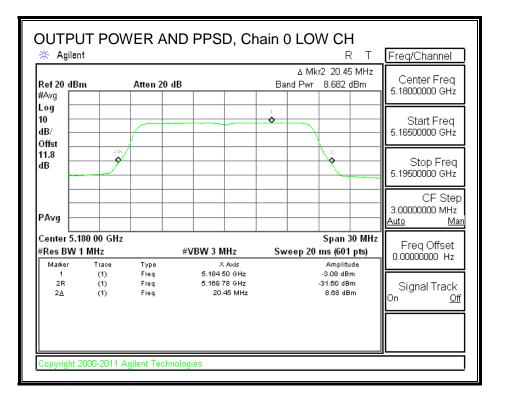
Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	20.5	16.6	3.14
Mid	5200	20.6	17.8	3.14
High	5240	20.3	16.6	3.14

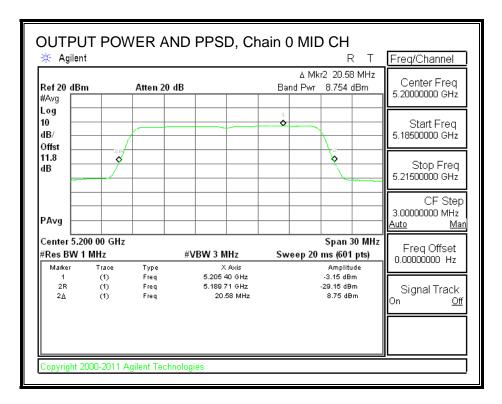
Limits

Channel	Frequency	FCC Power Limit	IC EIRP Limit	Max IC Power	Power Limit	FCC PPSD Limit	IC eirp PSD Limit	PPSD Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	17.00	22.20	19.06	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.51	19.37	17.00	4.00	10.00	4.00
High	5240	17.00	22.20	19.06	17.00	4.00	10.00	4.00

Duty Cycle CF (dB)0.00Included in Calculations of Corr'd Power & PPSD

Output Power Results


Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	8.68	8.68	17.00	-8.32
Mid	5200	8.75	8.75	17.00	-8.25
High	5240	9.41	9.41	17.00	-7.59
<u></u>					


PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-3.08	-3.08	4.00	-7.08
Mid	5200	-3.15	-3.15	4.00	-7.15
High	5240	-2.00	-2.00	4.00	-6.00

Page 35 of 79

OUTPUT POWER AND PPSD, Chain 0

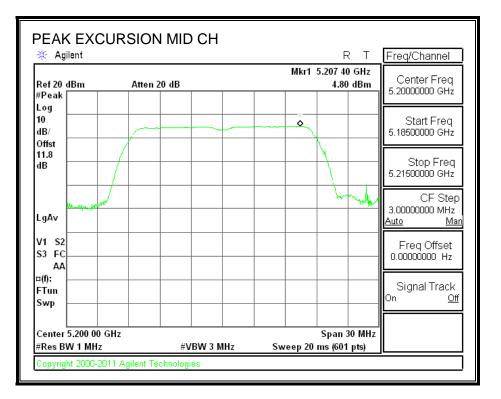
Page 36 of 79

🔆 Agilen				∆ Mkr	R T 2 20.25 MHz	Freq/Channel					
Ref 20 dBi #Avg	m	Atten 20 d	B	Band Pwr	9.413 dBm	Center Freq 5.24000000 GHz					
Log 10 dB/ Offst						Start Freq 5.22500000 GHz					
11.8 dB	28				ě	Stop Freq 5.25500000 GHz					
PAvg —						CF Step 3.00000000 MHz <u>Auto Man</u>					
	Center 5.240 00 GHz Span 30 MH:										
#Res BW ′		Туре	#VBW 3 MHz X Axis	Sweep 20	ms (601 pts)	Freq Offset 0.00000000 Hz					
Marker 1 2R 2∆	Trace (1) (1) (1)	Amplitude -2.00 dBm 30.84 dBm 9.41 dBm	Signal Track On <u>Off</u>								

Page 37 of 79

10.2.5. PEAK EXCURSION

<u>LIMITS</u>


FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

	Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
		(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
ſ	Mid	5200	4.80	-3.15	0.00	7.95	13	-5.05

PEAK EXCURSION

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701H TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 38 of 79

11. RADIATED TEST RESULTS

11.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

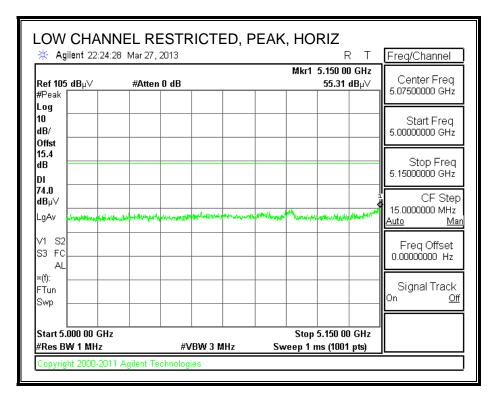
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

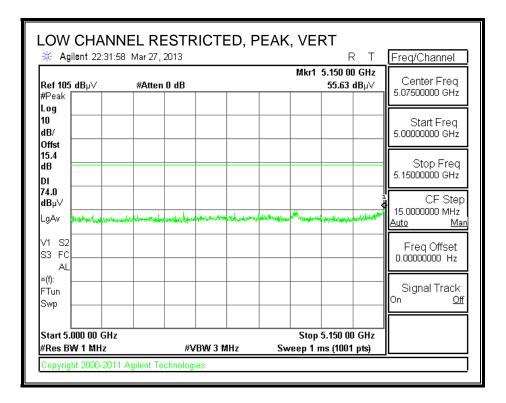
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

