ADDENDUM TO NMB TECHNOLOGIES INC. TEST REPORT FC07-003
FOR THE
MICROSOFT® ${ }^{\circledR}$ WIRELESS ENTERTAINMENT KEYBOARD 7000,
MICROSOFT® MODEL NO. 1073
FCC PART 15 SUBPART C SECTIONS 15.209, 15.247, AND RSS-210 ISSUE 6 COMPLIANCE

DATE OF ISSUE: FEBRUARY 1, 2007

PREPARED FOR:

Microsoft Inc.
One Microsoft Way
Redmond, WA 98052
P.O. No.: PQ22699
W.O. No.: 85497

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Date of test: July 25, 2006 -
January 31, 2007

Report No.: FC07-003A

This report contains a total of 75 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information 3
FCC to Canada Standard Correlation Matrix 4
Conditions for Compliance 5
Approvals 5
FCC 15.31(e) Voltage Variation 6
FCC 15.31(m) Number of Channels 6
FCC 15.33(a) Frequency Ranges Tested 6
FCC 15.35 Analyzer Bandwidth Settings 6
FCC 15.203 Antenna Requirements 6
FCC 15.205 Restricted Bands 6
EUT Operating Frequency 6
Equipment Under Test (EUT) Description 7
Equipment Under Test 7
Peripheral Devices 7
Report of Measurements 8
Table 1: FCC 15.209 - Six Highest Spurious Emission Levels: Receiver. 8
FCC Part 15.247(a) Number of Hopping Frequencies 9
FCC Part 15.247(a) 20dB Bandwidth Plot 11
FCC Part 15.247(a) Carrier Frequency Separation 14
FCC Part 15.247(a) (iii) Average Time of Occupancy 15
FCC Part 15.247(b) Maximum Peak Conducted Output Power 26
FCC Part 15.247(d) Bandedge Plots 27
Table 2: FCC 15.247(d) - Six Highest Conducted Spurious Emission Levels 29
Table 3: FCC 15.247(d) - Six Highest Radiated Spurious Emission Levels 30
RSS-210 99\% Bandwidth Plot 31
Temperature And Humidity During Testing 34
EUT Setup 34
Correction Factors 34
Table A: Sample Calculations 34
Test Instrumentation and Analyzer Settings 35
Spectrum Analyzer Detector Functions 35
Peak 35
Quasi-Peak 35
Average 35
EUT Testing 35
Antenna Conducted Emissions 35
Radiated Emissions 36
Appendix A: Test Setup Photographs 37
Photograph Showing Direct Connect Testing 38
Photograph Showing Radiated Emissions 39
Photograph Showing Radiated Emissions 40
Appendix B: Test Equipment List 41
Appendix C: Measurement Data Sheets 43

ADMINISTRATIVE INFORMATION

DATE OF TEST:

DATE OF RECEIPT:

MANUFACTURER:

REPRESENTATIVE:

TEST LOCATION:

TEST METHOD:

PURPOSE OF TEST:

July 25, 2006 - January 31, 2007

July 25, 2006

Microsoft Corporation
One Microsoft Way Redmond, WA 98052

Jamin Pandana of NMB
Stephen Stegner of Microsoft

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

ANSI C63.4 (2003), RSS-210 \& RSS-GEN

Original Report is to demonstrate the compliance of the Microsoft ${ }^{\circledR}$ Wireless Entertainment Keyboard 7000, Microsoft ${ }^{\circledR}$ Model No. 1073 with the requirements for FCC Part 15 Subpart C Section 15.209, 15.247, and RSS-210 devices.
Addendum \mathbf{A} is to correct the test equipment lists, clarify that bandedge testing was performed on an OATS site, clarify 15.31(e) testing and replace the OATS testing with new data and photos.

FCC TO CANADA STANDARD CORRELATION MATRIX

Canadian Standard	Canadian Section	FCC Standard	FCC Section	Test Description
RSS GEN	7.1.4	47CFR	15.203	Antenna Connector Requirements
RSS GEN	7.2.1	47CFR	15.35(c)	Pulsed Operation
RSS GEN	7.2.2	47CFR	15.207	AC Mains Conducted Emissions Requirement
RSS 210	2.1	47CFR	15.215(c)	Frequency Stability Recommendation
RSS 210	2.2	47CFR	15.205	Restricted Bands of Operation
RSS 210	2.6	47CFR	15.209	General Radiated Emissions Requirement
RSS 210	A8.1	47CFR	15.247(a)(1)	Definition of FHSS
RSS 210	A8.1	47CFR	15.247(h)	Incorporation of Intelligence
RSS 210	A8.1(1)	47CFR	15.247(a)(1)	Minimum Channel Bandwidth
RSS 210	A8.1(1)	47CFR	15.247(g)	Hopping Sequence
RSS 210	A8.1(2)	47CFR	15.247(a)(1)	Carrier Separation
RSS 210	A8.1(2)	47CFR	15.247(a)(1)	Carrier Separation 2400 Alternative
RSS 210	A8.1(3)	47CFR	15.247(a)(1)(i)	Carrier Separation
RSS 210	A8.1(3)	47CFR	15.247(a)(1)(i)	Average Time of Occupancy
RSS 210	A8.1(3)	47CFR	15.247(a)(1)(i)	Number of Hopping Channels
RSS 210	A8.1(4)	47CFR	15.247(a)(1)(iii)	Average Time of Occupancy
RSS 210	A8.1(4)	47CFR	15.247(a)(1)(iii)	Number of Hopping Channels
RSS 210	A8.1(5)	47CFR	15.247(a)(1)(ii)	Max 20dB Bandwidth
RSS 210	A8.1(5)	47CFR	15.247(a)(1)(ii)	Average Time of Occupancy
RSS 210	A8.1(5)	47CFR	15.247(a)(1)(ii)	Number of Hopping Channels
RSS 210	A8.2(1)	47CFR	15.247(a)(2)	Minimum 6dB Bandwidth
RSS 210	A8.2(2)	47CFR	15.247(e)	Peak Power Spectral Density
RSS 210	A8.3(1)	47CFR	15.247(f)	Hybrid Systems - Time of Occupancy
RSS 210	A8.3(1)	47CFR	15.247(f)	Hybrid Systems - Power Spectral Density
RSS 210	A8.4(1)	47CFR	15.247(b)(2)	RF Power Output
RSS 210	A8.4(2)	47CFR	15.247(b)(1)	RF Power Output
RSS 210	A8.4(3)	47CFR	15.247(b)(1)	RF Power Output
RSS 210	A8.4(4)	47CFR	15.247(b)(3)	RF Power Output
RSS 210	A8.4(5)	47CFR	15.247(c)(1)	Directional Gain Requirements
RSS 210	A8.4(6)	47CFR	15.247(c)(2)	Beam Steering Antennas
RSS 210	A8.5	47CFR	15.247(d)	Spurious Emissions
IC 3172-A		90473		File Site No.
IC 3172-D		100638		

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply. Conducted emissions not required for this device because it is battery powered.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Septimiu Apahidean, EMC Engineer

Stuart Yamamoto, EMC Engineer

FCC 15.31(e) Voltage Variations
Not applicable to this device because it is battery powered and all testing was performed with new batteries installed.

FCC 15.31(m) Number of Channels
EUT was tested on low (2402 MHz), middle (2441 MHz), and high (2480 MHz) channels.
FCC 15.33(a) Frequency Ranges Tested
15.209 Emissions: $30-1000 \mathrm{MHz}$
15.247 Emissions: $9 \mathrm{kHz}-25 \mathrm{GHz}$

FCC SECTION 15.35:
ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE

TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	13 GHz	1 MHz

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

FCC 15.205 Restricted Bands
The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

EUT Operating Frequency

The EUT was operating between 2402 - 2480 MHz .

The EUT is a frequency hopping device operating in the $2400-2483.5 \mathrm{MHz}$.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. The following EUT name was used during testing by CKC Laboratories:
Bluetooth Keyboard, 1073 (Pasadena Rev 06)
Since the time of testing the manufacturer has chosen to use the following EUT name in its place. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets:
Microsoft ${ }^{\circledR}$ Wireless Entertainment Keyboard 7000, Microsoft ${ }^{\circledR}$ Model No. 1073

EQUIPMENT UNDER TEST

Microsoft ${ }^{\circledR}$ Wireless Entertainment Keyboard 7000
Manuf: Microsoft Corporation
Model: \quad Microsoft ${ }^{\circledR}$ Model No. 1073 (Pasadena)
Serial: EV2-001, 00125AA1033C, 8161600000087, 8161600000092, 8161600000137
FCC ID: C3K1073

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Bluetooth Transceiver
$\begin{array}{ll}\text { Manuf: } & \text { Microsoft Corporation } \\ \text { Model: } & 1003 \\ \text { Serial: } & \text { NA }\end{array}$

Laptop Computer

Manuf:
Dell
Model: Inspiron 6000
Serial: 7W2GS61

REPORT OF MEASUREMENTS

The following table reports the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

Table 1: FCC 15.209-Six Highest Spurious Emission Levels: Receiver									
	METER	CORRECTION FACTORS				CORRECTED READING $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	SPEC LIMIT $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	MARGIN dB	NOTES
FREQUENCY MHz	$\begin{aligned} & \text { READING } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	Ant dB	$\begin{gathered} \text { Amp } \\ \text { dB } \end{gathered}$	Cable dB	Dist dB				
527.992	40.8	19.0	-27.8	5.6		37.6	46.0	-8.4	V
528.001	40.5	19.0	-27.8	5.6		37.3	46.0	-8.7	H
528.005	40.5	19.0	-27.8	5.6		37.3	46.0	-8.7	H
564.002	39.1	19.8	-27.8	5.8		36.9	46.0	-9.1	H
599.994	39.0	19.9	-27.9	6.0		37.0	46.0	-9.0	V
600.004	38.9	19.9	-27.9	6.0		36.9	46.0	-9.1	V

Test Method:
Spec Limit:
Test Distance

ANSI C63.4 (2003)
FCC Part 15 Subpart C Section 15.209
3 Meters

NOTES: $\quad \mathrm{H}=$ Horizontal Polarization $\mathrm{V}=$ Vertical Polarization

COMMENTS: The EUT is a bluetooth keyboard. The keyboard is transmitting continuously. Test Mode. Low, Middle and High Channels. PCB Rev06. Temperature: $19^{\circ} \mathrm{C}$, Humidity: 60%, Pressure: 100 kPa . Frequency tested: $30-1000 \mathrm{MHz}$.

