Microsoft Corporation

Wireless Headset – BT, Model: 1481

Report No. MCSO1576

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2011 Northwest EMC, Inc

III roc22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: August 5, 2011 Microsoft Corporation Model: 1481

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Spurious Radiated Emissions	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Occupied Bandwidth	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Output Power	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Power Spectral Density	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Spurious Conducted Emissions	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Band Edge Compliance	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Powerline Conducted Emissions	FCC 15.207:2011	ANSI C63.10:2009	Pass	
Channel Spacing	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Dwell Time	FCC 15.247:2011	ANSI C63.10:2009	Pass	
Number of Hopping Frequencies	FCC 15.247:2011	ANSI C63.10:2009	Pass	

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400;

Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By:

Dean Ghizzone, President

NVLAP

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Product Description

Rev 11/17/06

Party Requesting the Test

Company Name:	Microsoft Corporation
Address:	One Microsoft Way
City, State, Zip:	Redmond, WA 98052-6399
Test Requested By:	Kitty Tam
Model:	1481
First Date of Test:	7/11/2011
Last Date of Test:	8/5/2011
Receipt Date of Samples:	5/17/2011
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):	
Bluetooth Radio	

Testing Objective:	
To demonstrate compliance to FCC 15.247 requirements.	

Configurations

Revision 9/21/05

CONFIGURATION 4 MCSO1576

Software/Firmware Running during test		
Description	Version	
BlueTest3	BlueTest3	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headset - Direct Connect BT	Microsoft Corporation	1481	C10

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Programming harness	Microsoft Corporation	None	None	

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Computer	Dell	D600	7SLS71	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.8m	No	Headset	Computer
Programming harness No 1.8m No Headset USB cable					
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 7 MCSO1576

Software/Firmware Running during test		
Description	Version	
BlueTest3	BlueTest3	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headset - BT	Microsoft Corporation	1481	C12

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Computer	Dell	D600	7SLS71			
Cradle	Microsoft Corporation	1502	EV2 B 01			
Power Adapter	Dell	PS-1900-0202	CN0U7809-71615-SAO-1A18			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.8m	No	Computer	Cradle
DC Power	No	1.8m	PA	Computer	Power Adapter
AC Power	No	1.8m	No	Power Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configurations

Revision 9/21/05

CONFIGURATION 1 MCSO1579

Software/Firmware Running during test			
Description	Version		
BlueTest3	BlueTest3		

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Headset - Direct Connect BT	Microsoft Corporation	1481	C35		

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Computer	Dell	D600	7SLS71				
Programming Harness	Microsoft Corporation	None	None				
Power Adapter	Dell	PS-1900-0202	CN0U7809-71615-SAO-1A18				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.8m	No	Computer	Programming Harness
Programming Harness	No	1.8m	No	Headset	USB cable
USB	No	1.0m	No	Headset	Computer
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 1 MCSO1581

Software/Firmware Running during test	
Description	Version
BlueTest3	BlueTest3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headset - BT	Microsoft Corporation	1481	C31

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Computer	Dell	PP05L	7SLS71			
Programming Harness	Microsoft Corporation	None	None			
USB-SPI Converter	CSR	USB-SPI Converter	241164			
Power Adapter	Dell	PA-1900-02D2	CN0U7809-71615-SAO-1A18			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.8m	No	Computer	Programming harness
Programming harness	No	1.8m	No	Headset	USB cable
USB	Yes	1.0m	No	Headset	Computer
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configurations

Revision 9/21/05

CONFIGURATION 2 MCSO1581

Software/Firmware Running during test	
Description	Version
BlueTest3	BlueTest3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headset - Direct Connect BT	Microsoft Corporation	1481	C35

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Programming Harness	Microsoft Corporation	None	None			
USB-SPI Converter	CSR	USB-SPI Converter	241164			

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Computer	Dell	PP05L	7SLS71			
Power Adapter	Dell	PA-1900-02D2	CN0U7809-71615-SAO-1A18			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB to Micro USB cable	Yes	1.1m	No	USB Extension cable	Headset - BT		
Programming harness	No	1.8m	No	Headset	Ethernet Cable		
USB	Yes	2.0m	No	Computer	USB-SPI Converter		
Ethernet	Yes	1.0m	No	USB-SPI Converter	Programming harness		
DC Power	No	1.8m	Yes	Computer	Power Adapter		
AC Power	No	1.8m	No	Power Adapter	AC Mains		
PA = Cable is perma	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

		Eq	uipment modific	ations	
Item	Date	Test	Modification	Note	Disposition of EUT
1	7/11/2011	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	7/11/2011	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	7/11/2011	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	7/19/2011	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.
5	7/25/2011	Channel Spacing	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	7/25/2011	Dwell Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	7/25/2011	Number of Hopping Frequencies	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.
8	7/28/2011	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
9	8/3/2011	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
10	8/5/2011	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

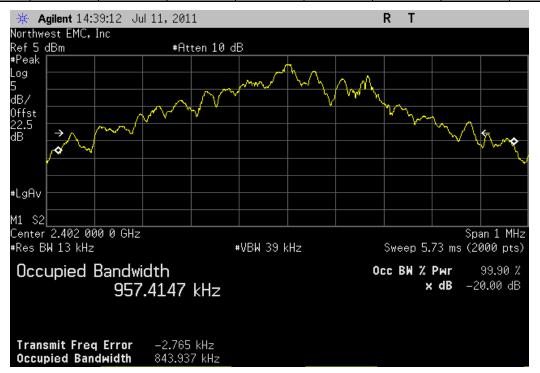
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

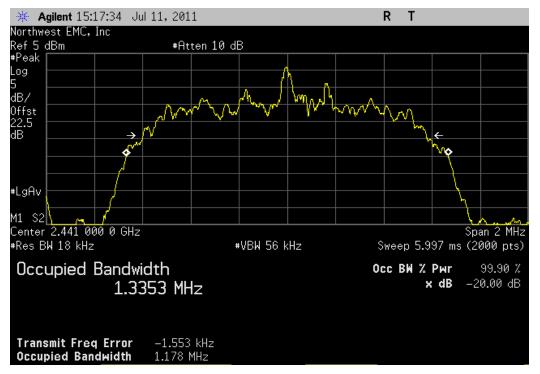
This limit is derived from FCC 15.247(a)(1): "Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW."


This was based on the original Bluetooth that had a channel separation of 1 MHz, which results in a 1.5 MHz bandwidth using the information above. Since the 1 MHz represents the worst case for all reports that is what is used, even though the other FHSS radio in this device would actually be larger it still meets. 2/3 * 1.5 MHz = 1 MHz hopping channel.

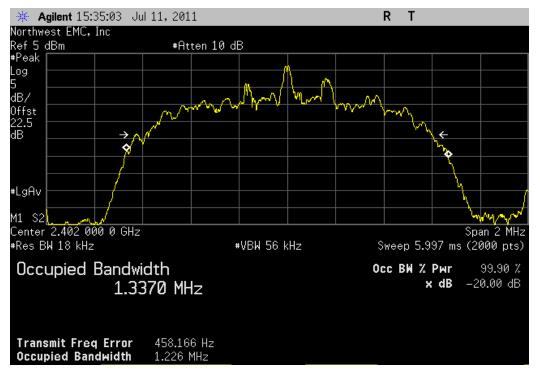
The 20 dB occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting in a no hop mode at its maximum data rate for each of the three different modulations available.

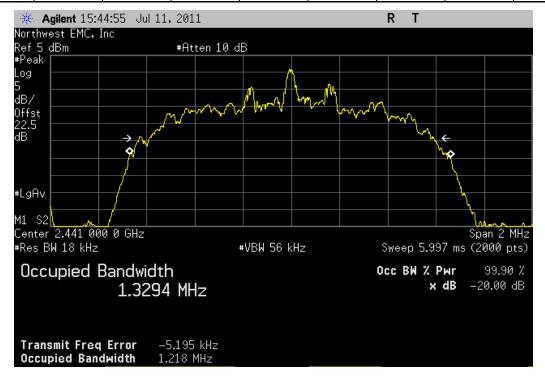
EMC		Occupied Bandwidth			XMit 2011.04.2 PsaTx 2011.07.0
	T: Model: 1481		Work Order:		
Serial Number				07/11/11	
	r: Microsoft Corporation		Temperature:		
Attendees			Humidity:		
	t: None	n luon	Barometric Pres.:		
	y: Rod Peloquin	Power: USB	Job Site:	EV06	
TEST SPECIFICAT	HONS	TEST METHOD			
FCC 15.247:2011		ANSI C63.10:2009			
00111151150					
COMMENTS					
Transmitting Blue	etooth Radio. 0.5 dB added	for adapter cable			
	M TEGT OTANDARD				
DEVIATIONS FRO	JW TEST STANDARD				
DEVIATIONS FRO	JW TEST STANDARD	4			
		Rocking to Rolein			
DEVIATIONS FRO	4	Roley be Roley			
		Signature Roley			
Configuration #		Signature Roley to Roley	Value	Limit	Result
Configuration #	4	Signature Rolly be Fellings			
Configuration #	4 Low Channel	Signature Relians	843.937 kHz	< 1.5 MHz	Pass
Configuration #	4 Low Channel Mid Channel	Signature Roley	843.937 kHz 846.824 kHz	< 1.5 MHz < 1.5 MHz	Pass Pass
Configuration #	4 Low Channel	Signature Reliegs	843.937 kHz	< 1.5 MHz	Pass
Configuration #	4 Low Channel Mid Channel High Channel	Signature Relians	843.937 kHz 846.824 kHz 882.076 kHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass
Configuration #	Low Channel Mid Channel High Channel Low Channel	Signature Rolling	843.937 kHz 846.824 kHz 882.076 kHz 1.196 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass
Configuration #	Low Channel Mid Channel High Channel Low Channel Mid Channel	Signature Reliegs	843.937 kHz 846.824 kHz 882.076 kHz 1.196 MHz 1.178 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass
Configuration # DH5, GFSK 2DH5, 4-DQPSK	Low Channel Mid Channel High Channel Low Channel	Signature Relians	843.937 kHz 846.824 kHz 882.076 kHz 1.196 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass
Configuration # DH5, GFSK 2DH5, 4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signature Rolly be Felings	843.937 kHz 846.824 kHz 882.076 kHz 1.196 MHz 1.178 MHz 1.191 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel	Signature Religy	843.937 kHz 846.824 kHz 882.076 kHz 1.196 MHz 1.178 MHz 1.191 MHz 1.226 MHz	< 1.5 MHz	Pass Pass Pass Pass Pass Pass
Configuration # DH5, GFSK 2DH5, 4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signature Relians	843.937 kHz 846.824 kHz 882.076 kHz 1.196 MHz 1.178 MHz 1.191 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass Pass

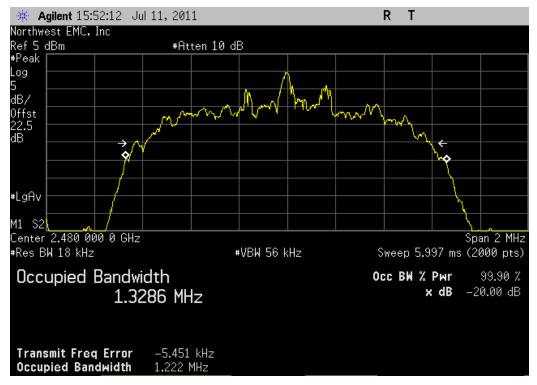
DH5, GFSK, Mid Channel								
					Value	Limit	Result	
					846.824 kHz	< 1.5 MHz	Pass	




2DH5, 4-DQPSK, Low Channel								
					Value	Limit	Result	
					1.196 MHz	< 1.5 MHz	Pass	




2DH5, 4-DQPSK, High Channel									
						Value	Limit	Result	
						1.191 MHz	< 1.5 MHz	Pass	



3DH5, 8-DPSK, Mid Channel								
					Value	Limit	Result	
					1.218 MHz	< 1.5 MHz	Pass	

