Microsoft Corporation

Zune (8GB)
Model: 1125
Zune AC Power
Adapter, Model: 1128

September 07, 2007

Report No. MCSO1310 Rev 1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2007Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: September 07, 2007
Microsoft Corporation
Model: Zune (8GB) Model 1125
Zune AC Power Adapter, Model: 1128

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Radiated Emissions	FCC 15.109(g) (CISPR 22:1997):2006	ANSI C63.4:2003	Pass	
Conducted Emissions	FCC 15.107:2006	ANSI C63.4:2003	Pass	
Radiated Emissions - High Frequency	FCC 15.109:2006	ANSI C63.4:2003	Pass	

Modifications made to the product

See the Modifications section of this report

Approved By:

Greg Kiemel, Director of Engineering

RAJVK

NVLAP Lab Code: 200629-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision	Description	Date	Page Number
Number	Description	Date	rage Number

01	Per client's request, add "Zune AC Power Adapter, Model: 1128" after product name on cover page.	9/27/2007	Cover Page
01	Per client's request, add "Zune AC Power Adapter, Model: 1128" after the product name on the Certificate of Test and Product Description pages.		2,8
01	Per client's request, add "Model: 1128" to the power supply part number.	9/27/2007	9,10, 11

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

Explanation of Northwest EMC Performance Criteria

Revision 10/05/05

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

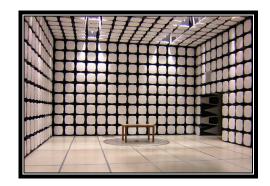
To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

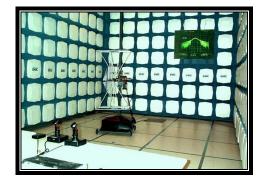
- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention, once the test signal was removed. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention, once the test signal was removed.


Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of changing EUT settings, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion of test.

Performance Criteria 4:

- □ The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- ☐ In most cases there is no specific criterion to compare this to; it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.



California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Product Description

Rev 11/17/06

Party Requesting the Test

Company Name:	Microsoft Corporation			
Address:	One Microsoft Way			
City, State, Zip:	Redmond, WA 98052-6399			
Test Requested By:	James Wooten			
Model:	Zune (8GB) Model: 1125 Zune AC Power Adapter Model: 1128			
First Date of Test:	August 18, 2007			
Last Date of Test:	August 22, 2007			
Receipt Date of Samples:	August 18, 2007			
Equipment Design Stage:	Development			
Equipment Condition:	No Damage			

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):	
Portable media device.	

Testing Objective:
These tests were selected to satisfy the EMC requirements for FCC.

Revision 9/21/05

CONFIGURATION 1 MCSO1310

Software/Firmware Running during test			
Description Version			
Bootloader 762 NK.bin 905	Version 2.1		

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Zune (8GB)	Microsoft	1125	0100282732	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Laptop	IBM	266843U	L3A3877	
Laptop Power Supply	IBM	92P1020	11S92P102Z1Z9RM67H2S4	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Solution 2 Sync Cable	Yes	1.45m	No	Zune (8GB)	Power Supply/Laptop
Premium Earbuds	No	1.3m	No	Zune (8GB)	Terminated
Laptop AC Power	No	1.0m	No	Laptop	AC Mains
Laptop DC Leads	No	1.8m	Yes	Laptop Power Supply	Laptop
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 MCSO1310

Software/Firmware Running during test				
Description	Version			
Bootloader 762 NK.bin 905	Version 2.1			

EUT					
Description Manufacturer Model/Part Number Serial Number					
Zune (8GB)	Microsoft	1125	0100282732		
Power Supply	Phihong	PSM05A-050Q-R Rev 1 Model: 1128	R3		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Solution 2 Sync Cable	Yes	1.45m	No	Zune (8GB)	Power Supply/Laptop
Premium Earbuds	No	1.3m	No	Zune (8GB)	Terminated
AC Power Extension	No	0.8m	No	Power Supply	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 9/21/05

CONFIGURATION 3 MCSO1310

Software/Firmware Running during test					
Description	Version				
Bootloader 762 NK.bin 905	Version 2.1				

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Zune (8GB)	Microsoft	1125	0100282732			
Power Supply	Phihong	PSM05A-050Q-R Rev 1 Model: 1128	R3			

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
TV	Sony	KV-21FX30E	1062255			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Solution 2 Sync Cable	Yes	1.45m	No	Zune (8GB)	Power Supply/Laptop
AV Cable	Yes	1.4m	No	Zune (8GB)	TV
TV AC Power	No	2.1m	Yes	TV	AC Mains
AC Power Extension	No	0.8m	No	Power Supply	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 4 MCSO1310

Software/Firmware Running during test				
Description	Version			
Bootloader 762 NK.bin 905	Version 2.1			