FCC Part 15.247(a) Number of Hopping Frequencies

Test Conditions:

The EUT was setup stand alone on the wooden table top. The EUT was put in a hopping mode so that the transmission would hop as it normally does from 2402 MHz to 2480 MHz . The EUT transmission was continuous.

FCC Part 15.247(a) Number of Hopping Frequencies

FCC Part 15.247(a) 20dB Bandwidth Plot - Frequency Hopping

Test Conditions:

The EUT was setup stand alone on the wooden table top. The EUT was put in a test mode so that it could transmit continuously on a selected channel. The EUT was setup and tested when set to transmit on its low (2402 MHz), middle (2441 MHz), and high (2480 MHz) channels.

Low

FCC Part 15.247(a) 20dB Bandwidth Plot - Frequency Hopping

Middle

FCC Part 15.247(a) 20dB Bandwidth Plot - Frequency Hopping

High

FCC Part 15.247(a) Carrier Frequency Separation

Test Conditions:

The EUT was setup stand alone on the wooden table top. The EUT was put in a hopping mode so that the transmission would hop as it normally does from 2402 MHz to 2480 MHz . The EUT transmission was continuous.

NWB Yechnologies, Inc., Pasadena keyboard. 15.247(a) Carrier Freçuency Separation. Carrier Frequency Separation=1.0M1Ref Level - 10 dEn ATTEN 0 dB
RES EN: 100.0 kHz hD BN: 30000 kHz SWP: 50.0 msec

FCC Part 15.247(a) (iii) Average Time of Occupancy

Test Conditions:

The EUT was setup stand alone on the wooden table top. The EUT was put in a hopping mode so that the transmission would hop as it normally does from 2402 MHz to 2480 MHz . The EUT transmission was continuous.

The number of hopping channels employed was determined to be 79. Therefore, the limit for the average time of occupancy is less than 0.4 seconds within a 31.6 second period. Please reference the eleven jpg plots made for the middle (2.44 GHz) channels. One of the jpg plots shows that a single event lasts for 330 microseconds. The worst case scenario for a 31.6 second period is 87 occurrences. The worst case scenario for the maximum time of occupancy (dwell time) in one 31.6 second period is 0.02871 seconds. The maximum time of occupancy limit is 0.4 seconds therefore the unit passed.

Limit: The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

NWB Technologies, Inc., Pasadena keyboard. 15.247(a) Tine of Occupancy. This is a single event plot. Single event lasts 3 . Ref Level - 10 dEn ATTEN 0 dB
RES EN: 1.0 MHz YID EN: 1.0 MHz Center Frea 2.44 CHz
Morker: $300.0 \mu \mathrm{sec}-55.775 \mathrm{dBm}$

FCC Part 15.247(a) (iii) Average Time of Occupancy

```
NMB Technologies, inc, \({ }^{\text {P }}\) Pasadena Keyboard, 15.247 (a)(ii) Average Time of Occupancy Plot for a 31.6 second period Ref Level 10 dBm ATTEN 0 dB
RES BN: 1.0 MHz VD BN: 1.00 Hzz Center Freq: 2.446 Hz
Marker: 2.807sec -51.185dBm
```


FCC Part 15.247(a) (iii) Average Time of Occupancy

```
NMB Technologies,inc,4 Pasadena Keyboard, 15.247(a)(ii) Average Time of Occupancy Plot for a $1.6 second period
Ref Level - 10 dBm ATTEN 0 dB
RES BN: 1.0MHz VD BN: 1.00.Hz Center Freq: 2.446Hz
Marker: 2.007sec -62.975dEm
```


FCC Part 15.247(a) (iii) Average Time of Occupancy

NME Technologies, Inc, Pasadena keyboard, 15.247 (a)(ii) Average Time of Occupancy Phot for a 31.6 second period Ref Level 10 cBm ATTEN 0 dB
RES BN: 1.00 Hz VD BN: 1.0 MHz Center Freq: 2.446 Hz
Marker: 2.607sec -19.259dEin

FCC Part 15.247(a) (iii) Average Time of Occupancy

NhB Technologies, Inc, Pasadena keyboard, 15.247(a)(ii) Average Time of Occupancy Piot for a 31,6 second period Ref Level -10 cBm ATTEN 0 dB
RES BM: 1.00 Hz VD EN: 1.0 MHz Center Freq: 2.446 Hz
Marker: 2.607sec -71.157dEm

FCC Part 15.247(a) (iii) Average Time of Occupancy

```
NisB Techoologies, Inc, Pasadena keyboard, 15.247(a)(ii) Average Time of Occupancy Piot for a 31,6 second period Ref Level -10 cBm ATTEN 0 dB
RES BS: 1.003 Hz VD BM: 1.03 Mz Center Freq: 2.44 GHz
Marker: 2.607sec -71.206dEm
```


FCC Part 15.247(a) (iii) Average Time of Occupancy

NMB Technologies, Inc, Pasadena keyboard, 15.247 (a) (ii) Average Time of Occupancy Piot for a 31.6 second period Ref Level 10 dBm ATTEN 0 dB
RES BM: 1.00 MHz VD BM: 1.0 MHz Center Freq: 2.446 Hz
Marker: $2.807 \mathrm{sec}-70.129 \mathrm{dem}$

FCC Part 15.247(a) (iii) Average Time of Occupancy

NuB Techologies, Inc, Pasadena keyboard, 15.247(a)(ii) Average Time of Occupancy Piot for a 31,6 second period Ref Level -10 cBm ATTEN 0 dB
RES B $\mathrm{S}: 1.00 \mathrm{MHz}$ VD BW: 1.0 MHz Center Freq: 2.446 Hz
Marker: 2.607 sec -71.426dBm

FCC Part 15.247(a) (iii) Average Time of Occupancy

NhB Technologies, Inc, Pasadena keyboard, 15.247(a)(ii) Average Time of Occupancy Piot for a 31,6 second period Ref Level -10 cBm ATTEN 0 dB
RES BM: 1.00 Hz VD EN: 1.0 MHz Center Freq: 2.446 Hz
Marker: $2.607 \mathrm{sec}-33.088 \mathrm{dBn}$

FCC Part 15.247(a) (iii) Average Time of Occupancy

```
NisB Techologies, Inc, Pasadena keyboard, 15.247(a)(ii) Average Time of Occupancy Piot for a 31.6 second period Ref Level -10 cBm ATTEN 0 dB
RES BS: 1.003 Hz VD BK: 1.03 Mz Center Freq: 2.44 GHz
Marker: \(2.607 \mathrm{sec}-70.709 \mathrm{dEm}\)
```


FCC Part 15.247(a) (iii) Average Time of Occupancy

NiNB Techologies, Inc, Pasadena keyboard, 15.247(a)(ii) Average Time of Occupancy Piot for a 31,6 second period Ref Level -10 cBm ATTEN 0 dB
RES BS: 1.003 Hz VD BK: 1.0 MHz Center Freq: 2.44 GHz
Marker: 2.807sec -71.51dBm

FCC Part 15.247(b) Maximum Peak Conducted Output Power

	Measured Transmitter power Watts (W)		
The EUT is a bluetooth Keyboard. The keyboard is working and continuously sending an ‘H’ to a remotely located laptop computer. The keyboard is communicating with the laptop via a USB bluetooth adapter. The H key of the USB keyboard is continuously pressed and the H	Low Channel pattern is being displayed in Notepad. All data taken with this configuration.	2402 MHz	Middle Channel 0.0000145 W
2441 MHz	High Channel		
0.0000170 W	0.00000138 MHz		

15.247(b) LIMIT

	Frequency range $\mathbf{M H z}$	Power level Watts (W)
FHSS, Greater than 75 non- overlapping channels	2400 to 2483.5	1.0

Tested By: Sep Apahidean

FCC Part 15.247(d) Bandedge Plots

Test Conditions:

The EUT was setup stand alone on the wooden tabletop. The EUT was put in a test mode so that it could transmit continuously on a selected channel. The EUT was setup and tested when set to transmit on its low (2402 MHz), middle (2441 MHz), and high (2480 MHz) channels. Radiated testing was performed on an OATS site.

FCC Part 15.247(d) Bandedge Plots
15.247 - Band Edge - Hi Channel 2480 MHz Ref Level 106.99 dBHV ATTEN 10 dB RES EN: 1.0 MHz VID EN: 1.0 MHz SNP: 4.0 msec Marker. 2.48 GHz 91.4757 cep V

15.247(d) Bandedge Complance

The following tables report the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

Table 2: FCC 15.247(d) - Six Highest Conducted Spurious Emission Levels									
	METER	COR	RECTIO	N FACT	RS	CORRECTED	SPEC		
FREQUENCY MHz	$\begin{gathered} \text { READING } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{Ant} \\ \mathrm{~dB} \end{gathered}$	Amp dB	Cable dB	$\begin{gathered} \text { Dist } \\ \mathrm{dB} \end{gathered}$	READING $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	LIMIT $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { MARGIN } \\ \text { dB } \end{gathered}$	NOTES
7276.652	45.8			2.4		48.2	68.4	-20.2	N-1
8783.410	45.4			2.7		48.1	68.4	-20.3	N-1
9415.987	46.2			2.8		49.0	68.4	-19.4	N-1
9436.037	45.8			2.8		48.6	68.4	-19.8	N-1
9809.970	45.4			2.9		48.3	68.4	-20.1	N-1
12688.360	45.2			3.3		48.5	68.4	-19.9	N-1

Test Method: ANSI C63.4 (2003)
Spec Limit: \quad FCC Part 15 Subpart C Section 15.247(d)

NOTES: $\quad \mathrm{N}=$ No Antenna Polarization
1 = Low Channel
2 = Middle Channel
3 = High Channel

COMMENTS: The EUT is a bluetooth Keyboard. The keyboard is working and continuously sending an ' H ' to a remotely located laptop computer. The keyboard is communicating with the laptop via a USB bluetooth adapter. The H key of the USB keyboard is continuously pressed and the H pattern is being displayed in Inc. All data taken with this configuration. Bluetooth channels set to 2402 MHz - Low Channel, 2441 MHz - Middle Channel and 2480 MHz - High Channel.
Frequency tested $9 \mathrm{kHz}-13 \mathrm{GHz}$.