Occupied Bandwidth

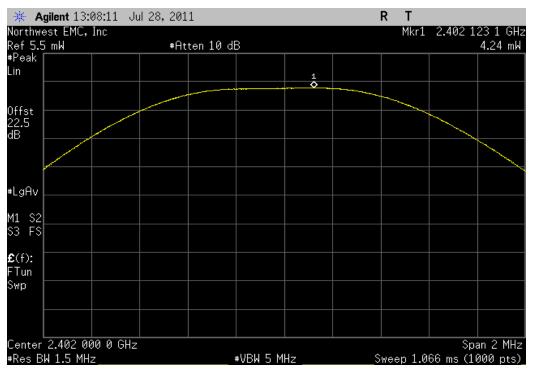
Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

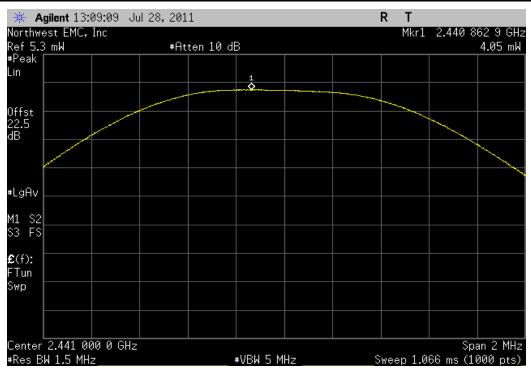
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

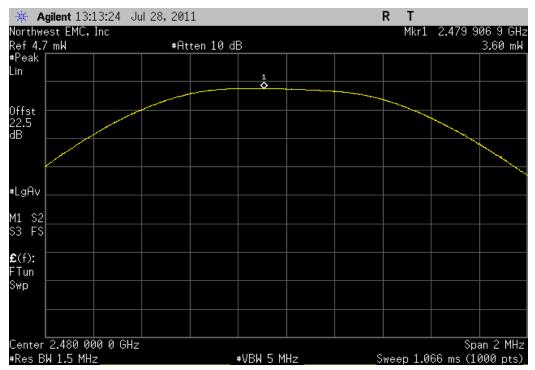
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

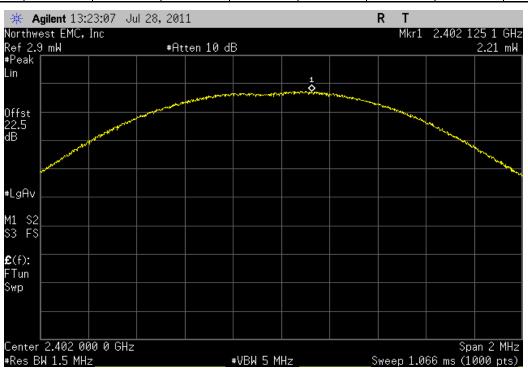

TEST DESCRIPTION

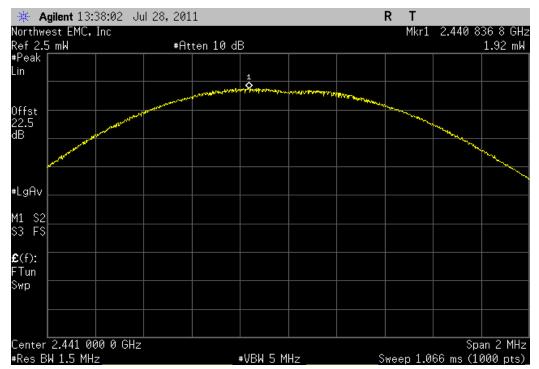
The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

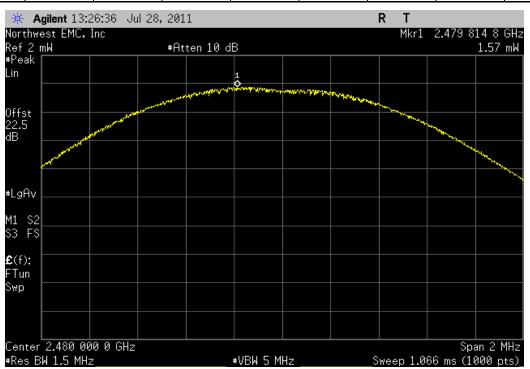

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

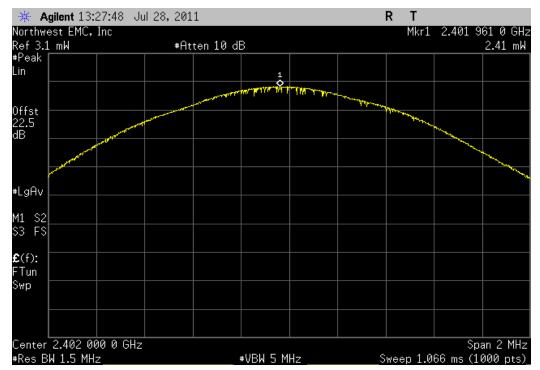
NORTHWEST		0.4.45			XMit 2011.04.20
EMC		Output Power			PsaTx 2011.07.25
EUT	T: Model: 1481		Work Order:	MCSO1579	
Serial Number				07/28/11	
Custome	: Microsoft Corporation		Temperature:	24°C	
Attendees	s: None		Humidity:	45%	
Projec	t: None		Barometric Pres.:	30.13 in	
Tested by	/: Rod Peloquin	Power: USB	Job Site:	EV06	
TEST SPECIFICA	TIONS	TEST METHOD			
FCC 15.247:2011		ANSI C63.10:2009			
COMMENTS					
0.5 dB added for a	adapter cable loss. Power s	settings of 255, 63 per original instructions.			
	•				
DEVIATIONS FRO	M TEST STANDARD				
		Roly le Releys			
Configuration #	1	rotting le relleng			
		Signature			
DUE OFOIC			Value	Limit	Result
DH5, GFSK	Low Channel		4.236 mW	< 125 mW	Pass
	Mid Channel		4.236 mv 4.051 mW	< 125 mW	Pass
	High Channel		3.605 mW	< 125 mW	Pass
2DH5. 4-DQPSK	nigii Channei		3.003 IIIV	< 125 IIIVV	FdSS
2DH3, 4-DQP3K	Low Channel		2,208 mW	< 125 mW	Pass
	Mid Channel		1.918 mW	< 125 mW	Pass
	High Channel		1.573 mW	< 125 mW	Pass
3DH5, 8-DPSK	nigii Channel		1.573 1110	< 120 IIIVV	r dSS
3D1 13, 0-DF3K	Low Channel		2.41 mW	< 125 mW	Pass
	Mid Channel		2.41 mW 2.113 mW	< 125 mW	Pass
	High Channel		2.113 mw 1.714 mW	< 125 mw < 125 mW	Pass
	nigh Channel		1.714 mvv	< 125 MVV	rass



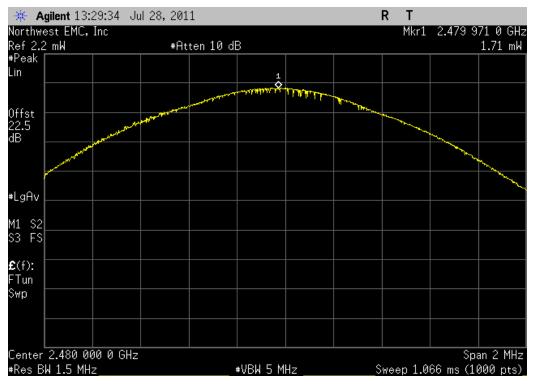

	DH5	i, GFSK, Mid Cha	nnel			
			Value	Limit	Result	
			4.051 mW	< 125 mW	Pass	




2DH5, 4-DQPSK, Low Channel							
					Value	Limit	Result
					2.208 mW	< 125 mW	Pass




Value Limit Beauti	2DH5, 4-DQPSK, High Channel							
						Value	Limit	Result
						1.573 mW	< 125 mW	Pass



Value Limite Bassite	3DH5, 8-DPSK, Mid Channel							
						Value	Limit	Result
						2.113 mW	< 125 mW	Pass

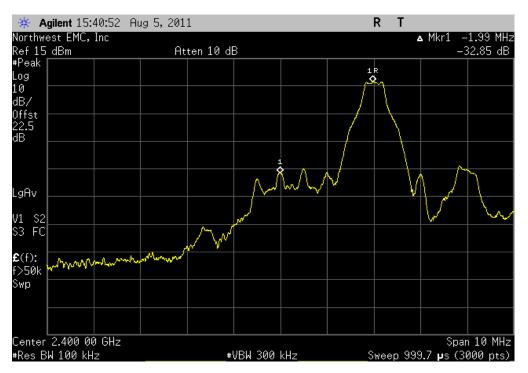
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

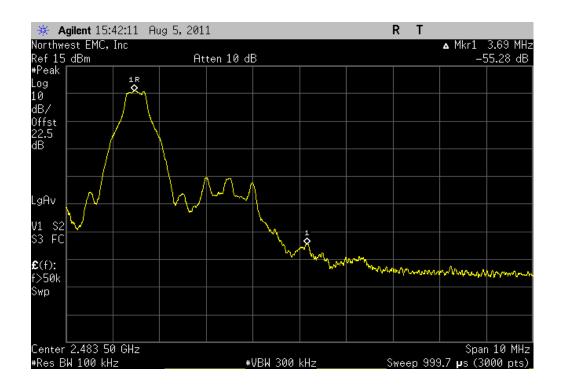
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

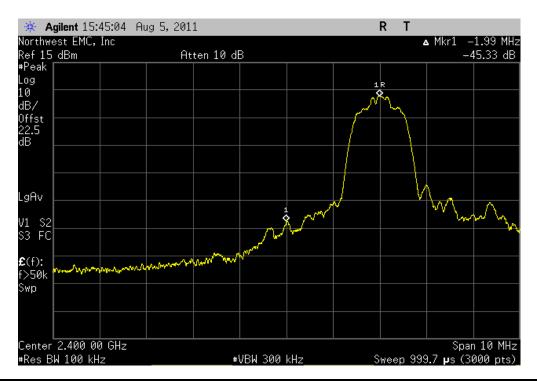

The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies while in a no-hop mode, and at the low and high band edge with frequency hopping enabled. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

The EUT was transmitting at its maximum data rate using all three types of modulations available in Bluetooth EDR.

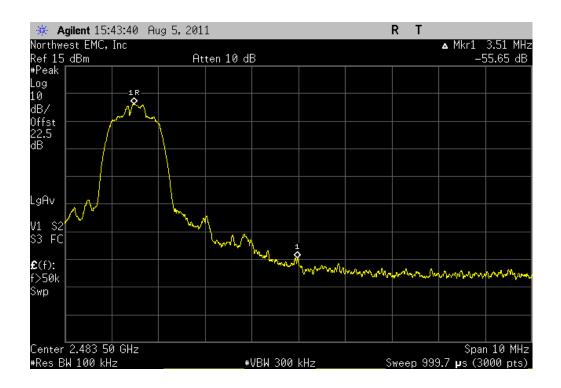
NORTHWEST EMC		Band Edge Compliance			XMit 2010.11.03
EUT	Г: Model: 1481			Work Order: MCSO158	1
Serial Number				Date: 08/05/11	
Customer	r: Microsoft Corporation			Temperature: 23.3°C	
Attendees				Humidity: 42%	
	t: None		Bai	ometric Pres.: 29.95	
	/: Rod Peloquin	Power: USB		Job Site: EV06	
TEST SPECIFICAT	TIONS	TEST MET			
FCC 15.247:2011		ANSI C63.	10:2009		
COMMENTS					
None					
	OM TEST STANDARD				
None					
Configuration #	2	Signature Reling			
			Value	Limit	Results
Single Channel	GFSK, DH5				
	Low Band Edge		-32.9 dBc	≤ -20dBc	Pass
	High Band Edge		-55.3 dBc	≤ -20dBc	Pass
	pi/4-DQPSK, 2DH5				
	Low Band Edge		-45.3 dBc	≤ -20dBc	Pass
	High Band Edge		-55.7 dBc	≤ -20dBc	Pass
	8-DPSK, 3DH5				_
	Low Band Edge		-45.7 dBc	≤ -20dBc	Pass
	High Band Edge		-57.5 dBc	≤ -20dBc	Pass
Frequency Hopping	GFSK, DH5				
	Low Band Edge		-37.7 dBc	≤ -20dBc	Pass
	High Band Edge		-56.0 dBc	≤ -20dBc	Pass
	pi/4-DQPSK, 2DH5				
	Low Band Edge		-47.4 dBc	≤ -20dBc	Pass
	High Band Edge		-56.5 dBc	≤ -20dBc	Pass
	8-DPSK, 3DH5				
	Low Band Edge		-47.2 dBc	≤ -20dBc	Pass
	High Band Edge		-59.5 dBc	≤ -20dBc	Pass


