

# FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

**CERTIFICATION TEST REPORT** 

FOR

# FLASH MP3 PLAYER

# MODEL NUMBER: 1124 AND 1125

FCC ID: C3K-1125

IC ID: 3048A-1125

**REPORT NUMBER: 07U11225-1B** 

**ISSUE DATE: SEPTEMBER 25, 2007** 

PREPARED FOR MICROSOFT CORPORATION 1065 LA AVENIDA MOUNTAIN VIEW, CA 94043, USA

PREPARED BY COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | Issue<br>Date | Revisions                                    | Revised By   |
|------|---------------|----------------------------------------------|--------------|
|      | 09/13/07      | Initial Issue                                | Hsin Fu Shih |
| В    | 09/25/07      | Corrected some typos and update setup digram | Hsin Fu Shih |

Page 2 of 75

# TABLE OF CONTENTS

| 1. | AT'          | TESTATION OF TEST RESULTS                     | 4  |
|----|--------------|-----------------------------------------------|----|
| 2. | TES          | ST METHODOLOGY                                | 5  |
| 3. | FA           | CILITIES AND ACCREDITATION                    | 5  |
| 4. | CA           | LIBRATION AND UNCERTAINTY                     | 5  |
| 2  | 4.1.         | MEASURING INSTRUMENT CALIBRATION              | 5  |
| 2  | 4.2.         | MEASUREMENT UNCERTAINTY                       | 5  |
| 5. | EQ           | UIPMENT UNDER TEST                            | 6  |
|    | 5.1.         | DESCRIPTION OF EUT                            | 6  |
|    | 5.2.         | MAXIMUM OUTPUT POWER                          | 6  |
| -  | 5.3.         | DESCRIPTION OF AVAILABLE ANTENNAS             | 6  |
|    | 5.4.         | SOFTWARE AND FIRMWARE                         | 6  |
|    | 5.5.         | WORST-CASE CONFIGURATION AND MODE             | 7  |
|    | 5.6.         | DESCRIPTION OF TEST SETUP                     | 7  |
| 6. | TES          | ST AND MEASUREMENT EQUIPMENT                  | 9  |
| 7. | LIN          | MITS AND RESULTS                              |    |
|    | 7.1.         | CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND |    |
|    | 7.1.         |                                               |    |
|    | 7.1.         |                                               |    |
|    | 7.1.         |                                               |    |
|    | 7.1.         |                                               |    |
|    | 7.1.<br>7.1. |                                               |    |
| ,  |              |                                               |    |
| ,  | 7.2.<br>7.2. |                                               |    |
|    | 7.2.         |                                               |    |
|    | 7.3.         | POWERLINE CONDUCTED EMISSIONS                 |    |
|    | 7.4.         | MAXIMUM PERMISSIBLE EXPOSURE                  | 67 |
| 8. | SET          | ГИР РНОТОЅ                                    | 71 |

## 1. ATTESTATION OF TEST RESULTS

| COMPANY NAME:    | MICROSOFT CC<br>1065 LA AVENII<br>MOUNTAIN VIE |                         |
|------------------|------------------------------------------------|-------------------------|
| EUT DESCRIPTION: | FLASH MP3 PLA                                  | AYER                    |
| MODEL:           | 1124 and 1125                                  |                         |
| SERIAL NUMBER:   | 0100265732                                     |                         |
| DATE TESTED:     | August 15 - Septe                              | mber 7, 2007            |
|                  | APPLICABL                                      | E STANDARDS             |
| STANDA           | ARD                                            | TEST RESULTS            |
| FCC PART 15 S    | UBPART C                                       | NO NON-COMPLIANCE NOTED |
| IC RSS-210 ISSU  | E 7 ANNEX 8                                    | NO NON-COMPLIANCE NOTED |

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note**: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

HSIN FU SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Char an

DEVIN CHANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 75

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2 and RSS-210 Issue 7.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

## 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                           | UNCERTAINTY    |
|-------------------------------------|----------------|
| Radiated Emission, 30 to 200 MHz    | +/- 3.3 dB     |
| Radiated Emission, 200 to 1000 MHz  | +4.5 / -2.9 dB |
| Radiated Emission, 1000 to 2000 MHz | +4.5 / -2.9 dB |
| Power Line Conducted Emission       | +/- 2.9 dB     |

Uncertainty figures are valid to a confidence level of 95%.