Table 3: FCC 15.247(d) - Six Highest Radiated Spurious Emission Levels									
	METER	COR	RECTI	N FAC		CORRECTED	SPEC		
$\begin{gathered} \text { FREQUENCY } \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \text { READING } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{Ant} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \text { Amp } \\ \mathrm{dB} \end{gathered}$	Cable dB	$\begin{gathered} \hline \text { Dist } \\ \mathrm{dB} \end{gathered}$	READING $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	LIMIT $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	MARGIN dB	NOTES
12010.040	16.3	39.1	-38.9	25.4		41.9	54.0	-12.1	VA-1
12010.080	16.4	39.1	-38.9	25.4		42.0	54.0	-12.0	HA-1
12205.030	16.6	39.0	-38.7	25.5		42.4	54.0	-11.6	HA-2
12205.070	16.5	39.0	-38.7	25.5		42.3	54.0	-11.7	VA2
12399.990	16.6	38.9	-38.5	25.6		42.6	54.0	-11.4	VA-3
12400.030	16.3	38.9	-38.5	25.6		42.3	54.0	-11.7	HA-3

Test Method:
Spec Limit: Test Distance

ANSI C63.4 (2003)
FCC Part 15 Subpart C Section 15.247(d) 3 Meters

NOTES: $\quad \mathrm{H}=$ Horizontal Polarization
V = Vertical Polarization
A = Average Reading
1 = Low Channel
2 = Middle Channel
3 = High Channel

COMMENTS: The equipment under test (EUT) is a bluetooth keyboard. The EUT is placed on a 5 cm thick sheet of styrofoam, which is placed on top of a wooden table. The keyboard is in the test mode and is transmitting continuously. The EUT is set to the low channel $2402 \mathrm{MHz}, 2441$ MHz and 2480 MHz . New batteries are installed in the EUT. Temperature: $17^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Frequency range of test 9 kHz to 25 GHz .

RSS-210 99\% Bandwidth Plot

Test Conditions:

The EUT was setup stand alone on the wooden tabletop. The EUT was put in a hopping mode so that the transmission would hop as it normally does from 2402 MHz to 2480 MHz . The EUT transmission was continuous.

RSS-210 99\% Bandwidth Plot

RSS-210 99\% Bandwidth Plot

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TABLE A: SAMPLE CALCULATIONS

Meter reading ($\mathrm{dB} \mu \mathrm{V}$)

+ Antenna Factor
$+\quad$ Cable Loss
- Distance Correction

Distance Corrén

- Preamplifier Gain
$=$ Corrected Reading
($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect the radiated emissions data for the EUT. For radiated measurements from 9 kHz to 30 MHz , the magnetic loop antenna was used. For radiated measurements from 30 to 1000 MHz , the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz .

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of $97 \mathrm{~dB} \mu \mathrm{~V}$, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

EUT TESTING

Antenna Conducted Emissions

For measuring the signal strength on the RF output port of the EUT, the spectrum analyzer was connected directly to the EUT. The sweep time of the analyzer was adjusted so that the spectrum analyzer readings were always in a calibrated range. All readings within 20 dB of the limit were recorded.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 9 kHz to 30 MHz , the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz , the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

APPENDIX A
TEST SETUP PHOTOGRAPHS

PHOTOGRAPH SHOWING DIRECT CONNECT TESTING

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

APPENDIX B

TEST EQUIPMENT LIST

Test Equipment List for All Radiated Emissions and Radiated Spurious Emissions Testing on OATS

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer RF Section	02462	HP	$8568 B$	$2928 A 04874$	091406	091408
Spectrum Analyzer Display Section	02472	HP	$85662 A$	$3001 A 18430$	091406	091408
QP Adapter	01437	HP	85650A	$3303 A 01884$	091406	091408
Bilog Antenna	00851	Schaffner- Chase EMC	CBL6111C	2629	020206	020208
Antenna cable (10 meter site D)	P04382	Andrew	LDF1-50	Cable\#17	091906	091908
Antenna cable from bulkhead to antenna	N/A	Pasternack	RG-214/U	Cable \#33	040105	040107
Preamp to SA Cable (3 feet)	NA	Pasternack	E100316-I	Cable \#22	080904	081008
Pre-amp	00010	HP	$8447 D$	$2727 A 05392$	060606	060608
Antenna cable (Heliax)	NA	Andrew	LDF1-50	P05348 $($ Cable\#19)	092805	092807
SMA Cable (White)	P5455	Pasternack		$1-40 G H z _w h i t e ~$	011706	011708
Horn Antenna	01646	EMCO	3115	$9603-4683$	062906	062908
Microwave Pre-amp	00787	HP	$83017 A$	$3123 A 00282$	052705	052707
Magnetic Loop Antenna	00314	Emco	6502	2014	061406	061408
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	011405	011407

Test Equipment for, Bandedge

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507
Antenna cable (10 meter site D)	P04382	Andrew	LDF1-50	Cable\#17	091906	091908
Antenna cable (Heliax)	P05563	Andrew	LDF1-50	L1-PNMNM-48	091806	091808
24" SMA Cable (White)	P5455	Pasterneck	$35591-48$	$1-40 \mathrm{GHz}$ _white	011706	011708
Horn Antenna	01646	EMCO	3115	$9603-4683$	062906	062908
Microwave Pre-amp	00787	HP	$83017 A$	$3123 A 00282$	052705	052707

Test Equipment for Conducted Output Power, 20dB BW, and RSS-210 BW

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507

Test Equipment Used for Conducted Spurious Emissions

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer RF Section	02462	HP	8568 B	$2928 A 04874$	091406	091408
Spectrum Analyzer Display Section	02472	HP	85662 A	3001 A 18430	091406	091408
QP Adapter	01437	HP	85650A	3303A01884	091406	091408
24" SMA Cable (White)	P5455	Pasterneck	$35591-48$	$1-40 \mathrm{GHz}$ _white	011706	011708
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507

Test Equipment Used for Carrier Separation, Number of Hopping Channels, and Average Time of Occupancy

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer RF Section	02462	HP	$8568 B$	$2928 A 04874$	091406	091408
Spectrum Analyzer Display Section	02472	HP	$85662 A$	$3001 A 18430$	091406	091408
QP Adapter	01437	HP	$85650 A$	$3303 A 01884$	091406	091408
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507
Antenna cable (10 meter site D)	P04382	Andrew	LDF1-50	Cable\#17	091906	091908
Antenna cable (Heliax)	P05563	Andrew	LDF1-50	L1-PNMNM-48	091806	091808
24" SMA Cable (White)	P5455	Pasterneck	$35591-48$	1-40GHz_white	011706	011708
Horn Antenna	01646	EMCO	3115	$9603-4683$	062906	062908
Microwave Pre-amp	00787	HP	$83017 A$	$3123 A 00282$	052705	052707

APPENDIX C
MEASUREMENT DATA SHEETS

Test Location: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	NMB Technologies Corporation		
Specification:	FCC 15.209		
Work Order \#:	85497	Date:	11/13/2006
Test Type:	Maximized Emissions	Time:	14:03:17
Equipment:	Bluetooth Keyboard	Sequence\#:	30
Manufacturer:	NMB Technologies Corporation	Tested By:	Stuart Yamamoto
Model:	1073 (Pasadena Rev 06)		
S/N:	8161600000137		

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Bluetooth Keyboard*	NMB Technologies	1073 (Pasadena Rev 06)	8161600000137

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61
Bluetooth transceiver	Microsoft	1003	

Test Conditions / Notes:

The EUT is a bluetooth keyboard. The keyboard is transmitting continuously. Test Mode. Low, Middle and High Channels. PCB Rev06. Temperature: $21^{\circ} \mathrm{C}$, Humidity: 54%, Pressure: 100 kPa . Frequency tested: $30-1000 \mathrm{MHz}$.

Transducer Legend:

T1=Bilog AN00851 020208 Chase	T2=84' Heliax Cable P04382
T3=Cable \#22 Preamp to SA 081008	T4=Cable \#33 44ft RG-214(ant to Bulkhead)
T5=Preamp 8447D Asset 00010	

| 6 | 600.000 M | 38.1 | +19.9 | +2.7 | +0.5 | +2.8 | +0.0 | 36.1 | 46.0
 Test Mode. High
 Channel. | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 600.000 M | 37.6 | +19.9 | +2.7 | +0.5 | +2.8 | +0.0 | 35.6 | 46.0
 Test Mode. Middle | Vert |
| Clinannel. | | | | | | | | | | |

