

Report No.: T100816101 Date of Issue: October 27, 2010

FCC 47 CFR PART 15 SUBPART C & **INDUSTRY CANADA RSS-210**

TEST REPORT

For

802.11 b/g/n WLAN Client

Model: 1399

Trade Name: Microsoft

Issued to

Microsoft Corporation One Microsoft Way, Redmond, WA 98052

Issued by

Compliance Certification Services Inc. No. 11, Wu-Gong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan (R.O.C.) http://www.ccsrf.com service@ccsrf.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

> Page 1 Total Page: 125

> > Rev. 00

Report No.: T100816101 Date of Issue: October 27, 2010

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES.	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	7
4. IN	NSTRUMENT CALIBRATION	8
4.1	MEASURING INSTRUMENT CALIBRATION	8
4.2	MEASUREMENT EQUIPMENT USED	
4.3	MEASUREMENT UNCERTAINTY	9
5. F	ACILITIES AND ACCREDITATIONS	10
5.1	FACILITIES	10
5.2	EQUIPMENT	
5.3	LABORATORY ACCREDITATIONS AND LISTING	10
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	11
6. SI	ETUP OF EQUIPMENT UNDER TEST	12
6.1	SETUP CONFIGURATION OF EUT	12
6.2	SUPPORT EQUIPMENT	12
7. A	PPLICABLE RULES FOR INDUSTRY CANADA RSS-210	13
8. F	CC PART 15.247 REQUIREMENTS & RSS-210 REQUIREMENTS	19
8.1	99% BANDWIDTH	
8.2	6DB BANDWIDTH	
8.3	PEAK POWER	
8.4	BAND EDGES MEASUREMENT	37
8.5	PEAK POWER SPECTRAL DENSITY	
8.6		
8.7		
8.8	POWERLINE CONDUCTED EMISSIONS	115
APPE	NDIX I RADIO FREQUENCY EXPOSURE	118
APPE	NDIX II PHOTOGRAPHS OF TEST SETUP	121
APPE	CNDIX 1 - PHOTOGRAPHS OF EUT	

1. TEST RESULT CERTIFICATION

Applicant: Microsoft Corporation

One Microsoft Way, Redmond, WA 98052

Manufacturer: Atheros Communications

5480 Great America Parkway, Santa Clara, CA 95054

Report No.: T100816101

Date of Issue: October 27, 2010

Equipment Under Test: 802.11 b/g/n WLAN Client

Trade Name: Microsoft

Model: 1399

Date of Test: August $20 \sim \text{October } 7,2010$

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 15 Subpart C					
&	No non-compliance noted				
Industry Canada RSS-210 Issue 7 June, 2007					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247 and Industry Canada RSS-210.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by: Reviewed by:

Rex Lai Section Manager

Compliance Certification Services Inc.

Gina Lo

Section Manager

Compliance Certification Services Inc.

Gina Lo

Page 3 Rev. 00

2. EUT DESCRIPTION

Product	802.11 b/g/n WLAN Client						
Trade Name	Microsoft						
Model Number	1399						
Model Discrepancy	N/A						
Power Supply	Powered by host de	vice					
Frequency Range	2412 ~ 2462 MHz						
	Mode	Frequency Range	Output Power (dBm)	Output Power (mW)			
	802.11b	2412 - 2462	19.36	86.2979			
Transmit Power	802.11g	2412 - 2462	25.12	325.0873			
	802.11n Standard-20 MHz	2412 - 2462	25.09	322.8494			
	draft 802.11n Wide-40 MHz	2422 - 2452	21.16	130.6171			
IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mbps) IEEE 802.11g mode: OFDM (6, 9, 12, 18, 24, 36, 48 and draft 802.11n Standard-20 MHz Channel mode: OFDM (14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 3) Modulation Technique 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 7 115.56, 117, 130, 144.44 Mbps) draft 802.11n Wide-40 MHz Channel mode: OFDM (13.40.5, 45, 54, 60, 81, 90, 108, 120, 121.5, 162, 180, 216, 240, 243, 270, 300 Mbps)							
Number of Channels Number of Channels draft 802.11n Standard-20 MHz Channel mode: 11 Channel draft 802.11n Wide-40 MHz Channel mode: 7 Channels Monopole Antenna / Gain: 2.92 dBi PIFA Antenna / Gain: 3 dBi							

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>C3K1399</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 4 Rev. 00

Report No.: T100816101

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Report No.: T100816101

Date of Issue: October 27, 2010

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, IC RSS-102, IC RSS-212, and ANSI C63.4.

This submittal(s) (test report) is intended for IC Certification with Industry Canada RSS-210.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, IC RSS-102, and ANSI C63.4.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 5 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Report No.: T100816101

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 6 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: 1399) had been tested under operating condition.

After verification, all tests carried out are with the worst-case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode and receiving radiated spurious emission above 1GHz, which worst case was in CH Mid mode only.

Report No.: T100816101

Date of Issue: October 27, 2010

IEEE 802.11b mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

draft 802.11n Wide-40 MHz Channel mode:

Channel Low (2422MHz), Channel Mid (2437MHz) and Channel High (2452MHz) with 13.5Mbps data rate were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

Page 7 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Report No.: T100816101

Date of Issue: October 27, 2010

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site					
Name of Equipment Manufacturer Model Serial Number Calibration Du					
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/03/2011	
Power Meter	Agilent	E4416A	GB41291611	06/27/2011	
Power Sensor	Agilent	E9327A	US40441097	06/27/2011	

3M Semi Anechoic Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	10/25/2011		
EMI Test Receiver	R&S	ESCI	100064	02/04/2011		
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	01/13/2011		
Pre-Amplifier	MITEQ	AFS44-00102650- 42-10P-44	1415367	11/20/2010		
Bilog Antenna	Sunol Sciences	JB3	A030105	09/10/2011		
Horn Antenna	EMCO	3117	00055165	12/07/2010		
Loop Antenna	EMCO	6502	8905/2356	06/10/2013		
Turn Table	CCS	CC-T-1F	N/A	N.C.R		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R		
Site NSA	CCS	N/A	N/A	12/31/2010		
Test S/W	EZ-EMC (CCS-3A1RE)					

Powerline Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/08/2011	
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/22/2011	
EMI Test Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/26/2011	
Pulse Limit	ROHDE & SCHWARZ	ESH3-Z2	100117	09/16/2011	
N Type Coaxial Cable	BELDEN	8268 M17/164	003	07/09/2011	

Page 8 Rev. 00

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 1.7468
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0606
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9979
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5790
3M Semi Anechoic Chamber / 8G~18G	+/- 2.5928
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7212
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9520

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 Rev. 00

Report No.: T100816101

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All	measurement facilities used to collect the measurement data are located at
	No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
	No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
	No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235
\boxtimes	No.989-1, Wenshan Rd., Qionglin Township, Hsinchu County 307, Taiwan (R.O.C.) Tel: +886-3-5921698

Remark: The powerline conducted emissions items was tested at Compliance Certification Services Inc. (Hsinchu Lab.) The test equipments were listed in page 8 and the test data, please refer page 116-117.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

Page 10 Rev. 00

Report No.: T100816101

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method -47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Report No.: T100816101

Date of Issue: October 27, 2010

Page 11 Rev. 00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

Report No.: T100816101

Date of Issue: October 27, 2010

6.2 SUPPORT EQUIPMENT

No	Equipment	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Notebook PC	НР	dv6-1332TX	CNF9491GM9	PD9112BNHU		AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core
2.	Notebook PC	Lenovo ideaPad	S10e_4068-RZ1	L3CEV2D	HFS-FL	N/A	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core
3.	Test Kit	N/A	N/A	N/A	N/A	N/A	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 12 Rev. 00

7. APPLICABLE RULES FOR INDUSTRY CANADA RSS-210

Report No.: T100816101

Date of Issue: October 27, 2010

RSS-210 §2 General Certification Requirements and Specifications

RSS-210 §2.1 Frequency Stability

When the carrier frequency stability is not specified, it need not be tested, provided that the carrier frequency is chosen such that the fundamental modulation products (meaning the nominal bandwidth) lie totally within the bands listed in Tables 2, 3, 4 and 5 and do not fall into any restricted band listed in Table 1. Due account shall be taken of carrier frequency drift as a result of aging, temperature, humidity, and supply voltage variations when using frequencies near the band edges.

RSS-210 §2.2 Restricted Bands and Unwanted Emission Frequencies

Restricted bands, identified in Table 1, are designated primarily for safety-of-life services (distress calling and certain aeronautical bands), certain satellite downlinks, radio astronomy, and some government uses. Except where otherwise indicated, the following restrictions apply: (a) Fundamental components of modulation of LPDs shall not fall within the restricted bands of Table 1.

- (b) Unwanted emissions falling into restricted bands of Table 1 shall meet Tables 2 and 3 limits. It should also be noted that unwanted emissions falling in non-restricted bands do not need to be suppressed to a level lower than the Table 2 and 3 limits.
- (c) Unwanted emissions not falling within restricted frequency bands may also use the limits specified in the applicable annex.

RSS-210 §2.3 Licence-exempt Receivers

Category I licence-exempt receivers are required to have their spurious emissions comply with Section 7.2.3 of RSS-Gen.

RSS-210 §2.6 General Field Strength Limits

Table 2 and 3 list the permissible levels of unwanted emissions of transmitters and receivers. However, transmitters with field strengths that do not exceed the limits in these tables may also operate in these frequency bands, other than the restricted bands of Table 1 and the TV bands (i.e. unwanted emissions of transmitters and receivers are permitted to fall into Table 1 and TV frequencies but intentional emissions are prohibited). See the note of Table 2 for further details.

Page 13 Rev. 00

RSS-210 §2.7 Tables

RSS-210 Table 1: Restricted Frequency Bands (Note)

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475-156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

Note: Certain frequency bands listed in Table 2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard as well as RSS-310.

RSS-210 Table 2: General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz (Note)

Frequency	Field Stre microvolts/m at 3 metr	S
(MHz)	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz, and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

Page 14 Rev. 00

Report No.: T100816101

RSS-210 Table 3: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Report No.: T100816101

Date of Issue: October 27, 2010

Frequency (fundamental or spurious)	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in Hz)	300
490-1.705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

RSS-210 §Annex 8: Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands

This section applies to systems that employ frequency hopping (FH) and digital modulation technology in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. Systems in these bands may employ frequency hopping, digital modulation and or a combination (hybrid) of both techniques.

A frequency hopping system that synchronizes with another or several other systems (to avoid frequency collision among them) via off-air sensing or via connecting cables is not hopping randomly and therefore is not in compliance with RSS-210.

RSS-210 §A8.2 Digital Modulation Systems

These include systems employing digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to all three bands.

RSS-210 §A8.4 Transmitter Output Power and e.i.r.p. Requirements

- (4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands, the maximum peak conducted power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen)
- (5) Point-to-point systems in the bands 2400-2483.5 MHz and 5725-5850 MHz are permitted to have an e.i.r.p. higher than 4 W, provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omni-directional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p. However, remote stations of point-to-multipoint systems shall be allowed to operate at greater than 4 W e.i.r.p, under the same conditions as for point-to-point systems.

Note: "Fixed, point-to-point operation", excludes point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information.

Page 15 Rev. 00

RSS-210 §A8.5 Out-of-band Emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

Report No.: T100816101

Date of Issue: October 27, 2010

RSS-Gen §2 General Information

Unless otherwise indicated, radiocommunications equipment is subject to licensing pursuant to subsection 4(1) of the *Radiocommunication Act*.

RSS-Gen §2.1.2 Category II Equipment

Category II equipment comprises radio devices where a standard has been prescribed but for which a TAC is not required, that is, equipment certification by Industry Canada or a Certification Body (CB) is not required (certification exempt), pursuant to subsection 4(3) of the *Radiocommunication Act*. The manufacturer or importer shall nevertheless ensure that the standards are complied with. A test report shall be available on request and the device shall be properly labelled.

RSS-Gen §2.2 Receivers

Radiocommunication receivers are defined as Category I equipment or Category II equipment by the characteristics outlined below.

RSS-Gen §2.2.1 Category I Equipment Receivers

A receiver is classified as Category I equipment if it meets one of the following conditions:

- (a) is a stand-alone receiver that is tunable to any frequency in the band 30-960 MHz;
- (b) is a receiver that is associated with Category I transmitters; or
- (c) is a scanner receiver.

Except for scanner receivers, which have their own RSSs, Category I receivers shall comply with the limits for receiver spurious emissions set out in Section 6 of this RSS-Gen, and shall be certified under the RSS applicable to the transmitter type with which the receiver is associated or designed to operate (NOT under RSS-Gen).

RSS-Gen §2.2.2 Category II Equipment Receivers

A receiver is classified as Category II equipment if it is not meeting the conditions of Section 2.2.1.

RSS-Gen §2.2.3 Licence-exempt Receivers

Paging receivers, "receive-only" earth stations operating with satellites approved by Industry Canada, and stand-alone receivers which are exempted from licensing, can be classified as either Category I or Category II. These receivers shall comply with the requirements of RSS-210 or RSS-310, respectively.

Page 16 Rev. 00

RSS-Gen §2.3 Licence-exempt Low-power Radiocommunication Devices (LPDs)

Licence-exempt low-power radiocommunication devices are devices which have intentional and unwanted emissions of very low signal levels such that they can co-exist with licensed radio services. LPDs are required to operate on a "no-interference no-protection" basis (i.e. they may not cause radio interference and cannot claim protection from interference). The requirements for LPDs are generally described in Section 7.

Report No.: T100816101

Date of Issue: October 27, 2010

RSS-Gen §5.5 Exposure of Humans to RF Fields

Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

RSS-Gen §6 Receiver Spurious Emission Standard

The following receiver spurious emission limits shall be complied with:

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

RSS-Gen Table 1 - Spurious Emission Limits for Receivers

Frequency (MHz)	Field Strength microvolts/m at 3 metres
30-88	100
88-216	150
216-960	200
Above 960	500

⁽b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

RSS-Gen §7.1.4 Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

Page 17 Rev. 00

RSS-Gen §7.2.2 Transmitter and Receiver AC Power Lines Conducted Emission Limits

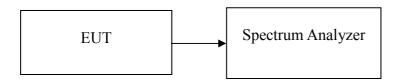
Report No.: T100816101

Date of Issue: October 27, 2010

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

RSS-Gen Table 2 – AC Power Lines Conducted Emission Limits

Frequency Range	Conducted li	mit (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5	56	46
5 to 30	60	50


^{*}Decreases with the logarithm of the frequency

Page 18 Rev. 00

8. FCC PART 15.247 REQUIREMENTS & RSS-210 REQUIREMENTS

8.1 99% BANDWIDTH

Test Configuration

TEST PROCEDURE

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold.