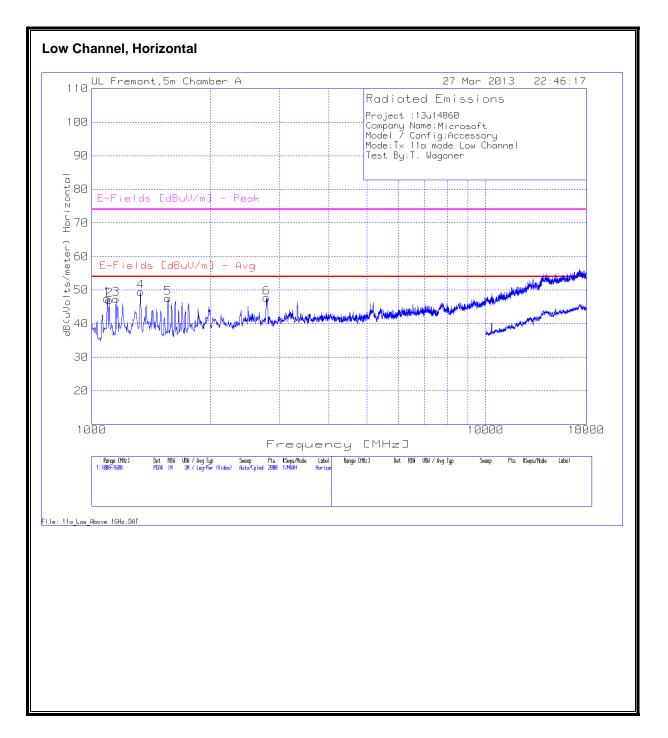

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 39 of 79


11.2. TRANSMITTER ABOVE 1 GHz

11.2.1. TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)


Ref 105 dBµ∨	#Atten 0 dB			07 85 GHz 418 dBµ∨	Freq/Channel Center Freq
#Avg					5.07500000 GHz
.og 10 1B/ Dffst					Start Freq 5.00000000 GHz
15.4 18 01					Stop Freq 5.1500000 GHz
i4.0 IBμ∨ ⊃Avg			1		CF Step 15.0000000 MHz <u>Auto Ma</u>
00 /1 S2 /3 FS AL		****	And we have a second of		Freq Offset 0.00000000 Hz
i(f): :Tun Swp					Signal Track On <u>Off</u>
Start 5.000 00 GHz Res BW 1 MHz	#VBW	3 MHz	Stop 5.1 Sweep 1 ms (50 00 GHz 1001 ptc)	

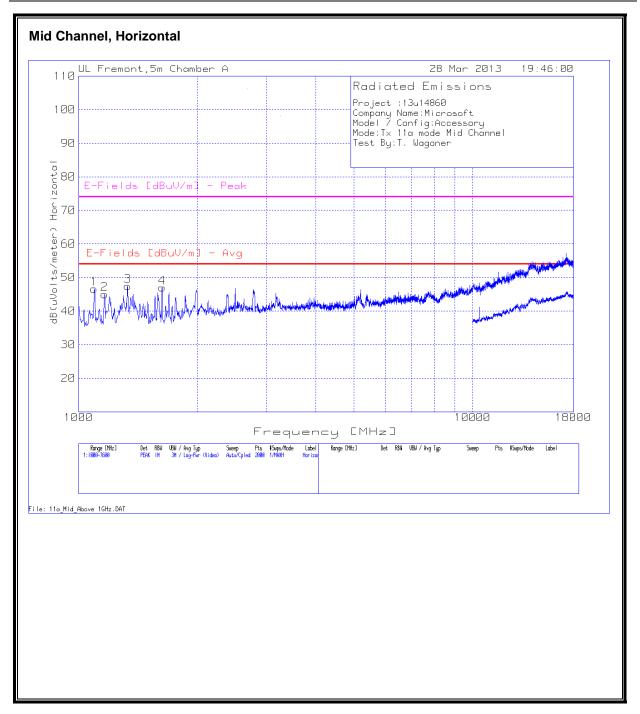
Page 41 of 79

Agilent 22:32:	47 Mar 27, 2013		ML 4.7	R T	Freq/Channel
ef 105 dBµ∨ ^{Avg}	#Atten 0 dB			1.107 55 GHz 4.894 dBµ∨	Center Freq 5.07500000 GHz
og) B/					Start Freq 5.0000000 GHz
5.4 B					Stop Freq 5.1500000 GHz
4.0 Βμ∨ Avg			1		CF Step 15.0000000 MHz <u>Auto Ma</u>
00 1 S2 ********** 3 FS AL		······································		1713-44-174-474-474-474-474-474-474-474-474-	Freq Offset 0.00000000 Hz
(f): Tun wp					Signal Track On <u>Of</u>
tart 5.000 00 GHz Res BW 1 MHz		3 MHz	Stop 5 Sweep 1 m	.150 00 GHz	