22	588.002M	34.5	$\begin{gathered} \hline+19.9 \\ -27.9 \end{gathered}$	+2.7	+0.5	+2.8	+0.0	32.5	$\begin{array}{cr} \hline 46.0 & -13.5 \\ \text { Test Mode. Middle } \\ \text { Channel. } \\ \hline \end{array}$	Horiz
23	515.994M	36.1	$\begin{array}{r} \hline+18.6 \\ -27.7 \end{array}$	+2.5	+0.4	+2.5	+0.0	32.4	$\begin{aligned} & 46.0 \\ & \hline-13.6 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Horiz
24	479.998M	36.8	$\begin{array}{r} \hline+17.7 \\ -27.5 \end{array}$	+2.4	+0.4	+2.5	+0.0	32.3	$\begin{array}{lr} \hline 46.0 & -13.7 \\ \text { Test Mode. Middle } \\ \text { Channel. } \end{array}$	Horiz
25	839.998M	29.5	$\begin{array}{r} \hline+23.1 \\ -27.5 \end{array}$	+3.2	+0.5	+3.5	+0.0	32.3	$\begin{aligned} & \text { 46.0 } \quad-13.7 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
26	719.974M	32.0	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	32.0	46.0 $\quad-14.0$ Test Mode. High Channel.	Horiz
27	515.980M	35.7	$\begin{array}{r} \hline+18.6 \\ -27.7 \end{array}$	+2.5	+0.4	+2.5	+0.0	32.0	46.0 -14.0 Test Mode. Middle Channel.	Horiz
28	720.002M	32.0	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	32.0	$\begin{aligned} & \text { 46.0 } \quad-14.0 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Horiz
29	624.001M	33.8	$\begin{gathered} \hline+20.1 \\ -27.9 \end{gathered}$	+2.7	+0.5	+2.8	+0.0	32.0	$\begin{aligned} & \text { 46.0 } \quad-14.0 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
30	420.004M	37.1	$\begin{gathered} \hline+16.3 \\ -27.1 \end{gathered}$	+2.2	+0.4	+2.2	+0.0	31.1	46.0 -14.9 Test Mode. Middle Channel.	Horiz
31	432.000M	36.6	$\begin{aligned} & \hline+16.6 \\ & -27.2 \end{aligned}$	+2.2	+0.4	+2.3	+0.0	30.9	46.0 -15.1 Test Mode. Middle Channel.	Horiz
32	588.026M	32.9	$\begin{gathered} \hline+19.9 \\ -27.9 \end{gathered}$	+2.7	+0.5	+2.8	+0.0	30.9	$\begin{aligned} & \text { 46.0 } \quad-15.1 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
33	719.993M	30.6	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	30.6	$$	Vert
34	720.015M	30.5	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	30.5	$\begin{aligned} & \hline 46.0 \\ & \text { Test Mode. High } \\ & \text { Channel. } \end{aligned}$	Vert
35	480.009M	35.0	$\begin{array}{r} \hline+17.7 \\ -27.5 \end{array}$	+2.4	+0.4	+2.5	+0.0	30.5	$\begin{array}{ll} \hline 46.0 & -15.5 \\ \text { Test Mode. High } \\ \text { Channel. } \end{array}$	Vert
36	720.037M	30.5	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	30.5	46.0 $\quad-15.5$ Test Mode. Low Channel.	Vert
37	480.025M	34.8	$\begin{array}{r} \hline+17.7 \\ -27.5 \end{array}$	+2.4	+0.4	+2.5	+0.0	30.3	$\begin{aligned} & 46.0 \quad-15.7 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert

| 38 | 419.978 M | 36.2 | +16.3 | +2.2 | +0.4 | +2.2 | +0.0 | 30.2 | 46.0
 Test Mode. High
 Channel. | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39 | 516.013 M | 33.8 | +18.6 | +2.5 | +0.4 | +2.5 | +0.0 | 30.1 | 46.0
 Test Mode. Low | Vert |
| | | | -27.7 | | | | | | | |
| Channel. | | | | | | | | | | |

54	384.002M	35.0	$\begin{array}{r} \hline+15.3 \\ -27.0 \end{array}$	+2.1	+0.4	+2.1	$+0.0$	27.9	$\begin{aligned} & \text { 46.0 } \quad-18.1 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Horiz
55	432.019M	33.4	$\begin{gathered} \hline+16.6 \\ -27.2 \end{gathered}$	+2.2	+0.4	+2.3	+0.0	27.7	$\begin{aligned} & 46.0 \quad-18.3 \\ & \text { Test Mode. High } \\ & \text { Channel. } \end{aligned}$	Vert
56	348.008M	35.4	$\begin{gathered} \hline+14.5 \\ -26.8 \end{gathered}$	+2.0	+0.3	+2.1	$+0.0$	27.5	$\begin{aligned} & \hline 46.0 \quad-18.5 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \\ & \hline \end{aligned}$	Vert
57	400.905M	34.2	$\begin{array}{r} \hline+15.7 \\ -27.1 \end{array}$	+2.1	+0.4	+2.1	+0.0	27.4	$\begin{aligned} & 46.0 \quad-18.6 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Horiz
58	408.001M	33.1	$\begin{gathered} \hline+15.9 \\ -27.1 \end{gathered}$	+2.1	+0.4	+2.2	$+0.0$	26.6	$46.0 \quad$-19.4 Test Mode. Low Channel.	Vert
59	372.012M	33.4	$\begin{gathered} \hline+15.0 \\ -26.9 \end{gathered}$	+2.0	+0.3	+2.1	+0.0	25.9	$46.0 \quad-20.1$ Test Mode. Low Channel.	Vert
60	383.998M	32.7	$\begin{gathered} \hline+15.3 \\ -27.0 \end{gathered}$	+2.1	+0.4	+2.1	$+0.0$	25.6	$\begin{aligned} & \text { 46.0 } \quad-20.4 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
61	396.021M	32.1	$\begin{gathered} +15.6 \\ -27.1 \end{gathered}$	+2.1	+0.4	+2.1	$+0.0$	25.2	$\begin{aligned} & \text { 46.0 } \quad-20.8 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
62	275.999M	34.2	$\begin{array}{r} \hline+12.8 \\ -26.5 \end{array}$	+1.7	+0.3	+1.8	+0.0	24.3	$\begin{aligned} & \text { 46.0 } \quad-21.7 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
63	300.004M	31.8	$\begin{array}{r} \hline+13.2 \\ -26.5 \end{array}$	+1.7	+0.3	+1.8	$+0.0$	22.3	$\begin{aligned} & 46.0 \\ & \hline-23.7 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert

Test Location: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	NMB Technologies Corporation		
Specification:	FCC 15.209		
Work Order \#:	85497	Date: 11/14/2006	
Test Type:	Maximized Emissions	Time: 08:39:18	
Equipment:	Bluetooth Keyboard	Sequence\#:	31
Manufacturer:	NMB Technologies Corporation	Tested By:	Stuart Yamamoto
Model:	1073 (Pasadena Rev 06)		
S/N:	8161600000092		

Equipment Under Test (* $=$ EUT):
Function Manufacturer Model \# S/N Bluetooth Keyboard* NMB Technologies 1073 (Pasadena Rev 06) 8161600000092

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61
Bluetooth transceiver	Microsoft	1003	

Test Conditions / Notes:

The EUT is a bluetooth keyboard. The keyboard is transmitting continuously. Test Mode. Low, Middle and High Channels. PCB Rev06. Temperature: $19^{\circ} \mathrm{C}$, Humidity: 60%, Pressure: 100 kPa . Frequency tested: $30-1000 \mathrm{MHz}$.

Transducer Legend:

T1=Bilog AN00851 020208 Chase	T2=84' Heliax Cable P04382
T3=Cable \#22 Preamp to SA 081008	T4=Cable \#33 44ft RG-214(ant to Bulkhead)
T5=Preamp 8447D Asset 00010	

| 6 | 599.999 M | 37.3 | +19.9 | +2.7 | +0.5 | +2.8 | +0.0 | 35.3 | 46.0
 Test Mode. High | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Channel. | | | | | | | | | | |

| 22 | 491.980 M | 36.2 | +17.9 | +2.4 | +0.4 | +2.5 | +0.0 | 31.8 | 46.0
 Test Mode. Middle
 Channel. | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | 311.977 M | 40.8 | +13.5 | +1.8 | +0.3 | +1.9 | +0.0 | 31.7 | 46.0
 Test Mode. Middle | Horiz |
| Clinannel. | | | | | | | | | | |

38	420.010M	34.7	$\begin{array}{r} \hline+16.3 \\ -27.1 \end{array}$	+2.2	+0.4	+2.2	+0.0	28.7	$46.0 \quad-17.3$ Test Mode. Middle Channel.	Vert
39	419.978M	34.4	$\begin{array}{r} \hline+16.3 \\ -27.1 \end{array}$	+2.2	+0.4	+2.2	+0.0	28.4	$\quad 46.0 \quad-17.6$ Test Mode. Low Channel.	Vert
40	432.011M	33.8	$\begin{gathered} \hline+16.6 \\ -27.2 \end{gathered}$	+2.2	+0.4	+2.3	+0.0	28.1	$\quad 46.0 \quad-17.9$ Test Mode. High Channel.	Vert
41	228.003M	39.4	$\begin{gathered} \hline+10.9 \\ -26.6 \end{gathered}$	+1.5	+0.2	+1.6	+0.0	27.0	$\quad 46.0$ -19.0 Test Mode. Middle Channel.	Horiz
42	300.036M	35.7	$\begin{array}{r} \hline+13.2 \\ -26.5 \end{array}$	+1.7	+0.3	+1.8	+0.0	26.2	$46.0 \quad-19.8$ Test Mode. Low Channel.	Vert
43	228.001M	37.3	$\begin{gathered} \hline+10.9 \\ -26.6 \end{gathered}$	+1.5	+0.2	+1.6	+0.0	24.9	$\quad 46.0 \quad-21.1$ Test Mode. High Channel.	Horiz

Test Location: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	NMB Technologies Corporation		
Specification:	FCC 15.209		Date:
Work Order \#:	85497	Time:	13:46:37
Test Type:	Maximized Emissions	Sequence\#:	32
Equipment:	Bluetooth Keyboard	Tested By:	Stuart Yamamoto
Manufacturer:	NMB Technologies Corporation		
Model:	1073 (Pasadena Rev 06)		
S/N:	8161600000087		

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Bluetooth Keyboard*	NMB Technologies	1073 (Pasadena Rev 06)	8161600000087

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61
Bluetooth transceiver	Microsoft	1003	

Test Conditions / Notes:

The EUT is a bluetooth keyboard. The keyboard is transmitting continuously. Test Mode. Low, Middle and High Channels. PCB Rev06. Temperature: $19^{\circ} \mathrm{C}$, Humidity: 60%, Pressure: 100 kPa . Frequency tested: $30-1000 \mathrm{MHz}$.