Page 19 Rev. 00

Report No.: T100816101

Report No.: T100816101 Date of Issue: October 27, 2010

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	14.7821
Mid	2437	14.7480
High	2462	14.7707

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	16.9168
Mid	2437	16.7832
High	2462	16.9044

Test mode: draft 802.11n Standard-20 MHz Channel mode

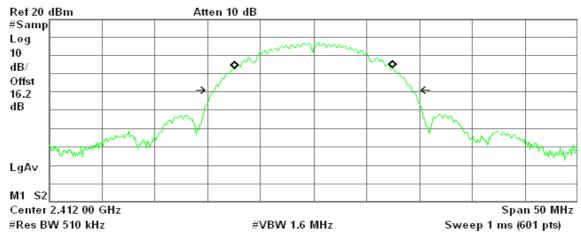
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	17.8680
Mid	2437	17.9048
High	2462	18.3468

Test mode:draft 802.11n Wide-40 MHzChannel mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2422	35.9440
Mid	2437	36.1018
High	2452	35.9966

Page 20 Rev. 00

FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010


Test Plot

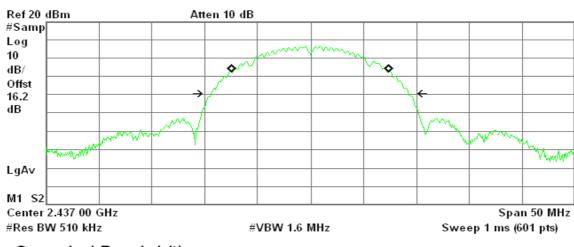
IEEE 802.11b mode 99% Bandwidth (CH Low)

Agilent 17:48:05 Oct 7, 2010

R T

Report No.: T100816101

Occupied Bandwidth
14.7821 MHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -4.670 kHz
Occupied Bandwidth 18.568 MHz*

99% Bandwidth (CH Mid)

Agilent 18:00:58 Oct 7, 2010

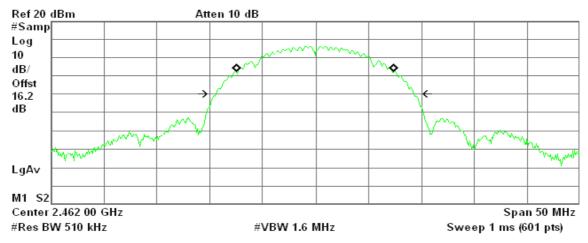
R T

Occupied Bandwidth 14.7480 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -13.428 kHz
Occupied Bandwidth 18.543 MHz*

Page 21 Rev. 00



FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

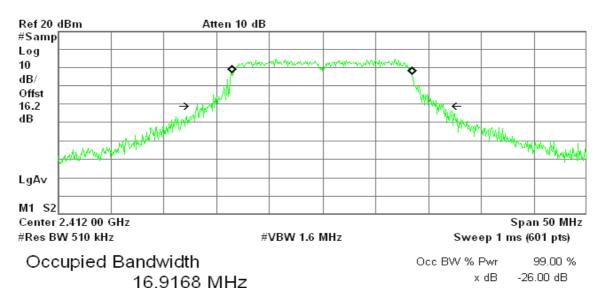
99% Bandwidth (CH High)

* Agilent 18:06:48 Oct 7, 2010

R T

Occupied Bandwidth
14.7707 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB


Report No.: T100816101

Transmit Freq Error -28.149 kHz
Occupied Bandwidth 18.544 MHz*

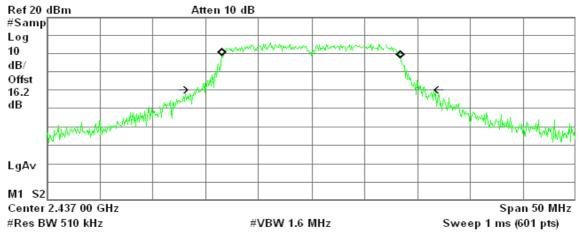
IEEE 802.11g mode 99% Bandwidth (CH Low)

* Agilent 18:17:19 Oct 7, 2010

R T

Transmit Freq Error -66.687 kHz
Occupied Bandwidth 23.307 MHz*

Page 22 Rev. 00

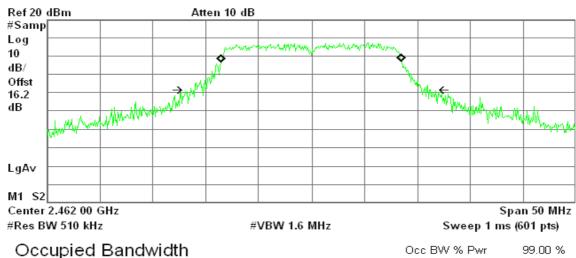

FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

99% Bandwidth (CH Mid)

* Agilent 18:23:12 Oct 7, 2010

R T

Report No.: T100816101


Occupied Bandwidth 16.7832 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -16.811 kHz
Occupied Bandwidth 21.603 MHz*

99% Bandwidth (CH High)

* Agilent 18:37:26 Oct 7, 2010

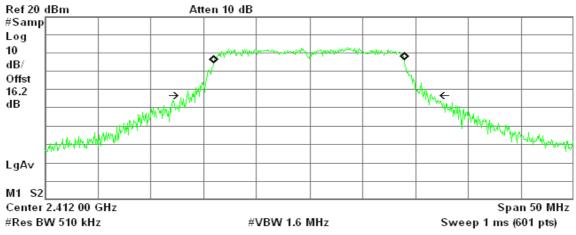
R T

16.9044 MHz

x dB -26.00 dB

Transmit Freq Error -14.037 kHz
Occupied Bandwidth 22.709 MHz*

Page 23 Rev. 00


Compliance Certification Services Inc.Report No.: T100816101FCC ID: C3K1399IC: 3048A-1399Date of Issue: October 27, 2010

draft 802.11n Standard-20 MHz Channel mode

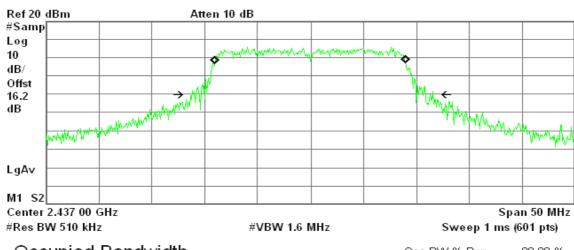
99% Bandwidth (CH Low)

Agilent 18:49:17 Oct 7, 2010

R T

Occupied Bandwidth 17.8680 MHz Occ BW % Pwr

x dB


99.00 % -26.00 dB

Transmit Freq Error -32.368 kHz
Occupied Bandwidth 23.088 MHz*

99% Bandwidth (CH Mid)

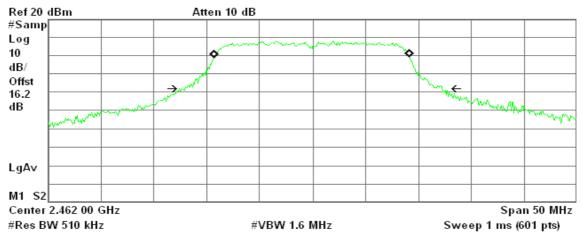
Agilent 20:33:25 Oct 7, 2010

R T

Occupied Bandwidth 17.9048 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -13.573 kHz
Occupied Bandwidth 22.831 MHz*

Page 24 Rev. 00


FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

99% Bandwidth (CH High)

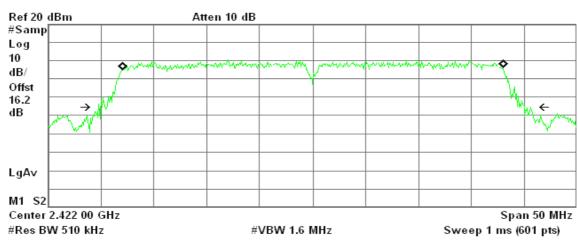
* Agilent 20:41:16 Oct 7, 2010

R T

Report No.: T100816101

Occupied Bandwidth
18.3468 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB


Transmit Freq Error -63.956 kHz x dB Bandwidth 24.330 MHz*

draft 802.11n Wide-40 MHz Channel mode

99% Bandwidth (CH Low)

* Agilent 20:49:26 Oct 7, 2010

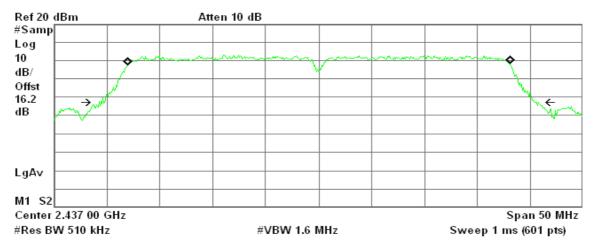
R T

Occupied Bandwidth 35.9440 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 16.400 kHz
Occupied Bandwidth 40.960 MHz*

Page 25 Rev. 00

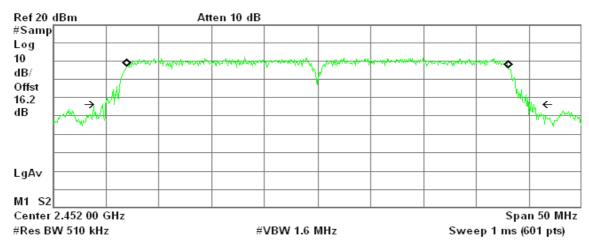

FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

99% Bandwidth (CH Mid)

R T

Report No.: T100816101

Occupied Bandwidth 36.1018 MHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 29.788 kHz x dB Bandwidth 41.449 MHz*

99% Bandwidth (CH High)

Agilent 21:04:36 Oct 7, 2010

R T

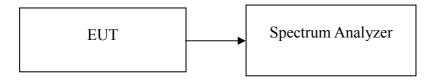
Occupied Bandwidth 35.9966 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -1.568 kHz
Occupied Bandwidth 40.849 MHz*

Page 26 Rev. 00

8.2 6DB BANDWIDTH


LIMIT

According to §15.247(a)(2) & RSS-210 §A8.2(a), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

Report No.: T100816101

Date of Issue: October 27, 2010

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW = RBW, Span = 50 MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

TEST RESULTS

No non-compliance noted

Page 27 Rev. 00

Test Data

Mid

High

Test mode: IEEE 802.11b mode					
Channel	Frequency (MHz)	6dB Bandwidth (kHz)	Limit (kHz)	Result	
Low	2412	10170		PASS	
Mid	2437	10080	>500	PASS	

Report No.: T100816101

PASS

PASS

Date of Issue: October 27, 2010

Mid	2437	10080	>500	PASS		
High	2462	11670		PASS		
Test mode: IEEE 802.11g mode						
Channel	Frequency	6dB Bandwidth	Limit	D 1/		
Chamiei	(MHz)	(kHz)	(kHz)	Result		

16500

15920

>500

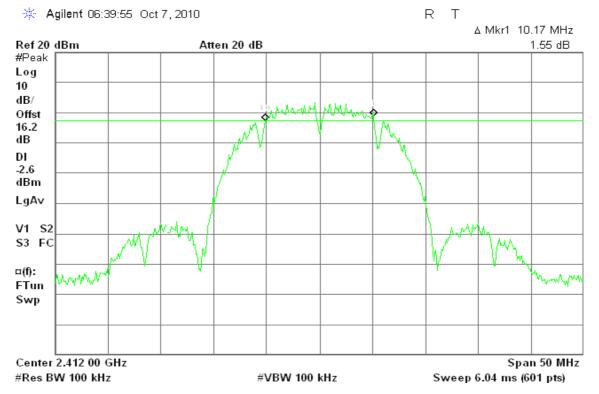
Test mode: draft 802.11n Standard-20 MHz Channel mode

2437

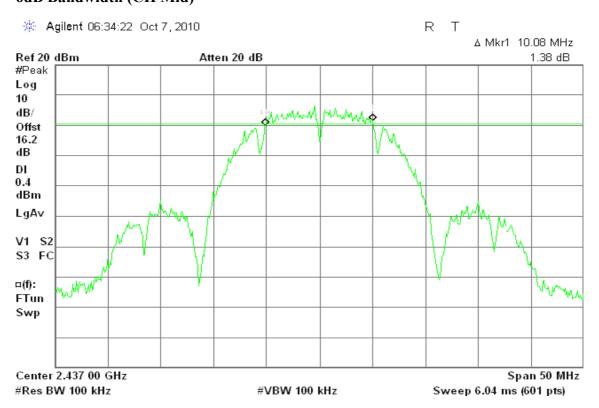
2462

1000 moute within countries community 20 million community				
Channel	Frequency (MHz)	6dB Bandwidth (kHz)	Limit (kHz)	Result
Low	2412	17500		PASS
Mid	2437	17000	>500	PASS
High	2462	17580		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode

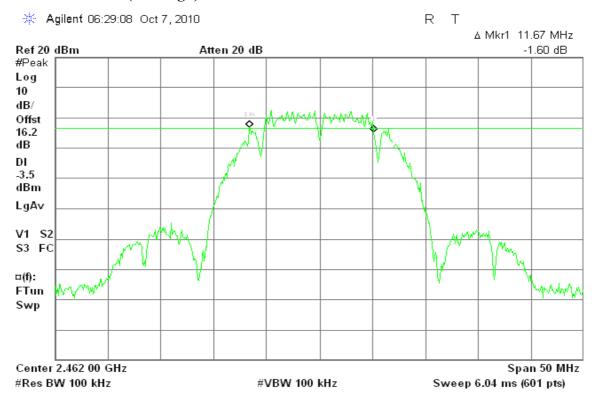

Channel	Frequency (MHz)	6dB Bandwidth (kHz)	Limit (kHz)	Result
Low	2422	35080		PASS
Mid	2437	35330	>500	PASS
High	2452	34670		PASS

Page 28 Rev. 00

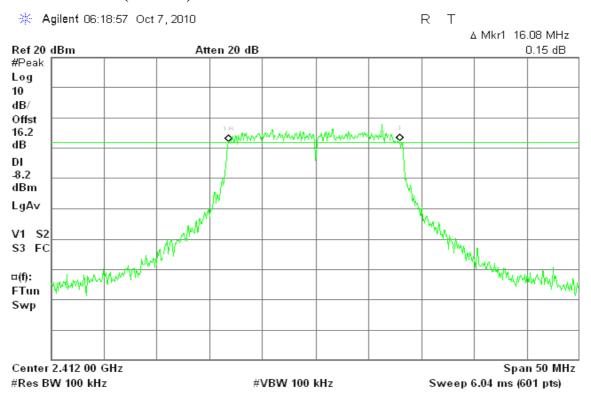

Test Plot

IEEE 802.11b mode

6dB Bandwidth (CH Low)

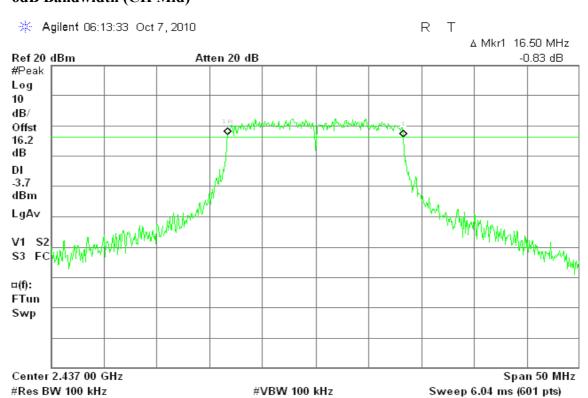

6dB Bandwidth (CH Mid)

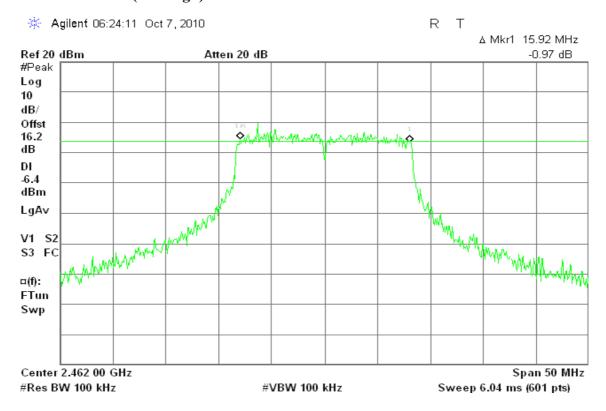
Page 29 Rev. 00


Report No.: T100816101

6dB Bandwidth (CH High)

IEEE 802.11g mode

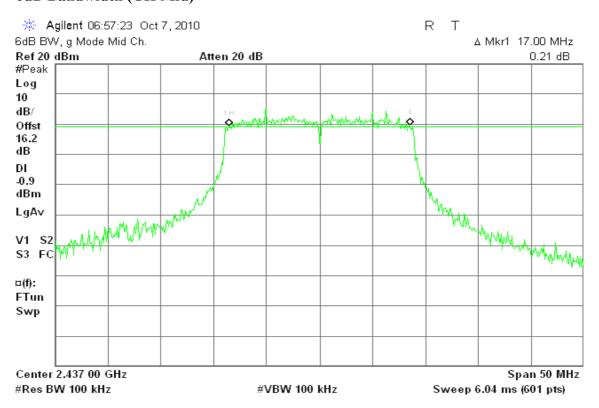

6dB Bandwidth (CH Low)