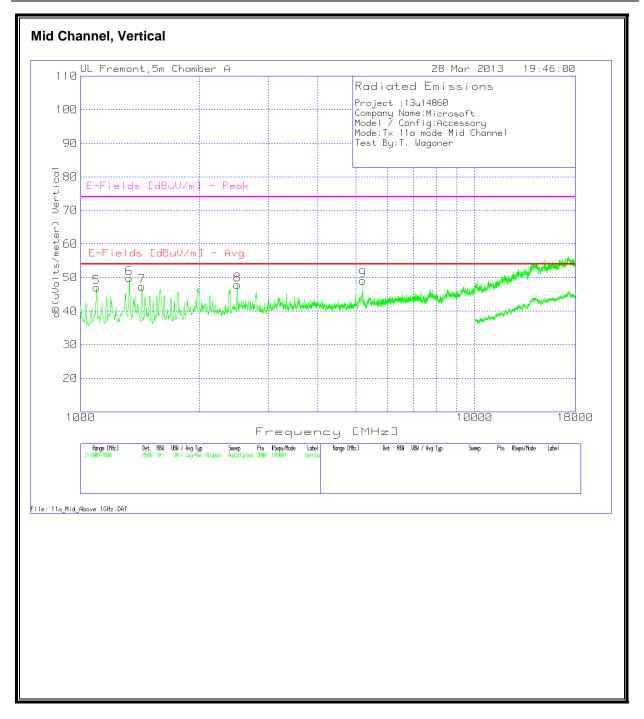
Page 42 of 79

Page 43 of 79

Page 44 of 79


Project :		13u14860	1											
Company N	Name:	Microsoft	c											
Model / Co		Accessory	v l											
Mode:		Tx 11a mc	ode Low Ch	hannel										
Test By:		T. Wagone	er											
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
1	1095.652	55.09	PK	27.9	-38.7	3.1	0	47.39	53.97	-6.58	74	-26.61	100	Horz
2	1108.846	54.59	PK	28	-38.6	3.1	0	47.09	53.97	-6.88	74	-26.91	100	Horz
3	1155.022	53.8	PK	28.8	-38.5	3.2	0	47.3	53.97	-6.67	74	-26.7	100	Horz
4	1333.133	54.21	PK	30.1	-38.1	3.3	0	49.51	53.97	-4.46	74	-24.49	200	Horz
5	1564.018	53.18	PK	28.5	-37.7	3.6	0	47.58	53.97	-6.39	74	-26.42	100	Horz
6	2781.109	46.96	PK	32.6	-36.7	4.8	0	47.66	53.97	-6.31	74	-26.34	200	Horz
7	1155.022	52.88	PK	28.8	-38.5	3.2	0	46.38	53.97	-7.59	74	-27.62	100	Vert
8	1329.835	57.1	PK	30.2	-38.1	3.3	0	52.5	53.97	-1.47	74	-21.5	100	Vert
9	1428.786	53.92	PK	29.5	-37.9	3.4	0	48.92	53.97	-5.05	74	-25.08	100	Vert
10	1501.349	54.19	PK	28.9	-37.7	3.5	0	48.89	53.97	-5.08	74	-25.11	100	Vert
11	2490.855	48.37	PK	32.6	-36.8	4.5	0.1	48.77	53.97	-5.2	74	-25.23	100	Vert
12	3331.934	48.19	PK	32.9	-36.5	5.4	0	49.99	53.97	-3.98	74	-24.01	200	Vert
Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/ m] - Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarit
1331.48	50.53	AD1	30.1	-38.1	3.3	0	45.83	53.97	-8.14	74	-28.17	249	133	Vert
1499.88	46.87	AD1	28.9	-37.8	3.5	0	41.47	53.97	-12.5	74	-32.53	200	127	Vert
3331.81	34.56	AD1	32.9	-36.5	5.4	0	36.36	53.97	-17.61	74	-37.64	230	123	Vert

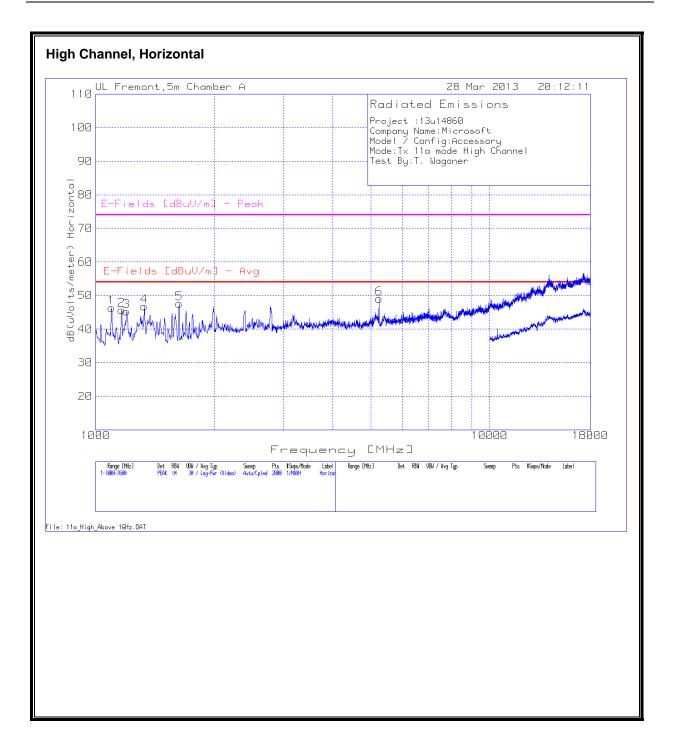
Notes:


1) The PK limit of 74 dBuV/m and the AVG limit of 54 dBuV/m only apply in restricted bands, outside restricted bands the limit is 68.3dBuV/m (-27dBm/MHz eirp). The plots and discrete measurements all show peak emissions are below 54dBuV/m from 1-10 GHz, above 10 GHz emissions exceed the 54dBuV/m but are below 68dBuV/m.

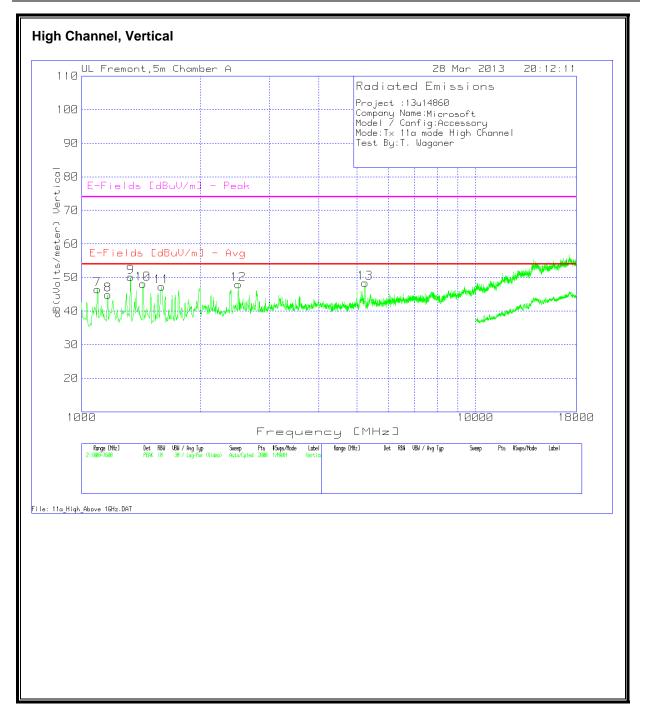
2) There was no signal from EUT above the system noise floor up to 40 GHz.