Single Channel, GFSK, DH5, Low Band Edge

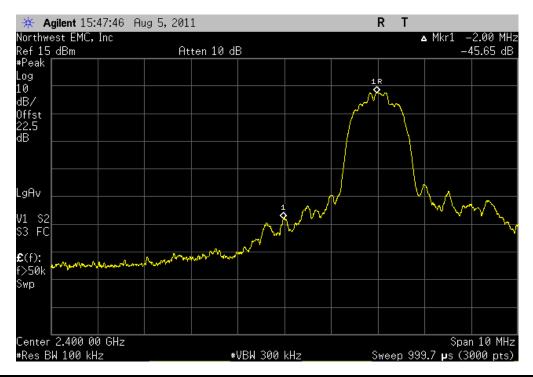
Result: Pass Value: -32.9 dBc Limit: ≤ -20dBc


Single Channel, GFSK, DH5, High Band Edge

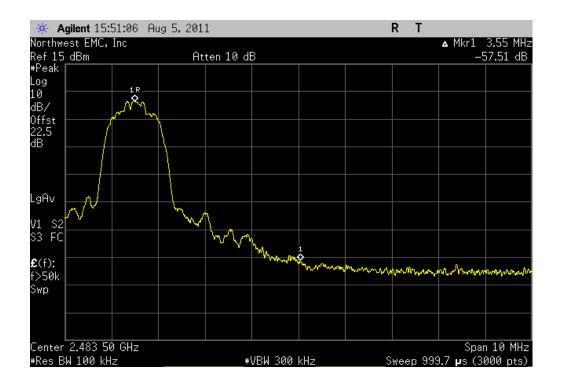
Result: Pass Value: -55.3 dBc Limit: ≤ -20dBc


Single Channel, pi/4-DQPSK, 2DH5, Low Band Edge

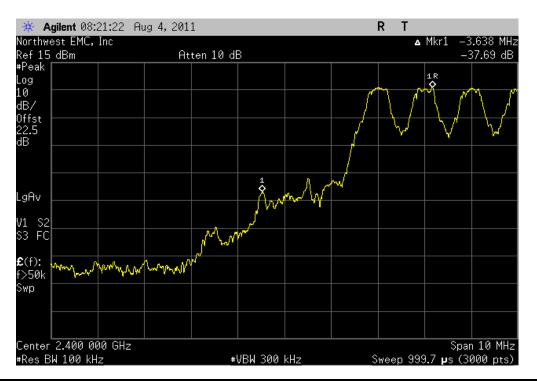
Result: Pass Value: -45.3 dBc Limit: ≤ -20dBc


Single Channel, pi/4-DQPSK, 2DH5, High Band Edge

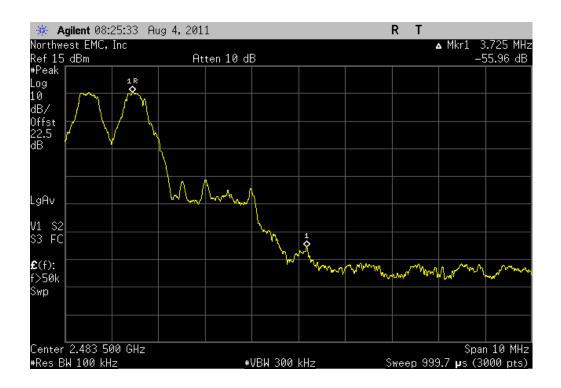
Result: Pass Value: -55.7 dBc Limit: ≤ -20dBc


Single Channel, 8-DPSK, 3DH5, Low Band Edge

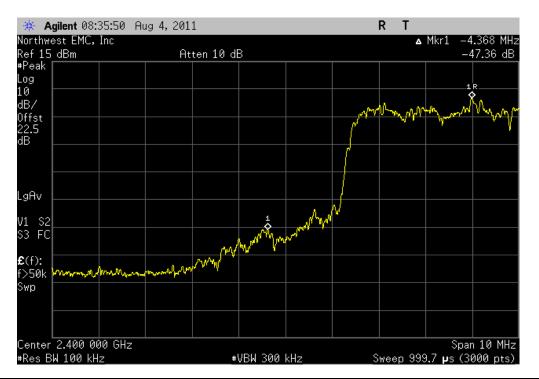
Result: Pass Value: -45.7 dBc Limit: ≤ -20dBc


Single Channel, 8-DPSK, 3DH5, High Band Edge

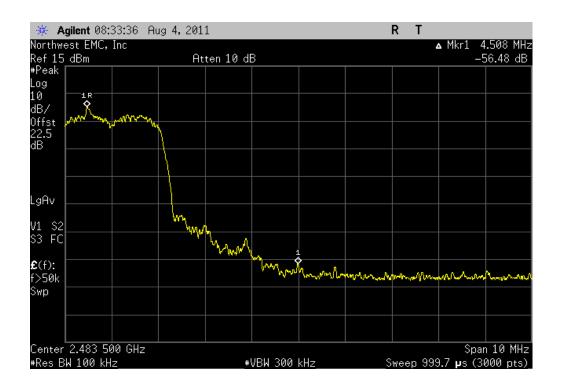
Result: Pass Value: -57.5 dBc Limit: ≤ -20dBc


Frequency Hopping, GFSK, DH5, Low Band Edge

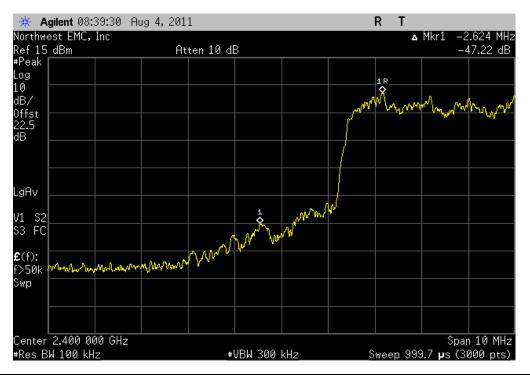
Result: Pass Value: -37.7 dBc Limit: ≤ -20dBc


Frequency Hopping, GFSK, DH5, High Band Edge

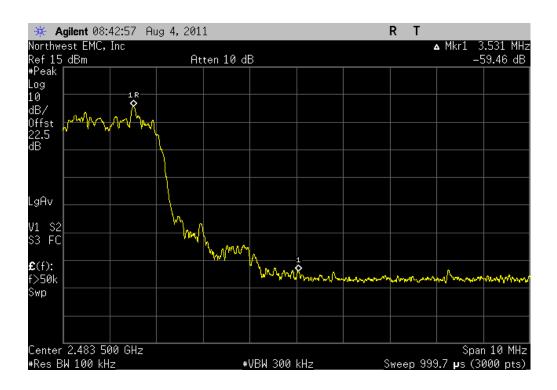
Result: Pass Value: -56.0 dBc Limit: ≤ -20dBc


Frequency Hopping, pi/4-DQPSK, 2DH5, Low Band Edge

Result: Pass Value: -47.4 dBc Limit: ≤ -20dBc


Frequency Hopping, pi/4-DQPSK, 2DH5, High Band Edge

Result: Pass Value: -56.5 dBc Limit: ≤ -20dBc


Frequency Hopping, 8-DPSK, 3DH5, Low Band Edge

Result: Pass Value: -47.2 dBc Limit: ≤ -20dBc

Frequency Hopping, 8-DPSK, 3DH5, High Band Edge

Result: Pass Value: -59.5 dBc Limit: ≤ -20dBc

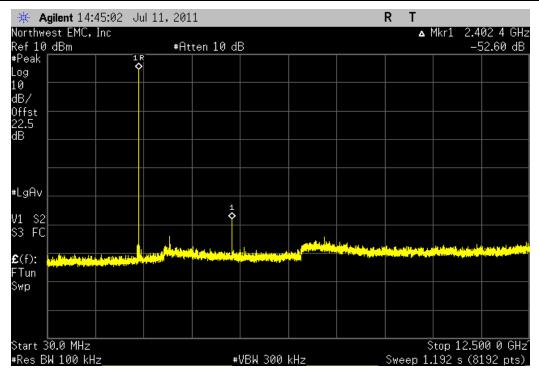
Spurious Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

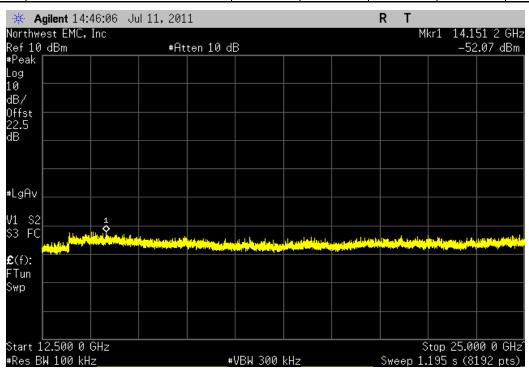
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
Antenna, Passive Rod	EMCO	3303	ACA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

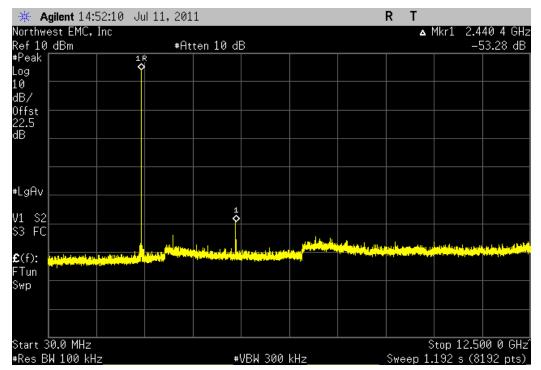
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

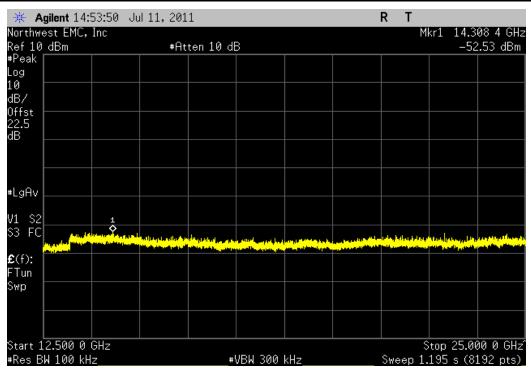

TEST DESCRIPTION

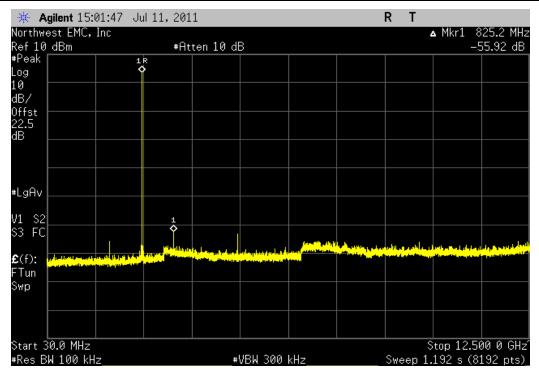
The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.