# 5. EQUIPMENT UNDER TEST

## **5.1. DESCRIPTION OF EUT**

The EUT is an 802.11b/g Flash MP3 player. Model # 1124 and 1125

Booth model are identical to each other except capacity of Memory, Model # 1124 with 4 GB memory, Model # 1125 with 8 GB Memory

| Radio Module    | Marvell 88W8686                         |
|-----------------|-----------------------------------------|
| Flash Memory    | Hynix                                   |
| LCD             | Toshiba                                 |
| Power Adapter#1 | Phiphong / Model No:1128 ((PSM05A-050Q) |
| Power Adapter#2 | Delta / Model No: 1128 (DPSN-8CB A)     |

Model # 1125 was selected for final compliance tests.

## **5.2. MAXIMUM OUTPUT POWER**

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Mode    | Output Power | Output Power  |
|-----------------|---------|--------------|---------------|
| (MHz)           |         | (dBm)        | ( <b>mW</b> ) |
| 2412 - 2462     | 802.11b | 13.49        | 22.34         |
| 2412 - 2462     | 802.11g | 11.39        | 13.77         |

## **5.3. DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes a Helical antenna with a maximum gain of 1 dBi.

## **5.4. SOFTWARE AND FIRMWARE**

The client provided a program which enables a user to control the frequency and output power of the module with 60% duty cycle for b mode and 70% duty cycle for g mode.

Page 6 of 75

## 5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2462 MHz.

The worst-case data rate for this channel is determined to be 1 Mb/s, based on previous experience with Marvell WLAN product design architectures.

Thus all emissions tests were made in the 802.11b mode, 2462 MHz, 1 Mb/s.

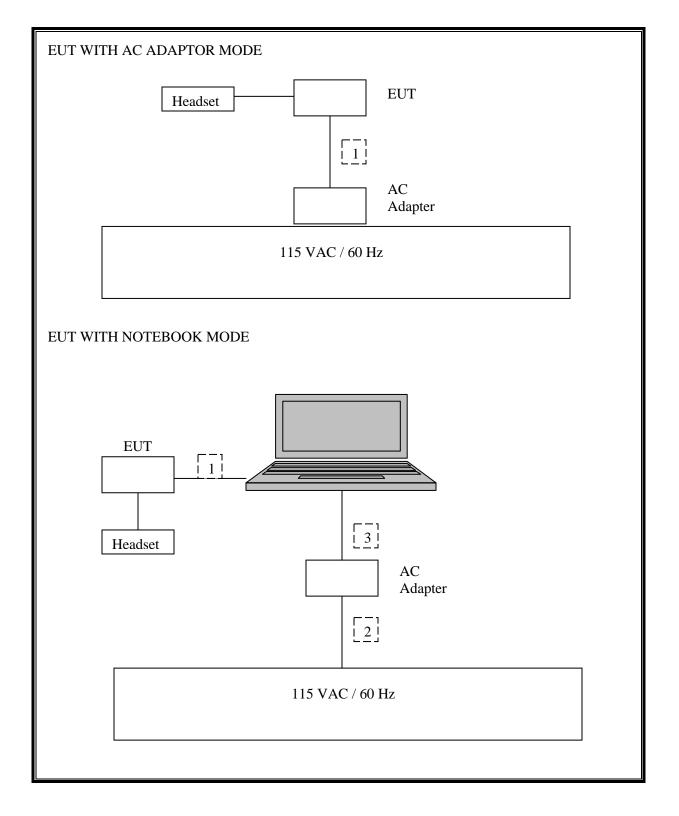
The EUT is a portable device; therefore X, Y & Z positions have been investigated. The worst case is to evaluated at Y positions.

