

FCC CFR47 PART 15 SUBPART C CLASS II PERMISSIVE CHANGE TEST REPORT

FOR

FREQUENCY HOPPING WIRELESS CONTROLLER

MODEL NUMBER: XBOX 360 WIRELESS CONTROLLER

FCC ID: C3K-WKS368

REPORT NUMBER: 06U10261-1B

ISSUE DATE: May 11, 2006

Prepared for MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND, WA 98052-3699 U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

•

Revision History

Rev.	Issue Date	Revisions	Revised By
	5/4/6	Initial Issue	A. Ilarina
В	5/11/6	Update administrative information and clarify Change Description	A. Ilarina

Page 2 of 42

TABLE OF CONTENTS

1.	AT	FESTATION OF TEST RESULTS	1
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	5
5	.1.	DESCRIPTION OF EUT	5
5	5.2.	DESCRIPTION OF CLASS II CHANGE	5
5	5.3.	MAXIMUM OUTPUT POWER	5
5	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	5
5	5.5.	SOFTWARE AND FIRMWARE	5
5	5.6.	WORST-CASE CONFIGURATION AND MODE	7
5	5.7.	DESCRIPTION OF TEST SETUP	7
6.	TES	ST AND MEASUREMENT EQUIPMENT10)
7.	LIN	IITS AND RESULTS	l
7	7.1. 7.1. 7.1. 7.1.	ANTENNA PORT CHANNEL TESTS 1 1. PEAK OUTPUT POWER 1 2. AVERAGE POWER 1	1 1 5
,	7.2. 7.2. 7.2. 7.2. 7.2.	 TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ	3 6 7
8.	SET	TUP PHOTOS	n

Page 3 of 42

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND, WA 98052-6399			
EUT DESCRIPTION:	FREQUENCY HOPPING WIRELESS CONTROLLER			
XBOX 360 WIRELESS CONTROLLER				
SERIAL NUMBER:	CS01726/02880344616545; 02880355766545			
DATE TESTED:	APRIL 25 – APRIL 27, 2006			
	APPLICABLE STANDARDS			
STANDAR	D TEST RESULTS			
FCC PART 15 SUE	BPART C NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with most of the requirements set forth in the above standards. Testing the average time of occupancy is not feasible, therefore the demonstration of compliance with this requirement is based on the theory of operation as documented in this report. The test results show that the equipment tested is capable of demonstrating compliance with the remaining requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

Tarriera

ALVIN ILARINA EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Mautonaugen

THANH NGUYEN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 42

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a frequency hopping transceiver wireless controller. This wireless controller utilizes a proprietary communication protocol to communicate with the RF module installed in the Xbox 360 console. Without the RF module present, the wireless controller is in the receive mode only.

During the final tests, a specially designed test accessory (Level Converter) was used to control the frequency channel and enable continuous transmission.

The proprietary communication protocol is detailed in the theory of operation.

5.2. DESCRIPTION OF CLASS II CHANGE

The changes filed under this application include:

Change#1 Removal of RF Shielding from IC6

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

2400 to 2483.5 MHz Authorized Band

Frequency Range	Output Power	Output Power
(MHz)	(dBm)	(mW)
2402 - 2482	3.06	2.02

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an inverted-F antenna, which is soldered to the printed circuit board. This antenna has approx. gain of 3.6 dBi.

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was FW 1.05.

The EUT driver software installed in the host support equipment during testing was Argon-Xbox360 Wireless module.

Page 6 of 42

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2442 MHz.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

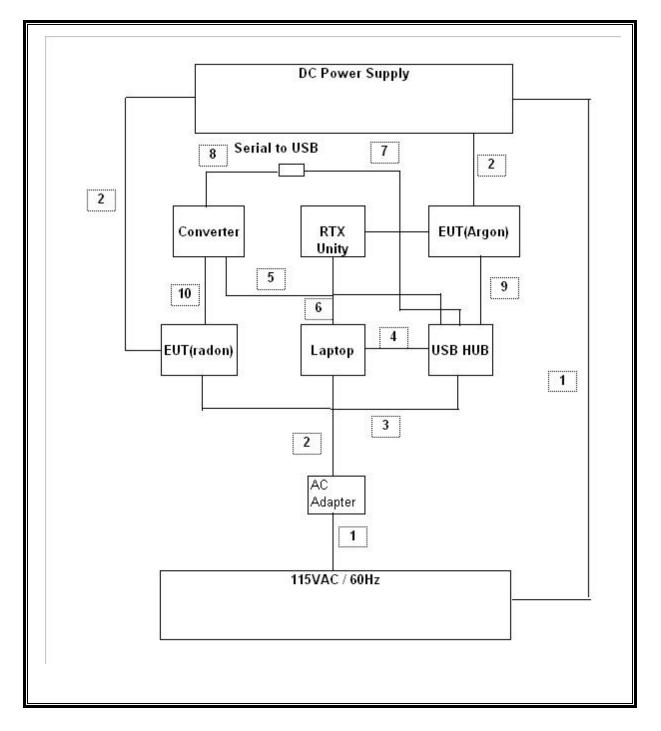
PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Monitor	SAMSUNG	TX-P1430	A00134AYB01475Z	N/A		
Console	MICROSOFT	XBOX 360	508480354705	DoC		
Controller	MICROSOFT	X803238-007	4060060247536	DoC		
AC Adapter	MICROSOFT	Delta DPSN-186CB A rev 00	99021317893536	N/A		