NORTHWEST EMC		Spurious Conducted Emissions			XMit 2011.04. PsaTx 2011.07.
	: Model: 1481	·	Work Order:	MCSO1E76	
Serial Number				07/11/11	
	: Microsoft Corporation		Temperature:		
Attendees			Humidity:		
Project			Barometric Pres.:		
	: Rod Peloquin	Power: USB	Job Site:		
ST SPECIFICAT		TEST METHOD			
C 15.247:2011		ANSI C63.10:2009			
0 10121112011		71101 00011012000			
OMMENTS					
ansmitting Blue	tooth Radio. 0.5 dB added for	or adapter cable			
=		•			
VIATIONS FRO	M TEST STANDARD				
		10120			
onfiguration #	4	Roly le Reling			
Ŭ		Signature			
		Frequency			
		Frequency Range	Value	Limit	Result
H5, GFSK			Value	Limit	Result
15, GFSK	Low Channel		Value	Limit ≤ -20 dBc	Result
15, GFSK	Low Channel Low Channel	Range			
H5, GFSK		Range ´ 30 MHz - 12.5 GHz	-52.6 dBc	≤ -20 dBc	Pass
H5, GFSK	Low Channel	Range ´ 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
l5, GFSK	Low Channel Mid Channel	Range [*] 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
is, gfsk	Low Channel Mid Channel Mid Channel	Range ´ 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass
H5, GFSK	Low Channel Mid Channel Mid Channel High Channel	Range ´ 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
.,	Low Channel Mid Channel Mid Channel High Channel	Range ´ 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
.,	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel	Range ´ 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -52 dBc -50.57 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel	Range ' 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -54.91 dBc -54.91 dBc -52 dBc -50.57 dBc -53.73 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass
.,	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel	Range 3 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -52 dBc -50.57 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass
.,	Low Channel Mid Channel High Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.22 dBc -54.91 dBc -50.57 dBc -53.73 dBc -52.51 dBc -50.79 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -52 dBc -50.57 dBc -52.51 dBc -52.51 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
H5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -52.57 dBc -50.57 dBc -52.51 dBc -50.79 dBc -50.79 dBc -50.72 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel Mid Channel High Channel High Channel Low Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -50.57 dBc -53.73 dBc -52.51 dBc -50.79 dBc -50.72 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
H5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.22 dBc -55.92 dBc -54.91 dBc -52 dBc -50.77 dBc -50.77 dBc -50.72 dBc -50.72 dBc -50.72 dBc -54.41 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
H5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Low Channel Low Channel Low Channel Low Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -52.57 dBc -50.57 dBc -52.51 dBc -50.79 dBc -50.72 dBc -54.41 dBc -54.41 dBc -55.39 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
H5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel Mid Channel High Channel High Channel High Channel High Channel Mid Channel Mid Channel Mid Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.22 dBc -54.91 dBc -52.57 dBc -53.73 dBc -52.51 dBc -50.72 dBc -50.72 dBc -54.61 dBc -54.61 dBc -54.61 dBc -54.61 dBc -54.61 dBc -54.61 dBc -54.61 dBc -54.61 dBc -54.61 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
H5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Low Channel Low Channel Low Channel Low Channel	Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-52.6 dBc -56.61 dBc -53.28 dBc -56.42 dBc -55.92 dBc -54.91 dBc -52.57 dBc -50.57 dBc -52.51 dBc -50.79 dBc -50.72 dBc -54.41 dBc -54.41 dBc -55.39 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass

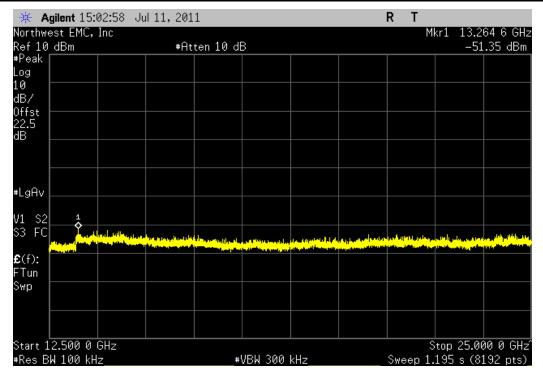


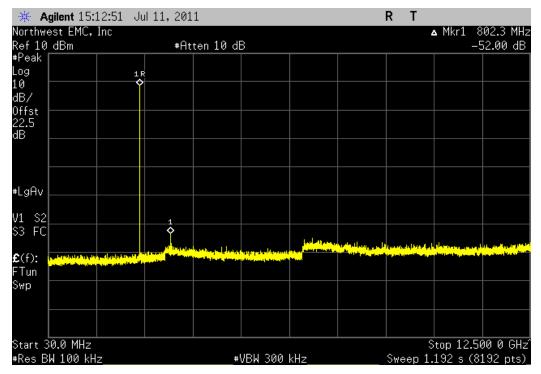
DH5, GFSK, Low Channel					
Frequency					
Range	Value	Limit	Result		
12.5 GHz - 25 GHz	-56.61 dBc	≤ -20 dBc	Pass		

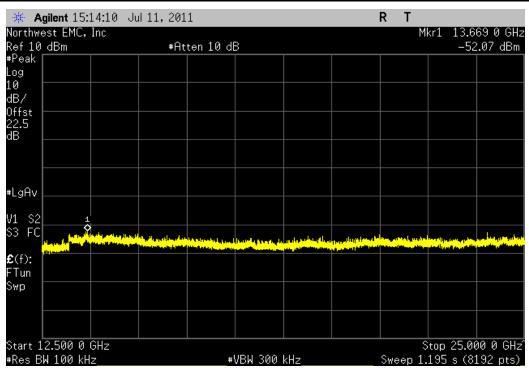


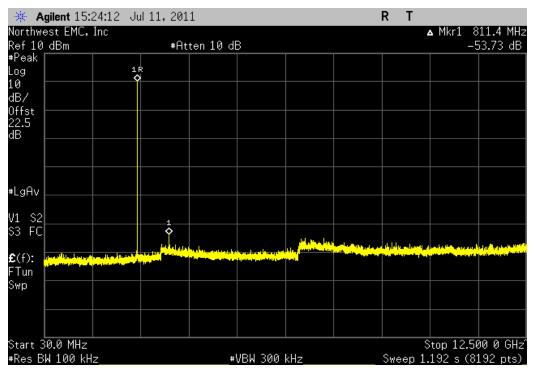


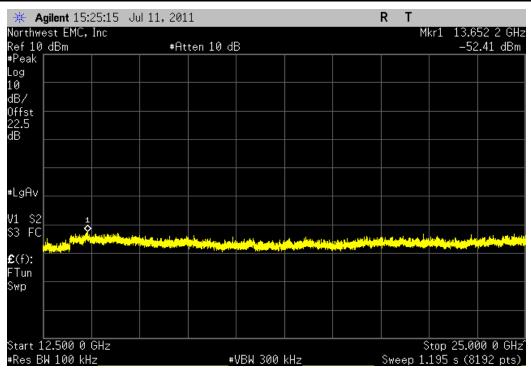
DH5, GFSK, Mid Channel					
Frequency					
Range		Value	Limit	Result	
12.5 GHz - 25 GHz		-56.42 dBc	≤ -20 dBc	Pass	

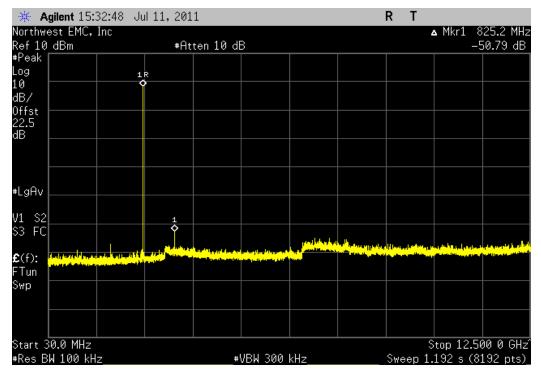


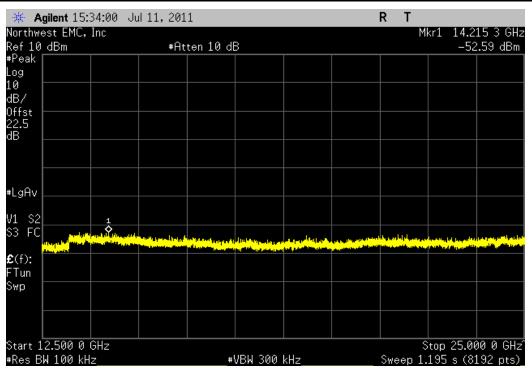


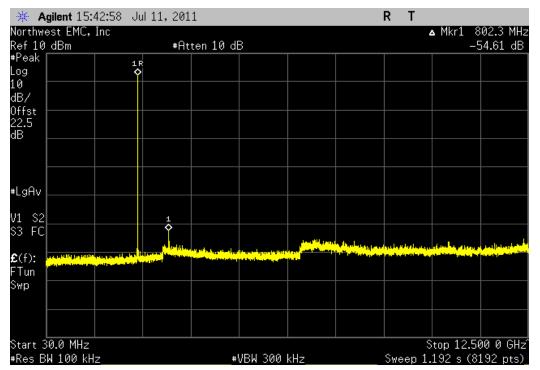

DH5, GFSK, High Channel					
Frequency					
Range		Value	Limit	Result	
12.5 GHz - 25 GHz		-54.91 dBc	≤ -20 dBc	Pass	



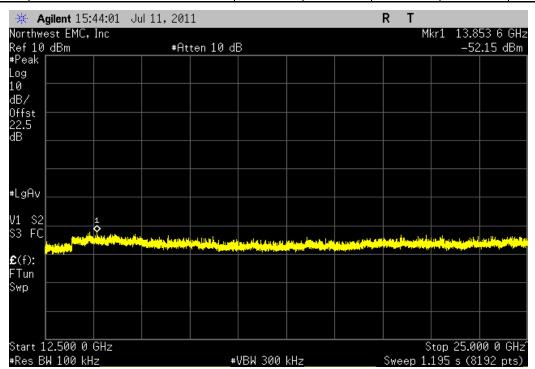

2DH5, 4-DQPSK, Low Channel						
Fr	equency					
	Range		Value	Limit	Result	
12.5 0	Hz - 25 GHz		-50.57 dBc	≤ -20 dBc	Pass	ı

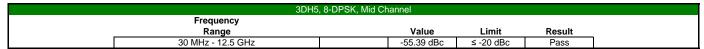


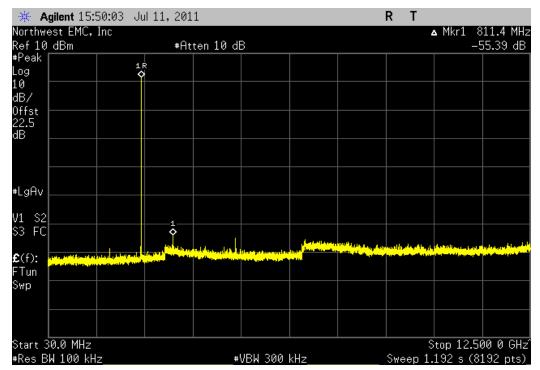

2DH5, 4-DQPSK, Mid Channel					
Frequency					
Range		Value	Limit	Result	
12.5 GHz - 25 GHz		-52.51 dBc	≤ -20 dBc	Pass	l

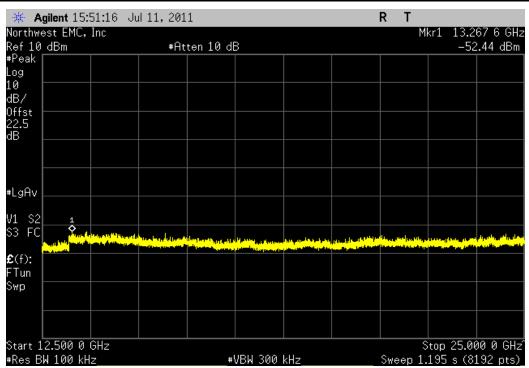


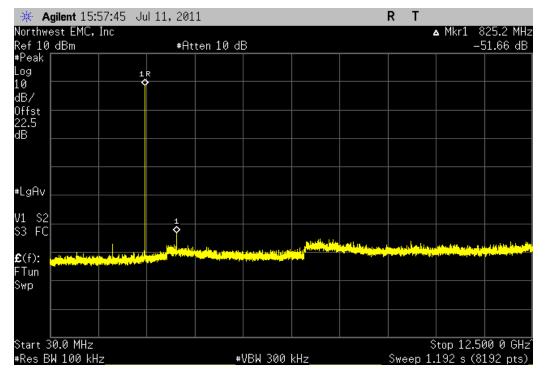
2DH5,	4-DQPSK, High Channe				
Frequency					
Range	V	/alue	Limit	Result	
12.5 GHz - 25 GHz	-50	.72 dBc	≤ -20 dBc	Pass	