Page 45 of 79

Page 46 of 79


Page 47 of 79

Project :		13u14860												
Company N	lame:	Microsoft												
Model / Co	nfig:	Accessory	,											
Mode:		Tx 11a mc	de Mid Cł	nannel										
Test By:		T. Wagon	er											
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
1	1095.652	54.35	РК	27.9	-38.7	3.1	0	46.65	53.97	-7.32	74	-27.35	200	Horz
2	1164.918	51.41	РК	28.9	-38.5	3.2	0	45.01	53.97	-8.96	74	-28.99	100	Horz
3	1333.133	52.21	РК	30.1	-38.1	3.3	0	47.51	53.97	-6.46	74	-26.49	200	Horz
4	1629.985	52.38	PK	28.6	-37.6	3.6	0	46.98	53.97	-6.99	74	-27.02	100	Horz
5	1098.951	54.75	PK	27.9	-38.7	3.1	0	47.05	53.97	-6.92	74	-26.95	200	Vert
6	1329.835	54.42	PK	30.2	-38.1	3.3	0	49.82	53.97	-4.15	74	-24.18	100	Vert
7	1432.084	52.37	РК	29.5	-37.9	3.4	0	47.37	53.97	-6.6	74	-26.63	100	Vert
8	2497.451	47.51	PK	32.6	-36.8	4.5	0.1	47.91	53.97	-6.06	74	-26.09	100	Vert
9	5205.397	42.43	PK	34.2	-35.5	7.1	0.9	49.13	53.97	-4.84	74	-24.87	200	Vert
Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
1331.78	43.59	AD1	30.1	-38.1	3.3	0	38.89	53.97	-15.08	74	-35.11	268	195	Horz
5197.02	18.25	AD1	34.2	-35.5	7	0.9	24.85	53.97	-29.12	74	-49.15	338	184	Horz
PK - Peak d	etector													


Notes:

1) The PK limit of 74 dBuV/m and the AVG limit of 54 dBuV/m only apply in restricted bands, outside restricted bands the limit is 68.3dBuV/m (-27dBm/MHz eirp). The plots and discrete measurements all show peak emissions are below 54dBuV/m from 1- 10 GHz, above 10 GHz emissions exceed the 54dBuV/m but are below 68dBuV/m.

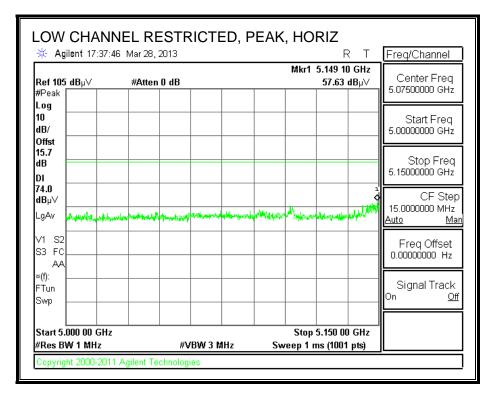
2) There was no signal from EUT above the system noise floor up to 40 GHz.

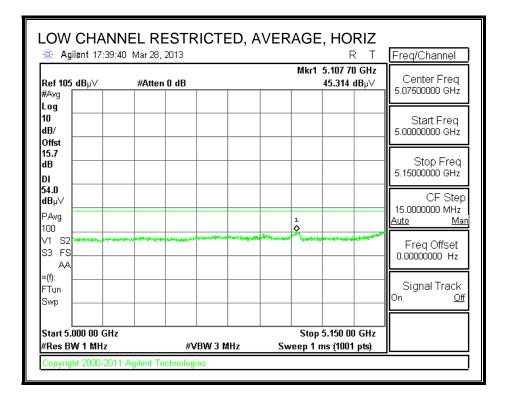
Page 49 of 79

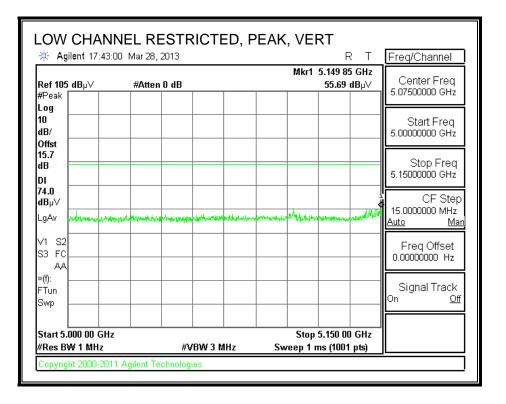
Page 50 of 79

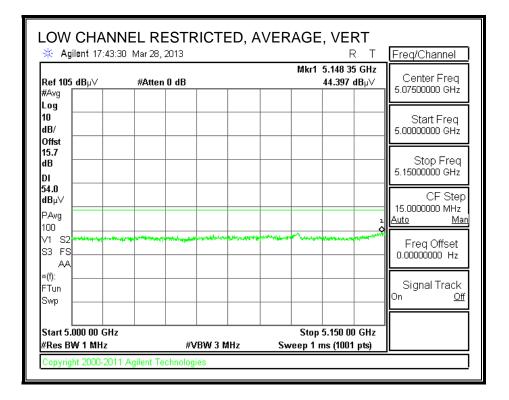
Project :		13u14860												
Company I	Name:	Microsoft												
Model / Co	onfig:	Accessory	1											
Mode:		Tx 11a mo	de High C	hannel										
Test By:		T. Wagon	er											
Marker	Test	Meter		T136 Ant	T144	Cable	T159 BRF	dB(uVolt	E-Fields	Margin	E-Fields	Margin	Height	
No.	Frequency	Reading	Detector	Factor	Preamp	Factor	[dB]	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[cm]	Polarit
-		-		[dB/m]	Gain [dB]	[dB]] - Avg] - Peak	• •		
1	1098.951	54.04	PK	27.9	-38.7	3.1	0	46.34	53.97	-7.63	74	-27.66	200	Horz
2	1164.918	52.08	PK	28.9	-38.5	3.2	0	45.68	53.97	-8.29	74	-28.32	100	Horz
3	1197.901	50.97	PK	29.5	-38.4	3.2	0	45.27	53.97	-8.7	74	-28.73	200	Horz
4	1329.835	51.36	PK	30.2	-38.1	3.3	0	46.76	53.97	-7.21	74	-27.24	200	Horz
5	1629.985	52.96	PK	28.6	-37.6	3.6	0	47.56	53.97	-6.41	74	-26.44	100	Horz
6	5248.276	42.37	РК	34.2	-35.5	7.1	0.9	49.07	53.97	-4.9	74	-24.93	200	Horz
7	1098.951	54.25	РК	27.9	-38.7	3.1	0	46.55	53.97	-7.42	74	-27.45	200	Vert
8	1168.216	51.14	РК	29	-38.5	3.2	0	44.84	53.97	-9.13	74	-29.16	200	Vert
9	1333.133	54.87	РК	30.1	-38.1	3.3	0	50.17	53.97	-3.8	74	-23.83	100	Vert
10	1432.084	53.14	РК	29.5	-37.9	3.4	0	48.14	53.97	-5.83	74	-25.86	100	Vert
11	1597.001	52.97	РК	28.3	-37.6	3.6	0	47.27	53.97	-6.7	74	-26.73	100	Vert
12	2500.75	47.75	РК	32.6	-36.8	4.5	0	48.05	53.97	-5.92	74	-25.95	100	Vert
13	5248.276	41.69	РК	34.2	-35.5	7.1	0.9	48.39	53.97	-5.58	74	-25.61	200	Vert
Test	Meter		T136 Ant	T144	Cable	T159	dB(uVolt	E-Fields	Margin	E-Fields	Margin	Azimuth	Hoight	
Frequency		Detector	Factor	Preamp	Factor	BRF	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[Degs]	[cm]	Polarit
requeity	neaung		[dB/m]	Gain [dB]	[dB]	[dB]	symeter)] - Avg	(ub)] - Peak	(ub)	[Deg2]	լսոյ	
5246.82	34.2	AD1	34.2	-35.5	7.1	0.9	40.9	53.97	-13.07	74	-33.1	336	200	Horz
1331.55	43.3	AD1	30.1	-38.1	3.3	0	38.6	53.97	-15.37	74	-35.4	330	237	Vert
PK - Peak c	letector													