I/O CABLES (CONFIGURATION 1)

	I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks			
No.		Identical	Туре	Туре	Length				
		Ports							
1	DC	1	DC	Unshielded	1.2m				
2	AC	1	AC	Unshielded	1.2m				
3	USB	1	USB	Unshielded	1m	Wire			
4	RTX interface	1	8 pin	Unshielded	.5m	Wire			
5	DC	1	DC	Unshielded	.5m	Wire			
6	AC	1	AC	Unshielded	1.2m				

Page 7 of 42

I/O CABLES (CONFIGURATION 2)


Cable No	I/O Port	# of I/O Port	Connector Type	Type of Cable	Cable Length	Data Traffic	Bundled	Remark
1	AC	2	US 115V	Un-shielded	2m	No	No	N/A
2	DC	3	DC	26G	lm	No	No	N/A
3	USB	1	USB	26G	.5m	Yes	No	N/A
4	USB	1	USB	Shielded	lm	Yes	No	N/A
5	USB	1	USB	Shielded	1.5m	Yes	Yes	N/A
6	USB	1	USB	Shielded	1.5m	Yes	No	N/A
7	Serial	1	DB9	26G	.5m	Yes	No	N/A
8	USB	1	USB	Shielded	.5m	Yes	No	N/A
9	USB	1	USB	Shielded	.5m	Yes	Yes	N/A
10	Serial	1	DB9	Shielded	.5m	Yes	No	UART

TEST SETUP

The EUT is initially connected to the RTX unit, was tested in a standalone configuration once setup for testing with Software controlled.

Page 8 of 42

SETUP DIAGRAM FOR TESTS, CONFIGURATION 1

Page 9 of 42

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQ	UIPMENT LIST		
Description	Manufacturer	Model	Serial Number	Cal Due
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42510266	10/19/06
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	2/4/07
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/07
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	9/3/06
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/06
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	8/30/06
EMI Test Receiver	R & S	ESHS 20	827129/006	6/3/06
Peak Power Meter	Agilent / HP	E4416A	GB41291160	12/2/07
Peak / Average Power Sensor	Agilent	E9327A	US40440755	12/2/07
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	4/22/07
Preamplifier, 1 ~ 26 GHz	Agilent / HP	8449B	3008A00931	6/24/06

Page 10 of 42

7. LIMITS AND RESULTS

7.1. ANTENNA PORT CHANNEL TESTS

7.1.1. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

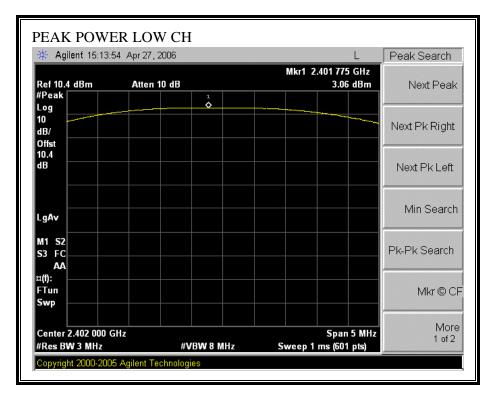
§15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is approx. 3.6 dBi, therefore the limit is 20.97 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

No non-compliance noted:

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	3.06	20.97	-17.91
Middle	2442	3.07	20.97	-17.90
High	2482	2.93	20.97	-18.04

Page 11 of 42

OUTPUT POWER

Page 12 of 42

🔆 Agiler	nt 15:19:55	Apr 27, 200	16				Т	Peak Search
Ref 10.4 d #Peak	Bm	Atten 10	dB			Mkr1 2.441	850 GHz 1.07 dBm	Next Peak
Log 10 dB/ Offst				1 ()				Next Pk Right
10.4 dB								Next Pk Left
LgAv								Min Search
M1 S2 S3 FC AA								Pk-Pk Search
Swp 2		0000 G	Hz_					Mkr © Cf
	3.07 dE 42 000 GH 3 MHz		#VB	W 8 MHz	Sv	Si veep 1 ms (oan 5 MHz 601 pts)	More 1 of 2

Page 13 of 42

🔆 Agilent 15:23:0	06 Apr 27, 2006	Т	Peak Search
Ref 10.4 dBm	Atten 10 dB	Mkr1 2.481 825 GHz 2.93 dBm	Next Peak
#Peak Log			
10 dB/			Next Pk Right
Offst 10.4 dB			Next Pk Left
LgAv			Min Search
M1 S2 S3 FC AA			Pk-Pk Search
¤(f): _{FTun} Markei swp 2.4818	25000 GHz		Mkr © Cl
2.93	dBm		More
Center 2.482 000 0 #Res BW 3 MHz	GHz #VBW 8 MH;	Span 5 MHz z Sweep 1 ms (601 pts)	IVIOre 1 of 2