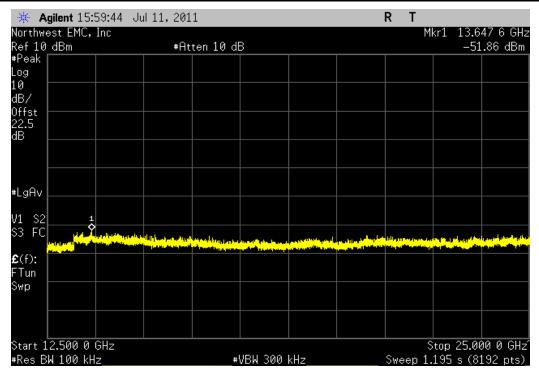







3DH5, 8-DPSK, Low Channel						
Frequency						
Range	Value	Limit	Result			
12.5 GHz - 25 GHz	-54.41 dBc	≤ -20 dBc	Pass			




3DH5, 8-DPSK, Mid Channel					
Frequency					
Range		Value	Limit	Result	
12.5 GHz - 25 GHz		-53.9 dBc	≤ -20 dBc	Pass	

3DH5	, 8-DPSK, High Cl	hannel			
Frequency					
Range		Value	Limit	Result	
12.5 GHz - 25 GHz		-50.41 dBc	≤ -20 dBc	Pass	

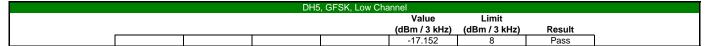
Power Spectral Density

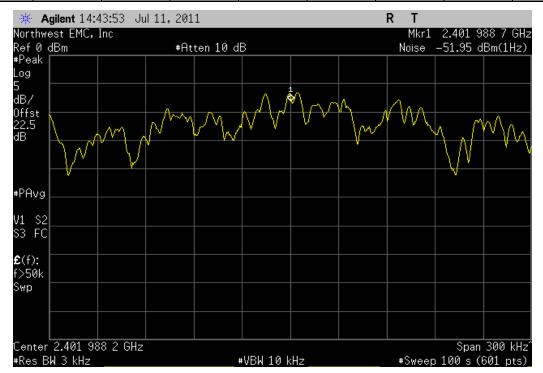
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

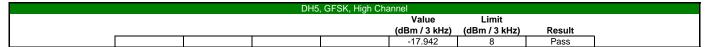
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

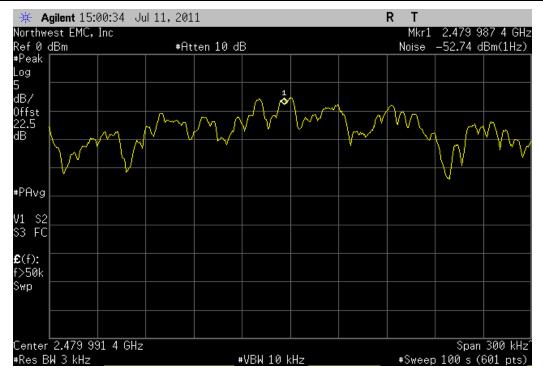

TEST DESCRIPTION


The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. ANSI C63.10:2009, Section 6.11.2.3 was followed. The spectrum analyzer was set as follows:

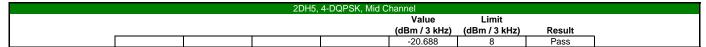
The emission peak was located and zoomed in on within the passband.

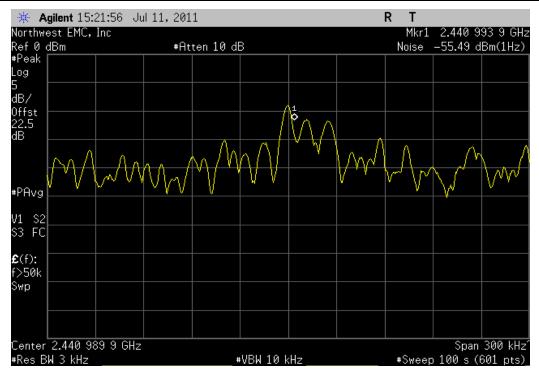
- a) RBW = 3 kHz
- b) VBW = 10 kHz
- c) Span = 300 kHz
- d) Sweep time = 100s
- e) Trace set to MAX
- f) The 1 hz Marker Noise function on the analyzer was used. The data was corrected to 3 kHz by adding 34.8 dB to the reading.

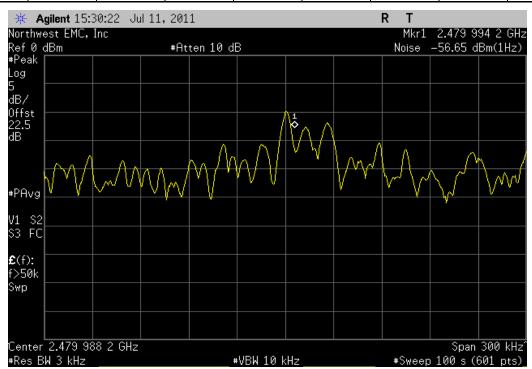

NORTHWEST EMC			Power Spectra	al Density			XMit 2011.04.2 PsaTx 2011.07.0
	: Model: 1481				Work Order:		
Serial Number						07/11/11	
	r: Microsoft Corporation				Temperature:		
Attendees					Humidity:		
	t: None				Barometric Pres.:		
	/: Rod Peloquin		Power: USB		Job Site:	EV06	
TEST SPECIFICAT	TIONS		TEST MET				
FCC 15.247:2011			ANSI C63	.10:2009			
COMMENTS							
ransmitting Blue	etooth Radio. 0.5 dB added fo	adapter cable					
DEVIATIONS FRO	M TEST STANDARD						
DEVIATIONS FRO	M TEST STANDARD						
DEVIATIONS FRO	M TEST STANDARD	Signature Rocky L	- Reley				
		Signature Rocky L	Religy,		Value (dBm / 3 kHz)	Limit (dBm / 3 kHz)	Result
Configuration #	4	Rocky l Signature	e Religy,		(dBm / 3 kHz)	(dBm / 3 kHz)	
Configuration #	4 Low Channel	Signature Porton L	e Reley		(dBm / 3 kHz) -17.152		Pass
Configuration #	4 Low Channel Mid Channel	Signature Rocky L	Religy,		(dBm / 3 kHz) -17.152 -17.649	(dBm / 3 kHz) 8 8	Pass Pass
Configuration #	4 Low Channel	Signature Rocking L	e Religy,		(dBm / 3 kHz) -17.152	(dBm / 3 kHz)	Pass
Configuration #	Low Channel Mid Channel High Channel	Signature Porting L	e Reling		(dBm / 3 kHz) -17.152 -17.649 -17.942	(dBm / 3 kHz) 8 8	Pass Pass
Configuration # DH5, GFSK	Low Channel Mid Channel High Channel Low Channel	Signature Rocky L	2. Religy,		(dBm / 3 kHz) -17.152 -17.649 -17.942 -20.211	8 8 8 8	Pass Pass Pass
Configuration #	Low Channel Mid Channel High Channel Low Channel Mid Channel	Signature Rocky L	e Religy,		(dBm / 3 kHz) -17.152 -17.649 -17.942 -20.211 -20.688	(dBm / 3 kHz) 8 8 8 8	Pass Pass Pass Pass Pass
OH5, GFSK	Low Channel Mid Channel High Channel Low Channel	Signature Rocky L	e Reling		(dBm / 3 kHz) -17.152 -17.649 -17.942 -20.211	8 8 8 8	Pass Pass Pass
OH5, GFSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signature Rocky L	e Religy,		(dBm / 3 kHz) -17.152 -17.649 -17.942 -20.211 -20.688 -21.85	(dBm / 3 kHz) 8 8 8 8 8 8	Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel	Signature Rocky L	a Religy,		(dBm / 3 kHz) -17.152 -17.649 -17.942 -20.211 -20.688 -21.85 -20.131	8 8 8 8	Pass Pass Pass Pass Pass
OH5, GFSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signature Rocky 1	Relegy,		(dBm / 3 kHz) -17.152 -17.649 -17.942 -20.211 -20.688 -21.85	(dBm / 3 kHz) 8 8 8 8 8 8	Pass Pass Pass Pass Pass Pass

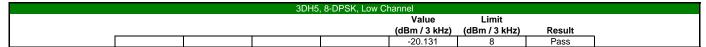


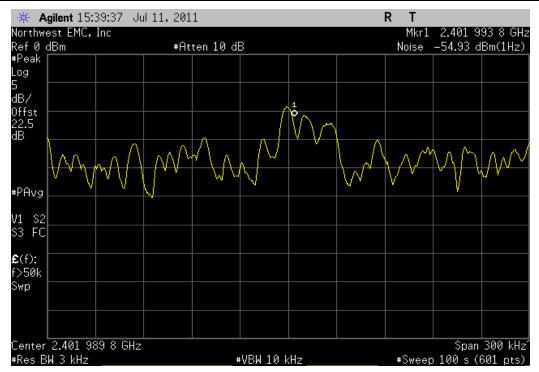
DH5, GFSK, Mid Channel							
				Value	Limit		
				(dBm / 3 kHz)	(dBm / 3 kHz)	Result	
				-17.649	8	Pass	1



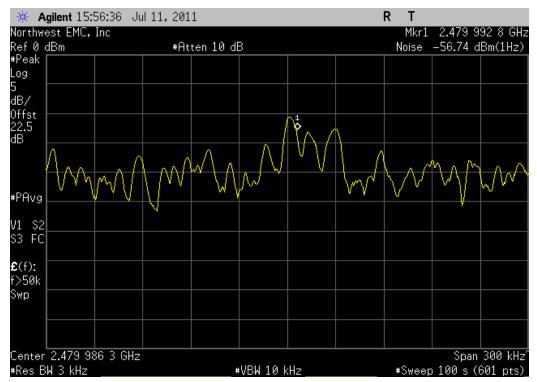



2DH5, 4-DQPSK, Low Channel							
				Value	Limit		
				(dBm / 3 kHz)	(dBm / 3 kHz)	Result	
				-20.211	8	Pass	






	2DH5,	4-DQPSK, High C	hannel		
			Value	Limit	
			(dBm / 3 kHz)	(dBm / 3 kHz)	Result
			-21.85	8	Pass



	3DH5	, 8-DPSK, Mid Ch	annel		
			Value	Limit	
			(dBm / 3 kHz)	(dBm / 3 kHz)	Result
			-20.837	8	Pass

Power Spectral Density

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Tx, Bluetooth

POWER SETTINGS INVESTIGATED

5VDC via USB

FREQUENCY RANGE INV	/ESTIGATED		
Start Frequency	30MHz	Stop Frequency	25GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
High Pass Filter	Micro-Tronics	HPM50111	HFO	8/9/2010	24
Attenuator - 20dB, HF (1000MHz - 18000MHz)	Coaxicom	3910-20	AXZ	6/28/2011	12
EV01 Cables	N/A	Bilog Cables	EVA	6/28/2011	12
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	6/28/2011	12
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	3/2/2011	12
Cable	ESM Cable Corp.	KMKM-72	EVY	9/15/2010	12
Pre-Amplifier	Miteq	AM-1616-1000	AOL	6/28/2011	12
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	6/28/2011	12
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	3/2/2011	12
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	3/2/2011	12
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/15/2010	12
Antenna, Bilog	Teseq	CBL 6141B	AXR	11/29/2010	12
Antenna, Horn	ETS	3115	AIZ	1/24/2011	24
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0

MEASUREMEN'	MEASUREMENT BANDWIDTHS										
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data							
	(MHz)	(kHz)	(kHz)	(kHz)							
	0.01 - 0.15	1.0	0.2	0.2							
	0.15 - 30.0	10.0	9.0	9.0							
	30.0 - 1000	100.0	120.0	120.0							
	Above 1000	1000.0	N/A	1000.0							
	Measurements were made using the	e bandwidths and detector	ors specified. No video filter wa	is used.							