Page 30 Rev. 00

Report No.: T100816101

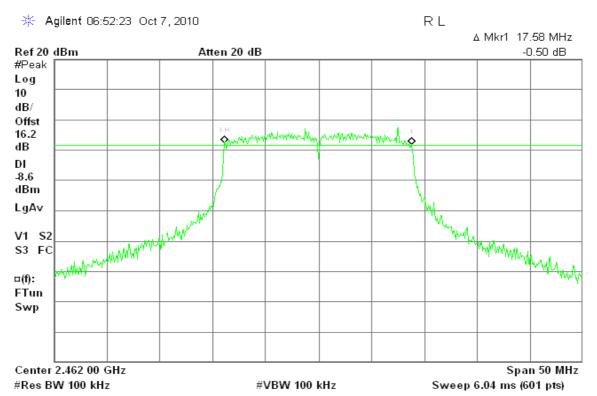
6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

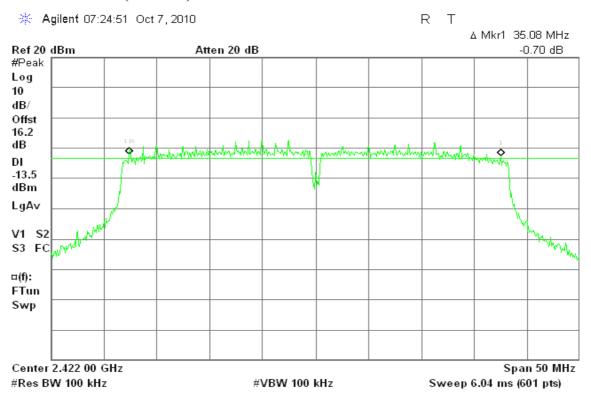

Page 31 Rev. 00

Report No.: T100816101

draft 802.11n Standard-20 MHz Channel mode

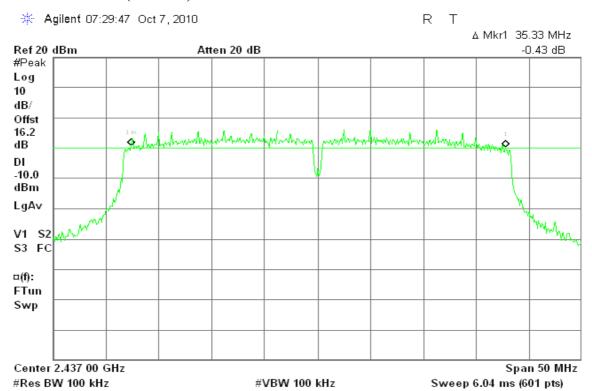

6dB Bandwidth (CH Mid)

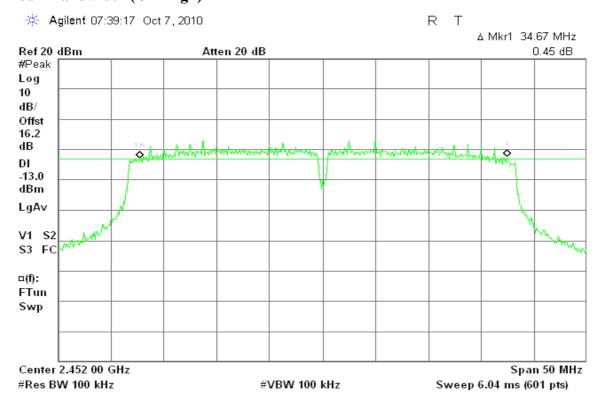
Page 32 Rev. 00


Report No.: T100816101

6dB Bandwidth (CH High)

draft 802.11n Wide-40 MHz Channel mode


6dB Bandwidth (CH Low)


Page 33 Rev. 00

Report No.: T100816101

6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

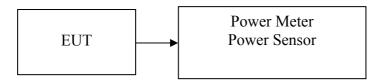
Page 34 Rev. 00

Report No.: T100816101

8.3 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


1. According to §15.247(b)(3) & RSS-210 §A8.4(4), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.

Report No.: T100816101

Date of Issue: October 27, 2010

2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted

Page 35 Rev. 00

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	16.46	0.0443		PASS
Mid	2437	19.36	0.0863	1.00	PASS
High	2462	16.39	0.0436		PASS

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	19.79	0.0953		PASS
Mid	2437	25.12	0.3251	1.00	PASS
High	2462	20.19	0.1045		PASS

Test mode: draft 802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	18.41	0.0693		PASS
Mid	2437	25.09	0.3228	1.00	PASS
High	2462	19.61	0.0914		PASS

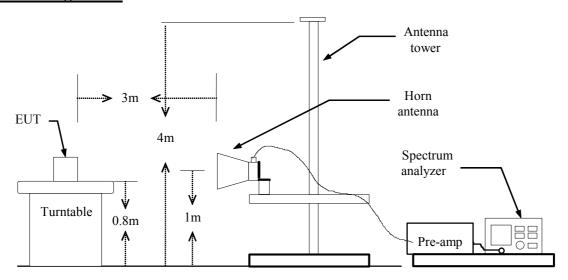
Test mode: draft 802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2422	17.48	0.0560		PASS
Mid	2437	21.16	0.1306	1.00	PASS
High	2452	17.89	0.0615		PASS

Page 36 Rev. 00

Report No.: T100816101

Date of Issue: October 27, 2010


Report No.: T100816101

8.4 BAND EDGES MEASUREMENT

LIMIT

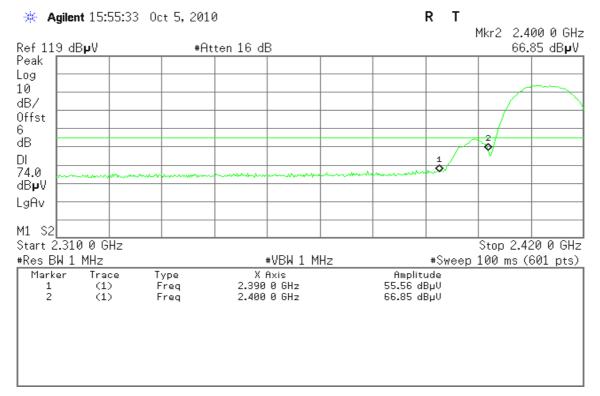
According to §15.247(d) & RSS-210 §A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

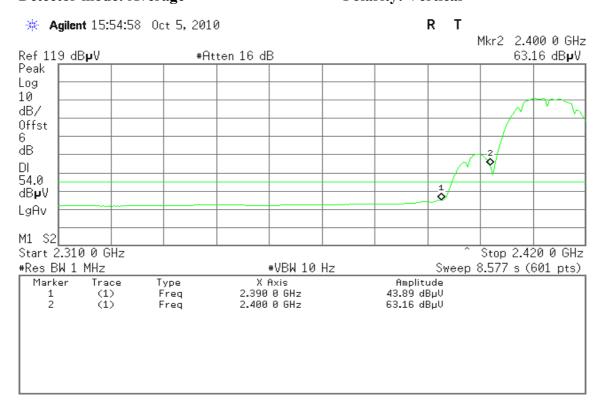
TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

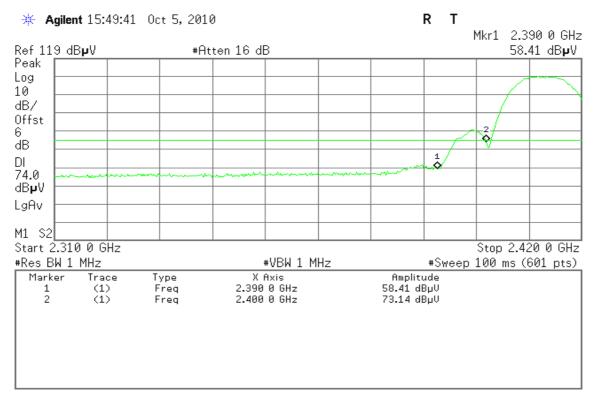

Refer to attach spectrum analyzer data chart.

Page 37 Rev. 00


For Monopole Antenna

Band Edges (IEEE 802.11b mode / CH Low)

Detector mode: Peak Polarity: Vertical

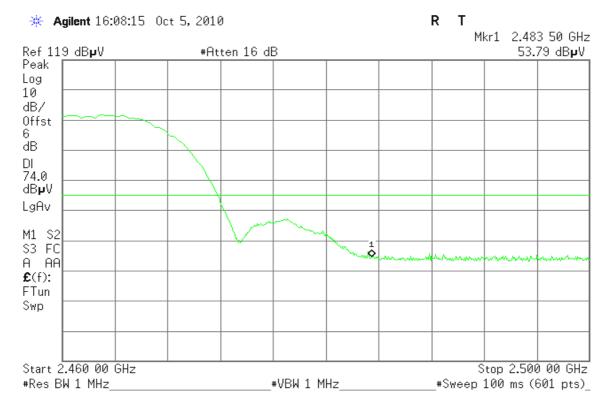

Detector mode: Average Polarity: Vertical


Page 38 Rev. 00

Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal


Page 39 Rev. 00

Report No.: T100816101

Band Edges (IEEE 802.11b mode / CH High)

Polarity: Vertical Detector mode: Peak

Polarity: Vertical Detector mode: Average



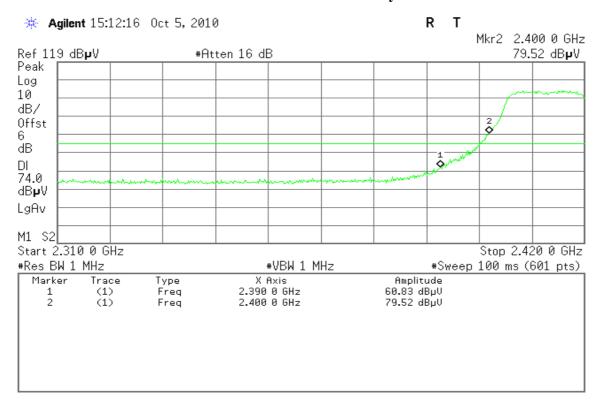
Page 40 Rev. 00

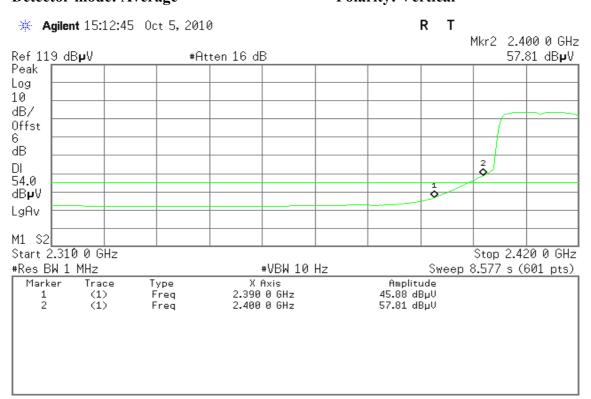
Report No.: T100816101

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Detector mode: Peak Polarity: Horizontal

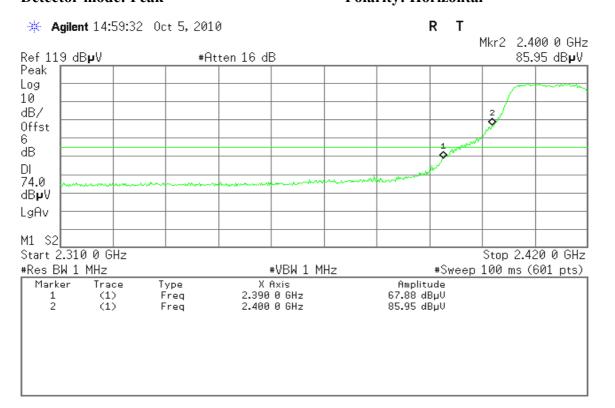
Detector mode: Average

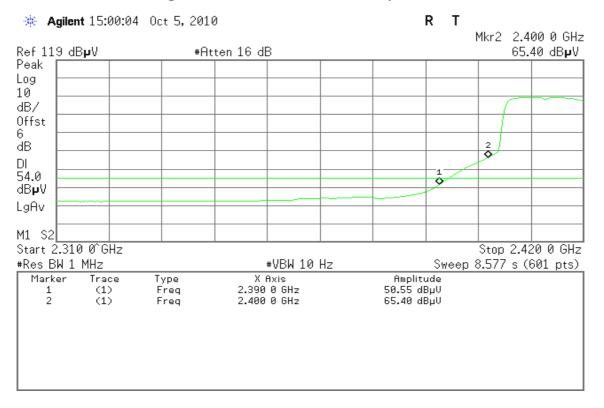

Polarity: Horizontal


Page 41 Rev. 00

Band Edges (IEEE 802.11g mode / CH Low)

Detector mode: Peak Polarity: Vertical

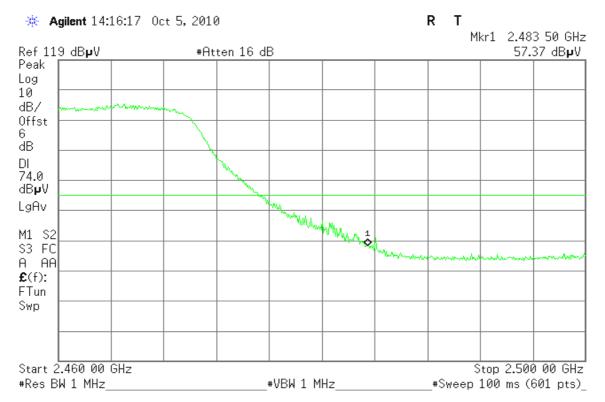

Detector mode: Average Polarity: Vertical


Page 42 Rev. 00

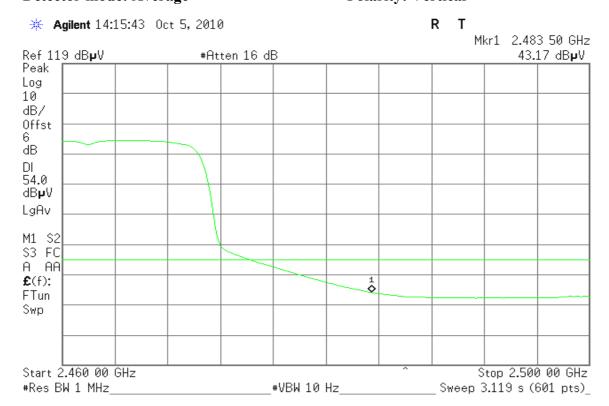
Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



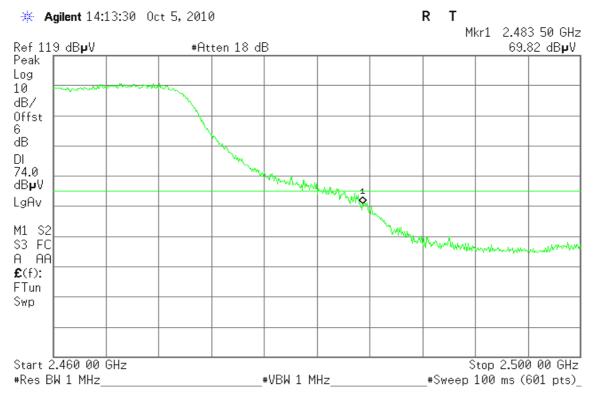
Page 43 Rev. 00


Report No.: T100816101

Band Edges (IEEE 802.11g mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical



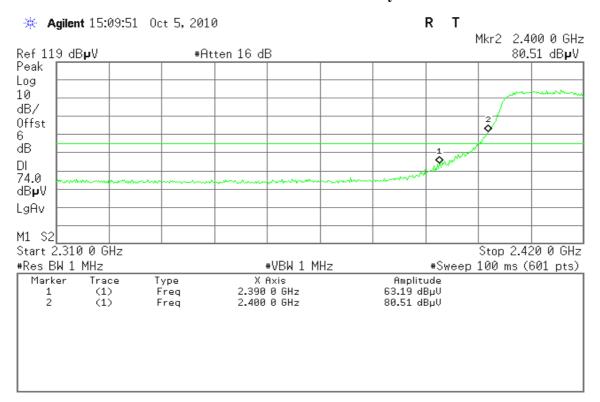
Page 44 Rev. 00

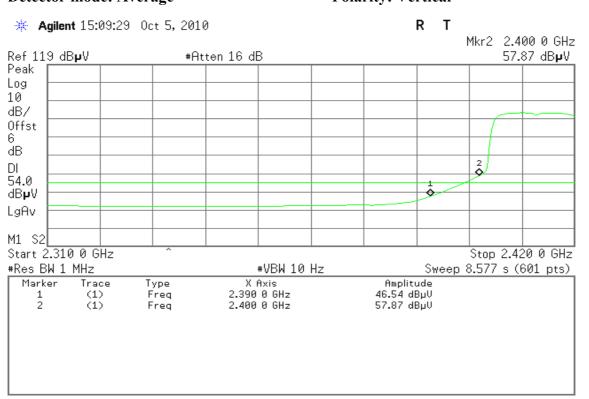
Report No.: T100816101

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Detector mode: Peak Polarity: Horizontal