Notes:

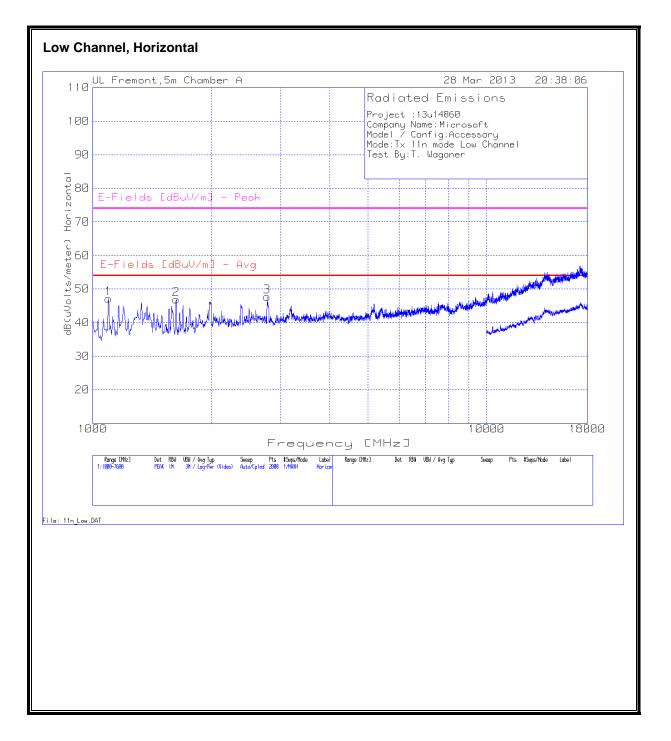

1) The PK limit of 74 dBuV/m and the AVG limit of 54 dBuV/m only apply in restricted bands, outside restricted bands the limit is 68.3dBuV/m (-27dBm/MHz eirp). The plots and discrete measurements all show peak emissions are below 54dBuV/m from 1- 10 GHz, above 10 GHz emissions exceed the 54dBuV/m but are below 68dBuV/m.

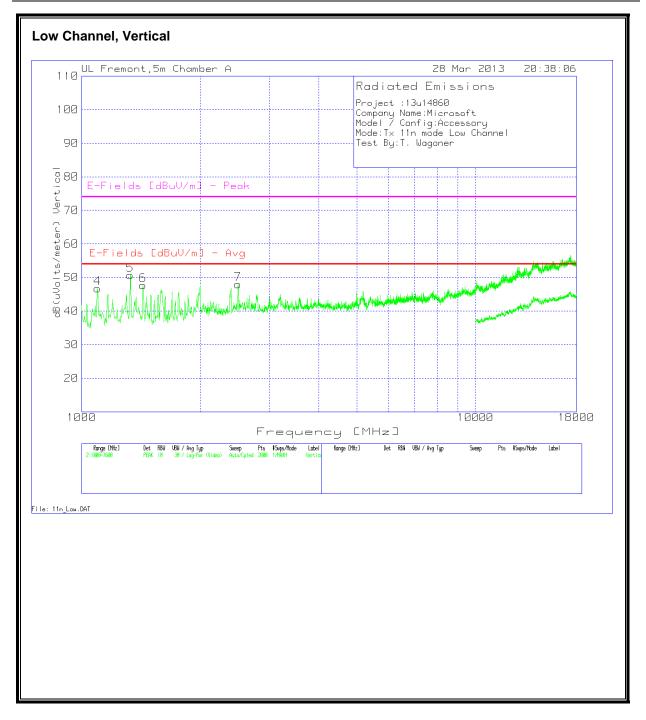

2) There was no signal from EUT above the system noise floor up to 40 GHz.


Page 51 of 79


11.2.2. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)