## **5.6. DESCRIPTION OF TEST SETUP**

#### SUPPORT EQUIPMENT

| PERIPHERAL SUPPORT EQUIPMENT LIST |              |        |                 |               |  |  |  |
|-----------------------------------|--------------|--------|-----------------|---------------|--|--|--|
| Description                       | Manufacturer | FCC ID | Model           | Serial Number |  |  |  |
| Laptop PC                         | HP           | DOC    | pavilion ze4101 | CN24600055    |  |  |  |
| AC/DC Adapter                     | HP           | DOC    | ADP-75HB        | MVT0240165081 |  |  |  |
| Headset                           | Microsoft    | DOC    | 812950-001      | N/A           |  |  |  |

### I/O CABLES


|              | I/O CABLE LIST |                   |                   |               |                 |         |  |  |
|--------------|----------------|-------------------|-------------------|---------------|-----------------|---------|--|--|
| Cable<br>No. | Port           | # of<br>Identical | Connector<br>Type | Cable<br>Type | Cable<br>Length | Remarks |  |  |
| 110.         |                | Ports             | туре              | туре          | Length          |         |  |  |
| 1            | USB            | 1                 | USB               | Unshielded    | 1.2 m           | N/A     |  |  |
| 2            | AC             | 1                 | AC                | Unshielded    | 1.5 m           | N/A     |  |  |
| 3            | DC             | 1                 | DC                | Unshielded    | 2.0 m           | N/A     |  |  |

#### TEST SETUP

The EUT is connected in a host laptop computer via an interface board adapter / extension board during the tests. Test software exercised the radio card.

Page 7 of 75

#### SETUP DIAGRAM FOR TESTS



Page 8 of 75

## 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment were utilized for the tests documented in this report:

| TEST EQUIPMENT LIST             |                      |                  |            |          |  |  |
|---------------------------------|----------------------|------------------|------------|----------|--|--|
| Description                     | Manufacturer         | Model            | S/N        | Cal Due  |  |  |
| EMI Test Receiver               | R & S                | ESHS 20          | 827129/006 | 1/27/08  |  |  |
| LISN, 10 kHz ~ 30 MHz           | FCC                  | LISN-50/250-25-2 | 2023       | 9/15/07  |  |  |
| LISN, 10 kHz ~ 30 MHz           | Solar                | 8012-50-R-24-BNC | 8379443    | 9/15/07  |  |  |
| SA RF Section, 1.5 GHz          | Agilent / HP         | 85680B           | 2814A04227 | 1/7/08   |  |  |
| SA Display Section 2            | Agilent / HP         | 85662A           | 2816A16696 | 4/7/08   |  |  |
| Quasi-Peak Adaptor              | Agilent / HP         | 85650A           | 3145A01654 | 1/21/08  |  |  |
| Preamplifier, 1 ~ 26.5 GHz      | Agilent / HP         | 8449B            | 3008A00931 | 8/3/08   |  |  |
| Antenna, Horn 1 ~ 18 GHz        | EMCO                 | 3115             | 2238       | 4/15/08  |  |  |
| Antenna, Bilog 30 MHz ~ 2 Ghz   | Sunol Sciences       | JB1              | A121003    | 10/13/07 |  |  |
| Preamp 30-1000MHz               | Sonoma               | 310N             | 185623     | 1/20/08  |  |  |
| Spectrum Analyzer 3 Hz ~ 44 GHz | Agilent / HP         | E4446A           | MY43360112 | 8/7/08   |  |  |
| Power Sensor 10MHz - 18GHz      | Agilent / HP         | 8481A            | 2702A66876 | 4/22/08  |  |  |
| Power Meter                     | Agilent / HP         | 438A             | 2822A05684 | 6/20/08  |  |  |
| Peak Power Meter                | Agilent              | E4416A           | GB41291160 | 12/2/07  |  |  |
| Peak / Average Power Sensor     | Agilent              | E9327A           | US40440755 | 12/2/07  |  |  |
| 2.4-2.5 GHz Reject Filter       | <b>Micro-Tronics</b> | BRM50702         | 1          | CNR      |  |  |