Page 14 of 42

7.1.2. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency (MHz)	Average Power (dBm)
Low	2402	-7.45
Middle	2442	-7.52
High	2482	-7.6

Page 15 of 42

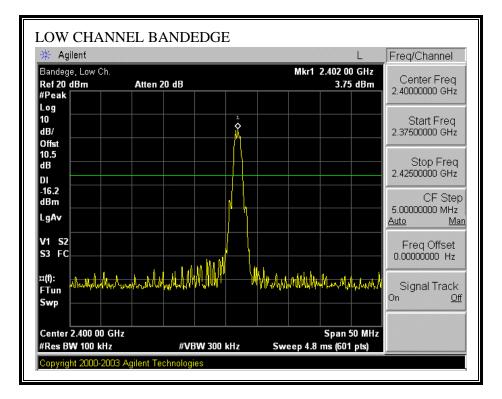
7.1.3. CONDUCTED SPURIOUS EMISSIONS

LIMITS

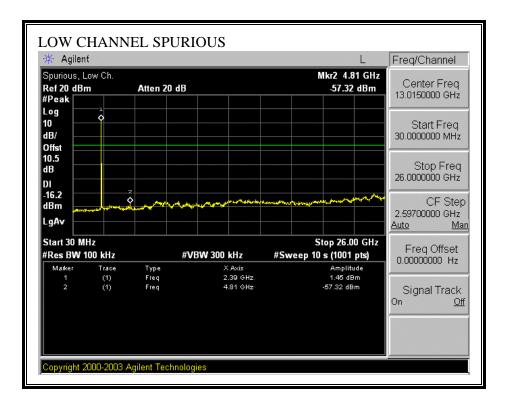
\$15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

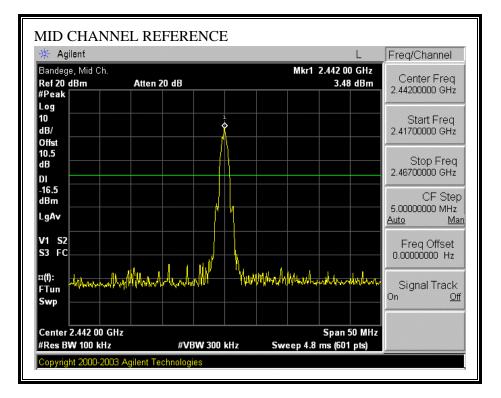

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS


No non-compliance noted:

Page 16 of 42

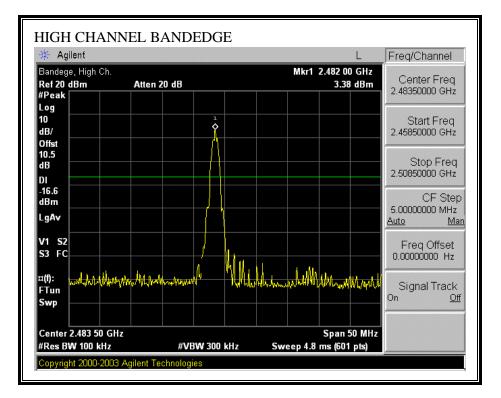
SPURIOUS EMISSIONS, LOW CHANNEL



Page 17 of 42

Page 18 of 42

SPURIOUS EMISSIONS, MID CHANNEL



Page 19 of 42

🔆 Agilen	ť			L	Freq/Channel
Spurious, N Ref 20 dBr #Peak		Atten 20	dB	Mkr2 4.55 GHz -58.76 dBm	Center Freq 13.0150000 GHz
Log 10 dB/ Offst					Start Freq 30.0000000 MHz
10.5 dB					Stop Freq
DI -16.5 dBm LgAv	,		wa _h hungda <mark>ng(Maginin)^Aw/Li^{tha}nunki</mark>	an a	CF Step 2.5970000 GHz <u>Auto Ma</u>
Start 30 M	Hz		I	Stop 26.00 GHz	Freg Offset
#Res BW 1			#VBW 300 kHz	Sweep 2.482 s (1001 pts)	0.00000000 Hz
Marker 1	Trace (1)	Type Freq	X Axis 2.45 GH z	Amplitude -0.33 dBm	
2	(1)	Freq	4.55 GHz	-58.76 dBm	Signal Track On <u>Off</u>