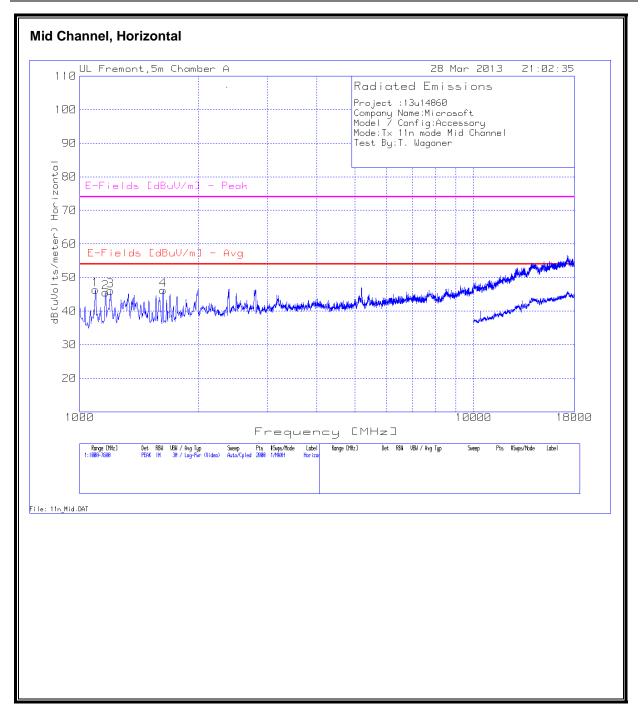


Page 53 of 79

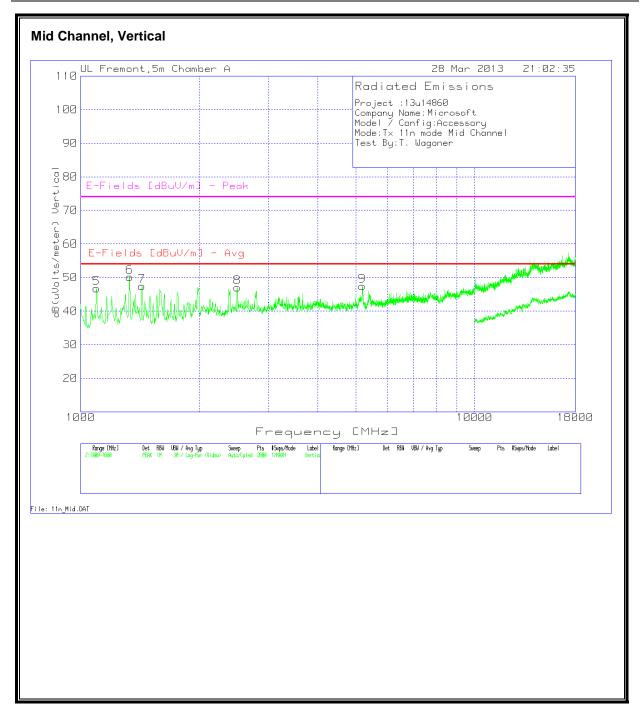
HARMONICS AND SPURIOUS EMISSIONS

Page 54 of 79

Page 55 of 79


Project :		13u14860												
Company N	lame:	Microsoft												
Model / Co	nfig:	Accessory	1											
Mode:		Tx 11n mc	ode Low Cl	nannel										
Test By:		T. Wagon	er											
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
1	1098.951	54.93	РК	27.9	-38.7	3.1	0	47.23	53.97	-6.74	74	-26.77	200	Horz
2	1629.985	52.26	РК	28.6	-37.6	3.6	0	46.86	53.97	-7.11	74	-27.14	100	Horz
3	2771.214	47.08	РК	32.6	-36.8	4.8	0	47.68	53.97	-6.29	74	-26.32	200	Horz
4	1098.951	54.42	РК	27.9	-38.7	3.1	0	46.72	53.97	-7.25	74	-27.28	200	Vert
5	1329.835	55.26	РК	30.2	-38.1	3.3	0	50.66	53.97	-3.31	74	-23.34	100	Vert
6	1432.084	52.72	РК	29.5	-37.9	3.4	0	47.72	53.97	-6.25	74	-26.28	100	Vert
7	2490.855	47.59	РК	32.6	-36.8	4.5	0.1	47.99	53.97	-5.98	74	-26.01	100	Vert
Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
1331.55	43.3	AD1	30.1	-38.1	3.3	0	38.6	53.97	-15.37	74	-35.4	330	237	Vert
PK - Peak d	etector													
AD1 - KDB	789033 v01ri	02 G)6) Me	thod: AD	Primary Po	wer Avera	ge								

Notes:


1) The PK limit of 74 dBuV/m and the AVG limit of 54 dBuV/m only apply in restricted bands, outside restricted bands the limit is 68.3dBuV/m (-27dBm/MHz eirp). The plots and discrete measurements all show peak emissions are below 54dBuV/m from 1- 10 GHz, above 10 GHz emissions exceed the 54dBuV/m but are below 68dBuV/m.

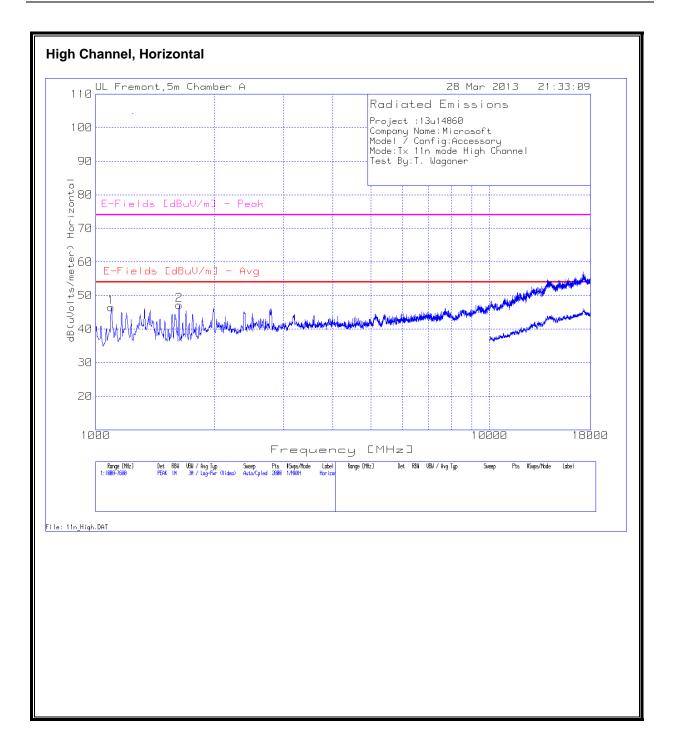
2) There was no signal from EUT above the system noise floor up to 40 GHz.