Page 9 of 75

# 7. LIMITS AND RESULTS

### 7.1. CHANNEL TESTS FOR THE 2400 TO 2483.5 MHz BAND

## 7.1.1. 6 dB BANDWIDTH

### LIMIT

§15.247 (a) (2)

RSS-210 Clause A8.2 (1)

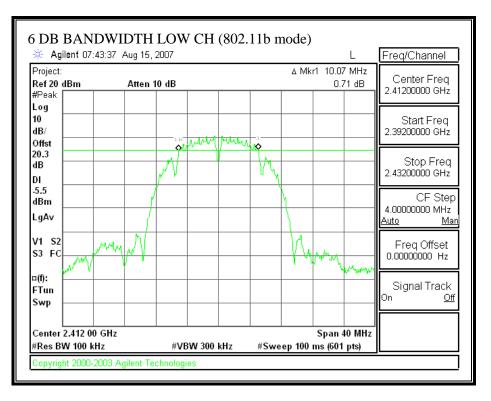
#### TEST PROCEDURE

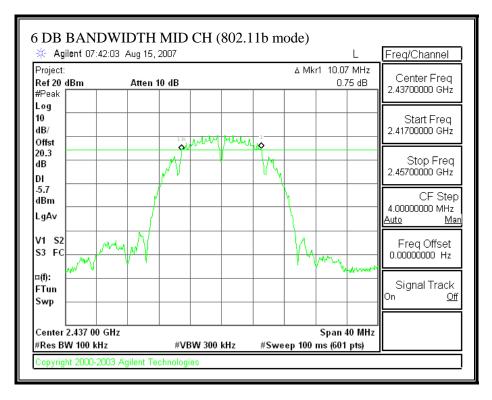
The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

#### **RESULTS**

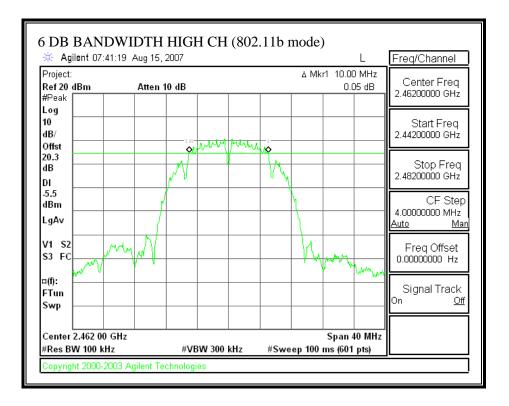
No non-compliance noted:

| 802.110 Mode |           |                |               |        |  |  |  |
|--------------|-----------|----------------|---------------|--------|--|--|--|
| Channel      | Frequency | 6 dB Bandwidth | Minimum Limit | Margin |  |  |  |
|              | (MHz)     | (kHz)          | (kHz)         | (kHz)  |  |  |  |
| Low          | 2412      | 10070          | 500           | 9570   |  |  |  |
| Middle       | 2437      | 10070          | 500           | 9570   |  |  |  |
| High         | 2462      | 10000          | 500           | 9500   |  |  |  |


