

FCC TEST REPORT

REPORT NO.: RF950802H08 **MODEL NO.:** 1065

RECEIVED: Aug. 03, 2006

TESTED: Aug. 03 to 07, 2006

ISSUED: Aug. 08, 2006

APPLICANT: Microsoft[®] Corporation

- ADDRESS: One Microsoft Way Redmond, WA 98052
- **ISSUED BY:** Advance Data Technology Corporation

LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C.

This test report consists of 47 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	7
3.3	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:	8
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.5	DESCRIPTION OF SUPPORT UNITS	10
3.6	CONFIGURATION OF SYSTEM UNDER TEST	10
4	TEST PROCEDURES AND RESULTS	11
4.1	CONDUCTED EMISSION MEASUREMENT	11
4.2	NUMBER OF HOPPING FREQUENCY USED	11
4.2.1	LIMIT OF HOPPING FREQUENCY USED	11
4.2.2	TEST INSTRUMENTS	
4.2.3	TEST PROCEDURES	12
4.2.4	DEVIATION FROM TEST STANDARD	12
4.2.5	TEST SETUP	13
4.2.6	TEST RESULTS	13
4.3	DWELL TIME ON EACH CHANNEL	15
4.3.1	LIMIT OF DWELL TIME USED	
4.3.2	TEST INSTRUMENTS	15
4.3.3	TEST PROCEDURES	16
4.3.4	DEVIATION FROM TEST STANDARD	16
4.3.5	TEST SETUP	
4.3.6	TEST RESULTS	17
4.4	CHANNEL BANDWIDTH	19
4.4.1	TEST INSTRUMENTS	19
4.4.2	TEST PROCEDURE	20
4.4.3	DEVIATION FROM TEST STANDARD	20
4.4.4	TEST SETUP	20
4.4.5	EUT OPERATING CONDITION	20
4.4.6	TEST RESULTS	
4.5	HOPPING CHANNEL SEPARATION	23
4.5.1	LIMIT OF HOPPING CHANNEL SEPARATION	23

4.5.2	TEST INSTRUMENTS	23
4.5.3	TEST PROCEDURES	24
4.5.4	DEVIATION FROM TEST STANDARD	24
4.5.5	TEST SETUP	24
4.5.6	TEST RESULTS	25
4.6	MAXIMUM PEAK OUTPUT POWER	27
4.6.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	27
4.6.2	INSTRUMENTS	27
4.6.3	TEST PROCEDURES	28
4.6.4	DEVIATION FROM TEST STANDARD	28
4.6.5	TEST SETUP	29
4.6.6	EUT OPERATING CONDITION	29
4.6.7	TEST RESULTS	30
4.7	RADIATED EMISSION MEASUREMENT	32
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	32
4.7.2	TEST INSTRUMENTS	33
4.7.3	TEST PROCEDURES	34
4.7.4	DEVIATION FROM TEST STANDARD	34
4.7.5	TEST SETUP	35
4.7.6	TEST RESULTS	
4.8	BAND EDGES MEASUREMENT	
4.8.1	LIMITS OF BAND EDGES MEASUREMENT	40
4.8.2	TEST INSTRUMENTS	40
4.8.3	TEST PROCEDURE	40
4.8.4	DEVIATION FROM TEST STANDARD	40
4.8.5	EUT OPERATING CONDITION	40
4.8.6	TEST RESULTS	41
4.9	ANTENNA REQUIREMENT	
4.9.1	STANDARD APPLICABLE	
4.9.2	ANTENNA CONNECTED CONSTRUCTION	
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	45
6	INFORMATION ON THE TESTING LABORATORIES	46
APPEI	NDIX-A	A-1

1 CERTIFICATION

PRODUCT :	Microsoft Wireless Notebook Presenter Mouse 8000
BRAND NAME :	Microsoft®
MODEL NO. :	1065
APPLICANT :	Microsoft [®] Corporation
TESTED DATE:	Aug. 03 to 07, 2006
TEST ITEM :	ENGINEERING SAMPLE
STANDARDS :	47 CFR Part 15, Subpart C (Section 15.247),
	ANSI C63.4-2003

The above equipment (Model: 1065) has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Carol Liao, DATE: Aug. 08, 2006 (Carol Liao) TECHNICAL ACCEPTANCE : Hank Chung, DATE: Aug. 08, 2006 Responsible for RF (Hank Chung) **APPROVED BY** : **DATE:** Aug. 08, 2006 (May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

E.