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Zune (8GB)	Microsoft	1125	0100252732				
Power Supply	Phihong	PSM05A-050Q-R Rev 1 Model: 1128	R3				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Solution 2 Sync Cable	Yes	1.45m	No	Zune (8GB)	Power Supply/Laptop	
Premium Earbuds	No	1.3m	No	Zune (8GB)	Terminated	
AC Power Extension	No	0.8m	No	Power Supply	AC Mains	
PA = Cable is perma	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configurations

CONFIGURATION 5 MCSO1310

Software/Firmware Running during test				
Description	Version			
Bootloader 762 NK.bin 905	Version 2.1			

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Zune (8GB)	Microsoft	1125	0100252732			
Power Supply	Phihong	PSM05A-050Q-R Rev 1 Model: 1128	R3			

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
TV	Sony	KV-21FX30E	1062255			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Solution 2 Sync Cable	Yes	1.45m	No	Zune (8GB)	Power Supply/Laptop
AV Cable	Yes	1.4m	No	Zune (8GB)	TV
TV AC Power	No	2.1m	Yes	TV	AC Mains
AC Power Extension	No	0.8m	No	Power Supply	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

			Equipment modi	fications	
Item	Date	Test	Modification	Note	Disposition of EUT
1	8/17/2007	Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/18/2007	Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	8/20/2007	Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	8/22/2007	Radiated Emissions High Frequency	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	8/22/2007	Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

AV playback

MODE USED FOR FINAL DATA

AV playback

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED Start Frequency 30MHz Stop Frequency 1GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Hewlett-Packard	8568B	AAE	12/7/2006	13
Quasi-Peak Adapter	Hewlett Packard	85650A	AQG	12/7/2006	13
Pre-Amplifier	Miteq	AM-1402	AOT	1/18/2007	13
SU02 cables a,b,c			SUK	2/8/2007	13
Antenna, Log Periodic	EMCO	3146	ALE	2/1/2007	13
Antenna, Bicon	EMCO	3104C	ABF	1/28/2007	13

MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
_	Measurements were made using	ng the bandwidths and det	ectors specified. No video filte	er was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

NORTHWEST **RADIATED EMISSIONS DATA SHEET** EMI 2006.12.20 **EMC** Work Order: MCSO1302 EUT: Zune (8GB) Model: 1125 Serial Number: 0100282732 Date: 08/22/07 **Customer: Microsoft Corporation** Temperature: 24 Attendees: James Wooten Humidity: 44% Project: N/A Barometric Pres.: 29.88 Tested by: Kevin Cameron Power: 120VAC/60Hz Job Site: SU07 **TEST SPECIFICATIONS** FCC 15.109(g) (CISPR 22:1997):2006 Class B: ANSI C63.4:2003: TEST PARAMETERS Antenna Height(s) (m) Test Distance (m) 1 - 4 10 COMMENTS DV Solution 2 sync cable, AV cable to TV, Phihong PS MN:PSM05A-050Q-R Rev 1 / SN:R3, Config 3A-P. DV2 Config 1 Scorpius (Hynix Memory/Toshiba LCD) **EUT OPERATING MODES** AV playback DEVIATIONS FROM TEST STANDARD No deviations. Run# 8 Configuration # 3 m lem amen Results Pass Signature 0.08 70.0 60.0 50.0 dBuV/m 40.0 30.0 * 20.0 . 10.0 0.0 10.000 100.000 1000.000 MHz External Distance Compared to Adjustment Freq Amplitude Factor Azimuth Height Distance Attenuation Polarity Detector Adjusted Spec. Limit Spec. (MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m (dB) V-LPA QP 924.027 252.0 23.3 2.1 10.0 0.0 32.0 37.0 -5.0 8.7 0.0 QΡ V-LPA 959.986 21.5 9.2 44.0 1.6 10.0 0.0 0.0 30.7 37.0 -6.3 QΡ 30.425 30.3 -6.7 217.0 3.0 10.0 0.0 H-Bicon 0.0 23.6 30.0 -6.4 47.093 30.9 -7.7 72.0 4.0 10.0 0.0 H-Bicon QP 0.0 23.2 30.0 -6.8 847.936 22.6 7.2 186.0 10.0 0.0 H-LPA QΡ 0.0 29.8 37.0 -7.2 1.1 924.028 H-LPA QΡ -7.2 21.1 8.7 237.0 1.0 10.0 0.0 0.0 29.8 37.0 47.058 30.1 -7.7 193.0 10.0 0.0 H-Bicon QΡ 22.4 30.0 -7.6 4.0 0.0 224 528 264 0 ΩP 28 2 -6.7 37 10.0 0.0 H-I PA 0.0 21.5 30.0 -8.5 ΩP 30.447 27.8 -6.7 243.0 1.0 10.0 0.0 V-Bicon 0.0 21.1 30.0 -8.9 959.993 18.6 9.2 360.0 1.3 10.0 0.0 H-LPA QP 0.0 27.8 37.0 -9.2 829.498 20.8 6.9 172.0 2.2 10.0 0.0 V-LPA QP 0.0 27.7 37.0 -9.3 829.505 20.6 6.9 161.0 1.0 10.0 0.0 H-LPA QP 0.0 27.5 37.0 -9.5 V-LPA 663.610 23.0 4.4 305.0 3.1 10.0 0.0 QP 0.0 27.4 37.0 -9.6 663.581 22.9 4.4 45.0 1.2 10.0 0.0 H-LPA QΡ 0.0 27.3 37.0 -9.7