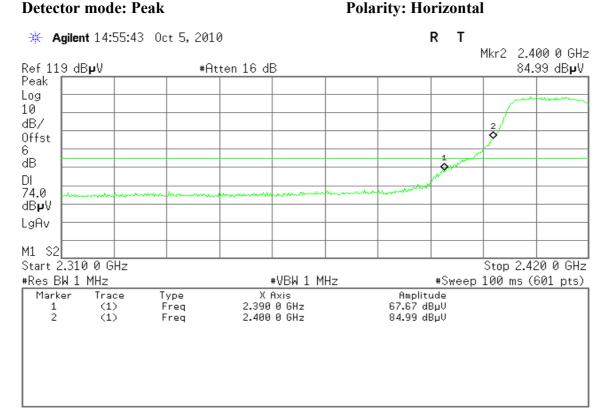
Detector mode: Average


Polarity: Horizontal

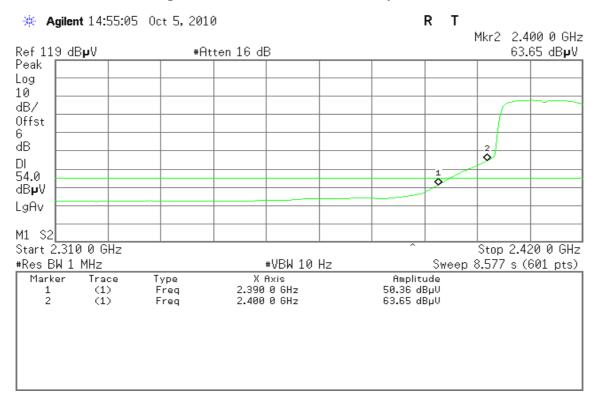

Page 45 Rev. 00

Band Edges (draft 802.11n Standard-20 MHz Channel mode / CH Low)

Detector mode: Peak Polarity: Vertical



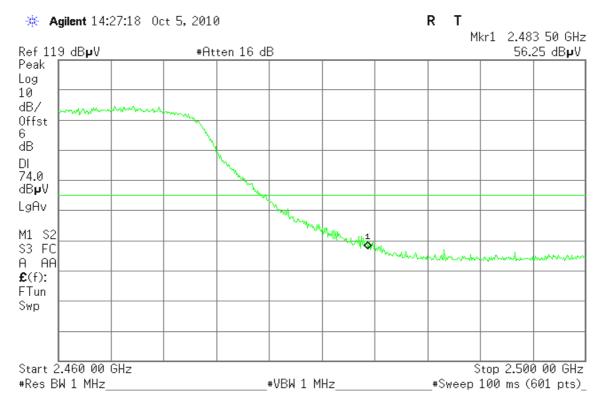
Detector mode: Average Polarity: Vertical



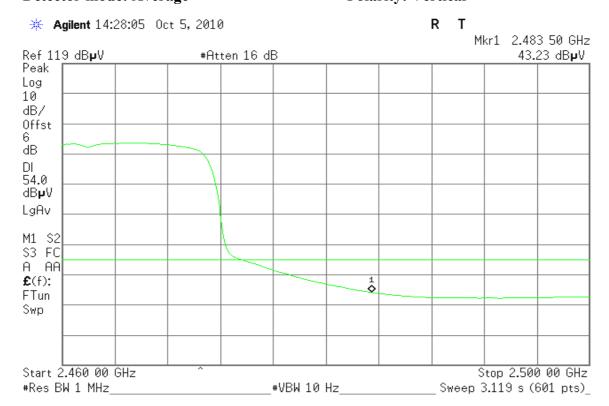
Page 46 Rev. 00

Report No.: T100816101

Detector mode: Average Polarity: Horizontal

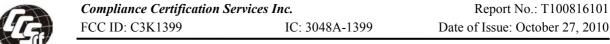


Page 47 Rev. 00

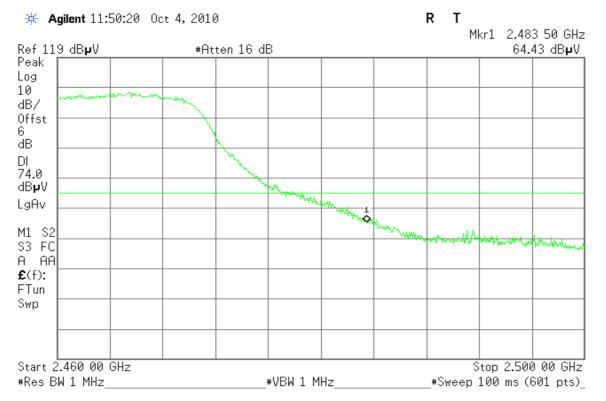

Report No.: T100816101

Band Edges (draft 802.11n Standard-20 MHz Channel mode / CH High)

Detector mode: Peak Polarity: Vertical



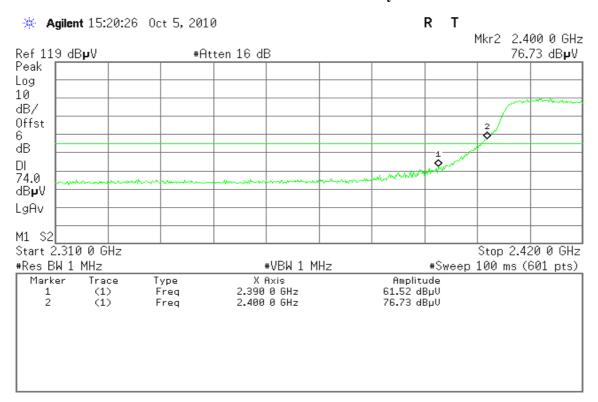
Detector mode: Average Polarity: Vertical



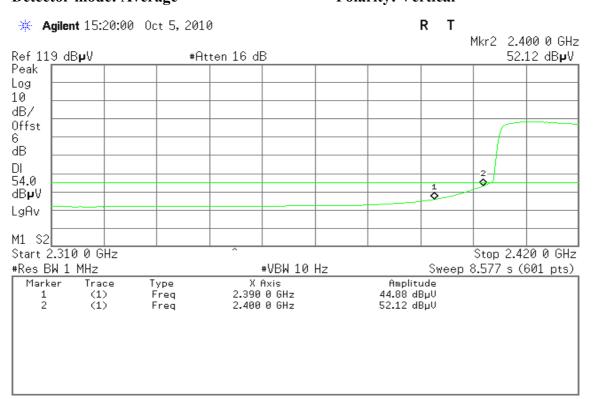
Page 48 Rev. 00

Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

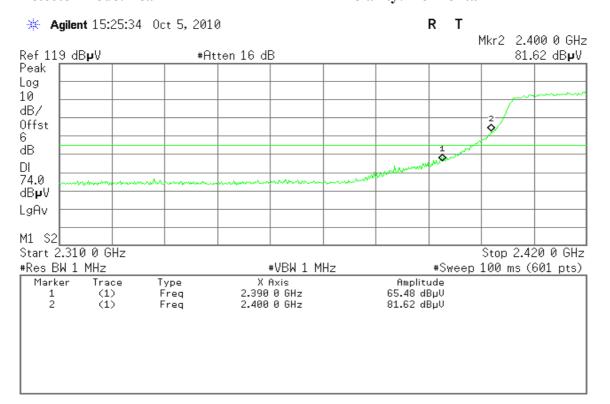

Detector mode: Average Polarity: Horizontal

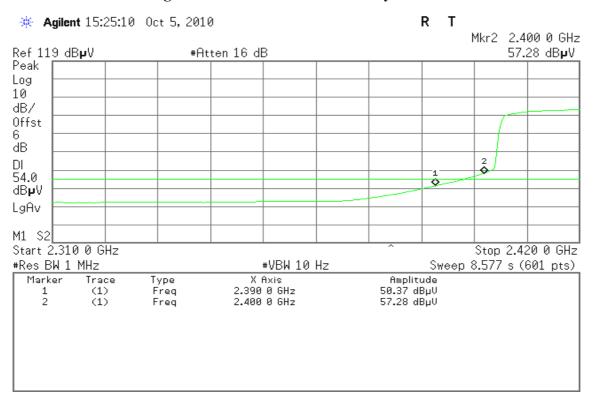
R * Agilent 14:25:05 Oct 5, 2010 Mkr1 2.483 50 GHz Ref 119 dBpV #Atten 16 dB 50.63 dBµV Peak Log 10 dB/ Offst ďΒ DL 54.0 dB₽V LgAv M1 S2 S3 FC A AA £(f): FTun Swp Start 2.460 00 GHz Stop 2.500 00 GHz #Res BW 1 MHz_ _#VBW 10 Hz______ Sweep 3.119 s (601 pts)_


Page 49 Rev. 00

Band Edges (draft 802.11n Wide-40 MHz Channel mode / CH Low)

Detector mode: Peak Polarity: Vertical

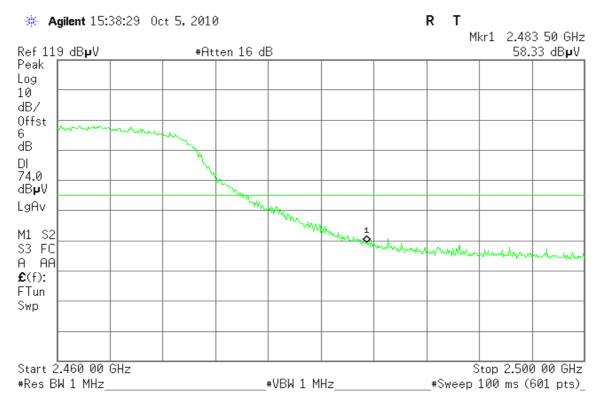

Detector mode: Average Polarity: Vertical


Page 50 Rev. 00

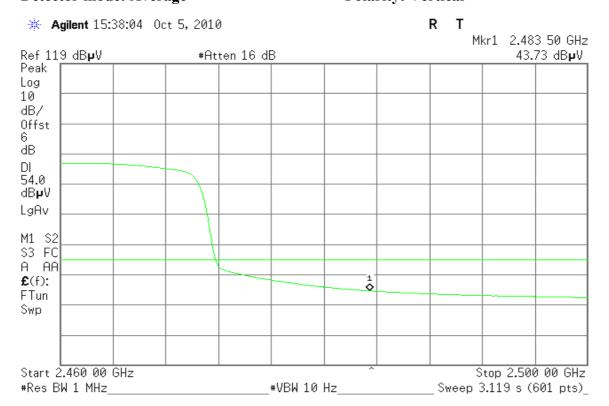
Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



Page 51 Rev. 00


Report No.: T100816101

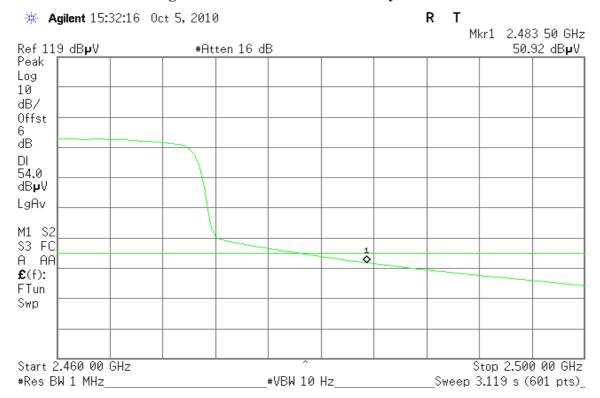
Band Edges (draft 802.11n Wide-40 MHz Channel mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 52 Rev. 00

Report No.: T100816101

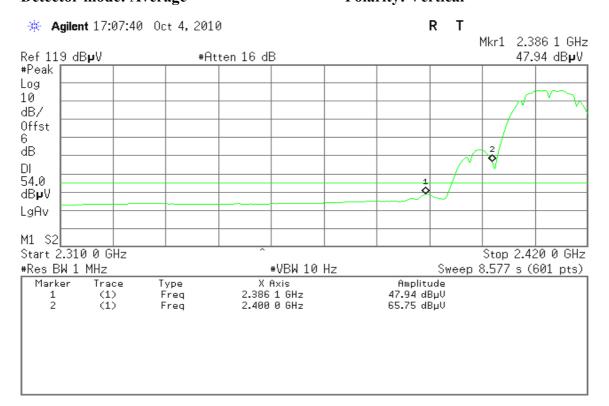

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

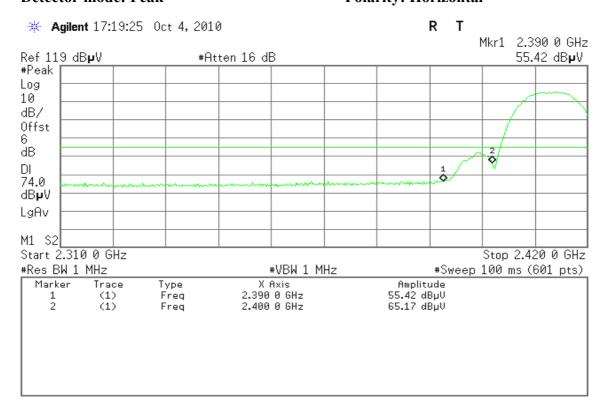
Polarity: Horizontal

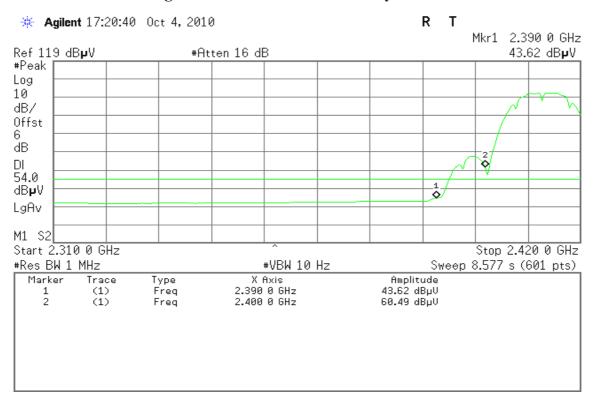
Page 53 Rev. 00


For PIFA Antenna

IEEE 802.11b Mode / CH Low

Detector mode: Peak Polarity: Vertical

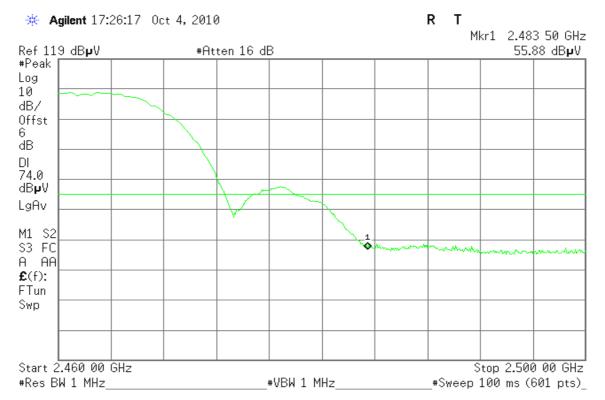

Detector mode: Average Polarity: Vertical


Page 54 Rev. 00

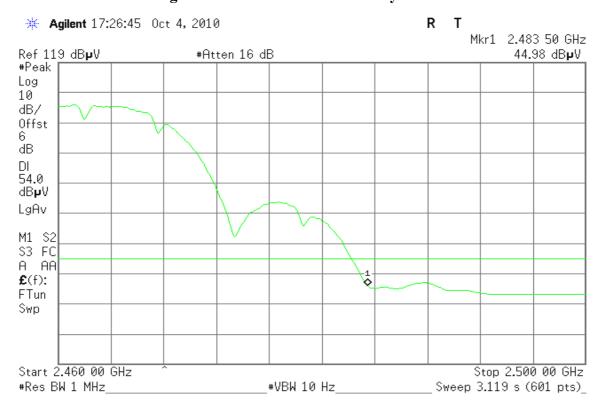
Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