Transducer Legend:

T1=Bilog AN00851 020208 Chase	T2=84' Heliax Cable P04382
T3=Cable \#22 Preamp to SA 081008	T4=Cable \#33 44ft RG-214(ant to Bulkhead)
T5=Preamp 8447D Asset 00010	

| 6 | 600.002 M | 38.0 | +19.9 | +2.7 | +0.5 | +2.8 | +0.0 | 36.0 | 46.0
 Test Mode. High
 Channel. | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 528.000 M | 39.2 | +19.0 | +2.5 | +0.5 | +2.6 | +0.0 | 36.0 | 46.0
 Test Mode. High | Horiz |
| Channel. | | | | | | | | | | |

| 22 | 491.999 M | 38.2 | +17.9 | +2.4 | +0.4 | +2.5 | +0.0 | 33.8 | 46.0
 Test Mode. High
 Channel. | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | 455.989 M | 38.8 | +17.2 | +2.3 | +0.4 | +2.4 | +0.0 | 33.8 | 46.0
 Test Mode. High | Horiz |
| Channel. | | | | | | | | | | |

38	467.983M	37.1	$\begin{array}{r} \hline+17.4 \\ -27.4 \end{array}$	+2.3	+0.4	+2.4	+0.0	32.2	46.0 -13.8 Test Mode. Middle Channel.	Horiz
39	564.002M	33.9	$\begin{array}{r} \hline+19.8 \\ -27.8 \end{array}$	+2.6	+0.5	+2.7	+0.0	31.7	$\begin{aligned} & \hline 46.0 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
40	588.034M	33.6	$\begin{gathered} \hline+19.9 \\ -27.9 \end{gathered}$	+2.7	+0.5	+2.8	+0.0	31.6	$\begin{aligned} & \hline 46.0 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
41	420.020M	37.5	$\begin{gathered} \hline+16.3 \\ -27.1 \end{gathered}$	+2.2	+0.4	+2.2	+0.0	31.5	$\begin{array}{cr} \hline 46.0 & -14.5 \\ \text { Test Mode. Middle } \\ \text { Channel. } \end{array}$	Horiz
42	516.018M	35.1	$\begin{array}{r} \hline+18.6 \\ -27.7 \end{array}$	+2.5	+0.4	+2.5	+0.0	31.4	46.0 -14.6 Test Mode. Middle Channel.	Horiz
43	587.989M	33.3	$\begin{gathered} \hline+19.9 \\ -27.9 \end{gathered}$	+2.7	+0.5	+2.8	+0.0	31.3	$$	Vert
44	516.014M	34.9	$\begin{array}{r} \hline+18.6 \\ -27.7 \end{array}$	+2.5	+0.4	+2.5	+0.0	31.2	$$	Horiz
45	720.041M	31.2	$\begin{array}{r} +21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	31.2	$\begin{aligned} & \text { 46.0 } \quad-14.8 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
46	515.984M	34.8	$\begin{gathered} \hline+18.6 \\ -27.7 \end{gathered}$	+2.5	+0.4	+2.5	+0.0	31.1	$\quad 46.0$ Test Mode. High Channel.	Horiz
47	467.988M	36.0	$\begin{gathered} \hline+17.4 \\ -27.4 \end{gathered}$	+2.3	+0.4	+2.4	+0.0	31.1	$\begin{aligned} & \hline 46.0 \\ & \text { Test Mode. } \\ & \text { Tigh } \\ & \text { Channel. } \end{aligned}$	Horiz
48	419.987M	37.1	$\begin{gathered} \hline+16.3 \\ -27.1 \end{gathered}$	+2.2	+0.4	+2.2	+0.0	31.1	$\begin{array}{ll} \hline \text { 46.0 } & -14.9 \\ \text { Test Mode. } & \text { High } \\ \text { Channel. } \end{array}$	Horiz
49	719.980M	30.7	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	30.7	$46.0 \quad-15.3$ Test Mode. Middle Channel.	Vert
50	539.986M	33.4	$\begin{array}{r} \hline+19.4 \\ -27.8 \end{array}$	+2.6	+0.5	+2.6	+0.0	30.7	$\begin{aligned} & \hline 46.0 \\ & \text { Test Mode. Low } \\ & \text { Channel. } \end{aligned}$	Vert
51	504.004M	34.7	$\begin{gathered} \hline+18.1 \\ -27.7 \end{gathered}$	+2.4	+0.4	+2.5	+0.0	30.4	$$	Horiz
52	719.969M	30.4	$\begin{array}{r} \hline+21.3 \\ -27.8 \end{array}$	+2.9	+0.5	+3.1	+0.0	30.4	46.0 Test Mode. High Channel.	Vert
53	540.012M	33.1	$\begin{gathered} \hline+19.4 \\ -27.8 \end{gathered}$	+2.6	+0.5	+2.6	+0.0	30.4	$\begin{array}{cr}46.0 & -15.6 \\ \text { Test Mode. Middle }\end{array}$ Channel.	Vert

| 54 | 419.989 M | 36.2 | +16.3 | +2.2 | +0.4 | +2.2 | +0.0 | 30.2 | 46.0
 Test Mode. Low | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Channel. | | | | | | | | | | |

Test Location:	CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823	714-993-6112	
Customer:	NMB Technologies Inc.		
Specification:	FCC 15.247(d) Conducted Spurious Emission		
Work Order \#:	$\mathbf{8 5 4 9 7}$	Date:	7/27/2006
Test Type:	Conducted Emissions	Time:	1:23:54 PM
Equipment:	Bluetooth Keyboard	Sequence\#:	1
Manufacturer:	NMB Technologies Inc.	Tested By:	Septimiu Apahidean
Model:	Pasadena		3.2Vdc
S/N:	EV2-001		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Bluetooth Keyboard*	NMB Technologies Inc.	Pasadena	EV2-001
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61

Test Conditions / Notes:

The EUT is a bluetooth Keyboard. The keyboard is working and continuously sending an ' H ' to a remotely located laptop computer. The keyboard is communicating with the laptop via a USB bluetooth adapter. The H key of the USB keyboard is continuously pressed and the H pattern is being displayed in Notepad. All data taken with this configuration.
Bluetooth channel set to 2402 MHz - LOW Channel
Frequency range tested $9 \mathrm{kHz}-13 \mathrm{GHz}$.

Transducer Legend:

T1=1-40 GHz Cable_AN 5183_122306

Measurement Data:	Reading listed by margin.					Test Lead: Antenna port				
\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1 9415.987M	46.2	+2.8				+0.0	49.0	68.4	-19.4	None
2 9436.037M	45.8	+2.8				+0.0	48.6	68.4	-19.8	None
3 12688.360M	45.2	+3.3				+0.0	48.5	68.4	-19.9	None
4 9809.970M	45.4	+2.9				+0.0	48.3	68.4	-20.1	None
5 7276.652M	45.8	+2.4				+0.0	48.2	68.4	-20.2	None
6 8783.410M	45.4	+2.7				+0.0	48.1	68.4	-20.3	None
7 9008.973M	45.3	+2.8				+0.0	48.1	68.4	-20.3	None
8 12738.450M	44.8	+3.3				+0.0	48.1	68.4	-20.3	None
9 12919.310M	44.6	+3.4				+0.0	48.0	68.4	-20.4	None
10 8401.457M	45.2	+2.7				+0.0	47.9	68.4	-20.5	None
11 10267.110M	44.9	+3.0				+0.0	47.9	68.4	-20.5	None

12	12987.010M	44.5	+3.4	+0.0	47.9	68.4	-20.5	None
13	12426.500M	44.5	+3.3	+0.0	47.8	68.4	-20.6	None
14	12801.510M	44.5	+3.3	+0.0	47.8	68.4	-20.6	None
15	11511.210M	44.6	+3.1	+0.0	47.7	68.4	-20.7	None
16	12391.410M	44.4	+3.3	+0.0	47.7	68.4	-20.7	None
17	9413.982M	44.8	+2.8	+0.0	47.6	68.4	-20.8	None
18	9679.645M	44.7	+2.9	+0.0	47.6	68.4	-20.8	None
19	10165.860M	44.6	+3.0	+0.0	47.6	68.4	-20.8	None
20	10718.240M	44.6	+3.0	+0.0	47.6	68.4	-20.8	None
21	6906.730M	45.1	+2.4	+0.0	47.5	68.4	-20.9	None
22	7010.990M	45.1	+2.4	+0.0	47.5	68.4	-20.9	None
23	7550.335M	44.9	+2.6	+0.0	47.5	68.4	-20.9	None
24	8324.265M	44.8	+2.7	+0.0	47.5	68.4	-20.9	None
25	9838.040M	44.6	+2.9	+0.0	47.5	68.4	-20.9	None
26	10828.510M	44.5	+3.0	+0.0	47.5	68.4	-20.9	None
27	11722.740M	44.4	+3.1	+0.0	47.5	68.4	-20.9	None
28	11912.210M	44.3	+3.2	+0.0	47.5	68.4	-20.9	None
29	12777.400M	44.2	+3.3	+0.0	47.5	68.4	-20.9	None
30	7167.380M	45.0	+2.4	+0.0	47.4	68.4	-21.0	None
31	7335.800M	44.9	+2.5	+0.0	47.4	68.4	-21.0	None
32	7401.965M	44.9	+2.5	+0.0	47.4	68.4	-21.0	None
33	7740.810M	44.8	+2.6	+0.0	47.4	68.4	-21.0	None
34	7772.890M	44.8	+2.6	+0.0	47.4	68.4	-21.0	None
35	9228.520M	44.6	+2.8	+0.0	47.4	68.4	-21.0	None
36	12628.000M	44.1	+3.3	+0.0	47.4	68.4	-21.0	None
37	12647.550M	44.1	+3.3	+0.0	47.4	68.4	-21.0	None