Page 56 of 79

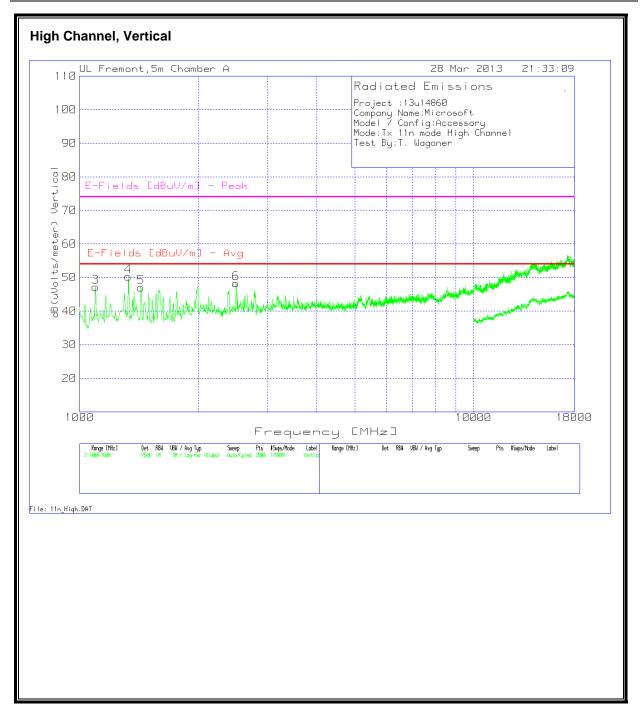
Page 57 of 79

Page 58 of 79

Mid Channel, Data


Mid Cha	annel, D	ata												
Project :		13u14860												
Company N	Name:	Microsoft												
Model / Co	onfig:	Accessory												
Mode:		Tx 11n mo	de Mid Ch	annel										
Test By:	1	T. Wagone	er											
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
1	1098.951	54.11	PK	27.9	-38.7	3.1	0	46.41	53.97	-7.56	74	-27.59	100	Horz
2	1164.918	52.01	PK	28.9	-38.5	3.2	0	45.61	53.97	-8.36	74	-28.39	100	Horz
3	1197.901	51.84	PK	29.5	-38.4	3.2	0	46.14	53.97	-7.83	74	-27.86	200	Horz
4	1629.985	51.59	PK	28.6	-37.6	3.6	0	46.19	53.97	-7.78	74	-27.81	100	Horz
5	1098.951	54.49	PK	27.9	-38.7	3.1	0	46.79	53.97	-7.18	74	-27.21	200	Vert
6	1333.133	54.88	РК	30.1	-38.1	3.3	0	50.18	53.97	-3.79	74	-23.82	100	Vert
7	1432.084	52.5	PK	29.5	-37.9	3.4	0	47.5	53.97	-6.47	74	-26.5	100	Vert
8	2497.451	46.68	PK	32.6	-36.8	4.5	0.1	47.08	53.97	-6.89	74	-26.92	100	Vert
9	5192.204	40.81	PK	34.2	-35.5	7	0.9	47.41	53.97	-6.56	74	-26.59	200	Vert
Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolt s/meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
1331.15	44.63	AD1	30.1	-38.1	3.3	0	39.93	53.97	-14.04	74	-34.07	271	198	Horz
PK - Peak c	detector													
AD1 - KDB	789033 v01r	02 G)6) Me	thod: AD P	rimary Pov	ver Averag	ge								

Notes:


1) The PK limit of 74 dBuV/m and the AVG limit of 54 dBuV/m only apply in restricted bands, outside restricted bands the limit is 68.3dBuV/m (-27dBm/MHz eirp). The plots and discrete measurements all show peak emissions are below 54dBuV/m from 1- 10 GHz, above 10 GHz emissions exceed the 54dBuV/m but are below 68dBuV/m.

2) There was no signal from EUT above the system noise floor up to 40 GHz.

Page 59 of 79

Page 60 of 79

Page 61 of 79

Project :		13u14860												
Company N	Name:	Microsoft												
Model / Co	onfig:	Accessory												
Mode:		Tx 11n mo	de High Ch	nannel										
Test By:		T. Wagone	er											
Marker No.	Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]	Polarity
1	1095.652	54.27	PK	27.9	-38.7	3.1	0	46.57	53.97	-7.4	74	-27.43	200	Horz
2	1629.985	52.56	PK	28.6	-37.6	3.6	0	47.16	53.97	-6.81	74	-26.84	100	Horz
3	1098.951	54.83	PK	27.9	-38.7	3.1	0	47.13	53.97	-6.84	74	-26.87	200	Vert
4	1329.835	54.92	РК	30.2	-38.1	3.3	0	50.32	53.97	-3.65	74	-23.68	100	Vert
5	1432.084	52.06	РК	29.5	-37.9	3.4	0	47.06	53.97	-6.91	74	-26.94	100	Vert
6	2490.855	47.93	РК	32.6	-36.8	4.5	0.1	48.33	53.97	-5.64	74	-25.67	100	Vert
Test Frequency	Meter Reading	Detector	T136 Ant Factor [dB/m]	T144 Preamp Gain [dB]	Cable Factor [dB]	T159 BRF [dB]	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
1331.55	43.3	AD1	30.1	-38.1	3.3	0	38.6	53.97	-15.37	74	-35.4	330	237	Vert
PK - Peak d	letector													
AD1 - KDB	789033 v01r	02 G)6) Me	thod: AD P	rimary Pov	wer Averag	ge								

Notes:

1) The PK limit of 74 dBuV/m and the AVG limit of 54 dBuV/m only apply in restricted bands, outside restricted bands the limit is 68.3dBuV/m (-27dBm/MHz eirp). The plots and discrete measurements all show peak emissions are below 54dBuV/m from 1- 10 GHz, above 10 GHz emissions exceed the 54dBuV/m but are below 68dBuV/m.

2) There was no signal from EUT above the system noise floor up to 40 GHz.

Page 62 of 79

12. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 7.2.2

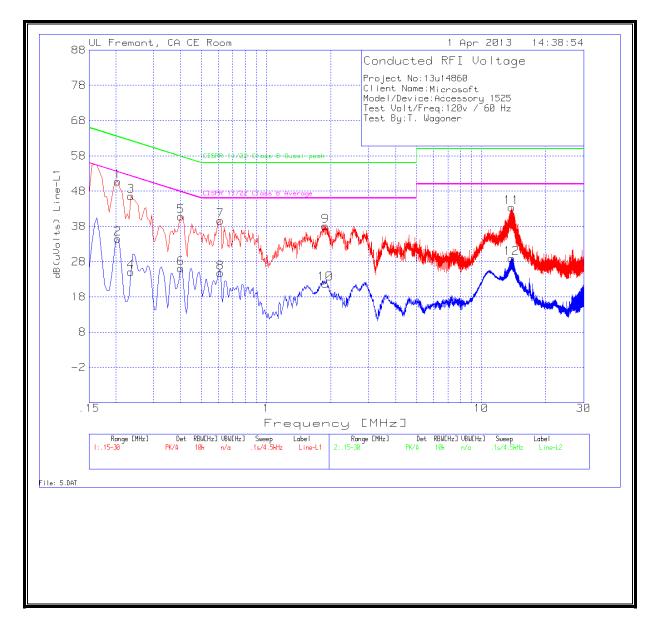
Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