V-LPA

V-I PA

H-Bicon

V-Bicon

H-LPA

V-LPA

V-Bicon

H-Bicon

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

847.936

224 531

110.418

110.479

395.994

396.024

73.901

73.760

20.0

25.9

21.5

20.9

24.2

21.8

24.5

23.6

295.0

19.0

128.0

220.0

44.0

69.0

167.0

360.0

7.2

-6.7

-4.2

-4.2

-1.1

-1.1

-11.2

-11.1

2.7

19

2.8

1.0

2.7

4.0

1.2

3.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

QΡ

ΩP

ΩP

QP

QP

QP

QΡ

QP

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

27.2

192

17.3

16.7

23.1

20.7

13.3

12.5

37.0

30.0

30.0

30.0

37.0

37.0

30.0

30.0

-9.8

-10.8

-12.7

-13.3

-13.9

-16.3

-16.7

-17.5

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Syncing to laptop

MODE USED FOR FINAL DATA

Syncing to laptop

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE IN\	/ESTIGATED		
Start Frequency	30MHz	Stop Frequency	1GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Hewlett-Packard	8568B	AAE	12/7/2006	13
Quasi-Peak Adapter	Hewlett Packard	85650A	AQG	12/7/2006	13
Pre-Amplifier	Miteq	AM-1402	AOT	1/18/2007	13
SU02 cables a,b,c			SUK	2/8/2007	13
Antenna, Log Periodic	EMCO	3146	ALE	2/1/2007	13
Antenna, Bicon	EMCO	3104C	ABF	1/28/2007	13

MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
_	Measurements were made using	ng the bandwidths and det	ectors specified. No video filte	er was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

	RTHWEST			RA	DIAT	ED E	MIS	SSI	ONS	DATA	SHE	ET			Q-2007.05.07 //I 2006.12.20
) Model: 11	125							We		MCSO1278	3
Ser			010028273									_		08/17/07	
			Microsoft (James Wo	Corporation	n								nperature: Humidity:		
	Proje			oten									tric Pres.:		
			Kevin Cam	eron					Power:	120VAC/6	0Hz	24.0	Job Site:		
	PECIFIC									Test Metho	od				
	.109(g) (·):2006 Clas	ss B:					ANSI C63.	4:2003:				
	a Height			1 - 4					Test Distar	nce (m)	10				
				Premium e	arbuds. Co	nfig 1B-1.	DV2	Confi	g 1 Scorpiu	ıs (Hynix N	lemory/To	shiba LCD)			
DEVIAT	g to lapt IONS Fl iations.		TEST STA	NDARD											
Run #	ations.		1									1		4	
	uration #	ŧ	1									6/2	m.		
Results			Pa	ss							Signature	Mem	001.	Cam	em
	80.0 ⊤														
	70.0														
	60.0														
۶	50.0														
dBuV/m	40.0														
7	30.0													•	
	20.0					•					•	•			
	10.0				•	•					•	•			
	0.0														
	10.0	00						1	00.000					100	0.000
									MHz						
	Freq MHz)		Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)		ance eters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
,	959.		21.2	9.2	291.0	1.5		10.0	0.0	H-LPA	QP	0.0	30.4	37.0	-6.6
	923.		21.0	8.7	273.0	1.7		10.0	0.0	V-LPA	QP	0.0	29.7	37.0	-7.3
	196. 959.		22.6 20.0	-0.4 9.2	126.0 0.0	2.6 1.3		10.0 10.0	0.0 0.0	V-Bicon V-LPA	QP QP	0.0 0.0	22.2 29.2	30.0 37.0	-7.8 -7.8
		956 655	20.0	9.2 -7.7	269.0	3.9		10.0	0.0	V-LPA H-Bicon	QP QP	0.0	29.2 22.1	30.0	-7.8 -7.9
	924.		20.3	8.7	234.0	1.3		10.0	0.0	H-LPA	QP	0.0	29.0	37.0	-8.0
	196.	641	22.0	-0.4	254.0	4.0		10.0	0.0	H-Bicon	QP	0.0	21.6	30.0	-8.4
	324.		27.7	-2.4	77.0	2.4		10.0	0.0	H-LPA	QP	0.0	25.3	37.0	-11.7
	34.		25.2	-7.1	201.0	1.0		10.0	0.0	V-Bicon	QP OB	0.0	18.1	30.0	-11.9
		324 712	24.3 23.8	-7.1 -7.7	250.0 360.0	4.0 1.0		10.0 10.0	0.0 0.0	H-Bicon V-Bicon	QP QP	0.0 0.0	17.2 16.1	30.0 30.0	-12.8 -13.9
	239.		27.1	-6.0	337.0	3.4		10.0	0.0	H-LPA	QP	0.0	21.1	37.0	-15.9
	324.	500	19.4	-2.4	275.0	1.2		10.0	0.0	V-LPA	QP	0.0	17.0	37.0	-20.0
	239.	465	21.8	-6.0	161.0	1.0		10.0	0.0	V-LPA	QP	0.0	15.8	37.0	-21.2