Page 20 of 42

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 21 of 42

🔆 Agilen	ť			L	Freq/Channel
Spurious, H Ref 20 dBr #Peak		Atten 20	dB	Mkr2 6.21 GH -58.20 dBm	Contor Frod
Log 10 dB/ Offst	\$ 				Start Freq 30.0000000 MHz
10.5 dB					Stop Freq 26.000000 GHz
DI -16.6 dBm LgAv	NAMON TO AND A DESCRIPTION OF A		an york provide a start of the second start of the	and the second and the second se	CF Step 2.59700000 GHz <u>Auto Ma</u>
Start 30 M #Res BW 1 Marker		Туре	#VBW 300 kHz X Axis	Stop 26.00 GHz Sweep 2.482 s (1001 pts) Amplitude	Freq Offset 0.00000000 Hz
1 2	(1) (1)	Freq Freq	2.47 GHz 8.21 GHz	2.12 dBm -68.20 dBm	Signal Track On <u>Of</u>

Page 22 of 42

7.2. RADIATED EMISSIONS

7.2.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

<u>LIMITS</u>

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 – 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

\$15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated using measurement instrumentation in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
30 - 88	100 **	3	
88 - 216	150 **	3	
216 - 960	200 **	3	
Above 960	500	3	

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 24 of 42

TEST PROCEDURE

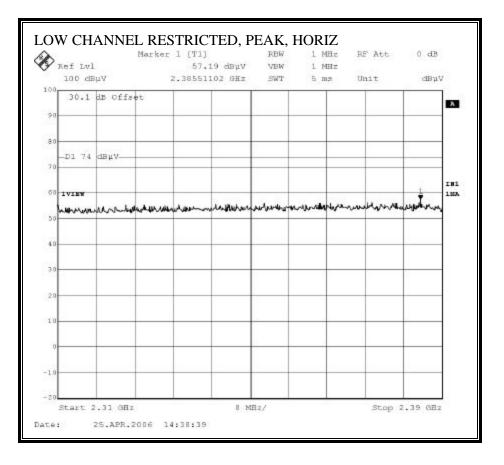
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

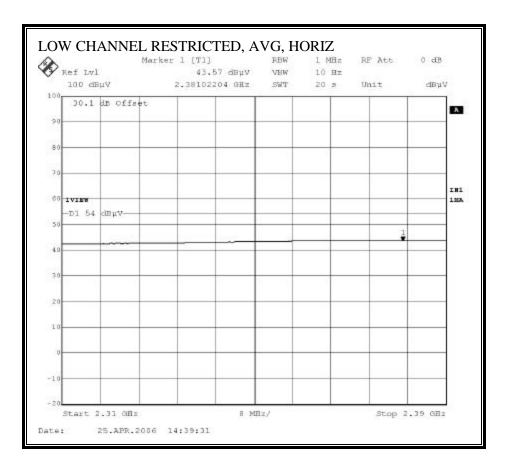
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

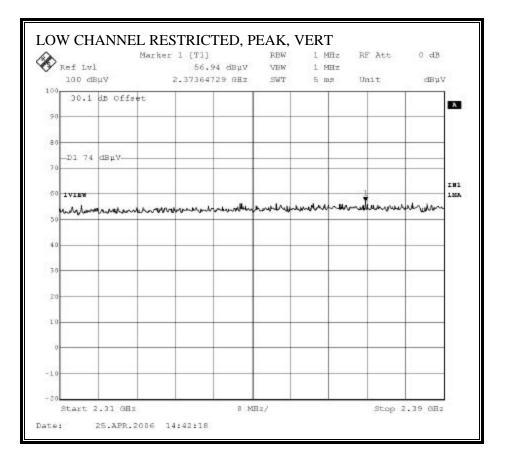

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

EUT was investigated per section 13.1.4.1 of ANSI C63.4:2003 by rotated the device with three orthogonal axes. The highest emission is reported when the controller is position at X axes.