38	2817.532M	45.8	+1.5	+0.0	47.3	68.4	-21.1	None
39	6875.652M	45.0	+2.3	+0.0	47.3	68.4	-21.1	None
40	7356.853M	44.8	+2.5	+0.0	47.3	68.4	-21.1	None
41	9302.705M	44.5	+2.8	+0.0	47.3	68.4	-21.1	None
42	10389.420M	44.3	+3.0	+0.0	47.3	68.4	-21.1	None
43	11927.250M	44.1	+3.2	+0.0	47.3	68.4	-21.1	None
44	12264.090M	44.0	+3.3	+0.0	47.3	68.4	-21.1	None
45	12555.820M	44.0	+3.3	+0.0	47.3	68.4	-21.1	None
46	12718.970M	44.0	+3.3	+0.0	47.3	68.4	-21.1	None
47	2820.540M	45.7	+1.5	+0.0	47.2	68.4	-21.2	None
48	6617.007M	44.9	+2.3	+0.0	47.2	68.4	-21.2	None
49	6859.612M	44.9	+2.3	+0.0	47.2	68.4	-21.2	None
50	7679.658M	44.6	+2.6	+0.0	47.2	68.4	-21.2	None
51	8272.135M	44.5	+2.7	+0.0	47.2	68.4	-21.2	None
52	9151.327M	44.4	+2.8	+0.0	47.2	68.4	-21.2	None
53	9778.893M	44.3	+2.9	+0.0	47.2	68.4	-21.2	None
54	12296.170M	43.9	+3.3	+0.0	47.2	68.4	-21.2	None
55	12608.950M	43.9	+3.3	+0.0	47.2	68.4	-21.2	None
56	6952.845M	44.7	+2.4	+0.0	47.1	68.4	-21.3	None
57	7653.592M	44.5	+2.6	+0.0	47.1	68.4	-21.3	None
58	8551.832M	44.4	+2.7	+0.0	47.1	68.4	-21.3	None
59	8609.978M	44.4	+2.7	+0.0	47.1	68.4	-21.3	None
60	9340.800M	44.3	+2.8	+0.0	47.1	68.4	-21.3	None
61	9425.010M	44.3	+2.8	+0.0	47.1	68.4	-21.3	None
62	9603.455M	44.2	+2.9	+0.0	47.1	68.4	-21.3	None
63	9699.695M	44.2	+2.9	+0.0	47.1	68.4	-21.3	None

64	10503.700M	44.1	+3.0	+0.0	47.1	68.4	-21.3	None
65	12522.740M	43.8	+3.3	+0.0	47.1	68.4	-21.3	None
66	12625.990M	43.8	+3.3	+0.0	47.1	68.4	-21.3	None
67	12148.800M	43.7	+3.3	+0.0	47.0	68.4	-21.4	None
68	12372.360M	43.7	+3.3	+0.0	47.0	68.4	-21.4	None
69	12394.420M	43.7	+3.3	+0.0	47.0	68.4	-21.4	None
70	12416.470M	43.7	+3.3	+0.0	47.0	68.4	-21.4	None
71	194.931M	36.5	+0.5	+0.0	37.0	68.4	-31.4	None
72	58.150M	35.3	$+0.4$	$+0.0$	35.7	68.4	-32.7	None
73	76.556M	35.3	+0.4	+0.0	35.7	68.4	-32.7	None
74	86.300M	35.0	+0.4	+0.0	35.4	68.4	-33.0	None
75	57.068M	34.8	+0.4	+0.0	35.2	68.4	-33.2	None
76	77.037M	34.8	$+0.4$	+0.0	35.2	68.4	-33.2	None
77	85.097M	34.8	+0.4	+0.0	35.2	68.4	-33.2	None
78	49.609M	34.5	+0.4	+0.0	34.9	68.4	-33.5	None
79	69.458M	34.5	$+0.4$	+0.0	34.9	68.4	-33.5	None
80	40.827M	34.5	+0.3	+0.0	34.8	68.4	-33.6	None
81	55.744M	34.4	$+0.4$	+0.0	34.8	68.4	-33.6	None
82	77.639M	34.3	+0.4	+0.0	34.7	68.4	-33.7	None
83	72.105M	34.1	+0.4	+0.0	34.5	68.4	-33.9	None
84	34.932M	34.0	+0.3	+0.0	34.3	68.4	-34.1	None
85	44.797M	34.0	$+0.3$	+0.0	34.3	68.4	-34.1	None
86	50.331M	33.8	+0.4	+0.0	34.2	68.4	-34.2	None
87	80.285M	33.8	+0.4	+0.0	34.2	68.4	-34.2	None
88	37.579M	33.8	+0.3	+0.0	34.1	68.4	-34.3	None
89	43.113M	33.8	$+0.3$	+0.0	34.1	68.4	-34.3	None

90	80.887 M	33.7	+0.4	+0.0	34.1	68.4	-34.3	None
91	34.451 M	33.7	+0.3	+0.0	34.0	68.4	-34.4	None
92	81.729 M	33.6	+0.4	+0.0	34.0	68.4	-34.4	None
93	52.015 M	33.5	+0.4	+0.0	33.9	68.4	-34.5	None
94	46.000 M	33.5	+0.3	+0.0	33.8	68.4	-34.6	None
95	30.000 M	33.4	+0.3	+0.0	33.7	68.4	-34.7	None
96	32.286 M	33.4	+0.3	+0.0	33.7	68.4	-34.7	None
97	54.782 M	33.2	+0.4	+0.0	33.6	68.4	-34.8	None
98	51.173 M	32.8	+0.4	+0.0	33.2	68.4	-35.2	None
99	86.661 M	32.8	+0.4	+0.0	33.2	68.4	-35.2	None

Test Location:	CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823	714-993-6112	
Customer:	NMB Technologies Inc.		
Specification:	FCC 15.247(d) Conducted Spurious Emission		
Work Order \#:	$\mathbf{8 5 4 9 7}$	Date:	7/27/2006
Test Type:	Conducted Emissions	Time:	1:40:03 PM
Equipment:	Bluetooth Keyboard	Sequence\#:	8
Manufacturer:	NMB Technologies Inc.	Tested By:	Septimiu Apahidean
Model:	Pasadena		3.2Vdc
S/N:	EV2-001		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Bluetooth Keyboard*	NMB Technologies Inc.	Pasadena	EV2-001
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61

Test Conditions / Notes:

The EUT is a bluetooth Keyboard. The keyboard is working and continuously sending an ' H ' to a remotely located laptop computer. The keyboard is communicating with the laptop via a USB bluetooth adapter. The H key of the USB keyboard is continuously pressed and the H pattern is being displayed in Notepad. All data taken with this configuration.
Bluetooth channel set to 2441 MHz - MIDDLE Channel
Frequency range tested $9 \mathrm{kHz}-13 \mathrm{GHz}$.

Transducer Legend:

T1=1-40 GHz Cable_AN 5183_122306

Measurement Data:	Reading listed by margin.					Test Lead: Antenna port				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
18120.757 M	45.0	+2.7				+0.0	47.7	68.4	-20.7	None
210045.560 M	44.7	+2.9				+0.0	47.6	68.4	-20.8	None
3 9389.923M	44.5	+2.8				+0.0	47.3	68.4	-21.1	None
48795.440 M	44.5	+2.7				+0.0	47.2	68.4	-21.2	None
511134.270 M	44.1	+3.1				+0.0	47.2	68.4	-21.2	None
6 11806.950M	44.1	+3.1				+0.0	47.2	68.4	-21.2	None
7 12185.890M	43.9	+3.3				+0.0	47.2	68.4	-21.2	None
8 7491.188M	44.6	+2.5				+0.0	47.1	68.4	-21.3	None
9 9563.355M	44.1	+2.9				+0.0	47.0	68.4	-21.4	None
1010896.680 M	44.0	+3.0				+0.0	47.0	68.4	-21.4	None
11 7578.405M	44.3	+2.6				+0.0	46.9	68.4	-21.5	None

12	12984.230M	43.5	+3.4	+0.0	46.9	68.4	-21.5	None
13	2971.917M	45.3	+1.5	+0.0	46.8	68.4	-21.6	None
14	7314.748M	44.3	+2.5	+0.0	46.8	68.4	-21.6	None
15	7373.895M	44.2	+2.5	+0.0	46.7	68.4	-21.7	None
16	7408.982M	44.2	+2.5	+0.0	46.7	68.4	-21.7	None
17	7632.540M	44.1	+2.6	+0.0	46.7	68.4	-21.7	None
18	11516.220M	43.6	+3.1	+0.0	46.7	68.4	-21.7	None
19	12489.650M	43.4	+3.3	+0.0	46.7	68.4	-21.7	None
20	12842.330M	43.4	+3.3	+0.0	46.7	68.4	-21.7	None
21	4231.058M	44.8	+1.8	+0.0	46.6	68.4	-21.8	None
22	7457.103M	44.1	+2.5	+0.0	46.6	68.4	-21.8	None
23	7988.428M	44.0	+2.6	+0.0	46.6	68.4	-21.8	None
24	8067.625M	44.0	+2.6	+0.0	46.6	68.4	-21.8	None
25	11572.370M	43.5	+3.1	+0.0	46.6	68.4	-21.8	None
26	12468.600M	43.3	+3.3	+0.0	46.6	68.4	-21.8	None
27	12735.660M	43.3	+3.3	+0.0	46.6	68.4	-21.8	None
28	11249.560M	43.4	+3.1	+0.0	46.5	68.4	-21.9	None
29	7219.510M	44.0	+2.4	+0.0	46.4	68.4	-22.0	None
30	8033.540M	43.8	+2.6	+0.0	46.4	68.4	-22.0	None
31	9575.385M	43.5	+2.9	+0.0	46.4	68.4	-22.0	None
32	10372.370M	43.4	+3.0	+0.0	46.4	68.4	-22.0	None
33	11425.000M	43.3	+3.1	+0.0	46.4	68.4	-22.0	None
34	9625.510M	43.4	+2.9	+0.0	46.3	68.4	-22.1	None
35	10689.160M	43.3	+3.0	+0.0	46.3	68.4	-22.1	None
36	7248.583M	43.8	+2.4	+0.0	46.2	68.4	-22.2	None
37	7724.770M	43.6	+2.6	+0.0	46.2	68.4	-22.2	None