### 802.11b Mode

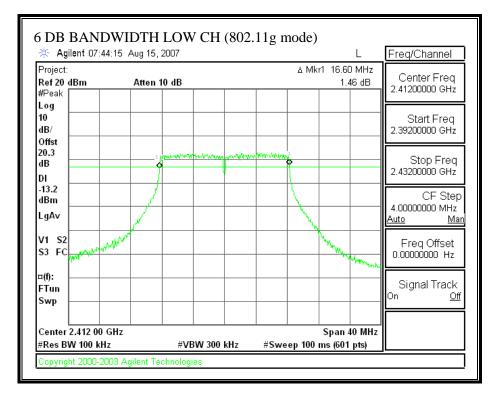

802.11g Mode

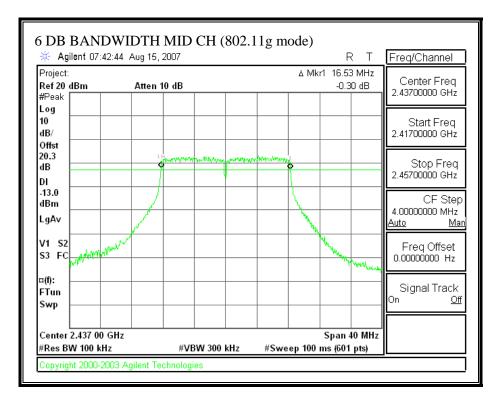
| Channel | Frequency6 dB Bandwidth |       | Minimum Limit | Margin |
|---------|-------------------------|-------|---------------|--------|
|         | (MHz)                   | (kHz) | (kHz)         | (kHz)  |
| Low     | 2412                    | 16600 | 500           | 16100  |
| Middle  | 2437                    | 16530 | 500           | 16030  |
| High    | 2462                    | 16530 | 500           | 16030  |

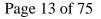

Page 10 of 75

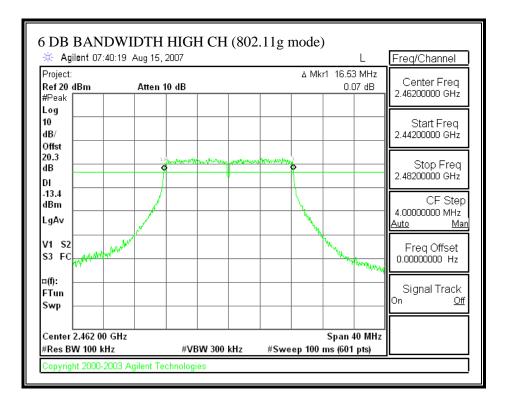
#### 6 DB BANDWIDTH (802.11b MODE)







Page 12 of 75

#### 6 DB BANDWIDTH (802.11g MODE)









Page 14 of 75

### 7.1.2. 99% BANDWIDTH

#### LIMIT

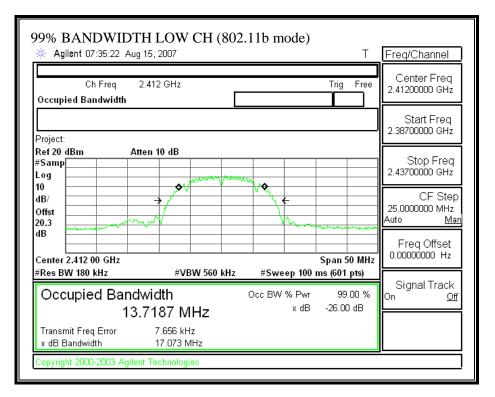
None; for reporting purposes only.

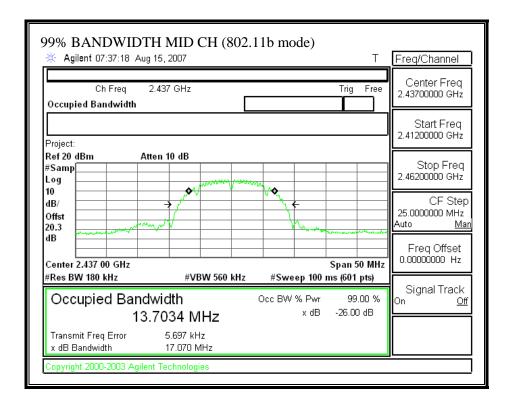
#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

802.11b Mode


| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2412      | 13.7187       |
| Middle  | 2437      | 13.7034       |
| High    | 2462      | 13.6811       |