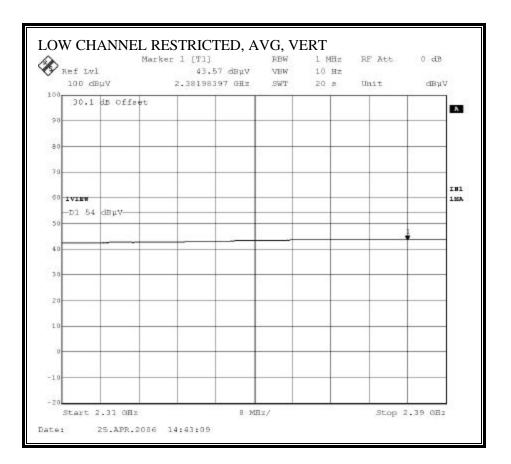

Page 25 of 42

7.2.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

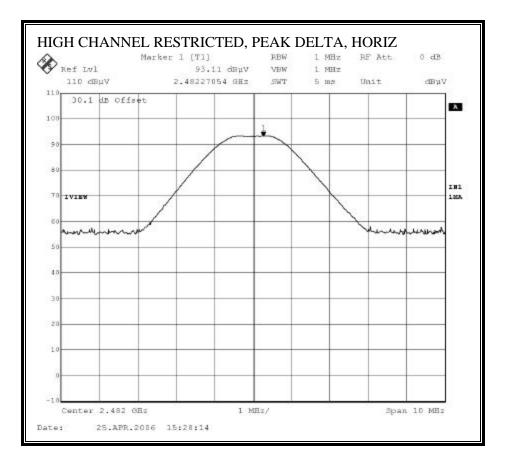


Page 26 of 42

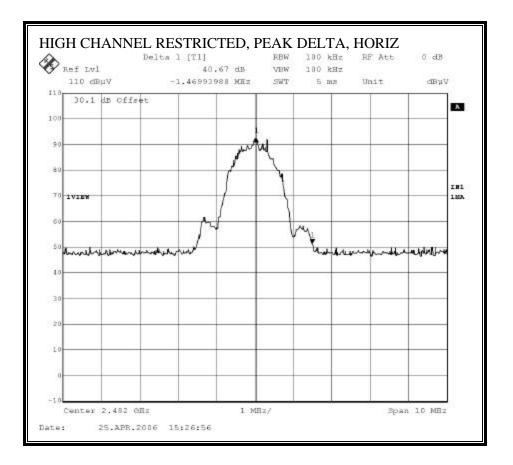


Page 27 of 42

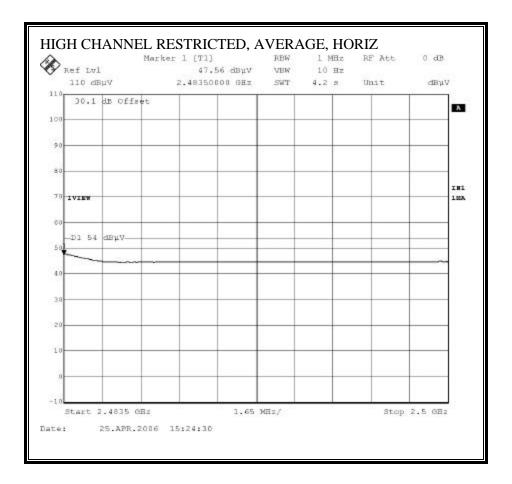
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



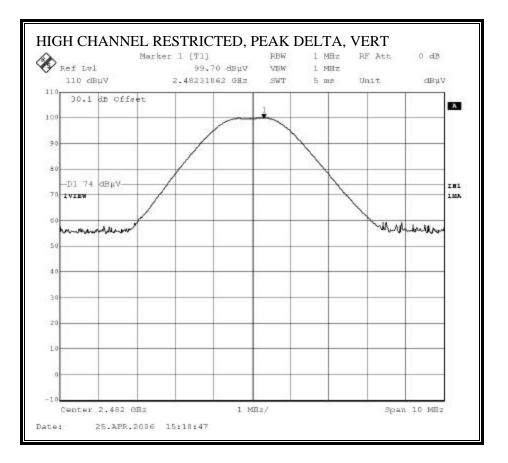
Page 28 of 42



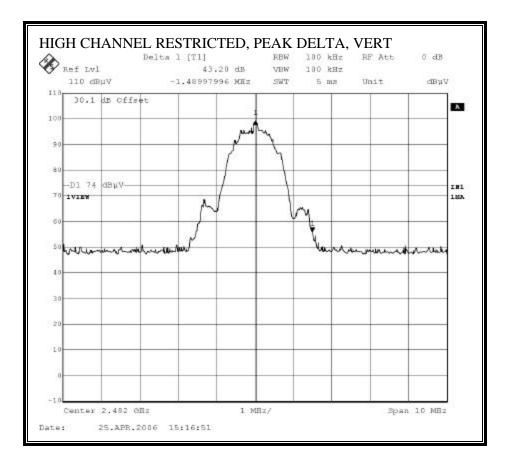
Page 29 of 42


RESTRICTED BANDEDGE (HIGH CHANNEL, DELTA METHOD, HORIZONTAL)