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 15, Subpart C							
Standard Section	Test Type and Limit	Result	REMARK				
15.207	AC Power Conducted Emission	NA	Power supply is 1.5VDC from battery				
15.247(b)(1)	Number of Hopping Frequency Used Spec.: At least 75 channels	PASS	Meet the requirement of limit				
15.247(a)(1) (ii)	Dwell Time on Each Channel Spec. : Max. 0.4 second within 31.6 second	PASS	Meet the requirement of limit				
15.247(a)(1) (I)-(ii)	Hopping Channel Separation Spec. : Min. 25 kHz or 20 dB bandwidth, which ever is greater	PASS	Meet the requirement of limit				
15.247(a)(1)	Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Report reference				
15.247(b)	Maximum Peak Output Power Spec.: max. 1W	PASS	Meet the requirement of limit				
	Transmitter Dedicted Emissions		Meet the requirement of limit				
15.247(c)	Transmitter Radiated Emissions Spec.: Table 15.209	PASS	Minimum passing margin is –15.60dB at 7440.00MHz				
15.247(c)	Band Edge Measurement	PASS	Meet the requirement of limit				

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Microsoft Wireless Notebook Presenter Mouse 8000
MODEL NO.	1065
FCC ID	C3K1065
POWER SUPPLY	DC 1.5V from from battery
MODULATION TYPE	GFSK
MODULATION TECHNOLOGY	FHSS
PACKET TYPE	DH1
FREQUENCY RANGE	2402MHz ~ 2480MHz
NUMBER OF CHANNEL	79
OUTPUT POWER	1.164mW
ANTENNA TYPE	Monopole antenna with -1.55dBi antenna gain
DATA CABLE	NA
INTERFACE	NA
ASSOCIATED DEVICES	NA

NOTE:

1. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Seventy-nine channels are provided to this EUT.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2431	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.3 TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:

mode PLC RE<1G
Where PLC: Power Line Conducted Emission RE<1G RE: Ra
RE≥1G: Radiated Emission above 1GHz APCM: Antenna adiated Emission Test (Below 1 GHz): Pre-Scan has been conducted to determine the worst-case m between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as 1 Available Tested Modulation Modulation Channel Channel Technology Type 0 to 78 0 FHSS GFSK adiated Emission Test (Above 1 GHz): Pre-Scan has been conducted to determine the worst-case m between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as 1 Available Tested Modulation for the final test as 1 Adiated Emission Test (Above 1 GHz): Following channel(s) was (were) selected for the final test as 1 Adiated Emission Test (Above 1 GHz): Following channel(s) was (were) selected for the final test as 1
 Pre-Scan has been conducted to determine the worst-case models between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as I <u>Available</u> Tested Modulation Modulation Channel Channel Technology Type 0 to 78 0 FHSS GFSK Cadiated Emission Test (Above 1 GHz): Pre-Scan has been conducted to determine the worst-case models between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as I Modulation Test (Above 1 GHz): Available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as I Modulation Modulation Tested Modulation Technology Type
 architecture). Following channel(s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (were) selected for the final test as a following channel (s) was (selected for the final test as a following channel (s) was (selected following test as a following channel (s) was (selected following test as a following test as a
Available Tested Modulation Modulation Channel Channel Technology Type 0 to 78 0 FHSS GFSK adiated Emission Test (Above 1 GHz): Pre-Scan has been conducted to determine the worst-case m between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as Available Tested Modulation Modulation Channel Tested Modulation Modulation
0 to 78 0 FHSS GFSK adiated Emission Test (Above 1 GHz): Pre-Scan has been conducted to determine the worst-case m between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as Available Tested Modulation Channel Channel Technology Type
 Adiated Emission Test (Above 1 GHz): Pre-Scan has been conducted to determine the worst-case m between available modulations, data rates and antenna ports architecture). Following channel(s) was (were) selected for the final test as Available Tested Modulation Type
Channel Channel Technology Type
0 to 78 0,39,78 FHSS GFSK
 Andedge Measurement: Pre-Scan has been conducted to determine the worst-case models between available modulations, data rates and antenna ports (architecture). Following channel(s) was (were) selected for the final test as line to the final test as line test as line to the final test as line test as line test as lin
AvailableTestedModulationModulationChannelChannelTechnologyType
0 to 78 0, 78 FHSS GFSK
Image: ntenna Port Conducted Measurement: Pre-Scan has been conducted to determine the worst-case mode between available modulations, data rates and antenna ports of architecture). Following channel(s) was (were) selected for the final test as I Available Tested Modulation Modulation Channel Channel Technology Type 0 to 78 0, 39, 78 FHSS GFSK

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Microsoft Wireless Notebook Presenter Mouse 8000. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.4 : 2003

All test items have been performed and recorded as per the above standards.

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.

3.6 CONFIGURATION OF SYSTEM UNDER TEST

EUT	
L]	
	EUI

NOTE: 1. Please refer to the photos of test configuration in Item 5 also.

10

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

NA

4.2 NUMBER OF HOPPING FREQUENCY USED

4.2.1 LIMIT OF HOPPING FREQUENCY USED

At least 75 hopping frequencies, and should be equally spaced.