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

AV playback

MODE USED FOR FINAL DATA

AV playback

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED Start Frequency 30MHz Stop Frequency 1GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Hewlett-Packard	8568B	AAE	12/7/2006	13
Quasi-Peak Adapter	Hewlett Packard	85650A	AQG	12/7/2006	13
Pre-Amplifier	Miteq	AM-1402	AOT	1/18/2007	13
SU02 cables a,b,c			SUK	2/8/2007	13
Antenna, Log Periodic	EMCO	3146	ALE	2/1/2007	13
Antenna, Bicon	EMCO	3104C	ABF	1/28/2007	13

MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
_	Measurements were made using	ng the bandwidths and det	ectors specified. No video filte	er was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

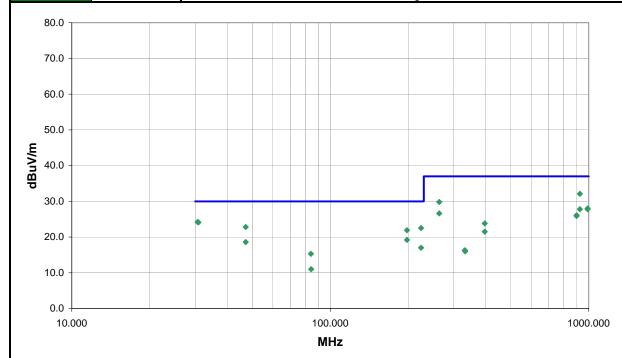
TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

NORTHWEST **RADIATED EMISSIONS DATA SHEET** EMI 2006.12.20 **EMC** EUT: Zune (8GB) Model: 1125 Serial Number: 0100282732 Work Order: MCSO1278 Date: 08/18/07 Customer: Microsoft Corporation Temperature: 22 Attendees: James Wooten Humidity: 47% Project: N/A Barometric Pres.: 30.1 Tested by: Kevin Cameron TEST SPECIFICATIONS Power: 120VAC/60Hz Job Site: SU02 Test Method FCC 15.109(g) (CISPR 22:1997):2006 Class B: ANSI C63.4:2003: TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 10 COMMENTS DV Solution 2 sync cable, Premium earbuds, Phihong PS MN:PSM05A-050Q-R Rev 1, SN:R3, Config 2B-P. DV2 Config 1 Scorpius (Hynix

EUT OPERATING MODES


Memory/Toshiba LCD)

AV playback DEVIATIONS FROM TEST STANDARD

No deviations.

Run# Configuration # 2 Results Pass

Signature /Cm m amen

Ī							External			Distance			Compared to
	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
L	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	924.027	23.4	8.7	299.0	2.2	10.0	0.0	V-LPA	QP	0.0	32.1	37.0	-4.9
	30.680	31.0	-6.8	226.0	3.0	10.0	0.0	V-Bicon	QP	0.0	24.2	30.0	-5.8
	30.893	30.9	-6.8	360.0	3.2	10.0	0.0	H-Bicon	QP	0.0	24.1	30.0	-5.9
	47.093	30.5	-7.7	265.0	3.9	10.0	0.0	H-Bicon	QP	0.0	22.8	30.0	-7.2
	264.026	34.8	-5.0	132.0	4.0	10.0	0.0	H-LPA	QP	0.0	29.8	37.0	-7.2
	224.530	29.2	-6.7	79.0	4.0	10.0	0.0	H-LPA	QP	0.0	22.5	30.0	-7.5
	198.010	22.3	-0.4	219.0	1.5	10.0	0.0	V-Bicon	QP	0.0	21.9	30.0	-8.1
	989.993	18.1	9.9	90.0	1.0	10.0	0.0	H-LPA	QP	0.0	28.0	37.0	-9.0
	924.001	19.1	8.7	35.0	2.5	10.0	0.0	H-LPA	QP	0.0	27.8	37.0	-9.2
	990.021	17.9	9.9	360.0	1.0	10.0	0.0	V-LPA	QP	0.0	27.8	37.0	-9.2
	264.032	31.6	-5.0	0.0	1.0	10.0	0.0	V-LPA	QP	0.0	26.6	37.0	-10.4
	198.012	19.6	-0.4	65.0	4.0	10.0	0.0	H-Bicon	QP	0.0	19.2	30.0	-10.8
	897.496	17.7	8.4	261.0	1.0	10.0	0.0	H-LPA	QP	0.0	26.1	37.0	-10.9
	897.111	17.5	8.4	360.0	1.0	10.0	0.0	V-LPA	QP	0.0	25.9	37.0	-11.1
	47.093	26.3	-7.7	288.0	1.0	10.0	0.0	V-Bicon	QP	0.0	18.6	30.0	-11.4
	224.506	23.7	-6.7	0.0	1.0	10.0	0.0	V-LPA	QP	0.0	17.0	30.0	-13.0
	396.027	24.9	-1.1	118.0	2.1	10.0	0.0	H-LPA	QP	0.0	23.8	37.0	-13.2
	84.154	27.0	-11.7	68.0	1.0	10.0	0.0	V-Bicon	QP	0.0	15.3	30.0	-14.7
	395.992	22.6	-1.1	310.0	1.0	10.0	0.0	V-LPA	QP	0.0	21.5	37.0	-15.5
	84.339	22.7	-11.7	109.0	4.0	10.0	0.0	H-Bicon	QP	0.0	11.0	30.0	-19.0
	331.690	18.5	-2.2	259.0	2.5	10.0	0.0	H-LPA	QP	0.0	16.3	37.0	-20.7