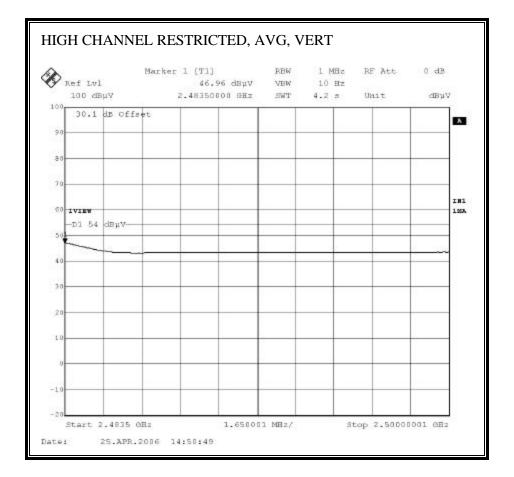
Page 30 of 42



Page 31 of 42



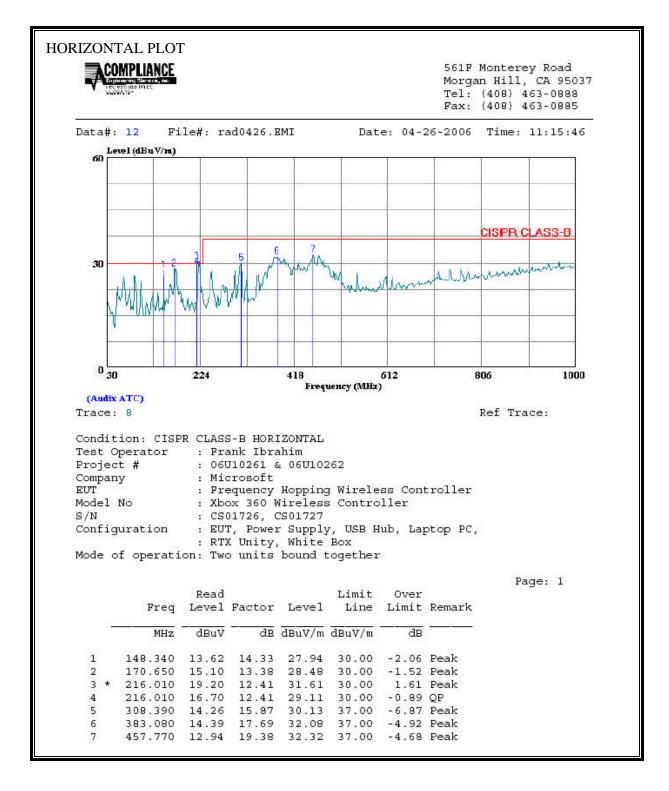
Page 32 of 42


RESTRICTED BANDEDGE (HIGH CHANNEL, DELTA METHOD, VERTICAL)