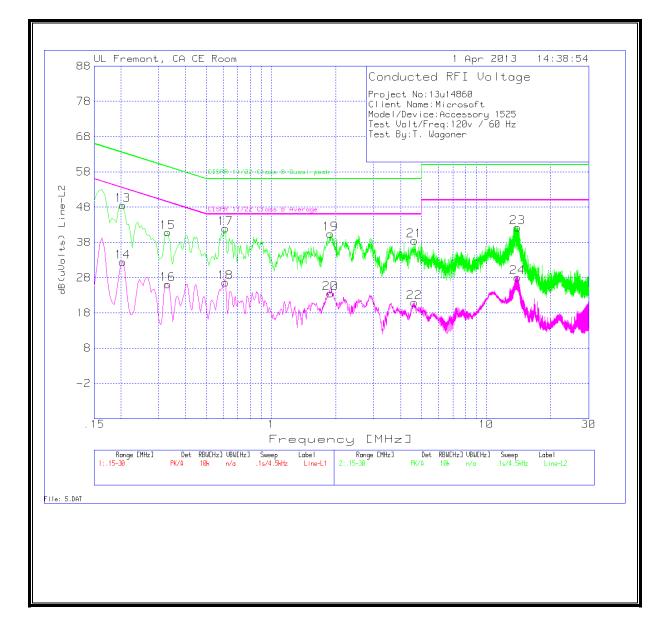
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

6 WORST EMISSIONS


Page 63 of 79

LINE 1 RESULTS

Page 64 of 79

LINE 2 RESULTS

Page 65 of 79

Project No	:	13u14860							
Client Name:		Microsoft							
Model/Device:		Accessory 1525							
Test Volt/Freq:		120v / 60 Hz							
Test By:		T. Wagoner							
Line-L1 .15	- 30MHz								
Test Frequency	Meter Reading	Detector		LC Cables 1&3.TXT (dB)	dB(uVolts)	CISPR 11/22 Class B Quasi-peak	Margin	CISPR 11/22 Class B Average	Margin
0.204	50.62	РК	0.1	0	50.72	63.4	-12.68	-	-
0.204	34.35	Av	0.1	0	34.45	-	-	53.4	-18.95
0.2355	46.46	РК	0.1	0	46.56	62.3	-15.74	-	-
0.2355	25.04	Av	0.1	0	25.14	-	-	52.3	-27.1
0.402	40.75	РК	0.1	0	40.85	57.8	-16.95	-	-
0.402	26.04	Av	0.1	0	26.14	-	-	47.8	-21.6
0.6135	39.57	РК	0.1	0	39.67	56	-16.33	-	-
0.6135	24.78	Av	0.1	0	24.88	-	-	46	-21.1
1.887	37.96	РК	0.1	0.1	38.16	56	-17.84	-	-
1.887	21.48		0.1	0.1	21.68	-	-	46	-24.3
13.839	43.04	РК	0.2	0.2	43.44	60	-16.56	-	-
13.839	28.56	Av	0.2	0.2	28.96	-	-	50	-21.04
Line-L2 .15	- 30MHz								
Test Frequency	Meter Reading	Detector		LC Cables 2&3.TXT (dB)	dB(uVolts)	CISPR 11/22 Class B Quasi-peak	Margin	CISPR 11/22 Class B Average	Margir
0.204	48.42	РК	0.1	0	48.52	63.4	-14.88	-	-
0.204	32.36	Av	0.1	0	32.46	-	-	53.4	-20.94
0.33	40.77	РК	0.1	0	40.87	59.5	-18.63	-	-
0.33	26.03	Av	0.1	0	26.13	-	-	49.5	-23.3
0.6135	41.82	РК	0.1	0	41.92	56	-14.08	-	-
0.6135	26.56	Av	0.1	0	26.66	-	-	46	-19.34
1.887	40.18	РК	0.1	0.1	40.38	56	-15.62	-	-
1.887	23.35	Av	0.1	0.1	23.55	-	-	46	-22.4
4.6365	38.28	РК	0.1	0.1	38.48	56	-17.52	-	-
4.6365			0.1	0.1	20.94	-	-	46	-25.06
13.965			0.2	0.2	42.2	60	-17.8	-	-
13.965			0.2	0.2		-	-	50	-21.9
PK - Peak c									

13. MAXIMUM PERMISSIBLE RF EXPOSURE

13.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lin	its for Occupational	/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34 1.34–30	614 824 <i>/</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30	

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30	
1500–100,000			1.0	30	

f = frequency in MHz

* = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
 Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.

exposure or can not exercise control over their exposure.

13.2. **IC RULES**

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

posed Workers (Including the General Public)								
1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)				
0.003–1	280	2.19		6				
1–10	280/f	2.19/ <i>f</i>		6				
10–30	28	2.19/ <i>f</i>		6				
30–300	28	0.073	2*	6				
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6				
1 500–15 000	61.4	0.163	10	6				
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}				
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}				

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm².
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 68 of 79

13.3. EQUATIONS

POWER DENSITY

Power density is given by:

S = EIRP / (4 * Pi * D^2)

Where

S = Power density in mW/cm² EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

Page 69 of 79

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

Page 70 of 79

13.4. LIMITS AND IC EXEMPTION

VARIABLE LIMITS

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency:

824 MHz / 1500 = 0.55 mW/cm² (FCC) 824 MHz / 150 = 5.5 W/m² (IC).

FIXED LIMITS

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2 From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

•below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W;

•at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.

Page 71 of 79

13.5. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

Calculation for the Accessory Radio

Single Chain and non-colocated transmitters									
Band	Mode	Separatio	IC						
		Distance	Power	Gain	Cycle		Density	Density	
		(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)	
5 GHz	WLAN	20	11.50	3.14	100.0	29.1	0.006	0.06	

Worst Case calculation of both Radios

Multiple chain or colocated transmitters									
Band	Mode	Chain	Separatio	Output	Antenna	Duty	EIRP	FCC Power	IC
		for	Distance	Power	Gain	Cycle		Density	Density
		ΜΙΜΟ	(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)	(W/m^2)
5 GHz	Accessory WLAN	1		11.50	3.14	100.0	29.1		
2.4 GHz	Network WLAN	2		17.50	3.38	100.0	122.5		
2.4 GHz	Network WLAN	3		17.50	4.61	100.0	162.6		
	Combined		20				331.2	0.066	0.66

Note: antenna gains in the tables above are worst-case gains for individual chains

The device operates above 1.5 GHz with a maximum EIRP less than or equal to 5 Watts as a mobile device with a minimum separation distance of 20 cm, therefore it is exempt from routine RF Exposure Evaluation under RSS-102.

Page 72 of 79