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

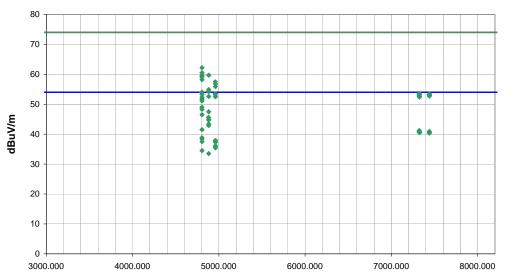
TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

NORTHWEST						PSA 2011.05.11
EMC	Spurious F	Radia	ated Emissi	ons		EMI 2008.1.9
EUT:	Model: 1481			Work Order:	MCSO1581	
Serial Number:	C31			Date:	08/03/11	
Customer:	Microsoft Corporation			Temperature:	24.8 °C	
Attendees:	None			Humidity:	45%	
Project:	None			Barometric Pres.:	1013.9 mb	
Tested by:	Dan Haas	Power:	5VDC via USB	Job Site:	EV01	
TEST SPECIFICATION	ONS		TEST METHOD			
FCC 15.247:2011			ANSI C63.10:2009			

TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m)


COMMENTS

Powered via USB from remote Laptop PC. See notes for channel, mode, and EUT orientation Test Distance (m) 3

EUT OPERATING MODES Continuous Tx, Bluetooth DEVIATIONS FROM TEST STANDARD

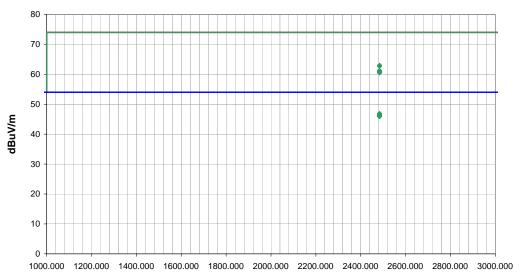
No deviations.

Run# Configuration #
Results Pass Signature Children

MHz

	1					External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	Comments
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	,		(dB)	dBuV/m	dBuV/m	(dB)	
4804.020	43.9	9.4	206.0	1.0	3.0	0.0	H-Horn	AV	0.0	53.3	54.0	-0.7	Low channel, GFSK/DH5 EUT vertical.
4804.015	42.9	9.4	203.0	1.0	3.0	0.0	V-Horn	AV	0.0	52.3	54.0	-1.7	Low channel, GFSK/DH5 EUT vertical.
4803.960	42.3	9.4	187.0	1.0	3.0	0.0	H-Horn	AV	0.0	51.7	54.0	-2.3	Low channel, GFSK/DH5 EUT on side.
4804.015	41.7	9.4	181.0	1.0	3.0	0.0	H-Horn	AV	0.0	51.1	54.0	-2.9	Low channel, GFSK/DH5 EUT face up.
4882.017	38.1	9.4	360.0	1.2	3.0	0.0	H-Horn	AV	0.0	47.5	54.0	-6.5	Mid channel, GFSK/DH5 EUT vertical
4804.005	37.1	9.4	263.0	1.1	3.0	0.0	V-Horn	AV	0.0	46.5	54.0	-7.5	Low channel, GFSK/DH5 EUT face up.
4882.050	35.5	9.4	202.0	1.2	3.0	0.0	H-Horn	AV	0.0	44.9	54.0	-9.1	Mid channel, GFSK/DH5, EUT face up.
4882.033	35.3	9.4	338.0	1.0	3.0	0.0	V-Horn	AV	0.0	44.7	54.0	-9.3	Mid channel, GFSK/DH5, EUT on side.
4882.033	34.0	9.4	116.0	1.0	3.0	0.0	V-Horn	AV	0.0	43.4	54.0	-10.6	Mid channel, GFSK/DH5 EUT vertical
4882.033	33.5	9.4	171.0	1.2	3.0	0.0	H-Horn	AV	0.0	42.9	54.0	-11.1	Mid channel, GFSK/DH5, EUT on side.
4804.250	52.8	9.4	21.0	1.0	3.0	0.0	H-Horn	PK	0.0	62.2	74.0	-11.8	Low channel, ERD-2/DH5 EUT vertical
4804.030	32.1	9.4	21.0	1.0	3.0	0.0	H-Horn	AV	0.0	41.5	54.0	-12.5	Low channel, ERD-2/DH5 EUT vertical
7323.125	24.6	16.6	256.0	1.0	3.0	0.0	H-Horn	AV	0.0	41.2	54.0		Mid channel, GFSK/DH5 EUT vertical
7323.125	24.4	16.6	36.0	2.2	3.0	0.0	V-Horn	AV	0.0	41.0	54.0		Mid channel, GFSK/DH5 EUT vertical
7440.033	24.2	16.7	246.0	1.3	3.0	0.0	H-Horn	AV	0.0	40.9	54.0	-13.1	High channel, GFSK/DH5, EUT vertical.
7322.825	24.1	16.6	316.0	2.2	3.0	0.0	V-Horn	AV	0.0	40.7	54.0		Mid channel, GFSK/DH5, EUT face up.
7321.958	24.0	16.6	313.0	2.2	3.0	0.0	V-Horn	AV	0.0	40.6	54.0		Mid channel, GFSK/DH5, EUT on side.
7326.375	23.9	16.6	127.0	3.3	3.0	0.0	H-Horn	AV	0.0	40.5	54.0		Mid channel, GFSK/DH5, EUT on side.
7326.533	23.9	16.6	31.0	3.2	3.0	0.0	H-Horn	AV	0.0	40.5	54.0		Mid channel, GFSK/DH5, EUT face up.
7440.408	23.8	16.7	234.0	1.4	3.0	0.0	V-Horn	AV	0.0	40.5	54.0		High channel, GFSK/DH5, EUT vertical.
4804.165	51.1	9.4	206.0	1.0	3.0	0.0	H-Horn	PK	0.0	60.5	74.0		Low channel, GFSK/DH5 EUT vertical.
7438.492	23.7	16.7	118.0	3.3	3.0	0.0	V-Horn	AV	0.0	40.4	54.0		High channel, GFSK/DH5 EUT on side.
7439.800	23.7	16.7	27.0	1.3	3.0	0.0	H-Horn	AV	0.0	40.4	54.0		High channel, GFSK/DH5 EUT face up.
7440.508	23.7	16.7	0.0	2.0	3.0	0.0	V-Horn	AV	0.0	40.4	54.0	-13.6	High channel, GFSK/DH5 EUT face up.
7440.775	23.7	16.7	102.0	1.2	3.0	0.0	H-Horn	AV	0.0	40.4	54.0		High channel, GFSK/DH5 EUT on side.
4882.533	50.3	9.4	360.0	1.2	3.0	0.0	H-Horn	PK	0.0	59.7	74.0		Mid channel, GFSK/DH5 EUT vertical
4804.250	50.2	9.4	203.0	1.0	3.0	0.0	V-Horn	PK	0.0	59.6	74.0		Low channel, GFSK/DH5 EUT vertical.
4803.615	49.7	9.4	187.0	1.0	3.0	0.0	H-Horn	PK	0.0	59.1	74.0		Low channel, GFSK/DH5 EUT on side.
4804.040	29.4	9.4	360.0	1.8	3.0	0.0	V-Horn	AV	0.0	38.8	54.0		Low channel, GFSK/DH5 EUT on side.
4804.005	29.0	9.4	120.0	1.1	3.0	0.0	V-Horn	AV	0.0	38.4	54.0		Low channel, ERD-2/DH5 EUT vertical
4804.255	48.8	9.4	181.0	1.0	3.0	0.0	H-Horn	PK	0.0	58.2	74.0		Low channel, GFSK/DH5 EUT face up.
4960.000	28.4	9.5	299.0	1.9	3.0	0.0	V-Horn	AV	0.0	37.9	54.0		High channel, GFSK/DH5 EUT on side.
4960.017	28.2	9.5	271.0	1.3	3.0	0.0	H-Horn	AV	0.0	37.7	54.0		High channel, GFSK/DH5 EUT on side.
4803.990	28.1	9.4	13.0	1.0	3.0	0.0	H-Horn	AV	0.0	37.5	54.0		Low channel, ERD3/DH5 EUT vertical
4957.533	48.0	9.5	299.0	1.9	3.0	0.0	V-Horn	PK	0.0	57.5	74.0	-16.5	High channel, GFSK/DH5 EUT on side.
4960.017	27.8	9.5	360.0	1.1	3.0	0.0	H-Horn	AV	0.0	37.3	54.0		High channel, GFSK/DH5, EUT vertical.
4960.733	47.3	9.5	271.0	1.3	3.0	0.0	H-Horn	PK	0.0	56.8	74.0		High channel, GFSK/DH5 EUT on side.
4960.083	26.6	9.5	29.0	1.9	3.0	0.0	V-Horn	AV	0.0	36.1	54.0	-17.9	High channel, GFSK/DH5, EUT vertical.

I	1 1		1 1		ı	External		ı	Distance		1	Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	Comments
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
4960.025	26.5	9.5	159.0	1.0	3.0	0.0	V-Horn	AV	0.0	36.0	54.0	-18.0	High channel, GFSK/DH5 EUT face up.
4959.750	46.4	9.5	360.0	1.1	3.0	0.0	H-Horn	PK	0.0	55.9	74.0	-18.1	High channel, GFSK/DH5, EUT vertical.
4959.975	25.9	9.5	248.0	1.4	3.0	0.0	H-Horn	AV	0.0	35.4	54.0	-18.6	High channel, GFSK/DH5 EUT face up.
4881.867	45.5	9.4	338.0	1.0	3.0	0.0	V-Horn	PK	0.0	54.9	74.0	-19.1	Mid channel, GFSK/DH5, EUT on side.
4804.150	25.1	9.4	108.0	1.1	3.0	0.0	V-Horn	AV	0.0	34.5	54.0	-19.5	Low channel, ERD3/DH5 EUT vertical
4882.142	44.9	9.4	116.0	1.0	3.0	0.0	V-Horn	PK	0.0	54.3	74.0	-19.7	Mid channel, GFSK/DH5 EUT vertical
4882.358	44.8	9.4	202.0	1.2	3.0	0.0	H-Horn	PK	0.0	54.2	74.0	-19.8	Mid channel, GFSK/DH5, EUT face up.
4803.790	44.6	9.4	120.0	1.1	3.0	0.0	V-Horn	PK	0.0	54.0	74.0	-20.0	Low channel, ERD-2/DH5 EUT vertical
4804.040	44.6	9.4	263.0	1.1	3.0	0.0	V-Horn	PK	0.0	54.0	74.0	-20.0	Low channel, GFSK/DH5 EUT face up.
4803.795	44.5	9.4	13.0	1.0	3.0	0.0	H-Horn	PK	0.0	53.9	74.0	-20.1	Low channel, ERD3/DH5 EUT vertical
7322.767	37.0	16.6	256.0	1.0	3.0	0.0	H-Horn	PK	0.0	53.6	74.0	-20.4	Mid channel, GFSK/DH5 EUT vertical
4881.975	24.1	9.4	115.0	1.5	3.0	0.0	V-Horn	AV	0.0	33.5	54.0	-20.5	Mid channel, GFSK/DH5, EUT face up.
4959.308	44.0	9.5	159.0	1.0	3.0	0.0	V-Horn	PK	0.0	53.5	74.0	-20.5	High channel, GFSK/DH5 EUT face up.
7441.783	36.7	16.7	27.0	1.3	3.0	0.0	H-Horn	PK	0.0	53.4	74.0	-20.6	High channel, GFSK/DH5 EUT face up.
7325.392	36.7	16.6	36.0	2.2	3.0	0.0	V-Horn	PK	0.0	53.3	74.0	-20.7	Mid channel, GFSK/DH5 EUT vertical
4959.325	43.7	9.5	29.0	1.9	3.0	0.0	V-Horn	PK	0.0	53.2	74.0	-20.8	High channel, GFSK/DH5, EUT vertical.
7321.683	36.6	16.6	316.0	2.2	3.0	0.0	V-Horn	PK	0.0	53.2	74.0	-20.8	Mid channel, GFSK/DH5, EUT face up.
7439.183	36.5	16.7	0.0	2.0	3.0	0.0	V-Horn	PK	0.0	53.2	74.0	-20.8	High channel, GFSK/DH5 EUT face up.
7440.933	36.4	16.7	246.0	1.3	3.0	0.0	H-Horn	PK	0.0	53.1	74.0	-20.9	High channel, GFSK/DH5, EUT vertical.
7440.875	36.3	16.7	102.0	1.2	3.0	0.0	H-Horn	PK	0.0	53.0	74.0	-21.0	High channel, GFSK/DH5 EUT on side.
7439.400	36.2	16.7	118.0	3.3	3.0	0.0	V-Horn	PK	0.0	52.9	74.0	-21.1	High channel, GFSK/DH5 EUT on side.
7320.942	36.2	16.6	313.0	2.2	3.0	0.0	V-Horn	PK	0.0	52.8	74.0	-21.2	Mid channel, GFSK/DH5, EUT on side.
7323.058	36.1	16.6	31.0	3.2	3.0	0.0	H-Horn	PK	0.0	52.7	74.0	-21.3	Mid channel, GFSK/DH5, EUT face up.
7439.700	36.0	16.7	234.0	1.4	3.0	0.0	V-Horn	PK	0.0	52.7	74.0	-21.3	High channel, GFSK/DH5, EUT vertical.
4881.858	43.2	9.4	171.0	1.2	3.0	0.0	H-Horn	PK	0.0	52.6	74.0	-21.4	Mid channel, GFSK/DH5, EUT on side.
4960.108	43.0	9.5	248.0	1.4	3.0	0.0	H-Horn	PK	0.0	52.5	74.0	-21.5	High channel, GFSK/DH5 EUT face up.
7325.483	35.8	16.6	127.0	3.3	3.0	0.0	H-Horn	PK	0.0	52.4	74.0	-21.6	Mid channel, GFSK/DH5, EUT on side.
4803.675	39.6	9.4	360.0	1.8	3.0	0.0	V-Horn	PK	0.0	49.0	74.0	-25.0	Low channel, GFSK/DH5 EUT on side.
4803.500	38.9	9.4	108.0	1.1	3.0	0.0	V-Horn	PK	0.0	48.3	74.0	-25.7	Low channel, ERD3/DH5 EUT vertical
4879.867	36.2	9.4	115.0	1.5	3.0	0.0	V-Horn	PK	0.0	45.6	74.0	-28.4	Mid channel, GFSK/DH5, EUT face up.
												•	