4.2.2 TEST INSTRUMENTS

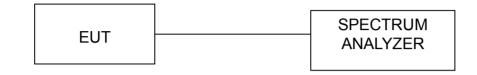
Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

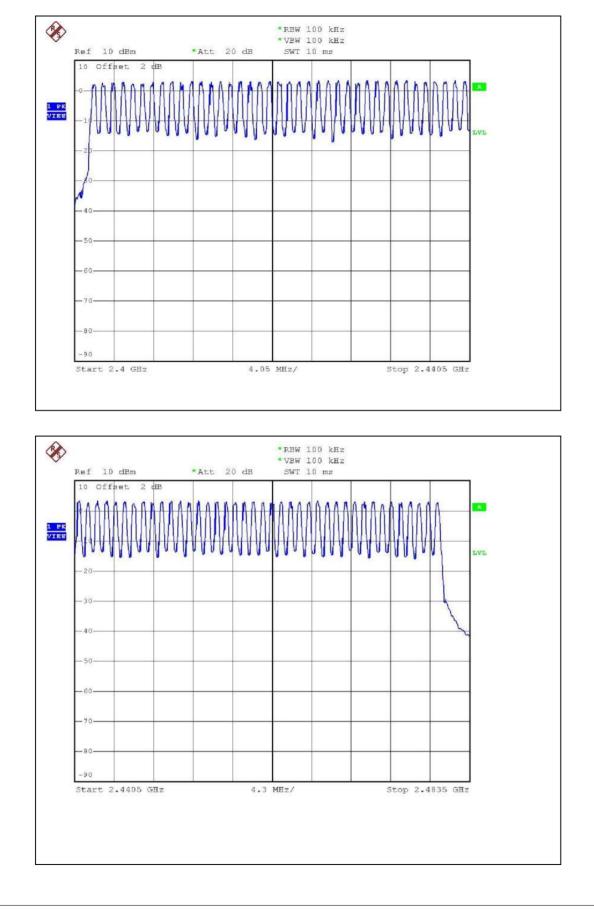
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURES


- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation


4.2.5 TEST SETUP

4.2.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.3 DWELL TIME ON EACH CHANNEL

4.3.1 LIMIT OF DWELL TIME USED

For FHSS, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 31.6 second period. For hybrid systems, the average time of occupancy on any frequency should not exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

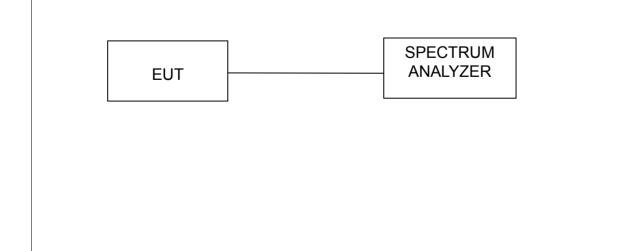
4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

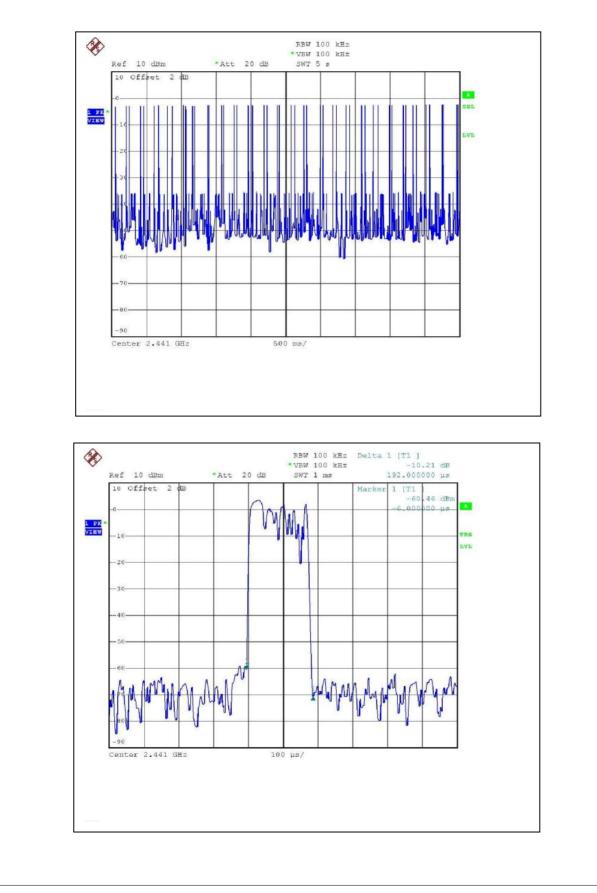

4.3.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP



4.3.6 TEST RESULTS

Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
50 (times / 5 sec) *6.32=316.00 times	0.190	60.04	400

Test plots of the transmitting time slot are shown on next page.