I	_						External			Distance			Compared to
	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	332.609	18.2	-2.2	85.0	1.0	10.0	0.0	V-LPA	QP	0.0	16.0	37.0	-21.0

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

AV playback

Syncing to laptop

MODE USED FOR FINAL DATA

AV p<u>layback</u>

Syncing to laptop

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED

Start Frequency 1000MHz Stop Frequency 8000MHz

CLOCKS AND OSCILLATORS

None Provided

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	2/14/2007	13
Antenna, Horn	EMCO	3115	AHM	2/20/2006	24
SU07 cables a,h,c			SUB	2/14/2007	13
Spectrum Analyzer	Agilent	E4440A	AAW	4/25/2007	12

Frequency Range	Peak Data	Quasi-Peak Data	Average Data								
(MHz)	(kHz)	(kHz)	(kHz)								
0.01 - 0.15	1.0	0.2	0.2								
0.15 - 30.0	10.0	9.0	9.0								
30.0 - 1000	100.0	120.0	120.0								
Above 1000	1000.0	N/A	1000.0								
Measurements were made using the bandwidths and detectors specified. No video filter was used.											

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

	EMC		R/	ADIAT	ED E	MISS	IONS	DATA	SHE	ET			SA 2007.05.07 EMI 2007.7.24
	EUT	: Zune (8GE	3) Model: 1	125						W	ork Order:	MCSO1278	8
Ser	rial Number:										Date:	08/18/07	
	Customer	: Microsoft	Corporatio	n						Ter	nperature:	24	
	Attendees	: James Wo									Humidity:	44%	
	Project:									Barome	etric Pres.:		
		: Kevin Can	neron				Power:	120VAC/6	0Hz		Job Site:		
TEST S	SPECIFICAT	IONS						Test Metho	od				
	5.109:2006 C							ANSI C63.	4:2003				
	na Height(s)		1.2				Test Dista	nce (m)	3				
СОММ		\/	1.2						<u> </u>				
Syncin DEVIA No dev Run # Config	PERATING I g to laptop TIONS FROI viations. uration #	M TEST STA	1-81 1							Kom	i M.	(am	e
Result	S	Pa	ass						Signature	1000		com	
dBuV	80 70 60 50 40 30 20												
	1000	2	000	3000)	4000	MHz	5000	60	00	7000		8000
	Freq (MHz)	Amplitude (dBuV)	Preamp (dB)	Antenna Height (m)	Transducer (dB)	Cable (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector (blank equal peaks [PK] from scan)	Distance Adjustment (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)

All emissions were greater than 10db below the limit.