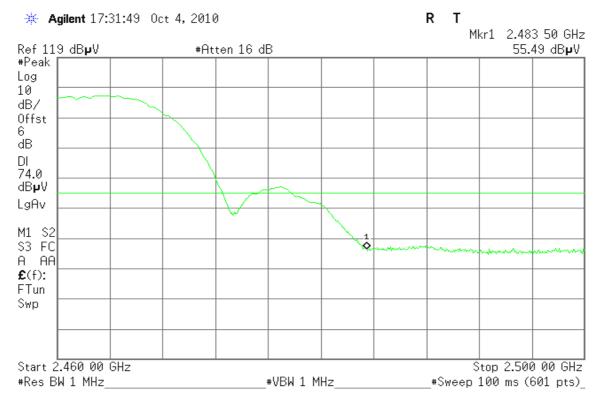
Page 55 Rev. 00


Report No.: T100816101

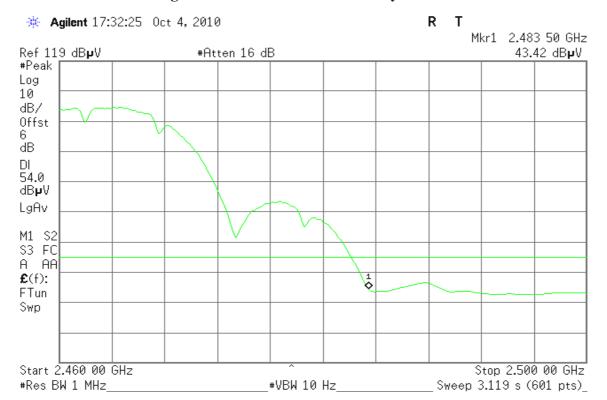
Band Edges (IEEE 802.11b mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

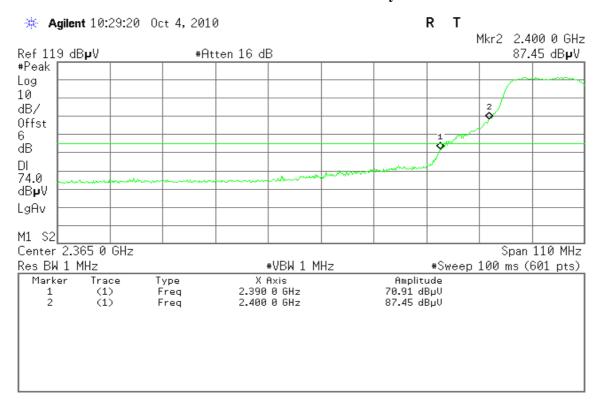


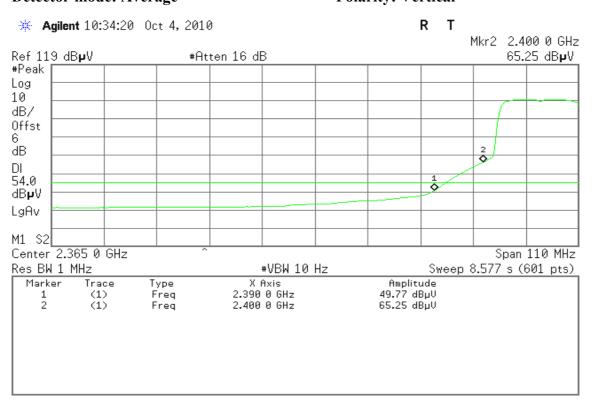
Page 56 Rev. 00


Report No.: T100816101

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

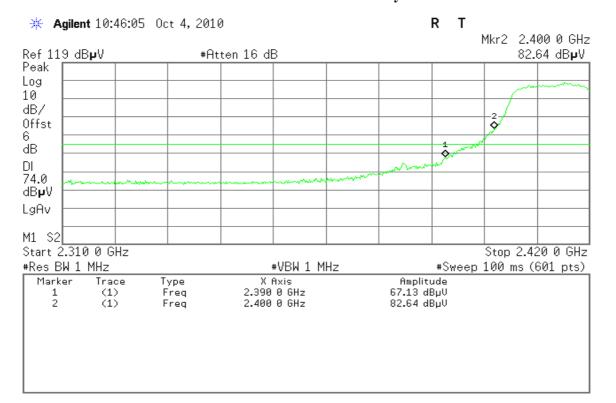
Detector mode: Peak Polarity: Horizontal

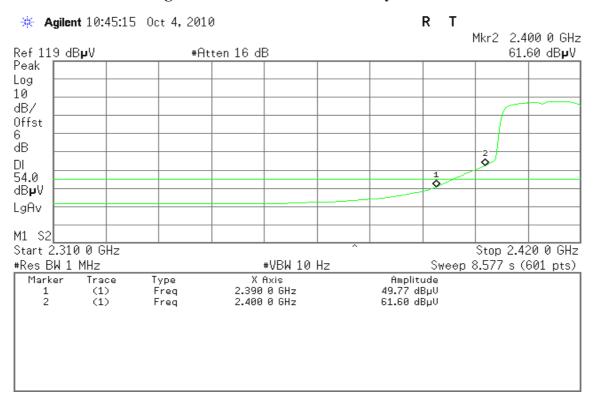

Detector mode: Average Polarity: Horizontal


Page 57 Rev. 00

Band Edges (IEEE 802.11g mode / CH Low)

Detector mode: Peak Polarity: Vertical

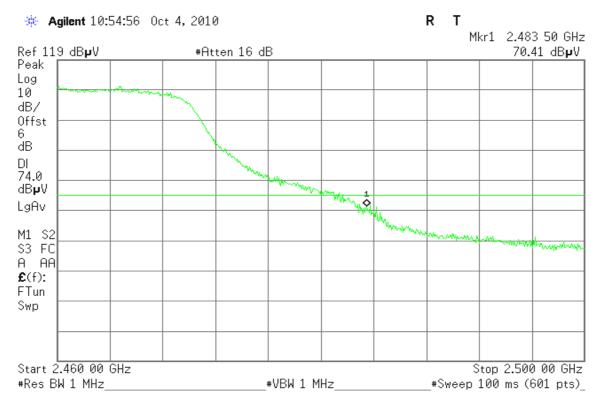

Detector mode: Average Polarity: Vertical


Page 58 Rev. 00

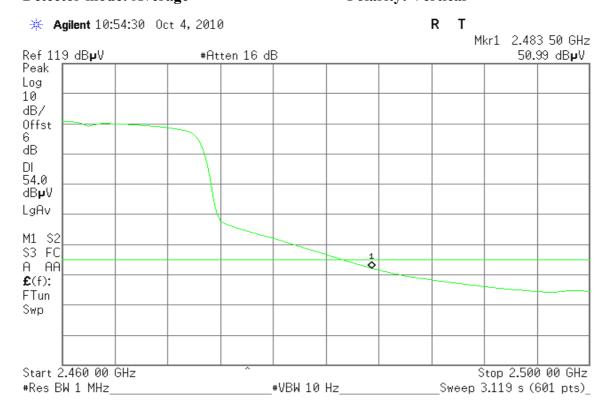
Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



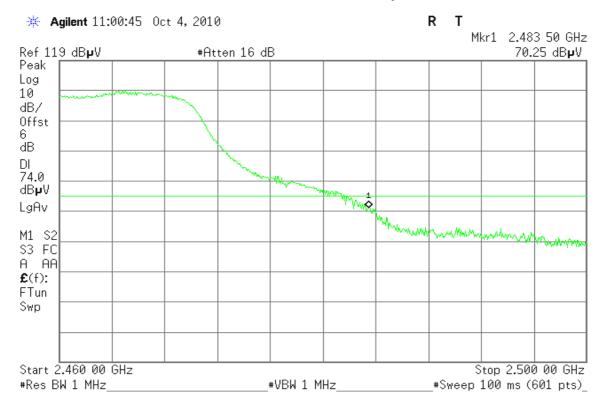
Page 59 Rev. 00


Report No.: T100816101

Band Edges (IEEE 802.11g mode / CH High)

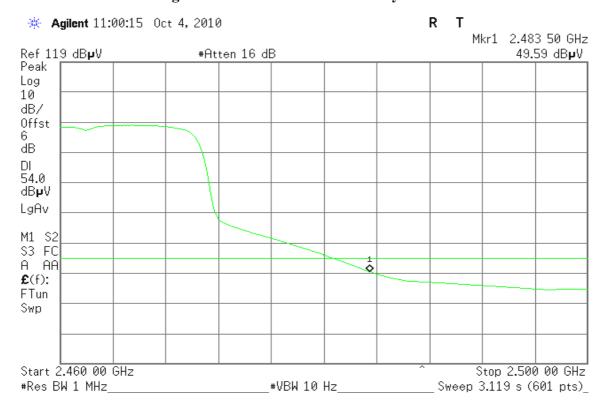
Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical



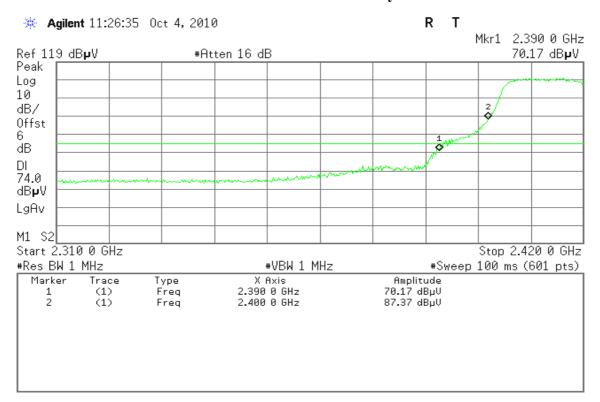
Page 60 Rev. 00

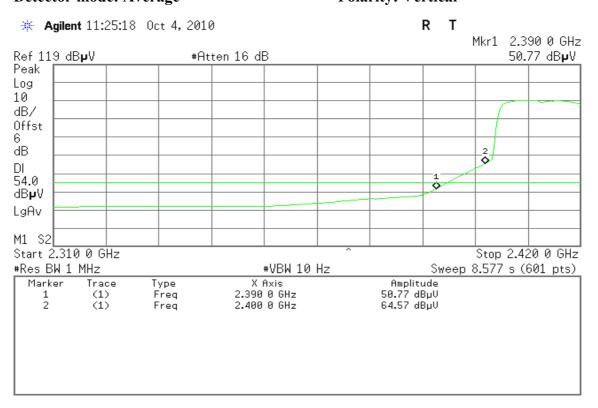
Report No.: T100816101


Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Detector mode: Peak Polarity: Horizontal

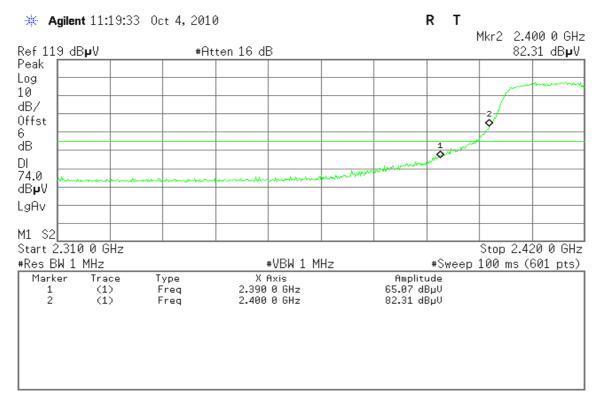
Detector mode: Average


Polarity: Horizontal


Page 61 Rev. 00

Band Edges (draft 802.11n Standard-20 MHz Channel mode / CH Low)

Detector mode: Peak Polarity: Vertical

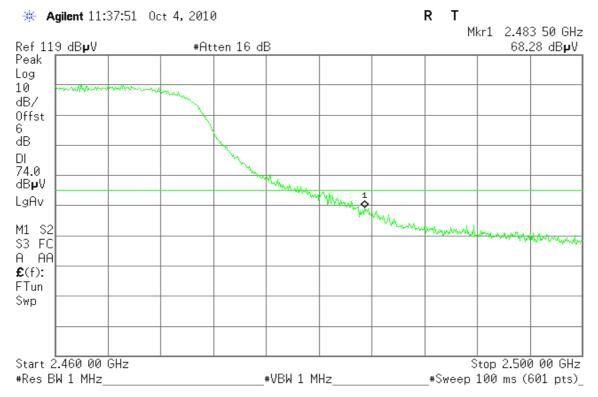

Detector mode: Average Polarity: Vertical

Page 62 Rev. 00

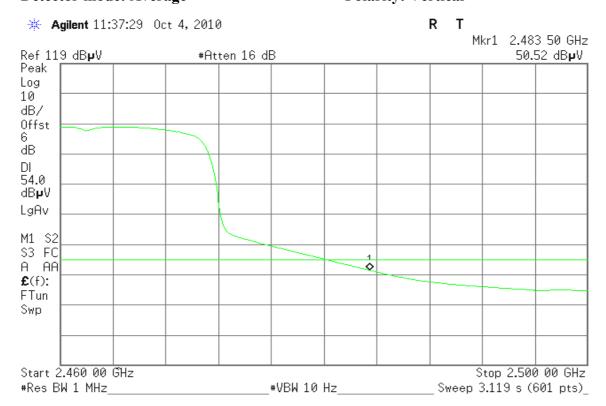
Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



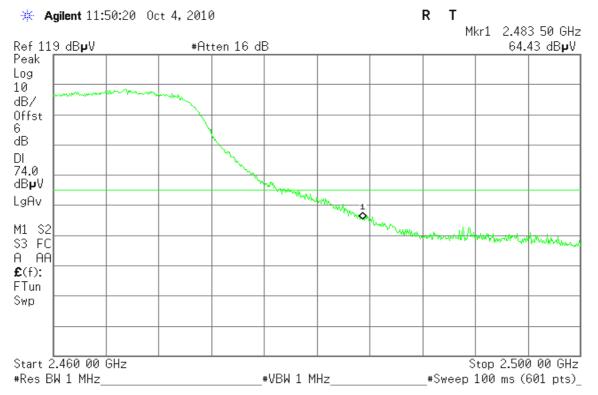
Page 63 Rev. 00


Report No.: T100816101

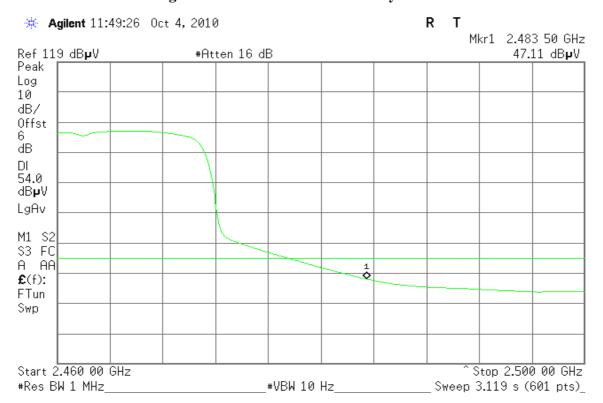
Band Edges (draft 802.11n Standard-20 MHz Channel mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