38	9597.440M	43.3	+2.9	+0.0	46.2	68.4	-22.2	None
39	9947.313M	43.3	+2.9	+0.0	46.2	68.4	-22.2	None
40	11282.640M	43.1	+3.1	+0.0	46.2	68.4	-22.2	None
41	11441.040M	43.1	+3.1	+0.0	46.2	68.4	-22.2	None
42	11711.710M	43.1	+3.1	+0.0	46.2	68.4	-22.2	None
43	11885.140M	43.0	+3.2	+0.0	46.2	68.4	-22.2	None
44	12012.460M	43.0	+3.2	+0.0	46.2	68.4	-22.2	None
45	12928.580M	42.8	+3.4	+0.0	46.2	68.4	-22.2	None
46	12989.800M	42.8	+3.4	+0.0	46.2	68.4	-22.2	None
47	6944.825M	43.7	+2.4	+0.0	46.1	68.4	-22.3	None
48	7718.755M	43.5	+2.6	+0.0	46.1	68.4	-22.3	None
49	8323.263M	43.4	+2.7	+0.0	46.1	68.4	-22.3	None
50	8460.605M	43.4	+2.7	+0.0	46.1	68.4	-22.3	None
51	8537.798M	43.4	+2.7	+0.0	46.1	68.4	-22.3	None
52	8895.690M	43.4	+2.7	+0.0	46.1	68.4	-22.3	None
53	8948.822M	43.3	+2.8	+0.0	46.1	68.4	-22.3	None
54	10055.580M	43.2	+2.9	+0.0	46.1	68.4	-22.3	None
55	10946.800M	43.1	+3.0	+0.0	46.1	68.4	-22.3	None
56	11073.120M	43.1	+3.0	+0.0	46.1	68.4	-22.3	None
57	11765.850M	43.0	+3.1	+0.0	46.1	68.4	-22.3	None
58	12173.870M	42.8	+3.3	+0.0	46.1	68.4	-22.3	None
59	12250.050M	42.8	+3.3	+0.0	46.1	68.4	-22.3	None
60	12365.340M	42.8	+3.3	+0.0	46.1	68.4	-22.3	None
61	2811.518M	44.5	+1.5	+0.0	46.0	68.4	-22.4	None
62	4412.510M	44.1	+1.9	+0.0	46.0	68.4	-22.4	None
63	7270.638M	43.6	+2.4	+0.0	46.0	68.4	-22.4	None

64	7889.180M	43.4	+2.6	+0.0	46.0	68.4	-22.4	None
65	8451.582M	43.3	+2.7	+0.0	46.0	68.4	-22.4	None
66	9492.178M	43.2	+2.8	+0.0	46.0	68.4	-22.4	None
67	10286.160M	43.0	+3.0	+0.0	46.0	68.4	-22.4	None
68	11011.970M	43.0	+3.0	+0.0	46.0	68.4	-22.4	None
69	12095.670M	42.8	+3.2	+0.0	46.0	68.4	-22.4	None
70	12252.060M	42.7	+3.3	+0.0	46.0	68.4	-22.4	None
71	51.293M	36.1	$+0.4$	+0.0	36.5	68.4	-31.9	None
72	215.864M	35.6	+0.5	+0.0	36.1	68.4	-32.3	None
73	35.173M	35.7	+0.3	+0.0	36.0	68.4	-32.4	None
74	59.113M	35.5	$+0.4$	$+0.0$	35.9	68.4	-32.5	None
75	80.285M	35.5	+0.4	+0.0	35.9	68.4	-32.5	None
76	162.571M	35.2	+0.5	+0.0	35.7	68.4	-32.7	None
77	211.052M	35.1	+0.5	+0.0	35.6	68.4	-32.8	None
78	33.128M	35.3	+0.3	+0.0	35.6	68.4	-32.8	None
79	202.510M	35.0	+0.5	+0.0	35.5	68.4	-32.9	None
80	54.782M	34.8	$+0.4$	+0.0	35.2	68.4	-33.2	None
81	74.752M	34.8	$+0.4$	+0.0	35.2	68.4	-33.2	None
82	44.556M	34.8	+0.3	+0.0	35.1	68.4	-33.3	None
83	48.887M	34.7	$+0.4$	+0.0	35.1	68.4	-33.3	None
84	53.579M	34.7	$+0.4$	+0.0	35.1	68.4	-33.3	None
85	56.947M	34.7	$+0.4$	+0.0	35.1	68.4	-33.3	None
86	39.023M	34.4	+0.3	+0.0	34.7	68.4	-33.7	None
87	53.819M	34.3	$+0.4$	+0.0	34.7	68.4	-33.7	None
88	86.060M	34.3	+0.4	+0.0	34.7	68.4	-33.7	None
89	46.241M	34.3	+0.3	+0.0	34.6	68.4	-33.8	None

90	75.594 M	34.1	+0.4	+0.0	34.5	68.4	-33.9	None
91	43.594 M	34.0	+0.3	+0.0	34.3	68.4	-34.1	None
92	47.684 M	33.8	+0.4	+0.0	34.2	68.4	-34.2	None
93	77.037 M	33.8	+0.4	+0.0	34.2	68.4	-34.2	None
94	39.985 M	33.8	+0.3	+0.0	34.1	68.4	-34.3	None
95	48.286 M	33.3	+0.4	+0.0	33.7	68.4	-34.7	None
96	86.541 M	33.2	+0.4	+0.0	33.6	68.4	-34.8	None
97	78.722 M	33.1	+0.4	+0.0	33.5	68.4	-34.9	None
98	83.052 M	32.7	+0.4	+0.0	33.1	68.4	-35.3	None
99	83.534 M	32.0	+0.4	+0.0	32.4	68.4	-36.0	None

Test Location:	CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823	714-993-6112	
Customer:	NMB Technologies Inc.		
Specification:	FCC 15.247(d) Conducted Spurious Emission		
Work Order \#:	$\mathbf{8 5 4 9 7}$	Date:	7/27/2006
Test Type:	Conducted Emissions	Time:	1:52:09 PM
Equipment:	Bluetooth Keyboard	Sequence\#:	9
Manufacturer:	NMB Technologies Inc.	Tested By:	Septimiu Apahidean
Model:	Pasadena		3.2Vdc
S/N:	EV2-001		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Bluetooth Keyboard*	NMB Technologies Inc.	Pasadena	EV2-001
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61

Test Conditions / Notes:

The EUT is a bluetooth Keyboard. The keyboard is working and continuously sending an 'H' to a remotely located laptop computer. The keyboard is communicating with the laptop via a USB bluetooth adapter. The H key of the USB keyboard is continuously pressed and the H pattern is being displayed in Notepad. All data taken with this configuration.
Bluetooth channel set to 2480 MHz - HI
Frequency tested $9 \mathrm{kHz}-13 \mathrm{GHz}$.

Transducer Legend:

T1=1-40 GHz Cable_AN 5183_122306

Measurement Data:	Reading listed by margin.					Test Lead: Antenna port				
\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
112800.590 M	44.4	+3.3				+0.0	47.7	68.4	-20.7	None
2 7358.857M	44.9	+2.5				+0.0	47.4	68.4	-21.0	None
3 7449.083M	44.9	+2.5				+0.0	47.4	68.4	-21.0	None
4 7319.760M	44.8	+2.5				+0.0	47.3	68.4	-21.1	None
511083.140 M	44.0	+3.0				+0.0	47.0	68.4	-21.4	None
612871.080 M	43.7	+3.3				+0.0	47.0	68.4	-21.4	None
7 11329.760M	43.8	+3.1				+0.0	46.9	68.4	-21.5	None
8 11929.250M	43.7	+3.2				+0.0	46.9	68.4	-21.5	None
96827.533 M	44.5	+2.3				+0.0	46.8	68.4	-21.6	None
10 8465.617M	44.1	+2.7				+0.0	46.8	68.4	-21.6	None
11 11264.600M	43.7	+3.1				+0.0	46.8	68.4	-21.6	None

12	7404.973M	44.2	+2.5	+0.0	46.7	68.4	-21.7	None
13	8860.603M	44.0	+2.7	+0.0	46.7	68.4	-21.7	None
14	9992.425M	43.8	+2.9	+0.0	46.7	68.4	-21.7	None
15	11634.520M	43.6	+3.1	+0.0	46.7	68.4	-21.7	None
16	11891.160M	43.5	+3.2	+0.0	46.7	68.4	-21.7	None
17	12852.530M	43.4	+3.3	+0.0	46.7	68.4	-21.7	None
18	7408.982M	44.1	+2.5	+0.0	46.6	68.4	-21.8	None
19	8127.775M	43.9	+2.7	+0.0	46.6	68.4	-21.8	None
20	8779.400M	43.9	+2.7	+0.0	46.6	68.4	-21.8	None
21	8887.670M	43.9	+2.7	+0.0	46.6	68.4	-21.8	None
22	9065.112M	43.8	+2.8	+0.0	46.6	68.4	-21.8	None
23	10491.670M	43.6	+3.0	+0.0	46.6	68.4	-21.8	None
24	11144.300M	43.5	+3.1	+0.0	46.6	68.4	-21.8	None
25	11201.440M	43.5	+3.1	+0.0	46.6	68.4	-21.8	None
26	3018.032M	45.0	+1.5	+0.0	46.5	68.4	-21.9	None
27	6737.308M	44.2	+2.3	+0.0	46.5	68.4	-21.9	None
28	8258.100M	43.8	+2.7	+0.0	46.5	68.4	-21.9	None
29	10693.170M	43.5	+3.0	+0.0	46.5	68.4	-21.9	None
30	12950.840M	43.1	+3.4	+0.0	46.5	68.4	-21.9	None
31	7196.453M	44.0	+2.4	+0.0	46.4	68.4	-22.0	None
32	7388.933M	43.9	+2.5	+0.0	46.4	68.4	-22.0	None
33	8873.635M	43.7	+2.7	+0.0	46.4	68.4	-22.0	None
34	9231.527M	43.6	+2.8	+0.0	46.4	68.4	-22.0	None
35	9578.393M	43.5	+2.9	+0.0	46.4	68.4	-22.0	None
36	11332.770M	43.3	+3.1	+0.0	46.4	68.4	-22.0	None
37	11393.920M	43.3	+3.1	+0.0	46.4	68.4	-22.0	None