NORTHWEST EMC	Spurious	Radiated Emiss	ions		PSA 2011.05.11 EMI 2008.1.9
EUT:	Model: 1481		Work Order:	MCSO1581	
Serial Number:	C31		Date:	08/03/11	
Customer:	Microsoft Corporation		Temperature:		
Attendees:	None		Humidity:	45%	
Project:			Barometric Pres.:		
Tested by:		Power: 5VDC via USB	Job Site:	EV01	
TEST SPECIFICATI	ONS	TEST METHOD			
FCC 15.247:2011		ANSI C63.10:2009			
TEST PARAMETER	S .				
Antenna Height(s)	(m) 1 - 4	Test Distance (m)		<u> </u>	_
COMMENTS					
Demorad via LICD fo	rem remote Lenten DC See notes for mode and FUT a	riantation			

Powered via USB from remote Laptop PC. See notes for mode and EUT orientation.

EUT OPERATING MODES
Continuous Tx, Bluetooth, High channel
DEVIATIONS FROM TEST STANDARD

No deviations.

Run# Configuration # Results Pass Signature On Louis

MHz

		1			i	External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	Comments
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
2483.507	24.6	2.3	217.0	1.0	3.0	20.0	V-Horn	AV	0.0	46.9	54.0	-7.1	GFSK/DH5, EUT vertical.
2483.500	24.5	2.3	205.0	1.1	3.0	20.0	H-Horn	AV	0.0	46.8	54.0	-7.2	GFSK/DH5, EUT vertical.
2483.500	24.3	2.3	187.0	1.1	3.0	20.0	H-Horn	AV	0.0	46.6	54.0	-7.4	GFSK/DH5, EUT on side.
2483.508	24.1	2.3	301.0	1.0	3.0	20.0	V-Horn	AV	0.0	46.4	54.0	-7.6	GFSK/DH5, EUT on side.
2483.508	23.9	2.3	253.0	1.1	3.0	20.0	H-Horn	AV	0.0	46.2	54.0	-7.8	GFSK/DH5, EUT face up.
2483.500	23.8	2.3	225.0	1.1	3.0	20.0	V-Horn	AV	0.0	46.1	54.0	-7.9	GFSK/DH5, EUT face up.
2483.612	23.8	2.3	220.0	1.1	3.0	20.0	H-Horn	AV	0.0	46.1	54.0	-7.9	ERD-2/DH5, EUT vertical.
2483.505	23.7	2.3	238.0	1.1	3.0	20.0	V-Horn	AV	0.0	46.0	54.0	-8.0	ERD3/DH5, EUT vertical.
2483.520	23.6	2.3	262.0	1.1	3.0	20.0	V-Horn	AV	0.0	45.9	54.0	-8.1	ERD-2/DH5, EUT vertical.
2483.573	23.6	2.3	177.0	1.0	3.0	20.0	H-Horn	AV	0.0	45.9	54.0	-8.1	ERD3/DH5, EUT vertical.
2483.905	40.7	2.3	187.0	1.1	3.0	20.0	H-Horn	PK	0.0	63.0	74.0	-11.0	GFSK/DH5, EUT on side.
2483.603	40.4	2.3	262.0	1.1	3.0	20.0	V-Horn	PK	0.0	62.7	74.0	-11.3	ERD-2/DH5, EUT vertical.
2483.523	38.9	2.3	301.0	1.0	3.0	20.0	V-Horn	PK	0.0	61.2	74.0	-12.8	GFSK/DH5, EUT on side.
2483.638	38.9	2.3	225.0	1.1	3.0	20.0	V-Horn	PK	0.0	61.2	74.0	-12.8	GFSK/DH5, EUT face up.
2483.692	38.8	2.3	238.0	1.1	3.0	20.0	V-Horn	PK	0.0	61.1	74.0	-12.9	ERD3/DH5, EUT vertical.
2483.995	38.8	2.3	253.0	1.1	3.0	20.0	H-Horn	PK	0.0	61.1	74.0	-12.9	GFSK/DH5, EUT face up.
2483.565	38.7	2.3	217.0	1.0	3.0	20.0	V-Horn	PK	0.0	61.0	74.0	-13.0	GFSK/DH5, EUT vertical.
2484.013	38.7	2.3	177.0	1.0	3.0	20.0	H-Horn	PK	0.0	61.0	74.0	-13.0	ERD3/DH5, EUT vertical.
2483.502	38.2	2.3	205.0	1.1	3.0	20.0	H-Horn	PK	0.0	60.5	74.0	-13.5	GFSK/DH5, EUT vertical.
2484.112	38.2	2.3	220.0	1.1	3.0	20.0	H-Horn	PK	0.0	60.5	74.0	-13.5	ERD-2/DH5, EUT vertical.

Powerline Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Charging with cradle

POWER SETTINGS INVESTIGATED

USB

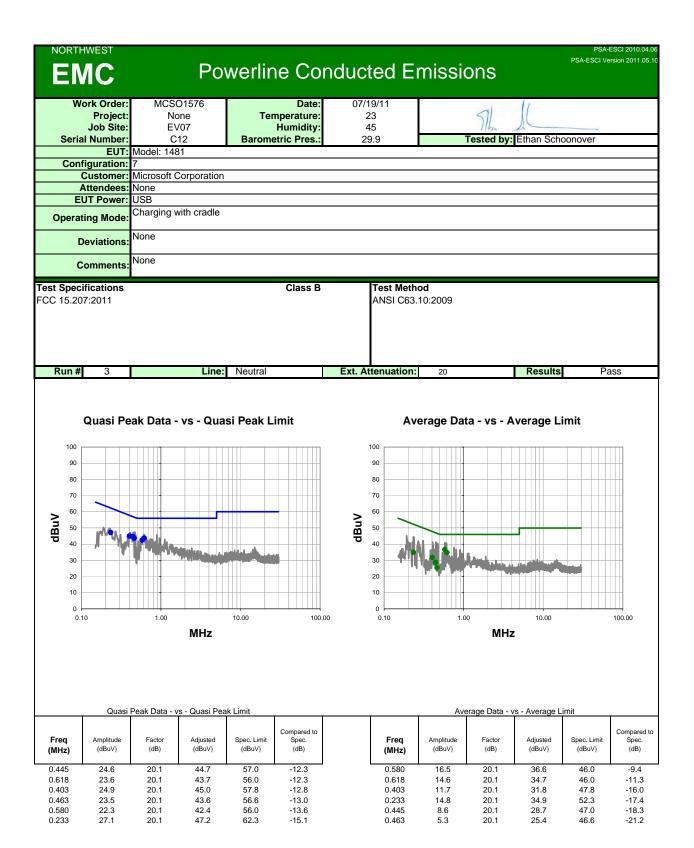
CONFIGURATIONS INVESTIGATED

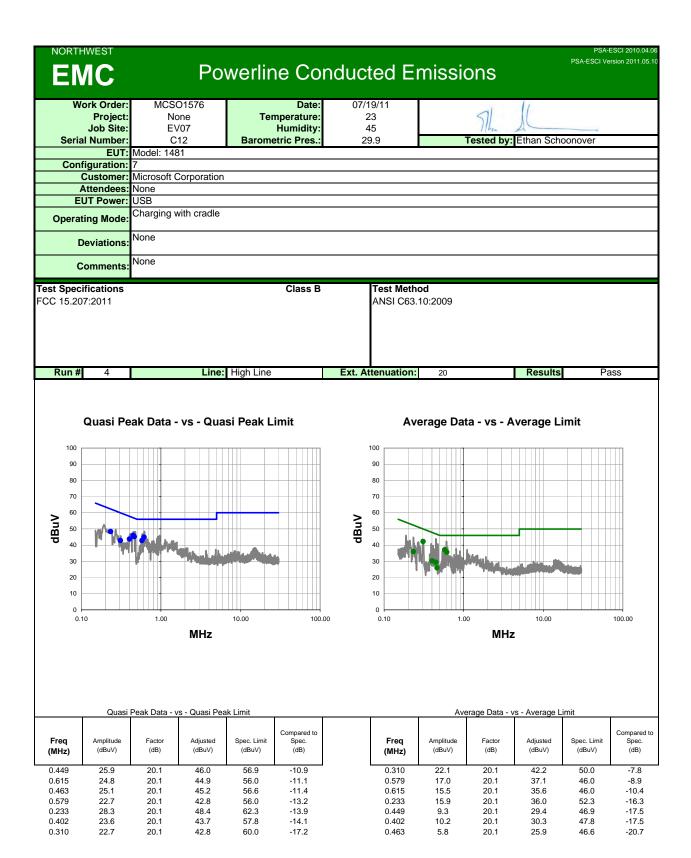
MCSO1576 - 7

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/9/2011	24 mo
Attenuator	Coaxicom	66702 2910-20	ATO	8/6/2010	12 mo
Receiver	Rohde & Schwarz	ESCI	ARH	3/30/2011	12 mo
EV07 Cables	N/A	Conducted Cables	EVG	6/17/2011	12 mo
LISN	Solar	9252-50-R-24-BNC	LIR	2/17/2011	12 mo


EASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
M	easurements were made us	sing the bandwidths and detec	ctors specified. No video filte	er was used.					


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

Channel Spacing

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

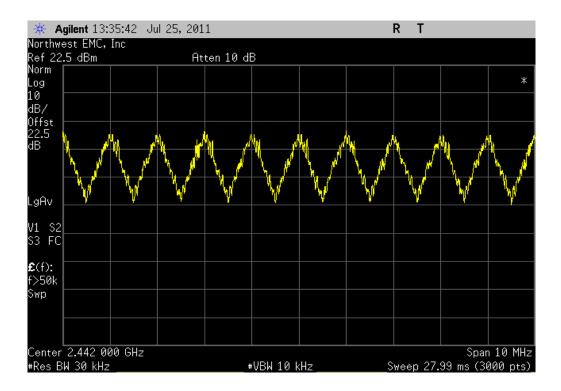
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

This limit is derived from FCC 15.247(a)(1): "Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW."

This was based on the original Bluetooth that had a channel separation of 1 MHz, which results in a 1.5 MHz bandwidth using the information above. Since the 1 MHz represents the worst case for all reports that is what is used, even though the other FHSS radio in this device would actually be larger it still meets. 2/3 * 1.5 MHz = 1 MHz hopping channel.