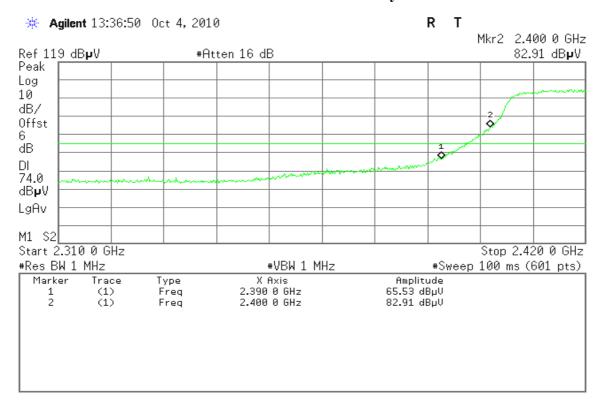


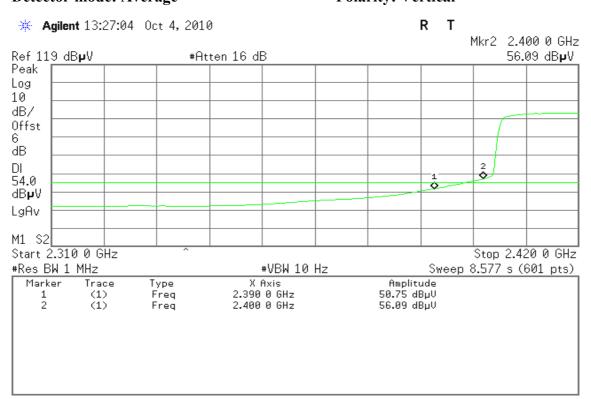
Page 64 Rev. 00


Report No.: T100816101

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

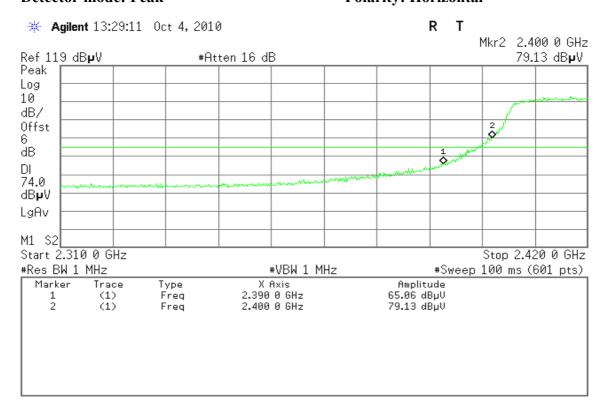
Detector mode: Peak Polarity: Horizontal

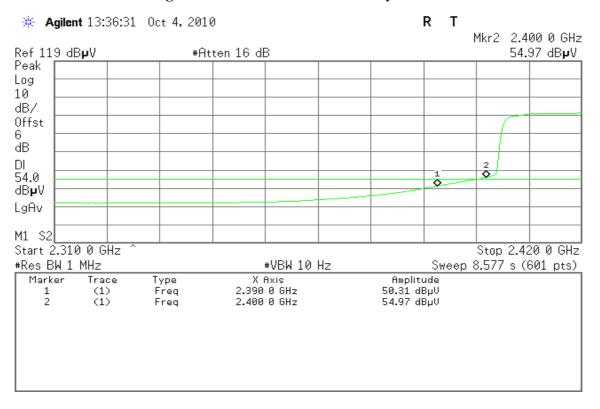

Detector mode: Average Polarity: Horizontal


Page 65 Rev. 00

Band Edges (draft 802.11n Wide-40 MHz Channel mode / CH Low)

Detector mode: Peak Polarity: Vertical

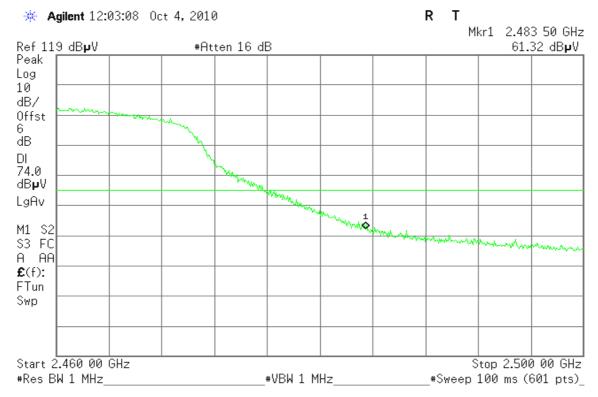

Detector mode: Average Polarity: Vertical


Page 66 Rev. 00

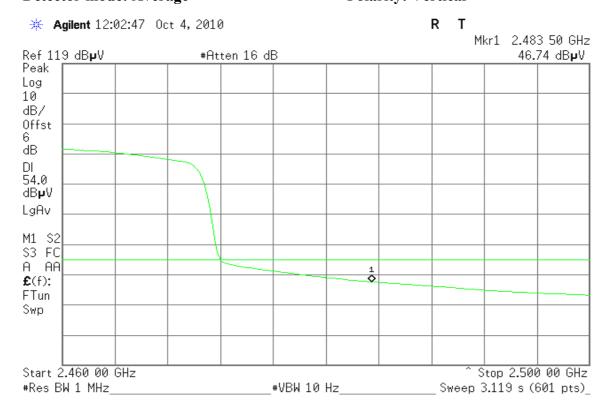
Report No.: T100816101

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



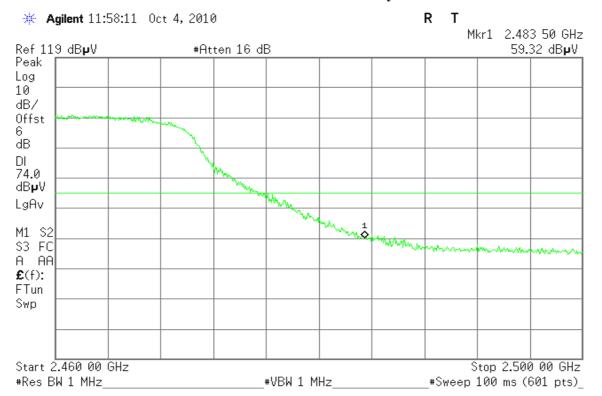
Page 67 Rev. 00


Report No.: T100816101

Band Edges (draft 802.11n Wide-40 MHz Channel mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical



Page 68 Rev. 00

Report No.: T100816101


Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Detector mode: Peak Polarity: Horizontal

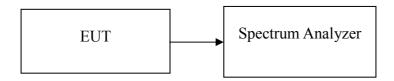
Detector mode: Average

Polarity: Horizontal

Page 69 Rev. 00

8.5 PEAK POWER SPECTRAL DENSITY

LIMIT


1. According to §15.247(e) & RSS-210 §A8.2, for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: T100816101

Date of Issue: October 27, 2010

2. According to §15.247(f) & RSS-210 §A8.3, the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.

 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3 kHz, VBW = 10 kHz, Span = 300 kHz, Sweep time = 100 s
- 3. Record the max reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

Page 70 Rev. 00

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-9.37		PASS
Mid	2437	-5.85	8.00	PASS
High	2462	-9.30		PASS

Test mode: IEEE 802.11g mode

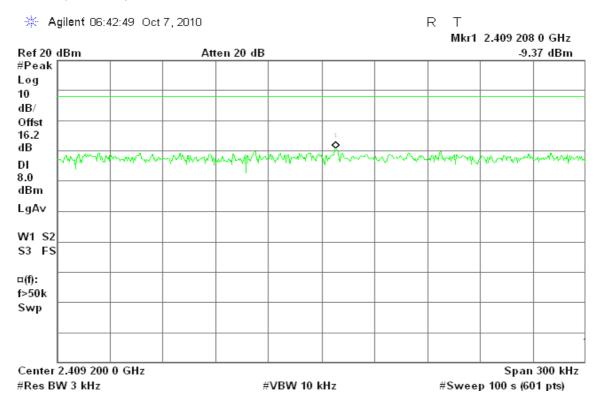
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-14.59		PASS
Mid	2437	-7.99	8.00	PASS
High	2462	-13.58		PASS

Test mode: draft 802.11n Standard-20 MHz Channel mode

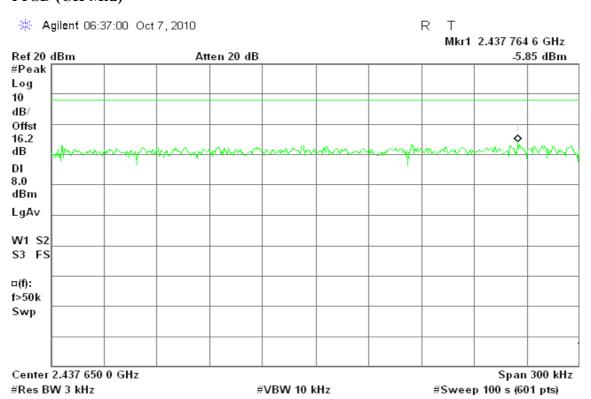
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-15.97		PASS
Mid	2437	-7.60	8.00	PASS
High	2462	-13.65		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2422	-20.37		PASS
Mid	2437	-16.40	8.00	PASS
High	2452	-19.49		PASS

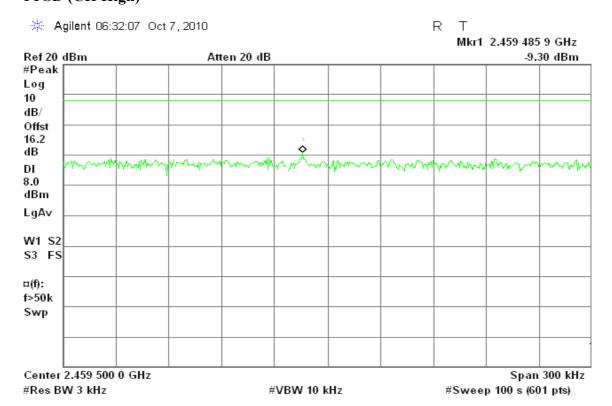

Page 71 Rev. 00

Report No.: T100816101

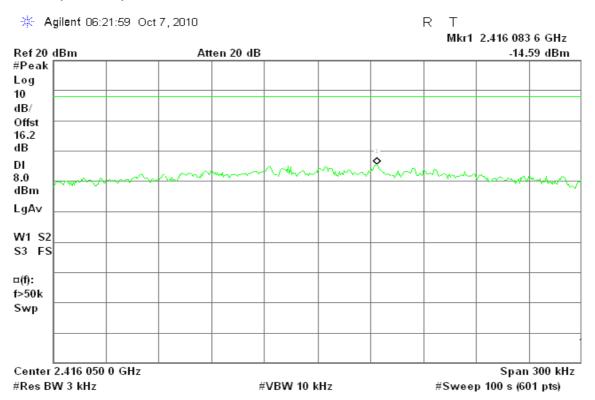

Test Plot

IEEE 802.11b mode

PPSD (CH Low)

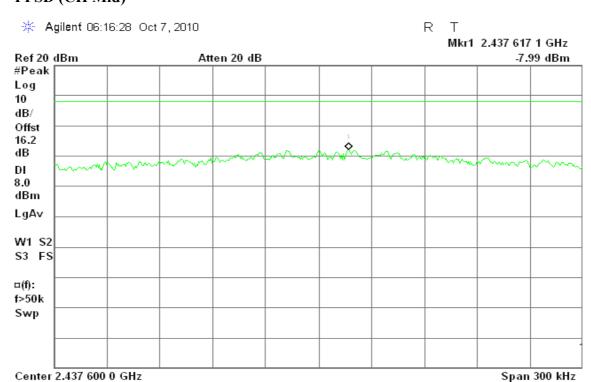

PPSD (CH Mid)

Page 72 Rev. 00


Report No.: T100816101

PPSD (CH High)

IEEE 802.11g mode


PPSD (CH Low)

Page 73 Rev. 00

Report No.: T100816101

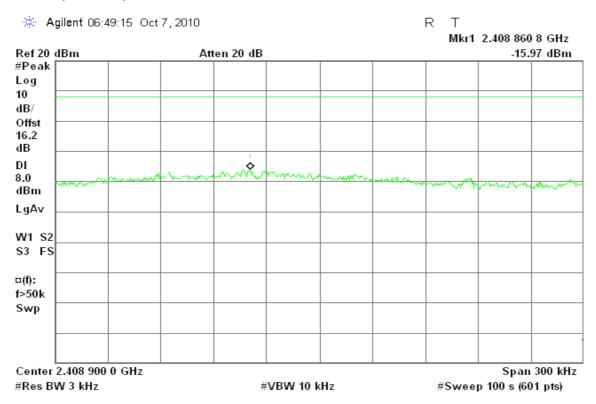
PPSD (CH Mid)

#VBW 10 kHz

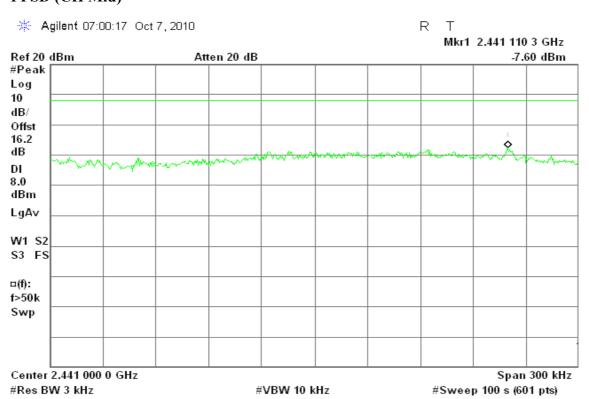
PPSD (CH High)

#Res BW 3 kHz

* Agilent 06:27:07 Oct 7, 2010 R Т Mkr1 2.457 235 2 GHz Ref 20 dBm Atten 20 dB -13.58 dBm #Peak Log 10 dB/Offst 16.2 dBDΙ 8.0 dBm LgA∨ W1 S2 S3 FS ¤(f): f>50k Swp Center 2.457 350 0 GHz Span 300 kHz #Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts)

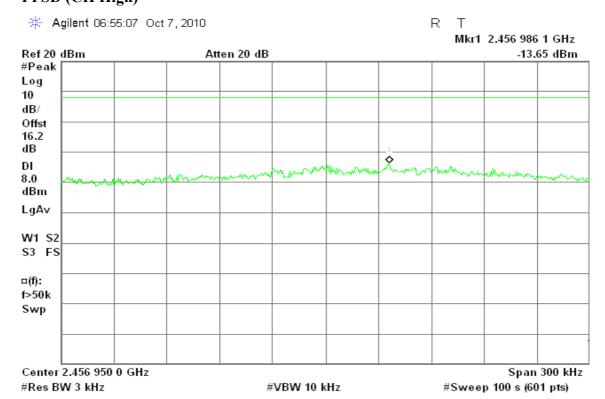

Page 74 Rev. 00

#Sweep 100 s (601 pts)

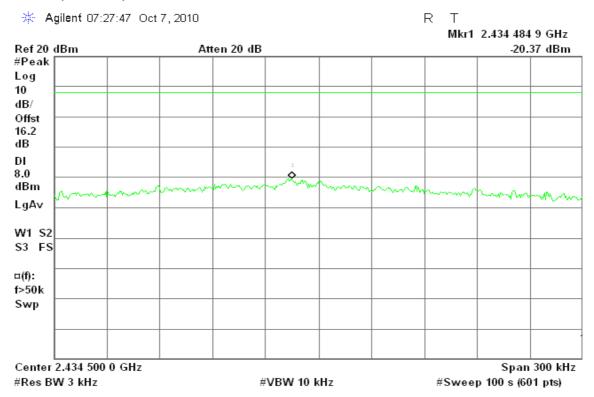

Report No.: T100816101

draft 802.11n Standard-20 MHz Channel mode

PPSD (CH Low)

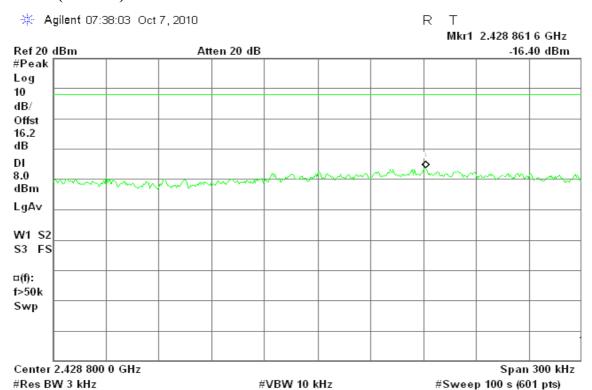

PPSD (CH Mid)

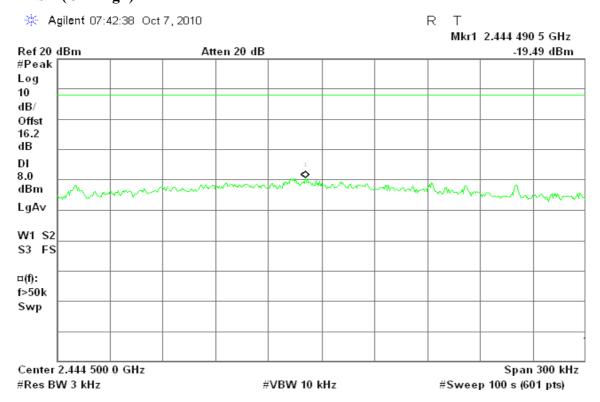
Page 75 Rev. 00


Report No.: T100816101

PPSD (CH High)

draft 802.11n Wide-40 MHz Channel mode


PPSD (CH Low)