Page 33 of 42

Page 34 of 42

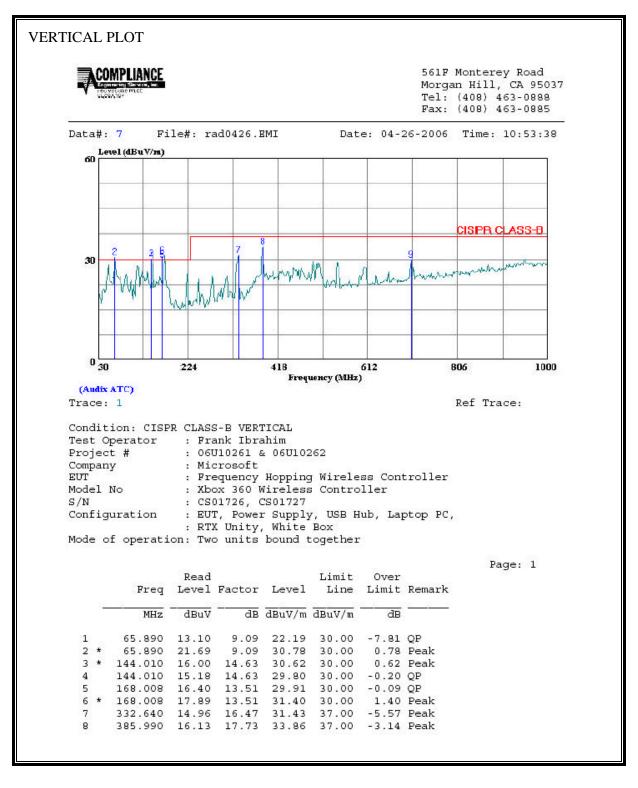
Page 35 of 42


HARMONICS AND SPURIOUS EMISSIONS

est En roject	ar.	David Garcia													
		06U10261													
ompar	iy:	Microsoft													
	scrip.:	Wireless Con	troller Vireless Contro	11											
UT M/		802.11 FHSS		ner											
est Tar lode O		Transmit mod													
loue O	per.														
est Eau	uinment														
Н	orn 1-1	8GHz		nplifer		-	Pre-am	olifer 2	26-40GHz		Но	orn > 180	GHz		
T60; S	S/N: 2238	@3m _	T144 N	liteq 300	08A009	31 -			-					-	
• Hi Fred	iliency Cah	P6								· .					
	2 foot	cable	3	foot c	able		12 1	foot c	able		HPF	Reje	ect Filter		ak Measurements
Gor	don 187	207002					Joseph	20894	6001 _	52.1					BW=VBW=1MHz
						_							_		rage Measurements =1MHz ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
				dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
	(m)	dBuV	dBuV	ub/III								aba (/m	uD	<u>u</u>	(V/H)
02 Cha	nnel					36.5	0.0	0.6	51.0	32.6					ſ
02 Cha 804		dBuV 50.9 57.4	dBuV 31.6 31.4	33.6 33.6	3.3	-36.5 -36.5	0.0	0.6	51.9 58.4	32.6 32.4	74 74	54 54	-22.1 -15.6	-21.4 -21.6	(V/H) V H
02 Cha 804 804	annel 3.0 3.0	50.9	31.6	33.6	3.3						74	54	-22.1	-21.4	v
GHz 102 Cha 804 804 42 Cha	3.0 3.0 annel	50.9 57.4	31.6 31.4	33.6 33.6	3.3 3.3	-36.5	0.0	0.6	58.4	32.4	74 74	54 54	-22.1 -15.6	-21.4 -21.6	V H
02 Cha 804 804 42 Cha 884	annel 3.0 3.0	50.9	31.6	33.6	3.3						74	54	-22.1	-21.4	v
02 Cha 804 804 42 Cha 884 326	annel 3.0 3.0 annel 3.0	50.9 57.4 48.5	31.6 31.4 31.2	33.6 33.6 33.7	3.3 3.3 3.3	-36.5 -36.5	0.0	0.6	58.4 49.6	32.4	74 74 74	54 54 54	-22.1 -15.6 -24.4	-21.4 -21.6 -21.7	V H V
02 Cha 804 804 42 Cha 884 326 884	annel 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1	31.6 31.4 31.2 31.0	33.6 33.6 33.7 36.2	3.3 3.3 3.3 3.4	-36.5 -36.5 -36.2	0.0	0.6 0.6 0.6	58.4 49.6 49.1	32.4 32.3 35.0	74 74 74 74 74	54 54 54 54 54	-22.1 -15.6 -24.4 -24.9	-21.4 -21.6 -21.7 -19.0	V H V V
02 Cha 804 804	annel 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1	31.6 31.4 31.2 31.0	33.6 33.6 33.7 36.2	3.3 3.3 3.3 3.4	-36.5 -36.5 -36.2	0.0	0.6 0.6 0.6	58.4 49.6 49.1	32.4 32.3 35.0	74 74 74 74 74	54 54 54 54 54	-22.1 -15.6 -24.4 -24.9	-21.4 -21.6 -21.7 -19.0	V H V V
02 Cha 804 804 42 Cha 884 326 884 884 884 884 884 884 884 884 884 88	annel 3.0 3.0 annel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2	31.6 31.4 31.2 31.0 32.0 31.1 31.4	33.6 33.6 33.7 36.2 33.7 33.8 33.8 36.3	3.3 3.3 3.3 3.4 3.3 3.3 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.5 -36.5	0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3	32.4 32.3 35.0 33.1 32.3 35.5	74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.2 -23.8 -23.7	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5	V H V V H V V V
02 Cha 804 804 42 Cha 884 326 884 884 884 882 Cha 964 446 964	mmel 3.0 3.0 mmel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2 53.7	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3	33.6 33.6 33.7 36.2 33.7 33.8 33.8 36.3 33.8	3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3	-36.5 -36.5 -36.2 -36.5 -36.5 -36.5 -36.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3 54.9	32.4 32.3 35.0 33.1 32.3 35.5 32.5	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.8 -23.7 -19.1	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5	V H V V H V V V H
02 Cha 804 804 42 Cha 884 326 884 884 884 884 884 884 884 884 884 88	annel 3.0 3.0 annel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2	31.6 31.4 31.2 31.0 32.0 31.1 31.4	33.6 33.6 33.7 36.2 33.7 33.8 33.8 36.3	3.3 3.3 3.3 3.4 3.3 3.3 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.5 -36.5	0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3	32.4 32.3 35.0 33.1 32.3 35.5	74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.2 -23.8 -23.7	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5	V H V V H V V V
02 Cha 804 804 804 42 Cha 884 326 884 884 884 884 964 446 964 446	nnnel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2 53.7 46.3	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3	33.6 33.6 33.7 36.2 33.7 33.8 36.3 33.8 36.3 33.8	3.3 3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.5 -36.2 -36.5 -36.2 -36.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3 54.9	32.4 32.3 35.0 33.1 32.3 35.5 32.5	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.8 -23.7 -19.1	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5	V H V V H V V V H
02 Cha 804 804 42 Cha 884 326 884 884 884 884 884 964 446 964 446	nnnel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2 53.7 46.3	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3 31.6	33.6 33.6 33.7 36.2 33.7 33.8 36.3 33.8 36.3 33.8	3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.5 -36.2 -36.5 -36.2 -36.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3 54.9	32.4 32.3 35.0 33.1 32.3 35.5 32.5	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.8 -23.7 -19.1	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5	V H V V H V V V H
02 Cha 804 804 42 Cha 884 326 884 884 884 884 884 964 446 964 446	nnnel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2 53.7 46.3 ns were detec	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3 31.6	33.6 33.6 33.7 36.2 33.7 36.2 33.7 33.8 36.3 33.8 36.3 33.8 36.3	3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.5 -36.2 -36.5 -36.2 -36.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3 54.9	32.4 32.3 35.0 33.1 32.3 35.5 32.5	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.8 -23.7 -19.1 -23.6	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5	V H V V H V V H H H
02 Cha 804 804 804 42 Cha 884 326 884 884 884 884 964 446 964 446	nnel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2 53.7 46.3 ns were detec	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3 31.6 ted above the	33.6 33.6 33.7 36.2 33.7 36.2 33.7 33.8 36.3 33.8 36.3 33.8 36.3	3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.2 -36.5 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3 54.9	32.4 32.3 35.0 33.1 32.3 35.5 32.5 35.7	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54	-22.1 -15.6 -24.4 -24.9 -23.2 -23.7 -23.7 -19.1 -23.6 -23.7 -19.1 -23.6	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5 -18.3	V H V V H H H H H Limit
02 Cha 804 804 804 42 Cha 884 326 884 884 884 884 964 446 964 446	mnel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.0 46.2 53.7 46.3 46.3 ms were detected	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3 31.6 ted above the ent Frequency Antenna	33.6 33.6 33.7 36.2 33.7 36.2 33.7 33.8 36.3 33.8 36.3 33.8 36.3	3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.2 -36.5 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2 -36.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	58.4 49.6 49.1 50.8 50.2 50.2 50.3 54.9 50.4	32.4 32.3 35.0 33.1 32.3 35.5 32.5 32.5 35.7	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54 54 54 54 5	-22.1 -15.6 -24.4 -24.9 -23.2 -23.8 -23.7 -19.1 -23.6 -23.6 -23.6 -23.6 -23.7 -19.1 -23.6	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5 -18.3 -18.3	V H V V H H H H th Limit Limit
02 Cha 304 304 42 Cha 384 326 384 384 384 384 384 384 384 384	mnel 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	50.9 57.4 48.5 45.1 49.7 49.0 46.2 53.7 46.3 ms were detection Measureme Distance to	31.6 31.4 31.2 31.0 32.0 31.1 31.4 31.3 31.6 ted above the ent Frequency Antenna teading	33.6 33.6 33.7 36.2 33.7 36.2 33.7 33.8 36.3 33.8 36.3 33.8 36.3	3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4	-36.5 -36.5 -36.2 -36.5 -36.5 -36.2 -36.5 -36.2 -36.5 -36.2 e receiver Amp D Corr	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Correct Field S	58.4 49.6 49.1 50.8 50.2 50.3 54.9 50.4 50.4 50.4	32.4 32.3 35.0 33.1 33.3 35.5 32.5 35.7 35.7 35.7 35.7 35.7	74 74 74 74 74 74 74 74 74 74	54 54 54 54 54 54 54 54 54 54 54 54 54 5	-22.1 -15.6 -24.4 -24.9 -23.2 -23.8 -23.7 -19.1 -23.6 -23.6 -23.6 -23.8 -23.7 -19.1 -23.6 -23.8 -23.7 -19.1 -23.6 -24.4 -24.9 -23.2 -24.4 -24.9 -23.2 -24.4 -24.9 -23.2 -24.4 -24.9 -23.2 -24.4 -24.9 -23.2 -24.4 -24.9 -23.2 -23.8 -23.7 -23.6 -24.4 -24.9 -23.2 -23.8 -23.7 -23.6 -23.6 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.6 -23.7 -23.7 -23.7 -23.6 -23.7	-21.4 -21.6 -21.7 -19.0 -20.9 -21.7 -18.5 -21.5 -18.3 	v H V V H H H H th Limit Limit