4.4 CHANNEL BANDWIDTH

4.4.1 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

4.4.3 DEVIATION FROM TEST STANDARD

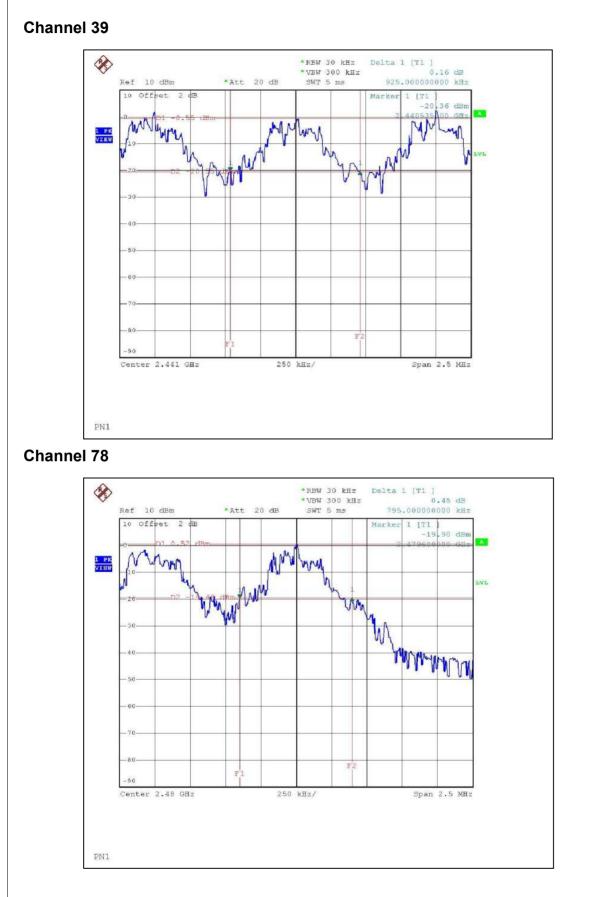
No deviation

4.4.4 TEST SETUP

4.4.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.4.6 TEST RESULTS


MODULATION TYPE	GFSK	INPUT POWER	DC 1.5V
ENVIRONMENTAL CONDITIONS	26deg. C, 64%RH, 956 hPa	TESTED BY	Sky Liao

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (kHz)
0	2402	804
39	2441	925
78	2480	795

Channel 0

4.5 HOPPING CHANNEL SEPARATION

4.5.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or 20dB hopping channel bandwidth (whichever is greater).

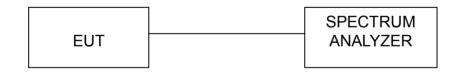
4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.5.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

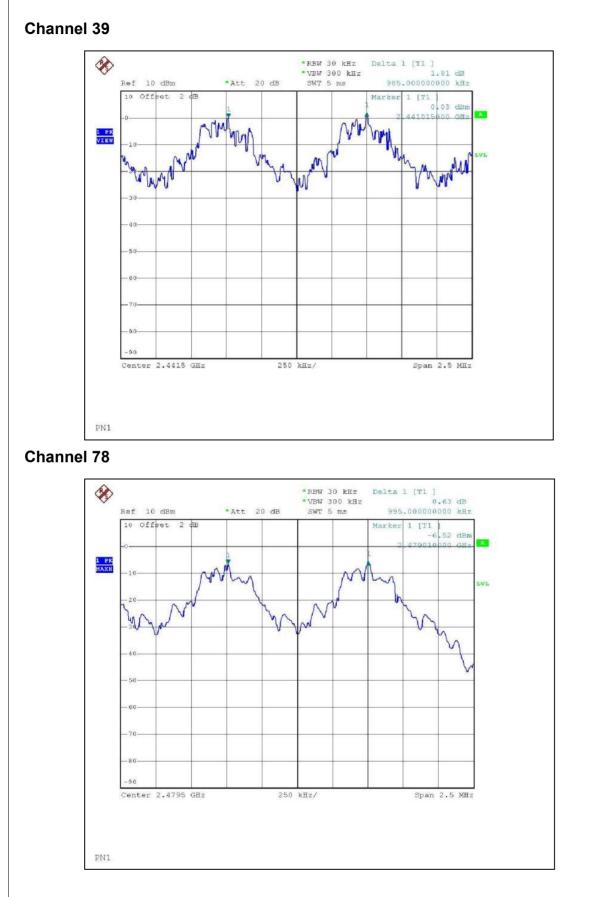
4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP



4.5.6 TEST RESULTS


MODULATION TYPE	GFSK	INPUT POWER	DC 1.5V
ENVIRONMENTAL CONDITIONS	26deg. C, 64%RH, 956 hPa	TESTED BY	Sky Liao

Channel	Frequency (MHz)	Adjacent Channel Separation	Minimum Limit (kHz)	Pass / Fail
0	2402	1.005MHz	804	PASS
39	2441	0.985MHz	925	PASS
78	2480	0.995MHz	795	PASS

Channel 0

4.6 MAXIMUM PEAK OUTPUT POWER

4.6.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 1W.