Page 76 Rev. 00

Report No.: T100816101

PPSD (CH Mid)

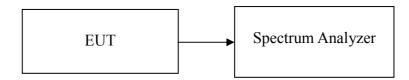
PPSD (CH High)

Page 77 Rev. 00

Report No.: T100816101

8.6 SPURIOUS EMISSIONS

8.6.1 Conducted Measurement


LIMIT

According to §15.247(d) & RSS-210 §A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Report No.: T100816101

Date of Issue: October 27, 2010

Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

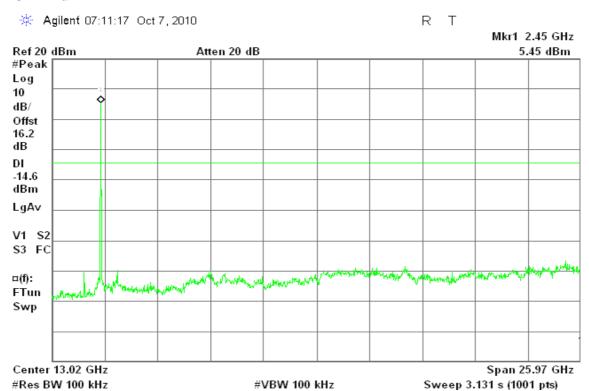
TEST RESULTS

No non-compliance noted

Page 78 Rev. 00

FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

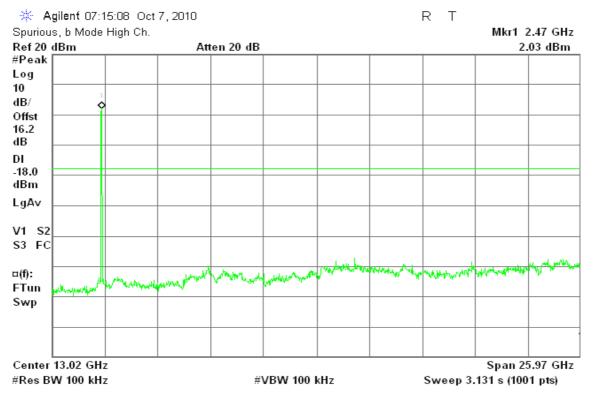
Report No.: T100816101


Test Plot

IEEE 802.11b mode

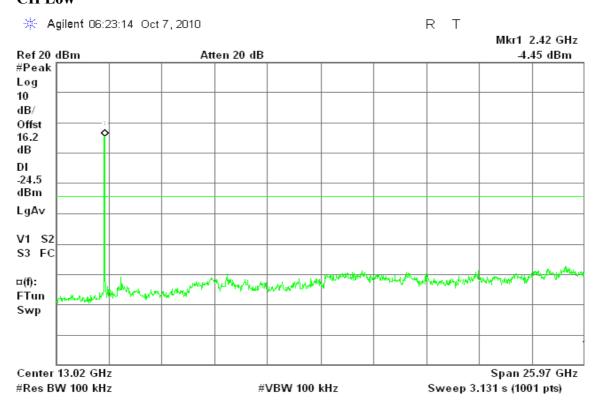
CH Low

CH Mid



Page 79 Rev. 00

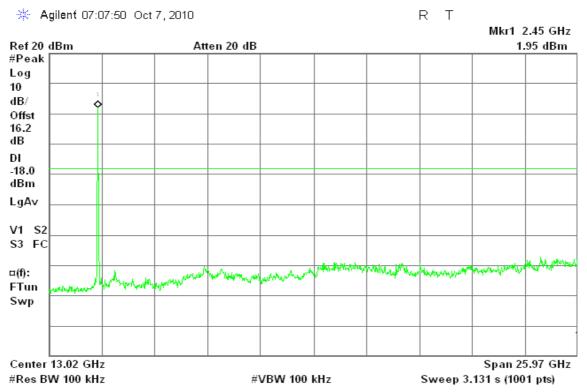
FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010


Report No.: T100816101

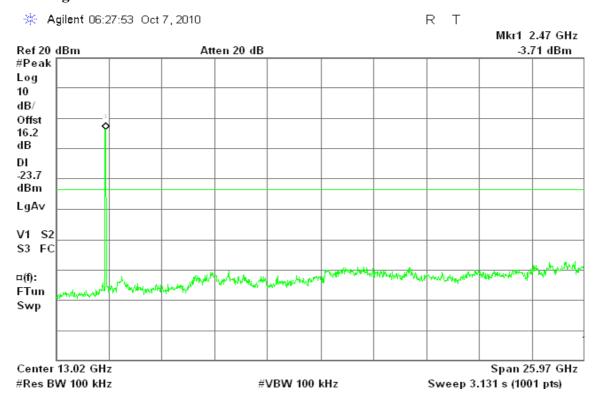
CH High

IEEE 802.11g mode

CH Low

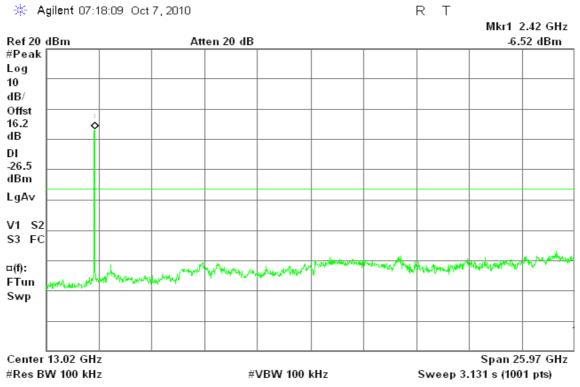

Page 80 Rev. 00

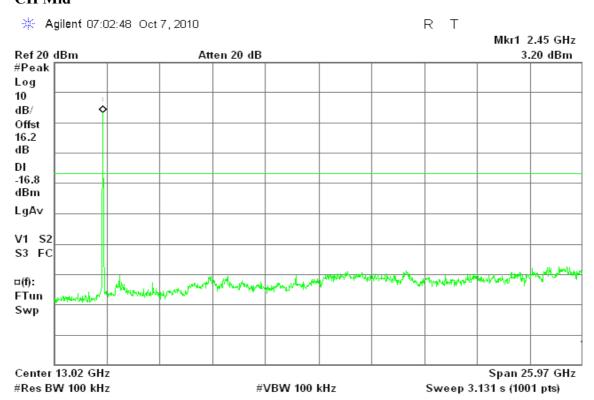
Compliance Certification Services Inc.


FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

Report No.: T100816101

CH Mid

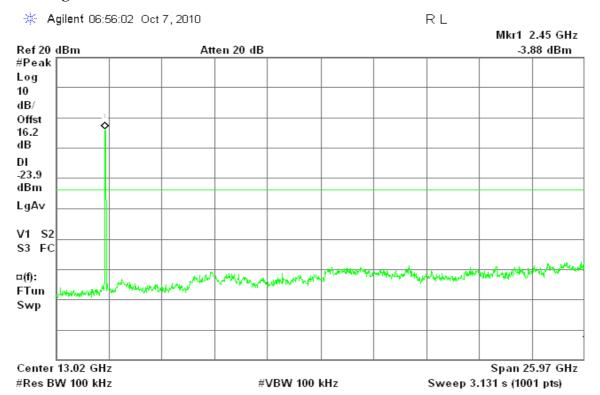

CH High


Page 81 Rev. 00

draft 802.11n Standard-20 MHz Channel mode

CH Low

CH Mid


Page 82 Rev. 00

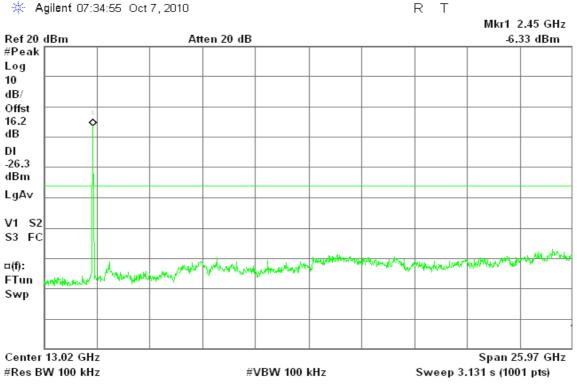
Report No.: T100816101

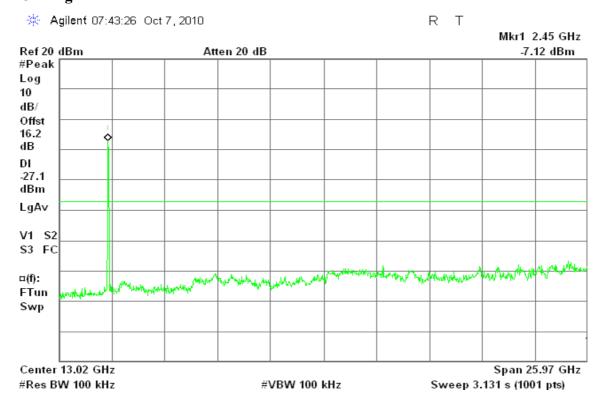
FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

Report No.: T100816101

CH High

draft 802.11n Wide-40 MHz Channel mode


CH Low


Page 83 Rev. 00

Report No.: T100816101 1399 Date of Issue: October 27, 2010

CH Mid

CH High

Page 84 Rev. 00

8.7 RADIATED EMISSIONS

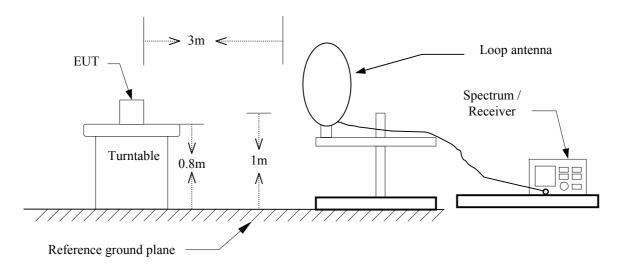
LIMIT

1. According to §15.205, 209(a) & RSS-210 Clause 2.6 (Transmitter) and IC RSS-GEN Clause 6 (Receiver), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

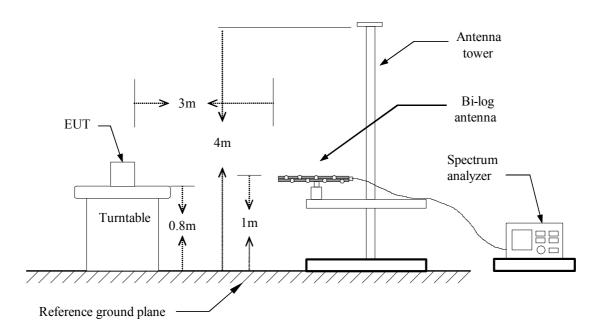
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the emission table above, the tighter limit applies at the band edges.


Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

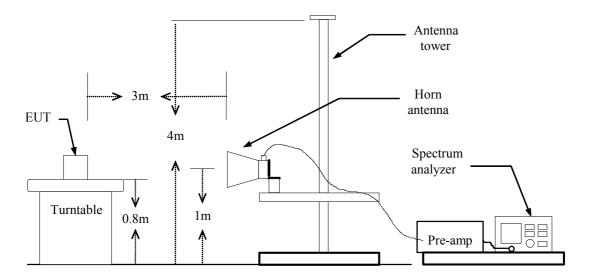
Page 85 Rev. 00



Test Configuration

9kHz ~ 30MHz

30MHz ~ 1GHz



Page 86 Rev. 00

Report No.: T100816101

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Above 1 GHz

Page 87 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

Report No.: T100816101

Date of Issue: October 27, 2010

- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 88 Rev. 00

Below 1GHz

Operation Mode: Normal Link **Test Date:** September 20, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 23°C **Tested by:** Tom Jen **Humidity:** 40% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
47.78	V	47.05	-13.87	33.19	40.00	-6.81	Peak
209.45	V	50.14	-10.65	39.49	43.50	-6.01	Peak
372.73	V	42.45	-7.61	34.84	46.00	-11.16	Peak
532.78	V	40.29	-4.70	35.59	46.00	-10.41	Peak
715.47	V	38.85	-2.32	36.53	46.00	-9.47	Peak
959.58	V	33.79	0.44	34.23	46.00	-11.77	Peak
206.22	Н	46.68	-10.40	36.28	43.50	-7.22	Peak
241.78	Н	47.65	-11.06	36.60	46.00	-9.40	Peak
358.18	Н	42.08	-7.89	34.18	46.00	-11.82	Peak
524.70	Н	37.59	-4.81	32.78	46.00	-13.22	Peak
721.93	Н	40.77	-2.22	38.55	46.00	-7.45	Peak
959.58	Н	34.72	0.44	35.16	46.00	-10.84	Peak

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

Page 89 Rev. 00

For Monopole Antenna

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low **Test Date:** October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 25°C **Tested by:** Mark Yang

Humidity: 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1273.33	V	58.16	35.50	-9.14	49.02	26.36	74.00	54.00	-27.64	AVG
N/A										
1256.67	Н	58.94	35.70	-9.16	49.78	26.54	74.00	54.00	-27.46	AVG
3216.67	Н	58.20	48.36	-1.17	57.03	47.19	74.00	54.00	-6.81	AVG
7225.00	Н	49.10	35.16	5.24	54.34	40.40	74.00	54.00	-13.60	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 90 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH Mid **Test Date:** October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 25°C **Tested by:** Mark Yang

Humidity: 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1196.67	V	58.66	35.43	-9.26	49.39	26.17	74.00	54.00	-27.83	AVG
3250.00	V	55.80	47.12	-1.16	54.64	45.96	74.00	54.00	-8.04	AVG
7308.33	V	48.83	33.81	5.29	54.12	39.10	74.00	54.00	-14.90	AVG
N/A										
1160.00	Н	58.56	35.10	-9.32	49.24	25.78	74.00	54.00	-28.22	AVG
3250.00	Н	57.10	46.16	-1.16	55.94	45.00	74.00	54.00	-9.00	AVG
7308.33	Н	50.10	35.28	5.29	55.39	40.57	74.00	54.00	-13.43	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 91 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH High **Test Date:** October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1280.00	V	56.67		-9.13	47.54		74.00	54.00	-6.46	Peak
3283.33	V	55.80	46.50	-1.15	54.65	45.35	74.00	54.00	-8.65	AVG
N/A										
1170.00	Н	56.73		-9.31	47.42		74.00	54.00	-6.58	Peak
3283.33	Н	55.10	45.80	-1.15	53.95	44.65	74.00	54.00	-9.35	AVG
4925.00	Н	54.30	46.73	1.14	55.44	47.87	74.00	54.00	-6.13	AVG
7383.33	Н	50.43	33.75	5.34	55.78	39.09	74.00	54.00	-14.91	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 92 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Low **Test Date:** October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1196.67	V	57.18		-9.26	47.92		74.00	54.00	-6.08	Peak
N/A										
1193.33	Н	56.53		-9.27	47.26		74.00	54.00	-6.74	Peak
3216.67	Н	55.95	47.91	-1.17	54.78	46.74	74.00	54.00	-7.26	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 93 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Mid **Test Date:** October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 25°C **Tested by:** Mark Yang

Humidity: 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1260.00	V	56.86		-9.16	47.70		74.00	54.00	-6.30	Peak
3250.00	V	56.41	48.37	-1.16	55.25	47.21	74.00	54.00	-6.79	AVG
N/A										
1226.67	Н	56.33		-9.21	47.12		74.00	54.00	-6.88	Peak
3250.00	Н	49.11		-1.16	47.95		74.00	54.00	-6.05	Peak
7308.33	Н	51.97	35.02	5.29	57.26	40.31	74.00	54.00	-13.69	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 94 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH High Test Date: October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1160.00	V	57.30		-9.32	47.97		74.00	54.00	-6.03	Peak
3283.33	V	55.51	47.50	-1.15	54.36	46.35	74.00	54.00	-7.65	AVG
N/A										
1290.00	Н	56.69		-9.11	47.58		74.00	54.00	-6.42	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 95 Rev. 00

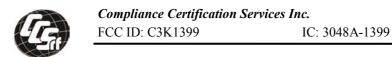
IC: 3048A-1399

Report No.: T100816101

Date of Issue: October 27, 2010

Operation Mode: TX / draft 802.11n Standard-20 MHz Channel
Test Date: October 5, 2010

mode / CH Low


Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1270.00	V	56.64		-9.14	47.50		74.00	54.00	-6.50	Peak
3216.67	V	55.32	45.30	-1.17	54.15	44.13	74.00	54.00	-9.87	AVG
N/A										
1206.67	Н	56.98		-9.25	47.73		74.00	54.00	-6.27	Peak
3216.67	Н	56.10	46.83	-1.17	54.93	45.66	74.00	54.00	-8.34	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

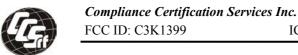
Page 96 Rev. 00

Operation Mode: TX / draft 802.11n Standard-20 MHz Channel mode / CH Mid Test Date: October 5, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 25°C **Tested by:** Mark Yang


Humidity: 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1096.67	V	56.57		-9.43	47.14		74.00	54.00	-6.86	Peak
3250.00	V	55.90	46.40	-1.16	54.74	45.24	74.00	54.00	-8.76	AVG
N/A										
1103.33	Н	56.79		-9.42	47.38		74.00	54.00	-6.62	Peak
3250.00	Н	55.45	46.38	-1.16	54.29	45.22	74.00	54.00	-8.78	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 97 Rev. 00

IC: 3048A-1399 Date of Issue: October 27, 2010

Report No.: T100816101

Operation Mode: TX / draft 802.11n Standard-20 MHz Channel

mode / CH High

Test Date: October 5, 2010

Temperature: 25°C **Tested by:** Mark Yang **Humidity:** 50 % RH **Polarity:** Ver. / Hor.

Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
V	56.83		-9.32	47.51		74.00	54.00	-6.49	Peak
V	55.78	46.30	-1.15	54.63	45.15	74.00	54.00	-8.85	AVG
Н	56.76		-9.50	47.26		74.00	54.00	-6.74	Peak
Н	55.30	45.73	-1.15	54.15	44.58	74.00	54.00	-9.42	AVG
	(H/V) V V	H 56.76	H 56.76	H 56.769.50	Ant. Fol. (H/V) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV/m) V 56.839.32 47.51 V 55.78 46.30 -1.15 54.63 H 56.769.50 47.26	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dBuV) (dBuV/m) (Peak) (dBuV/m) (Average) (dBuV/m) V 56.83 -9.32 47.51 V 55.78 46.30 -1.15 54.63 45.15 H 56.76 -9.50 47.26	Ant. Pol. (H/V) (dBuV) (dBuV) (dBuW) (dBuV/m) (d	Ant. Pol. (H/V) (dBuV) (dBuV) (dBuV) (dBuV/m) (d	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dBm) (Peak) (dBuV/m) (Average) (dBuV/m) (dBuV/m)

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 98 Rev. 00

Operation Mode: TX / draft 802.11n Wide-40 MHz Channel mode Test Date: October 5, 2010

CH Low

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1176.67	V	56.88		-9.30	47.58		74.00	54.00	-6.42	Peak
3233.33	V	55.41	45.35	-1.16	54.25	44.19	74.00	54.00	-9.81	AVG
N/A										
1326.67	Н	56.56		-9.05	47.51		74.00	54.00	-6.49	Peak
3233.33	Н	56.30	46.10	-1.16	55.14	44.94	74.00	54.00	-9.06	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 99 Rev. 00

TX / draft 802.11n Wide-40 MHz Channel mode **Operation Mode:**

Test Date: October 5, 2010 / CH Mid

25°C **Temperature: Tested by:** Mark Yang 50 % RH **Humidity: Polarity:** Ver. / Hor.

Report No.: T100816101

Date of Issue: October 27, 2010

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1340.00	V	56.13		-9.03	47.10		74.00	54.00	-6.90	Peak
3250.00	V	55.28	45.40	-1.16	54.12	44.24	74.00	54.00	-9.76	AVG
N/A										
1190.00	Н	56.25		-9.27	46.98		74.00	54.00	-7.02	Peak
3250.00	Н	55.30	45.90	-1.16	54.14	44.74	74.00	54.00	-9.26	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Radiated emissions measured in frequency above 1000MHz were made with an 2. instrument using peak/average detector mode.
- Average test would be performed if the peak result were greater than the average limit 3. or as required by the applicant.
- Data of measurement within this frequency range shown "---" in the table above 4. means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) - Average limit (dBuV/m).

Page 100 Rev. 00

Operation Mode: TX / draft 802.11n Wide-40 MHz Channel mode Test Date: October 5, 2010

/ CH High

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1326.67	V	56.00		-9.05	46.95		74.00	54.00	-7.05	Peak
3266.67	V	56.23	46.10	-1.16	55.07	44.94	74.00	54.00	-9.06	AVG
N/A										
1293.33	Н	56.62		-9.10	47.52		74.00	54.00	-6.48	Peak
3266.67	Н	55.45	45.83	-1.16	54.29	44.67	74.00	54.00	-9.33	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 101 Rev. 00

For PIFA Antenna

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low **Test Date:** October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 25°C **Tested by:** Mark Yang

Humidity: 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1493.33	V	56.20		-8.77	47.43		74.00	54.00	-6.57	Peak
3216.67	V	51.64	46.36	-1.17	50.48	45.19	74.00	54.00	-8.81	AVG
N/A										
1576.67	Н	58.16	35.40	-8.05	50.10	27.35	74.00	54.00	-26.65	AVG
4825.00	Н	52.96	44.50	1.18	54.14	45.68	74.00	54.00	-8.32	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 102 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH Mid **Test Date:** October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1996.67	V	59.09	44.65	-4.18	54.91	40.47	74.00	54.00	-13.53	AVG
N/A										
4875.00	Н	54.59	46.81	1.16	55.75	47.79	74.00	54.00	-6.03	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 103 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH High Test Date: October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1606.67	V	58.35	36.37	-7.78	50.57	28.59	74.00	54.00	-25.41	AVG
4925.00	V	47.78	36.88	1.14	48.92	38.02	74.00	54.00	-15.98	AVG
N/A										
1620.00	Н	57.96	36.80	-7.65	50.31	29.15	74.00	54.00	-24.85	AVG
4925.00	Н	53.57	46.73	1.14	54.71	47.87	74.00	54.00	-6.13	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 104 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Low **Test Date:** October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1500.00	V	58.16	35.80	-8.76	49.40	27.04	74.00	54.00	-26.96	AVG
3216.67	V	49.16		-1.17	47.99		74.00	54.00	-6.01	Peak
N/A										
1553.33	Н	57.79	36.10	-8.27	49.52	27.83	74.00	54.00	-26.17	AVG
3216.67	Н	55.36	46.68	-1.17	54.19	45.51	74.00	54.00	-8.49	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 105 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Mid **Test Date:** October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1243.33	V	56.42		-9.19	47.23		74.00	54.00	-6.77	Peak
3250.00	V	55.16	48.09	-1.16	54.00	46.93	74.00	54.00	-7.07	AVG
7308.33	V	51.19	35.16	5.29	56.48	40.45	74.00	54.00	-13.55	AVG
N/A										
1450.00	Н	58.13	36.10	-8.84	49.29	27.26	74.00	54.00	-26.74	AVG
3250.00	Н	55.16	48.66	-1.16	54.00	47.50	74.00	54.00	-6.50	AVG
4875.00	Н	52.86	38.55	1.16	54.02	39.71	74.00	54.00	-14.29	AVG
7300.00	Н	57.58	37.90	5.29	62.87	43.19	74.00	54.00	-10.81	AVG
N/A										

Remark:

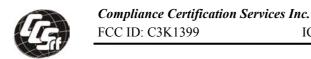
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 106 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH High **Test Date:** October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010


Temperature:25°CTested by: Mark YangHumidity:50 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1496.67	V	59.17	36.00	-8.77	50.40	27.23	74.00	54.00	-26.77	AVG
3283.33	V	55.29	44.39	-1.15	54.14	43.24	74.00	54.00	-10.76	AVG
N/A										
1440.00	Н	56.57		-8.86	47.71		74.00	54.00	-6.29	Peak
3283.33	Н	49.10		-1.15	47.95		74.00	54.00	-6.05	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 107 Rev. 00

vices Inc. Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Operation Mode: TX / draft 802.11n Standard-20 MHz Channel
Test Date: October 4, 2010

mode / CH Low

Temperature: 25°C **Tested by:** Mark Yang

Humidity: 50 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1196.67	V	57.12		-9.26	47.86		74.00	54.00	-6.14	Peak
3216.67	V	48.96		-1.17	47.79		74.00	54.00	-6.21	Peak
N/A										
1166.67	Н	57.20		-9.31	47.89		74.00	54.00	-6.11	Peak
3216.67	Н	55.24	46.79	-1.17	54.07	45.62	74.00	54.00	-8.38	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 108 Rev. 00

Compliance Certification Services Inc.

FCC ID: C3K1399 IC: 3048A-1399 Date of Issue: October 27, 2010

Report No.: T100816101

Test Date: October 4, 2010

TX / draft 802.11n Standard-20 MHz Channel **Operation Mode:**

mode / CH Mid

25°C Tested by: Mark Yang **Temperature:**

50 % RH **Polarity:** Ver. / Hor. **Humidity:**

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1496.67	V	58.56	35.73	-8.77	49.79	26.96	74.00	54.00	-27.04	AVG
3250.00	V	49.12		-1.16	47.96		74.00	54.00	-6.04	Peak
7300.00	V	52.73	36.13	5.29	58.02	41.42	74.00	54.00	-12.58	AVG
N/A										
1513.33	Н	58.32	35.80	-8.64	49.68	27.16	74.00	54.00	-26.84	AVG
3250.00	Н	55.16	48.45	-1.16	54.00	47.29	74.00	54.00	-6.71	AVG
4875.00	Н	52.91	38.59	1.16	54.07	39.75	74.00	54.00	-14.25	AVG
7308.33	Н	58.31	38.86	5.29	63.60	44.15	74.00	54.00	-9.85	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 109 Rev. 00

Report No.: T100816101 IC: 3048A-1399 Date of Issue: October 27, 2010

Test Date: October 4, 2010

TX / draft 802.11n Standard-20 MHz Channel **Operation Mode:**

mode / CH High

25°C Tested by: Mark Yang **Temperature:**

50 % RH **Polarity:** Ver. / Hor. **Humidity:**

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1196.67	V	56.64		-9.26	47.38		74.00	54.00	-6.62	Peak
3283.33	V	49.02		-1.15	47.87		74.00	54.00	-6.13	Peak
N/A										
1240.00	Н	56.88		-9.19	47.69		74.00	54.00	-6.31	Peak
3283.33	Н	55.16	44.21	-1.15	54.01	43.06	74.00	54.00	-10.94	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 110 Rev. 00

Operation Mode: TX / draft 802.11n Wide-40 MHz Channel mode / CH Low Test Date: October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 25°C **Tested by:** Mark Yang

Humidity: 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1196.67	V	56.89		-9.26	47.63		74.00	54.00	-6.37	Peak
N/A										
1273.33	Н	56.98		0.14	17.01		74.00	54.00	-6.16	Peak
	п	30.98		-9.14	47.84		74.00	54.00	-0.10	Реак
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 111 Rev. 00

TX / draft 802.11n Wide-40 MHz Channel mode

Operation Mode: Test Date: October 4, 2010 / CH Mid

25°C **Temperature: Tested by:** Mark Yang 50 % RH **Humidity: Polarity:** Ver. / Hor.

Report No.: T100816101

Date of Issue: October 27, 2010

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1496.67	V	58.06	35.73	-8.77	49.29	26.96	74.00	54.00	-27.04	AVG
N/A										
1326.67	Н	56.70		-9.05	47.65		74.00	54.00	-6.35	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 112 Rev. 00

TX / draft 802.11n Wide-40 MHz Channel mode **Operation Mode:** Test Date: October 4, 2010

/ CH High

Tested by: Mark Yang

Report No.: T100816101

Date of Issue: October 27, 2010

25°C **Temperature:** 50 % RH **Humidity: Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1496.67	V	58.64	36.25	-8.77	49.88	-27.48	74.00	54.00	-26.52	AVG
N/A										
								1		
1260.00	Н	56.94		-9.16	47.78		74.00	54.00	-6.22	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 113 Rev. 00 **Operation Mode:** RX / IEEE 802.11g / CH Mid **Test Date:** October 4, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature:23°CTested by:Mark YangHumidity:50 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1596.67	V	54.68		-7.87	46.81		74.00	54.00	-7.19	Peak
N/A										
1702.22		52.20		ć 15	47.10		74.00	54.00	6.07	D 1
1783.33	Н	53.28		-6.15	47.13		74.00	54.00	-6.87	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 114 Rev. 00

8.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a) & RSS-Gen §7.2.2, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Report No.: T100816101

Date of Issue: October 27, 2010

Frequency Range (MHz)	Limits (dBμV)					
(MIIIZ)	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

^{*} Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

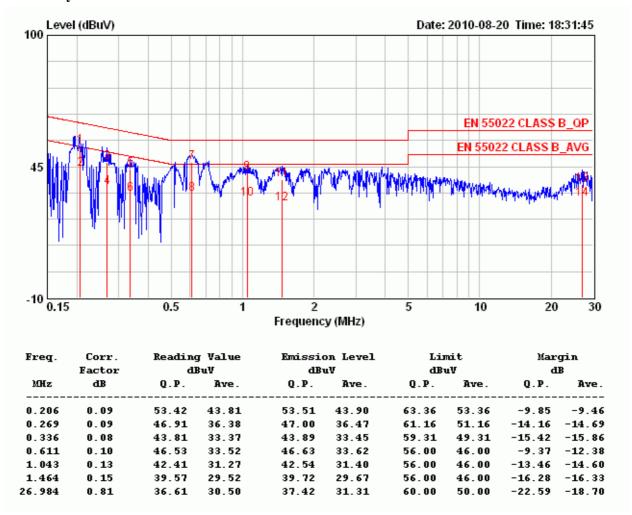
- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Page 115 Rev. 00

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Report No.: T100816101


Date of Issue: October 27, 2010

Test Data

Operation Mode: Normal Link **Test Date:** August 20, 2010

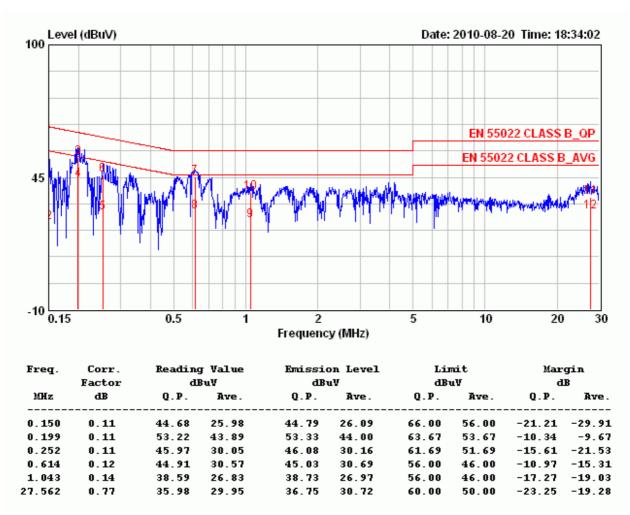
Temperature: 21.4°C **Tested by:** Vic Lin

Humidity: 59% RH Line: L1

Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz;
- 4. $L1 = Line \ One \ (Live \ Line) \ / \ L2 = Line \ Two \ (Neutral \ Line)$

Page 116 Rev. 00


Operation Mode: Normal Link Test Date: August 20, 2010

Report No.: T100816101

Date of Issue: October 27, 2010

Temperature: 21.4°C **Tested by:** Vic Lin

Humidity: 59% RH Line: L2

Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz;
- 4. $L1 = Line \ One \ (Live \ Line) \ / \ L2 = Line \ Two \ (Neutral \ Line)$

Page 117 Rev. 00