The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

NORTHWEST		Cha	anal Cr	aging			XMit 2010.11.0
EMC		Cna	nnel Sp	Dacing			
EUT:	Model: 1481					Work Order:	MCSO1576
Serial Number:	10					Date: 0	7/25/11
Customer:	Microsoft Corporation					Temperature: 2	23°C
Attendees:						Humidity: 4	18%
Project:	None				Baro	metric Pres.: 2	9.92 in
	Ethan Schoonover		P	ower: USB		Job Site:	EV06
TEST SPECIFICATION	ONS			TEST METHO)D		
FCC 15.247:2011				ANSI C63.10:	2009		
COMMENTS							
Transmitting Blueto	ooth Radio. 0.5 dB added for	r adapter cable DH5					
DEVIATIONS FROM	I TEST STANDARD						
None							
			-al (1				
Configuration #	4		511				
		Signature	11 kga Sh				
					Value	Lim	it Results
Channel Spacing					1 MHz	≥ 1 M	

Channel Spacing

 Channel Spacing

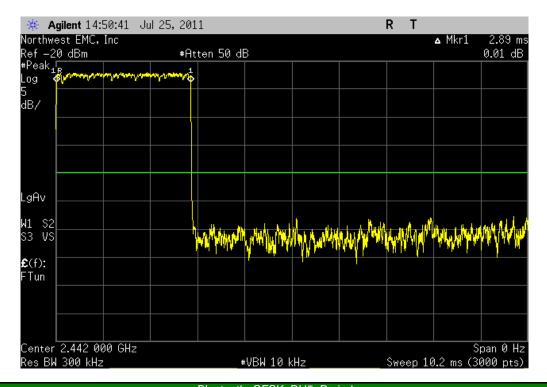
 Result:
 Pass
 Value:
 1 MHz
 Limit:
 ≥ 1 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

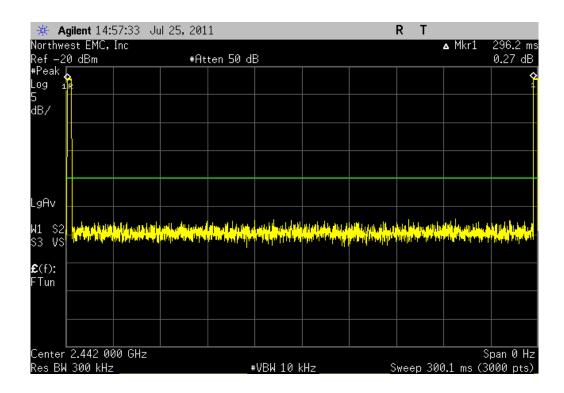
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

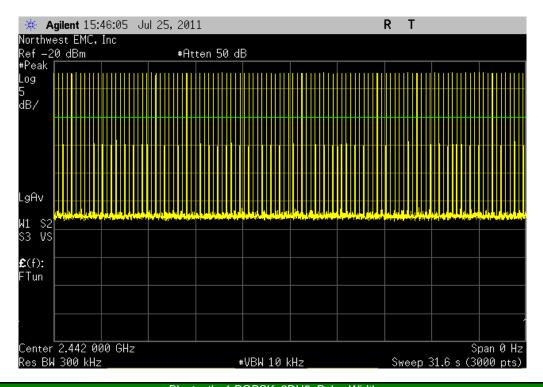
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

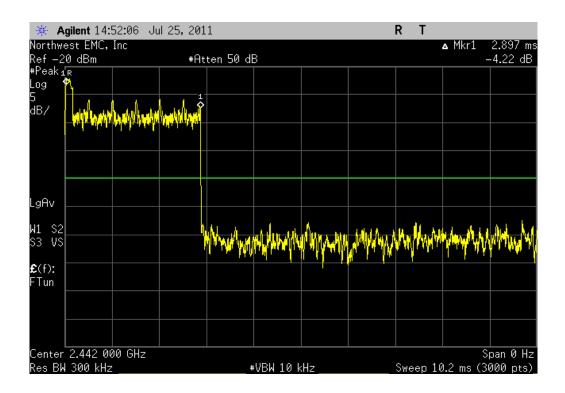

TEST DESCRIPTION

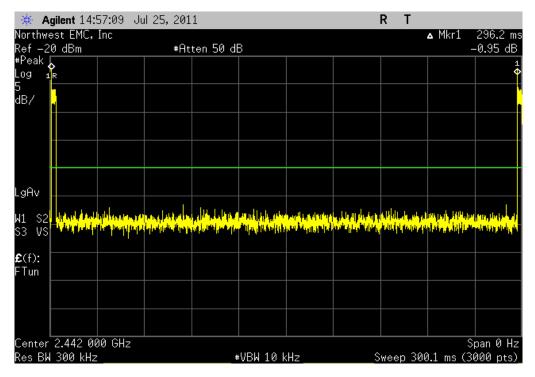
The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.


NORTHWEST							XMit 2010.11.03
EMC		Dwell	Time				
	Model: 1481				Work Order	MCSO1576	
Serial Number:						07/25/11	
	Microsoft Corporation				Temperature		
Attendees					Humidity		
Project:					Barometric Pres.		
	Rod Peloquin		Power:	HEB	Job Site		
TEST SPECIFICAT				TEST METHOD	Job Site	. LV00	
FCC 15.247:2011	10110			ANSI C63.10:2009			
FCC 15.247:2011				ANSI C63.10:2009			
COMMENTS							
	uetooth in frequency hop	ning mode					
Transmitting on Bi	detooth in nequency nop	ping mode.					
DEVIATIONS FROM	M TEST STANDARD						
		101	DO				
Configuration #	4	Rolly le	selling	•			
		Signature					
DI 4 41 0E014 D	l le			Va	lue L	imit	Results
Bluetooth, GFSK, D	Pulse Width					1/4	D
				2.9 296.		N/A N/A	Pass
	Period						Pass
DI	Total Period			304.5 ms	in 31.6 s 400 ms	in 31.6 s	Pass
Bluetooth, 4-DQPSh	, -					1/4	
	Pulse Width			2.9		N/A	Pass
	Period			296.		V/A	Pass
	Total Period			304.5 ms	in 31.6 s 400 ms	in 31.6 s	Pass
Bluetooth, 8-DPSK,							
	Pulse Width			2.9		N/A	Pass
	Period			296.		N/A	Pass
	Total Period			304.5 ms	in 31.6 s 400 ms	in 31.6 s	Pass

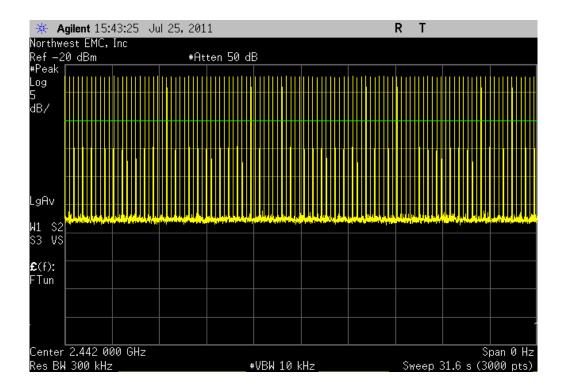
Bluetooth, GFSK, DH5, Pulse Width


Result: Pass Value: 2.9 ms Limit: N/A

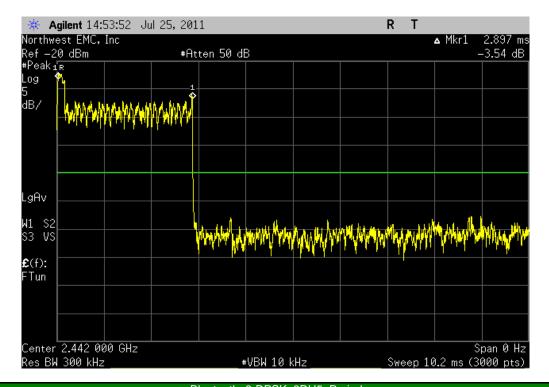

Result: Pass Value: 296.2 ms Limit: N/A


Result: Pass Value: 304.5 ms in 31.6 s Limit: 400 ms in 31.6 s

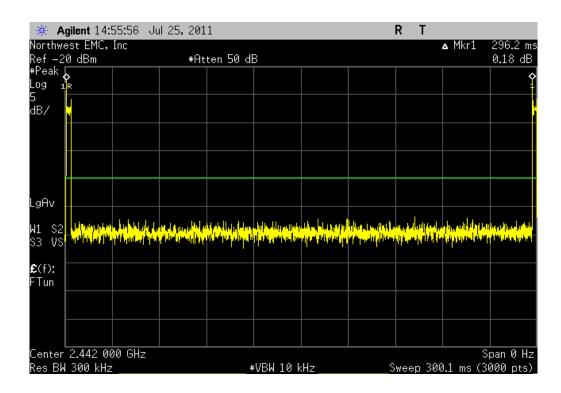
Result: Pass Value: 2.9 ms Limit: N/A



Result: Pass Value: 296.2 ms Limit: N/A

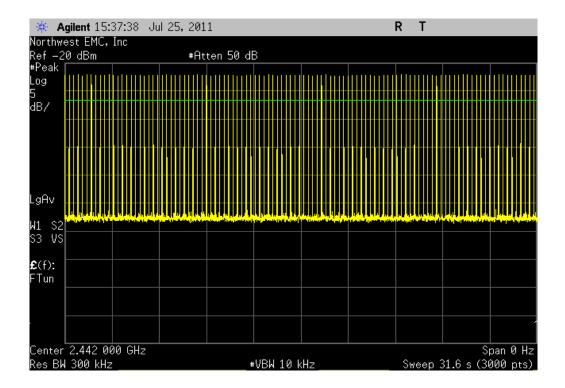

Bluetooth, 4-DQPSK, 2DH5, Total Period

Result: Pass **Value:** 304.5 ms in 31.6 s **Limit:** 400 ms in 31.6 s



Bluetooth, 8-DPSK, 3DH5, Pulse Width

Result: Pass Value: 2.9 ms Limit: N/A


Result: Pass Value: 296.2 ms Limit: N/A

EMC

Bluetooth, 8-DPSK, 3DH5, Total Period

Result: Pass Value: 304.5 ms in 31.6 sLimit: 400 ms in 31.6 s

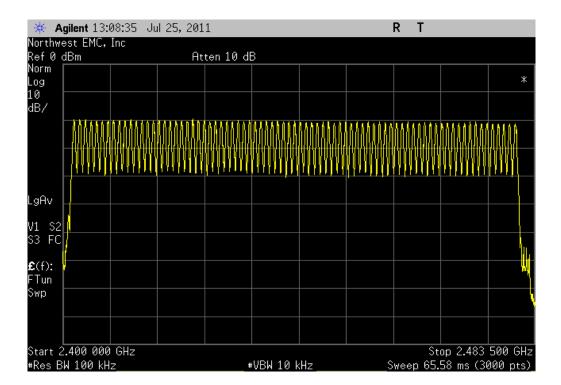
Number of Hopping Frequencies

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

NORTHWEST		Number of Hop	ppina Freau	encies		XMit 2010.11.03
EMC			ping i roqu	3113133		
EUT:	Model: 1481				Work Order: MCSO15	76
Serial Number:	10				Date: 07/25/11	
Customer:	Microsoft Corporation			T	emperature: 23°C	
Attendees:	None				Humidity: 48%	
Project:	None			Baron	netric Pres.: 29.92 in	
Tested by:	Ethan Schoonover		Power: USB		Job Site: EV06	
TEST SPECIFICATI	IONS		TEST M	ETHOD		
FCC 15.247:2011			ANSI C	63.10:2009		
COMMENTS						
Transmitting Blueto	ooth Radio. 0.5 dB added	for adapter cable DH5				
DEVIATIONS FROM	I TEST STANDARD					
None						
			17			
Configuration #	4	≤ 1				
		Signature	A			
				Value	Limit	Results
Number of Hopping	Frequencies			79	>15	Pass

Number of Hopping Frequencies

Number of Hopping Frequencies						
Result: Pass	Value: 79	Limit:	>15			

BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: 2402 – 2480 MHz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67,

56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59,

72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75,

09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06,

01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection
- 2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \, \mu s * 1600 \, 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

For multi-slot packet the hopping is reduced according to the length of the packet.

Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

 $Z:\MCSO\MCSO1576\Test\ Report\ -\ MCSO1576\ -\ FCC\ 15.247\ Bluetooth\BLUETOOTH\ APPROVALS\ -\ FCC\ Procedure\ 2-15-02.doc$

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.