4.6.2 INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006
Agilent SIGNAL GENERATOR	E8257C	MY43320668	Dec. 07, 2006
TEKTRONIX OSCILLOSCOPE	TDS380	B016335	Jun. 21, 2007
NARDA DETECTOR	4503A	FSCM99899	NA

NOTE:

The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 3 MHz VBW.
- 4. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 5. Repeat above procedures until all frequencies measured were complete.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

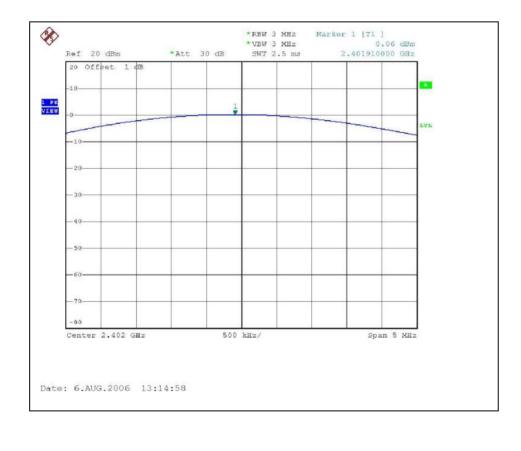
28

4.6.5 TEST SETUP

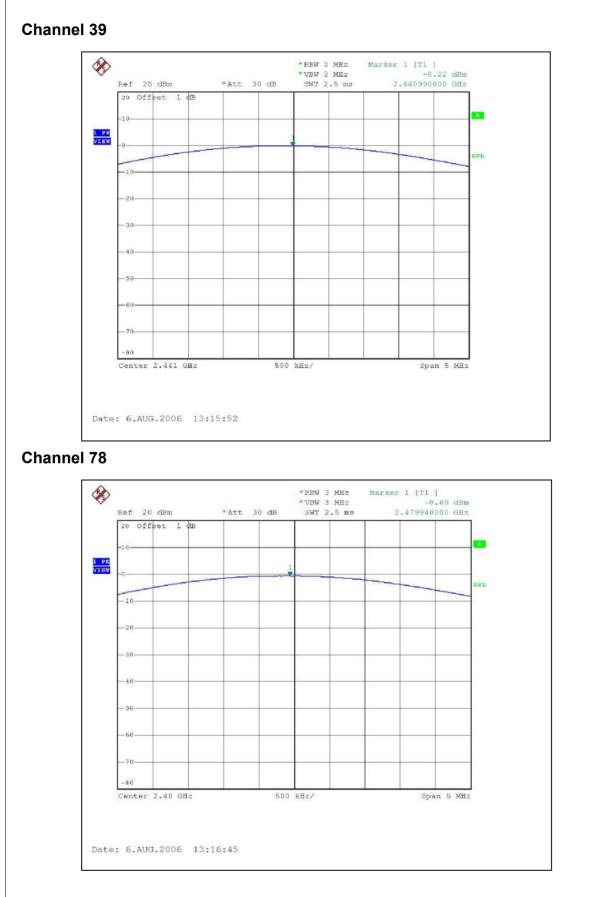
For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.6.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



4.6.7 TEST RESULTS


MODULATION TYPE	GFSK	INPUT POWER	DC 1.5V
	26deg. C, 64%RH, 956 hPa	TESTED BY	Sky Liao

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
0	2402	1.164	0.06	30	PASS
39	2441	0.951	-0.22	30	PASS
78	2480	0.853	-0.69	30	PASS

Channel 0

4.7 RADIATED EMISSION MEASUREMENT

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 03, 2007
HP Pre_Amplifier	8449B	3008A01922	Oct. 02, 2006
ROHDE & SCHWARZ Test Receiver	ESCS30	100375	Sep. 19, 2006
CHASE Broadband Antenna	VULB9168	138	Dec. 11, 2006
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 27, 2006
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 05, 2007
SCHWARZBECK Biconical Antenna	VHBA9123	459	Jun. 08, 2009
SCHWARZBECK Periodic Antenna	UPA6108	1148	Jun. 08, 2009
RF Switches (ARNITSU)	CS-201	1565157	NA
RF CABLE (Chaintek)	SF102	22054-2	Nov. 16. 2006
RF Cable(RICHTEC)	9913-30M N-N Cable	STCCAB-30M- 1GHz	Jul. 15, 2007
Software	ADT_Radiated_V 5.14	NA	NA
CHANCE MOST Antenna Tower	AT-100	0203	NA
CHANCE MOST Turn Table	TT-100	0203	NA

Note: 1. The calibration interval of the above test instruments is 12 months (36 months for Biconical and Periodic Antenna) and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if tested.