38	3495.222M	44.7	+1.6	+0.0	46.3	68.4	-22.1	None
39	7052.092M	43.9	+2.4	+0.0	46.3	68.4	-22.1	None
40	7235.550M	43.9	+2.4	+0.0	46.3	68.4	-22.1	None
41	8305.218M	43.6	+2.7	+0.0	46.3	68.4	-22.1	None
42	9255.588M	43.5	+2.8	+0.0	46.3	68.4	-22.1	None
43	12219.980M	43.0	+3.3	+0.0	46.3	68.4	-22.1	None
44	12275.120M	43.0	+3.3	+0.0	46.3	68.4	-22.1	None
45	6959.862M	43.8	+2.4	+0.0	46.2	68.4	-22.2	None
46	7186.428M	43.8	+2.4	+0.0	46.2	68.4	-22.2	None
47	7989.430M	43.6	+2.6	+0.0	46.2	68.4	-22.2	None
48	8979.900M	43.4	+2.8	+0.0	46.2	68.4	-22.2	None
49	11973.370M	43.0	+3.2	+0.0	46.2	68.4	-22.2	None
50	12111.710M	43.0	+3.2	+0.0	46.2	68.4	-22.2	None
51	12521.730M	42.9	+3.3	+0.0	46.2	68.4	-22.2	None
52	8437.548M	43.4	+2.7	+0.0	46.1	68.4	-22.3	None
53	9604.457M	43.2	+2.9	+0.0	46.1	68.4	-22.3	None
54	10256.080M	43.1	+3.0	+0.0	46.1	68.4	-22.3	None
55	10795.430M	43.1	+3.0	+0.0	46.1	68.4	-22.3	None
56	11476.130M	43.0	+3.1	+0.0	46.1	68.4	-22.3	None
57	12567.850M	42.8	+3.3	+0.0	46.1	68.4	-22.3	None
58	12913.740M	42.7	+3.4	+0.0	46.1	68.4	-22.3	None
59	108.797M	36.3	$+0.4$	+0.0	36.7	68.4	-31.7	None
60	206.360M	35.8	$+0.5$	+0.0	36.3	68.4	-32.1	None
61	200.465M	35.6	+0.5	+0.0	36.1	68.4	-32.3	None
62	199.382M	35.5	+0.5	+0.0	36.0	68.4	-32.4	None
63	57.308M	35.5	$+0.4$	+0.0	35.9	68.4	-32.5	None

64	63.804M	35.5	+0.4	+0.0	35.9	68.4	-32.5	None
65	76.676M	35.4	+0.4	+0.0	35.8	68.4	-32.6	None
66	185.548M	35.2	+0.5	+0.0	35.7	68.4	-32.7	None
67	203.954M	35.2	+0.5	+0.0	35.7	68.4	-32.7	None
68	40.346M	35.3	+0.3	+0.0	35.6	68.4	-32.8	None
69	38.421M	35.2	$+0.3$	+0.0	35.5	68.4	-32.9	None
70	81.970M	35.1	+0.4	+0.0	35.5	68.4	-32.9	None
71	47.684M	35.0	$+0.4$	+0.0	35.4	68.4	-33.0	None
72	49.729M	34.8	+0.4	+0.0	35.2	68.4	-33.2	None
73	51.173M	34.8	$+0.4$	+0.0	35.2	68.4	-33.2	None
74	63.083M	34.7	$+0.4$	$+0.0$	35.1	68.4	-33.3	None
75	42.992M	34.7	+0.3	+0.0	35.0	68.4	-33.4	None
76	52.857M	34.6	$+0.4$	+0.0	35.0	68.4	-33.4	None
77	68.135M	34.6	+0.4	+0.0	35.0	68.4	-33.4	None
78	52.135M	34.5	+0.4	+0.0	34.9	68.4	-33.5	None
79	54.180M	34.5	$+0.4$	+0.0	34.9	68.4	-33.5	None
80	80.767M	34.4	$+0.4$	+0.0	34.8	68.4	-33.6	None
81	32.406M	34.4	$+0.3$	+0.0	34.7	68.4	-33.7	None
82	48.887M	34.3	+0.4	+0.0	34.7	68.4	-33.7	None
83	70.661M	34.2	$+0.4$	+0.0	34.6	68.4	-33.8	None
84	54.782M	34.1	$+0.4$	+0.0	34.5	68.4	-33.9	None
85	74.752M	34.1	$+0.4$	+0.0	34.5	68.4	-33.9	None
86	60.316M	34.0	+0.4	+0.0	34.4	68.4	-34.0	None
87	41.910M	34.0	+0.3	+0.0	34.3	68.4	-34.1	None
88	43.835M	34.0	+0.3	+0.0	34.3	68.4	-34.1	None
89	77.879M	33.8	$+0.4$	+0.0	34.2	68.4	-34.2	None

90	71.864 M	33.7	+0.4	+0.0	34.1	68.4	-34.3	None
91	64.526 M	33.6	+0.4	+0.0	34.0	68.4	-34.4	None
92	63.564 M	33.5	+0.4	+0.0	33.9	68.4	-34.5	None
93	78.361 M	33.5	+0.4	+0.0	33.9	68.4	-34.5	None
94	79.564 M	33.5	+0.4	+0.0	33.9	68.4	-34.5	None
95	48.647 M	33.4	+0.4	+0.0	33.8	68.4	-34.6	None
96	84.977 M	33.4	+0.4	+0.0	33.8	68.4	-34.6	None
97	46.241 M	33.1	+0.3	+0.0	33.4	68.4	-35.0	None
98	87.022 M	33.0	+0.4	+0.0	33.4	68.4	-35.0	None
99	70.421 M	32.9	+0.4	+0.0	33.3	68.4	-35.1	None

Test Location: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	NMB Technologies Corporation		
Specification:	15.247(d) Radiated Spurious Emissions		Date: 1/30/2007
Work Order \#:	85497	Time:	15:20:43
Test Type:	Maximized Emissions	Sequence\#:	7
Equipment:	Bluetooth Keyboard	Tested By:	Stuart Yamamoto
Manufacturer:	NMB Technologies Corporation		
Model:	1073 (Pasadena Rev 06)		
S/N:	8161600000087		

Equipment Under Test (* $=$ EUT):
Function Manufacturer Model \# S/N Bluetooth Keyboard* NMB Technologies 1073 (Pasadena Rev 06) 8161600000087

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61
Bluetooth transceiver	Microsoft	1003	

Test Conditions / Notes:

The equipment under test (EUT) is a bluetooth keyboard. The EUT is placed on a 5cm thick sheet of styrofoam, which is placed on top of a wooden table. The keyboard is in the test mode and is transmitting continuously. The EUT is set to the low channel 2402 MHz . New batteries are installed in the EUT. Temperature: $17^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Frequency range of test 9 kHz to 25 GHz .
Transducer Legend:

T1=Horn 01646_062908	T2=HF Preamp Cal. HP-83017A,S/N- 3123A00282
T3 $=1-40$ GHz Cable_AN5455_011708	T4=48' Heliax Cable 091808 P05563
T5=84' Heliax Cable P04382	T6=Filter 3GHz HPF AN02744

Test Location: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	NMB Technologies Corporation		
Specification:	15.247(d) Radiated Spurious Emissions		Date: 1/30/2007
Work Order \#:	85497	Time: 15:27:36	
Test Type:	Maximized Emissions	Sequence\#:	8
Equipment:	Bluetooth Keyboard	Tested By:	Stuart Yamamoto
Manufacturer:	NMB Technologies Corporation		
Model:	1073 (Pasadena Rev 06)		
S/N:	8161600000087		

Equipment Under Test (* $=$ EUT):
Function Manufacturer Model \# S/N Bluetooth Keyboard* NMB Technologies 1073 (Pasadena Rev 06) 8161600000087

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61
Bluetooth transceiver	Microsoft	1003	

Test Conditions / Notes:

The equipment under test (EUT) is a bluetooth keyboard. The EUT is placed on a 5cm thick sheet of styrofoam, which is placed on top of a wooden table. The keyboard is in the test mode and is transmitting continuously. The EUT is set to the low channel 2441 MHz . New batteries are installed in the EUT. Temperature: $17^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Frequency range of test 9 kHz to 25 GHz .
Transducer Legend:

T1=Horn 01646_062908	T2=HF Preamp Cal. HP-83017A,S/N- 3123A00282
T3 $=1-40$ GHz Cable_AN5455_011708	T4=48' Heliax Cable 091808 P05563
T5=84' Heliax Cable P04382	T6=Filter 3GHz HPF AN02744

Test Location: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	NMB Technologies Corporation		
Specification:	15.247(d) Radiated Spurious Emissions		Date:
Work Order \#:	85497	Time:	15:34:34
Test Type:	Maximized Emissions	Sluetooth Keyboard	Tested By:

Equipment Under Test (* $=$ EUT):
Function Manufacturer Model \# S/N Bluetooth Keyboard* NMB Technologies 1073 (Pasadena Rev 06) 8161600000087

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Inspiron 6000	7W2GS61
Bluetooth transceiver	Microsoft	1003	

Test Conditions / Notes:

The equipment under test (EUT) is a bluetooth keyboard. The EUT is placed on a 5cm thick sheet of styrofoam, which is placed on top of a wooden table. The keyboard is in the test mode and is transmitting continuously. The EUT is set to the low channel 2480 MHz . New batteries are installed in the EUT. Temperature: $17^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Frequency range of test 9 kHz to 25 GHz .
Transducer Legend:

T1=Horn 01646_062908	T2=HF Preamp Cal. HP-83017A,S/N- 3123A00282
T3 $=1-40$ GHz Cable_AN5455_011708	T4=48' Heliax Cable 091808 P05563
T5=84' Heliax Cable P04382	T6=Filter 3GHz HPF AN02744