Page 36 of 42

7.2.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 37 of 42

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCS.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 38 of 42

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.

7.3. POWERLINE CONDUCTED EMISSIONS

LIMIT

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

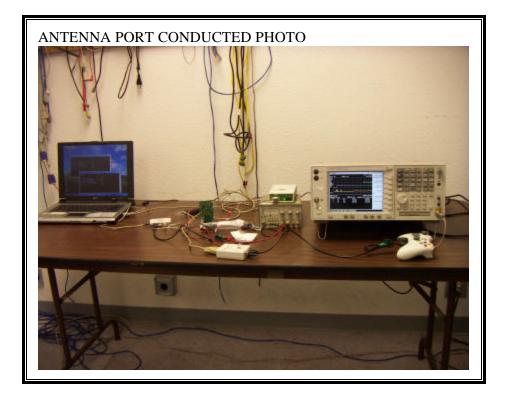
* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

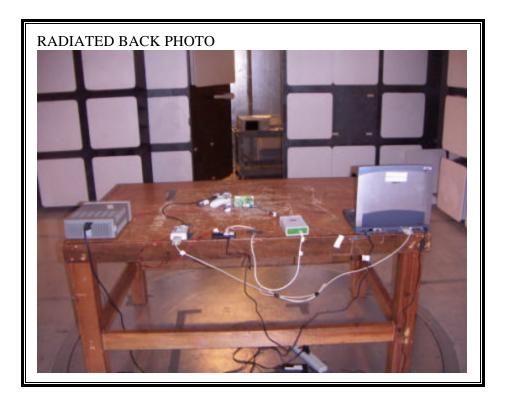

RESULTS

Not Applicable, the EUT is battery powered.

Page 39 of 42

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



Page 40 of 42

RADIATED RF MEASUREMENT SETUP

Page 41 of 42

END OF REPORT

Page 42 of 42