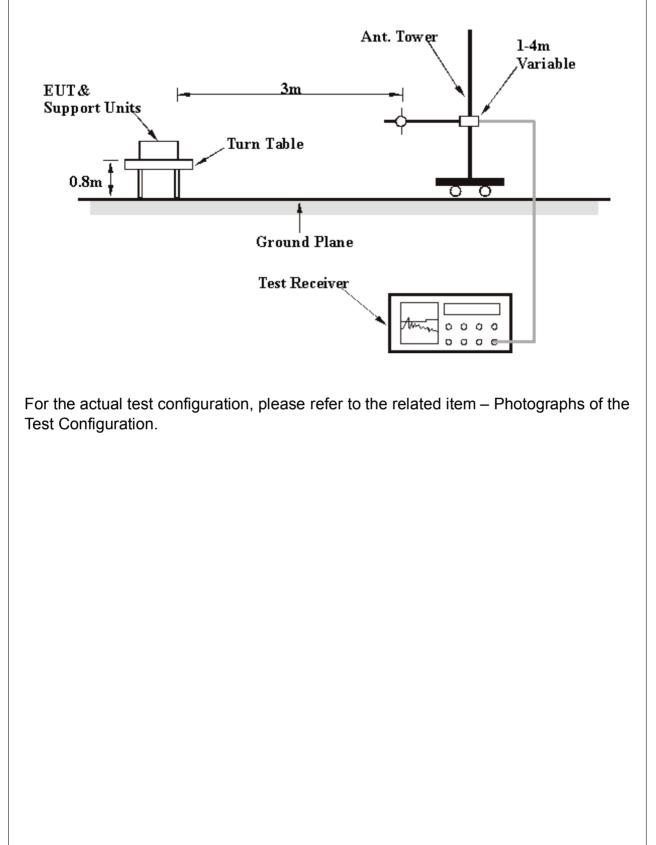
The test was performed in ADT Open Site No. C.
 The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.
 The CANADA Site Registration No. is IC 4824A-3.
 The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Radiated emissions (30MHz-1GHz)	2.98 dB
Radiated emissions (1GHz ~18GHz)	2.21 dB
Radiated emissions (18GHz ~40GHz)	1.88 dB

4.7.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

4.7.6 TEST RESULTS

CHANNEL	0	FREQUENCY RANGE	Below 1GHz
INPUT POWER	DC 1.5V	DETECTOR FUNCTION	Quasi-Peak
ENVIRONMENTAL CONDITIONS	24 deg. C, 62%RH, 956 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	199.98	24.30 QP	43.50	-19.20	1.20 H	105	-1.60	25.90		
2	226.96	21.60 QP	46.00	-24.40	1.42 H	108	-4.30	25.90		
3	275.50	25.10 QP	46.00	-20.90	1.22 H	18	-0.80	25.90		
4	624.95	28.90 QP	46.00	-17.10	1.02 H	326	3.00	25.90		
5	740.32	29.50 QP	46.00	-16.50	1.00 H	225	3.60	25.90		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction			
No.		Level	(dBuV/m)	-	Height	Angle	Value	Factor			
	(MHz)	(dBuV/m)	(ubuv/III)	n) (dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	174.91	20.10 QP	43.50	-23.40	1.83 V	26	-5.80	25.90			
2	250.01	24.60 QP	46.00	-21.40	1.30 V	65	-1.30	25.90			
3	300.00	24.80 QP	46.00	-21.20	1.02 V	64	-1.10	25.90			
4	625.01	27.10 QP	46.00	-18.90	1.00 V	150	1.20	25.90			
5	832.23	28.20 QP	46.00	-17.80	1.06 V	2	2.30	25.90			

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

CHANNEL	HANNEL Channel 0 FREQUENCY RANGE		1 ~25GHz
INPUT POWER	DC 1.5V		Peak(PK) Average (AV)
	24 deg. C, 60%RH, 956 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	42.00 PK	74.00	-32.00	1.24 H	24	12.20	29.80		
1	2390.00	12.00 AV	54.00	-42.00	1.24 H	24	-17.80	29.80		
2	*2402.00	95.50 PK			1.24 H	24	65.70	29.80		
2	*2402.00	65.50 AV			1.24 H	24	35.70	29.80		
3	4804.00	54.30 PK	74.00	-19.70	1.11 H	25	19.40	34.90		
3	4804.00	24.30 AV	54.00	-29.70	1.11 H	25	-10.60	34.90		
4	7206.00	48.40 PK	74.00	-25.60	1.25 H	25	7.40	41.00		
4	7206.00	18.10 AV	54.00	-35.90	1.25 H	25	-22.90	41.00		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	39.30 PK	74.00	-34.70	1.24 V	25	9.50	29.80			
1	2390.00	9.30 AV	54.00	-44.70	1.24 V	25	-20.50	29.80			
2	*2402.00	92.80 PK			1.24 V	25	63.00	29.80			
2	*2402.00	62.80 AV			1.24 V	25	33.00	29.80			
3	4804.00	52.10 PK	74.00	-21.90	1.45 V	25	17.20	34.90			
3	4804.00	22.10 AV	54.00	-31.90	1.45 V	25	-12.80	34.90			
4	7206.00	47.60 PK	74.00	-26.40	1.00 V	2	6.60	41.00			
4	7206.00	17.60 AV	54.00	-36.40	1.00 V	2	-23.40	41.00			