	ORTHWEST EMC				R	AD	IAT	ΈD	E	MI	SS	10	N	S	D	ATA	S	ΙE	ΕT							7.05.07 07.7.24
		IT. 7	no /0/	2B) #	/lodel:	1125														W	rk Or	lor.	MCSO1	1279		
0					vioaei:	1123														VVO					•	
Ser	rial Numb																						08/18/0	7		
	Custom					on															perati					
	Attende			Voot	en																Humid	ity:	51%			
		ct: N/A																	Bar		tric Pr					
	Tested I			amer	on								Pov	ver:		VAC/6					Job S	ite:	SU07			
	SPECIFICA															st Metho										
FCC 15	5.109:2006	6 Class	s B												AN:	SI C63.	4:2003	3								
TEST E	PARAMET	FRS																								
	na Height(1.	2						Тα	et D	ista	nca	(m)		3								
COMM		(3) (111)				_						16	St D	ISIA	iice	(111)		J								
EUT OI AV pla DEVIA	PERATING yback TIONS FR	G MOE	DES			Juas,	Comi	y 1D-1	i. DV	- Z G0I	ing 1	300	oi pii	us (I	iyil	ia wem	ory/10	JOHNE	a LGD)							
	nations.			44 42		_																		1		
Run#				41-42	<u> </u>														1	/				4		
Config	uration #			2															0/	1	n	1	(-			
Result	s			Pass	;												Signa	ature	10	m			0	im	em	\
						-											- · · · · ·									
	80																									
										_			-	_				_						+	_	
	70																									
	70																									
	60 -																							-		
																								-		
	50																									
	30																									
≥																										
ಸ	40		-							_			-	-	-							-		+		
dBuV																										
_																										
	30																									
	30																									
	20			-				-	\vdash									+						+		
	10																									
	'0												T													
	0 +			-					\perp		-				+				-			+				
	1000			200	Ω		3000)		41	000				500	00		60	000		70	000			80	00
	1000			200	U		5000	,		41	,00				JUC	,,,		00	.00		71	,00			30	00
												M	ИHZ	Z												
													12	-												
_			_				_		_		_	1				olarity/		_			_			Ţ	_	
	Fros:	1.	an a litera d	_	Deac		tenna	Terr	. al	_	ماماه		Exterr			nsducer			Distan		۰ ۱۰ تا ۱۰ ۵		C==			ared to
	Freq		mplitud		Preamp		eight		ducer		able	At	tenua			Туре	Dete (blank eq		Adjustm		Adjust		Spec. Li			ec.
((MHz)	- ['	(dBuV)		(dB)		(m)	(0	IB)	(0	dB)		(dB)	,			[PK] from	n scan)	(dB)		dBu\	′	dBuV		(0	dB)
		- 1		1		1		1		1		1					1		1							

All emissions were greater than 10db below the limit.

	EMC		R	ADIAT	ED E	MISS	IONS	DATA	SHE	ET			SA 2007.05.0 EMI 2007.7.2
		Zune (8GI	B) Model: 4	1125						\A/	ork Ordon	MCSO127	Ω
0				1123						VV			0
Ser	ial Number:									_		08/18/07	
	Customer:			on						I er	nperature:		
	Attendees		ooten								Humidity:	44%	
	Project:									Barome	tric Pres.:		
		Kevin Car	neron				Power	: 120VAC/6	0Hz		Job Site:	SU07	
TEST S	SPECIFICAT	IONS						Test Meth	od				
FCC 15	.109:2006 C	lass B						ANSI C63	4:2003				
TEST P	PARAMETER	28											
	a Height(s)		1.2	2			Test Dista	ance (m)	3				
COMM		(111)	1.4	<u> </u>			Test Dist	ance (m)	3				
EUT OF AV play DEVIAT	PERATING I yback TIONS FROI	MODES		,	5 5 ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ,	,.	,			
Run#	idilollo.		70	T						0 /			
				4						6/	m.	/ 1	
Configu	uration #		3							0/10	WI	(00	rem
Results	s	Pa	ass						Signature	/Con		con	um
				•									
	00												
	80												
	70												
	70												
	60												
	50 +												
>													
<u> </u>	40												
dBuV	70												
0													
	30 +												
	20												
	20												
	10												+
	0												
			-		•	46.5.5		=005					00
	1000	2	.000	300	0	4000		5000	60	000	7000)	8000
							N#1 !-						
							MHz						
								Polarity/					
				Antenna			External	Transducer		Distance			Compared t
	Freq	Amplitude	Preamp	Height	Transducer	Cable	Attenuation		Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)	(dBuV)	(dB)	(m)	(dB)	(dB)	(dB)	"	(blank equal peaks	(dB)	dBuV	dBuV	(dB)
,	·	1 ' '	' '	1 '	' '		1 ' '	1	[PK] from scan)	1 ' '			

All emissions were greater than 10db below the limit.

CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

AV playback

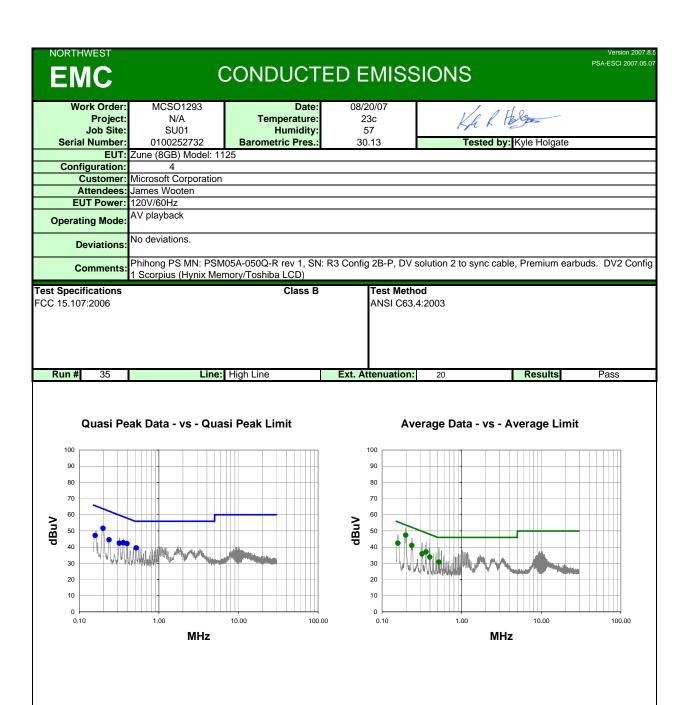
POWER SETTINGS INVESTIGATED

120V/60Hz

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

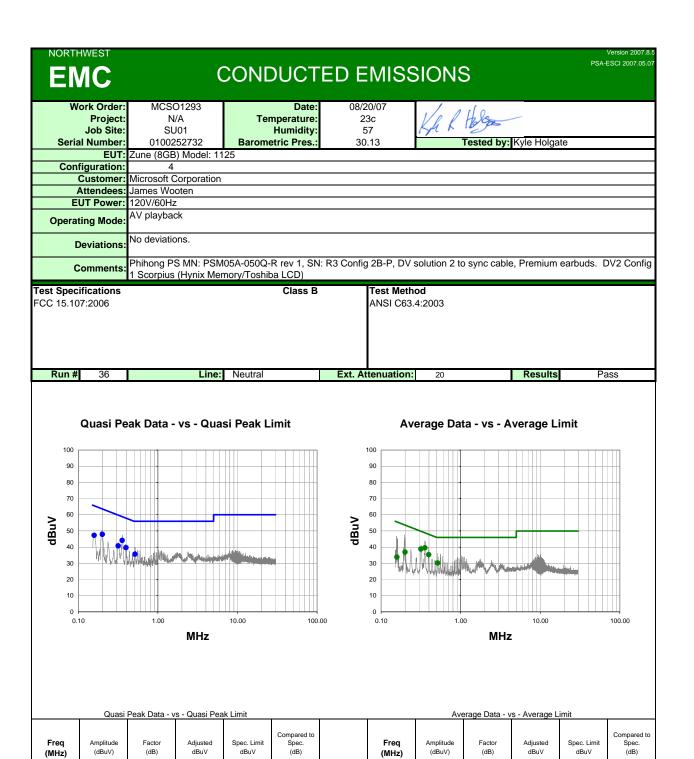
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-R-24-BNC	LIK	1/17/2007	13
SU07 cables d,c,a			SUC	1/18/2007	13
Attenuator	Tektronix	011-0059-02	ATR	1/17/2007	13
High Pass Filter	TTE	H647-100k-50-718B	HFB	1/17/2007	13
Receiver	Rohde & Schwartz	ESCI	ARE	12/7/2006	13


MEASUREMENT BANDWIDTHS												
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data								
	(MHz)	(kHz)	(kHz)	(kHz)								
	0.01 - 0.15	1.0	0.2	0.2								
	0.15 - 30.0	10.0	9.0	9.0								
	30.0 - 1000	100.0	120.0	120.0								
	Above 1000	1000.0	N/A	1000.0								
	Measurements were made using the bandwidths and detectors specified. No video filter was used.											

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.198	30.6	1.1	51.7	63.7	-12.0	_	0.198	26.3	1.1	47.4	53.7	-6.3
0.398	21.2	0.9	42.1	57.9	-15.8		0.237	20.1	1.0	41.1	52.2	-11.1
0.357	21.8	0.9	42.7	58.8	-16.1		0.357	16.1	0.9	37.0	48.8	-11.8
0.517	18.6	0.8	39.4	56.0	-16.6		0.158	20.6	1.8	42.4	55.6	-13.1
0.318	21.5	1.0	42.5	59.8	-17.3		0.318	14.9	1.0	35.9	49.8	-13.9
0.237	23.5	1.0	44.5	62.2	-17.7		0.398	12.9	0.9	33.8	47.9	-14.1
0.158	25.3	1.8	47.1	65.6	-18.4		0.517	9.9	0.8	30.7	46.0	-15.3