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * " : Fundamental frequency

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB

7. Average value = peak reading –20log(duty cycle)

CHANNEL	Channel 39	FREQUENCY RANGE	1 ~25GHz
INPUT POWER	DC 1.5V	DETECTOR FUNCTION	Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	24 deg. C, 60%RH, 956 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2441.00	93.20 PK			1.18 H	22	63.20	30.00		
1	*2441.00	63.20 AV			1.18 H	22	33.20	30.00		
2	4882.00	55.10 PK	74.00	-18.90	1.25 H	245	19.90	35.20		
2	4882.00	25.10 AV	54.00	-28.90	1.25 H	245	-10.10	35.20		
3	7322.00	46.30 PK	74.00	-27.70	1.54 H	25	4.90	41.40		
3	7322.00	16.30 AV	54.00	-37.70	1.54 H	25	-25.10	41.40		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction			
No.	•	Level	-	-	Height	Angle	Value	Factor			
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	*2441.00	93.20 PK			1.28 V	318	63.20	30.00			
1	*2441.00	63.20 AV			1.28 V	318	33.20	30.00			
2	4882.00	54.10 PK	74.00	-19.90	1.00 V	2	18.90	35.20			
2	4882.00	24.10 AV	54.00	-29.90	1.00 V	2	-11.10	35.20			
3	7322.00	46.90 PK	74.00	-27.10	1.00 V	42	5.50	41.40			
3	7322.00	16.90 AV	54.00	-37.10	1.00 V	42	-24.50	41.40			

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel.Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB

7. Average value = peak reading –20log(duty cycle)

CHANNEL	Channel 78	FREQUENCY RANGE	1 ~25GHz
INPUT POWER	DC 1.5V		Peak(PK) Average (AV)
ENVIRONMENTAL CONDITIONS	24 deg. C, 60%RH, 956 hPa	TESTED BY	Sky Liao

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2480.00	93.10 PK			1.45 H	256	62.90	30.20			
1	*2480.00	63.10 AV			1.45 H	256	32.90	30.20			
2	2483.50	40.70 PK	74.00	-33.30	1.45 H	256	10.50	30.20			
2	2483.50	10.70 AV	54.00	-43.30	1.45 H	256	-19.50	30.20			
3	4960.00	46.80 PK	74.00	-27.20	1.57 H	85	11.30	35.50			
3	4960.00	16.80 AV	54.00	-37.20	1.57 H	85	-18.70	35.50			
4	7440.00	58.40 PK	74.00	-15.60	1.54 H	72	16.60	41.80			
4	7440.00	28.20 AV	54.00	-25.80	1.54 H	72	-13.60	41.80			

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction			
No.	(MHz)		(dBuV/m)	(dB)	Height	Angle	Value	Factor			
		(dBuV/m)		(m)	(Degree)	(dBuV)	(dB/m)				
1	*2480.00	95.10 PK			1.15 V	210	64.90	30.20			
1	*2480.00	65.10 AV			1.15 V	210	34.90	30.20			
2	2483.50	42.70 PK	74.00	-31.30	1.15 V	210	12.50	30.20			
2	2483.50	12.70 AV	54.00	-41.30	1.15 V	210	-17.50	30.20			
3	4960.00	53.40 PK	74.00	-20.60	1.25 V	25	17.90	35.50			
3	4960.00	23.40 AV	54.00	-30.60	1.25 V	25	-12.10	35.50			
4	7440.00	47.20 PK	74.00	-26.80	1.54 V	24	5.40	41.80			
4	7440.00	17.20 AV	54.00	-36.80	1.54 V	24	-24.60	41.80			

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * " : Fundamental frequency

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625*5 per 247 ms per channel.Therefore, the duty cycle be equal to: 20log(3.125/100)= -30dB