Average Data - vs - Average Limit

0.356

0.200

0.397

0.158

0.316

0.516

23.2

26.9

18.8

25.4

14.8

0.9

1.0

0.9

1.8

1.0

8.0

44.1

47.9

39.7

47.2

35.6

58.8

63.6

57.9

65.6

56.0

-14.7

-15.7

-18.2

-18.3

-19.1

-20.4

0.356

0.316

0.397

0.516

0.200

0.158

18.6

17.8

14.4

9.3

15.9

12.0

0.9

1.0

0.9

0.8

1.0

39.5

38.8

35.3

30.1

33.8

48.8

49.8

47.9

46.0

55.6

-9.3

-11.1

-12.6

-15.9

-16.7

-21.7

NORTHWEST **CONDUCTED EMISSIONS** MCSO1293 Work Order: Date: 08/20/07 Project: N/A Temperature: 24c Job Site: SU01 **Humidity**: 52 Serial Number: 0100252732 **Barometric Pres.** 29.93 Tested by: Kyle Holgate EUT: Zune (8GB) Model: 1125 Configuration: **Customer:** Microsoft Corporation Attendees: James Wooten EUT Power: 120V/60Hz AV playback **Operating Mode:** No deviations. **Deviations:** Phihong PS MN: PSM05A-050Q-R rev 1, SN: R3 Config 2B-P, DV solution 2 to sync cable, Premium earbuds. DV2 Config Comments 1 Scorpius (Hynix Memory/Toshiba LCD) Test Specifications Class B Test Method FCC 15.107:2006 ANSI C63.4:2003 Ext. Attenuation: Run# 21 Line: High Line 20 Results Pass Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit 100 100 90 90 70 70 60 60 dBuV dBuV 50 50 40 40 30 30 20 20

Quasi Peak Data - vs - Quasi Peak Limit

MHz

10.00

1.00

10

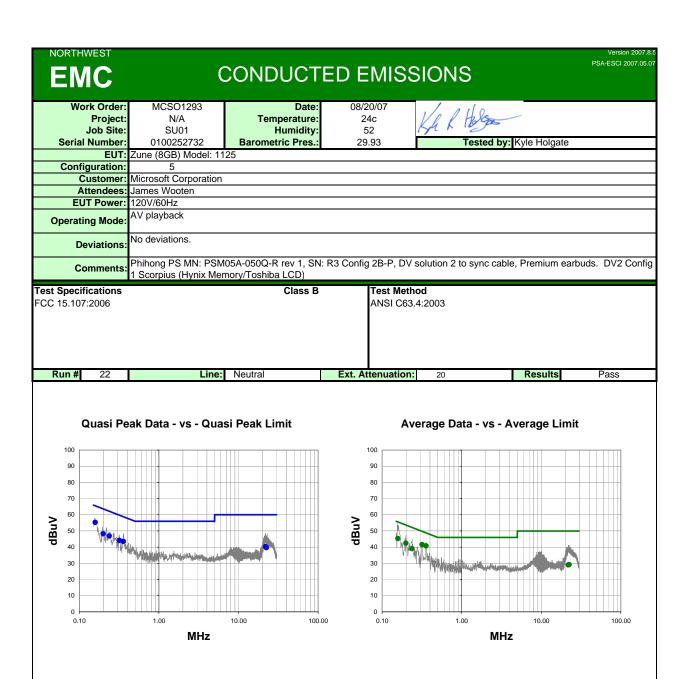
0.10

Average	Data - vs -	Average Limit

MHz

10.00

100.00


1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.158	33.7	1.8	55.5	65.6	-10.0	_	0.200	24.6	1.0	45.6	53.6	-8.0
0.200	30.1	1.0	51.1	63.6	-12.5		0.158	25.6	1.8	47.4	55.6	-8.1
0.240	26.3	1.0	47.3	62.1	-14.8		0.240	19.6	1.0	40.6	52.1	-11.5
0.218	26.3	1.0	47.3	62.9	-15.6		0.317	15.7	1.0	36.7	49.8	-13.1
0.317	21.1	1.0	42.1	59.8	-17.7		0.356	13.8	0.9	34.7	48.8	-14.1
0.356	20.1	0.9	41.0	58.8	-17.8		0.218	15.5	1.0	36.5	52.9	-16.4
0.993	16.1	0.6	36.7	56.0	-19.3		0.993	7.0	0.6	27.6	46.0	-18.4
22.252	17.9	1.0	38.9	60.0	-21.1		22.252	7.4	1.0	28.4	50.0	-21.6

100.00

10

0.10

Quasi Peak Data - vs - Quasi Peak Limit

Averag	e Data	- VS -	Average	Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.158	33.4	1.8	55.2	65.6	-10.3	0.357	19.8	0.9	40.7	48.8	-8.1
0.357	22.6	0.9	43.5	58.8	-15.3	0.318	20.6	1.0	41.6	49.8	-8.2
0.238	25.9	1.0	46.9	62.2	-15.3	0.158	23.5	1.8	45.3	55.6	-10.2
0.199	27.2	1.0	48.2	63.7	-15.4	0.199	21.4	1.0	42.4	53.7	-11.2
0.318	23.2	1.0	44.2	59.8	-15.6	0.238	18.1	1.0	39.1	52.2	-13.1
21.930	19.3	1.0	40.3	60.0	-19.7	22.420	8.2	1.0	29.2	50.0	-20.8
22.420	18.7	1.0	39.7	60.0	-20.3	21.930	8.0	1.0	29.0	50.0	-21.0