7. Average value = peak reading -20log(duty cycle)

4.8 BAND EDGES MEASUREMENT

4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 09, 2006

Note:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

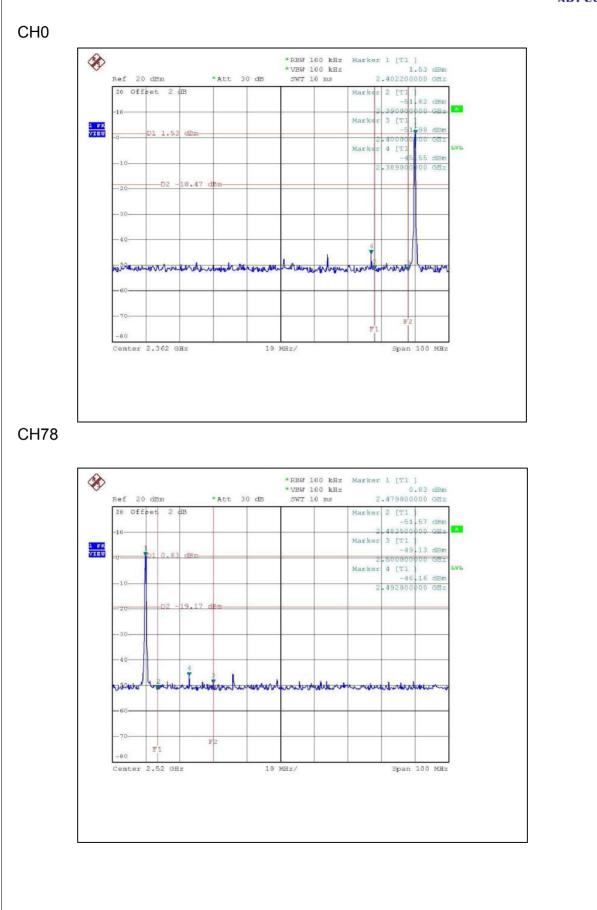
The spectrum plots are attached on the following 2 pages. D2 line indicates the highest level, D1 line indicates the 20dB offset below D2. It shows compliance with the requirement in part 15.247(C).

Note - The delta method is only used up to 2 MHz away from the restricted bandage, The radiated emissions which located in other restricted frequency band, the result, please refer to 4.2.

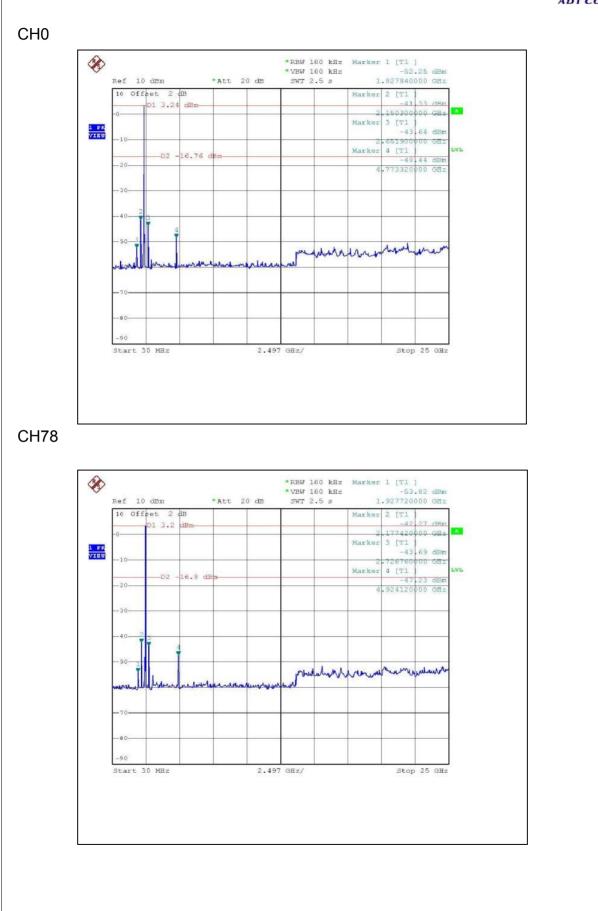
NOTE (Peak):

The band edge emission plot on the following first page show 53.35dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2 is 95.50dBuV/m, so the maximum field strength in restrict band is 95.50-53.35=42.15dBuV/m which is under 74 dBuV/m limit.

The band edge emission plot on the following first page shows 52.4dB delta between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2 is 95.10dBuV/m, so the maximum field strength in restrict band is 95.10-52.4=42.7dBuV/m which is under 74 dBuV/m limit.


NOTE (Average):

Average value = 42.15-30.00=12.15dBuV/m, which is under 54dBuV/m limit.


*The DH1 packet duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625×5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: $20\log(3.125/100) = -30$ dB. Average value = peak reading - 30.00.

Average value = 42.7-30.00=12.7dBuV/m, which is under 54dBuV/m limit. *The DH1 packet duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625×5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: $20\log(3.125/100)=-30$ dB. Average value = peak reading - 30.00.

4.9 ANTENNA REQUIREMENT

4.9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is Monopole antenna without connector. The maximum Gain of the antenna is -1.55dBi.

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

RADIATED EMISSION TEST

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	CNLA, BSMI, DGT
Netherlands	Telefication
Singapore	PSB, GOST-ASIA (MOU)
Russia	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232

Fax: 886-3-3185050

Email: <u>service@adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

APPENDIX-A

MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.