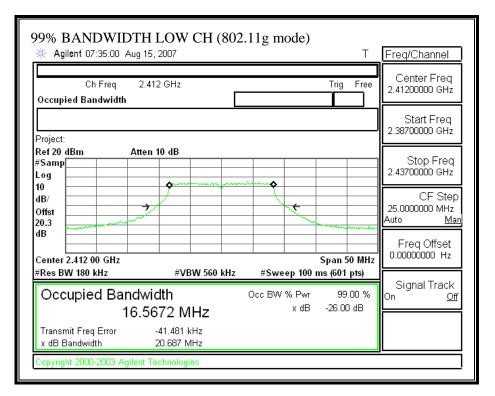

802.11g Mode

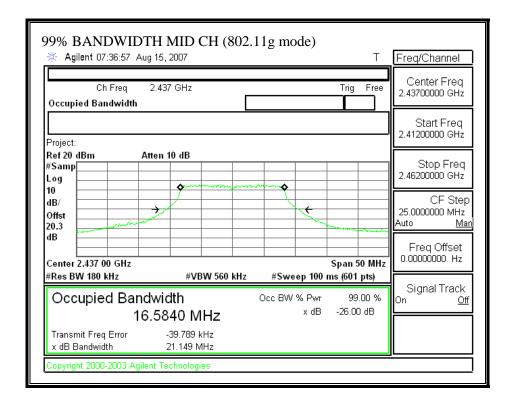
| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2412      | 16.5672       |
| Middle  | 2437      | 16.5840       |
| High    | 2462      | 16.6003       |

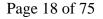
Page 15 of 75

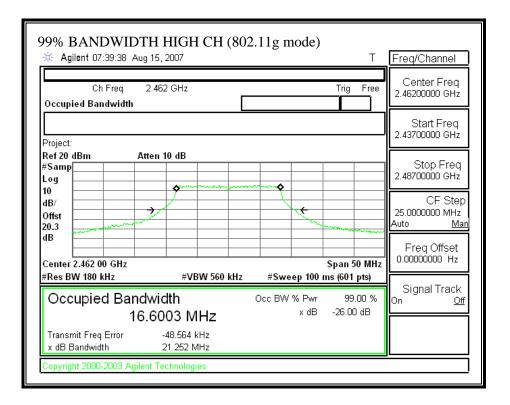
#### 99% BANDWIDTH (802.11b MODE)







Page 16 of 75


| 99% BANDWIDTH                             |                                 | 02.11b mode)                         | т           | Freq/Channel                                 |
|-------------------------------------------|---------------------------------|--------------------------------------|-------------|----------------------------------------------|
| Ch Freq 2.4                               | 162 GHz                         |                                      | Trig Free   | Center Freq<br>2.46200000 GHz                |
| Project:                                  |                                 |                                      |             | Start Freq<br>2.43700000 GHz                 |
| #Samp                                     | 10 dB                           | www.us                               |             | Stop Freq<br>2.48700000 GHz                  |
| 10<br>dB/<br>Offst<br>20.3                |                                 | he hum                               |             | CF Step<br>25.0000000 MHz<br>Auto <u>Man</u> |
| dB                                        |                                 |                                      | Span 50 MHz | Freq Offset<br>0.00000000 Hz                 |
| #Res BW 180 kHz<br>Occupied Bandw<br>13.6 | #VBW 560 kHz<br>idth<br>811 MHz | #Sweep 100 n<br>Occ BW % Pwr<br>x dB | 99.00 %     | Signal Track<br>On <u>Off</u>                |
| Transmit Freq Error<br>x dB Bandwidth     | 32.139 kHz<br>16.814 MHz        |                                      |             |                                              |
| Copyright 2000-2003 Agilent               | Technologies                    |                                      |             |                                              |


Page 17 of 75

#### 99% BANDWIDTH (802.11g MODE)









Page 19 of 75

### 7.1.3. PEAK OUTPUT POWER

#### PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

§15.247 (b) (4) (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

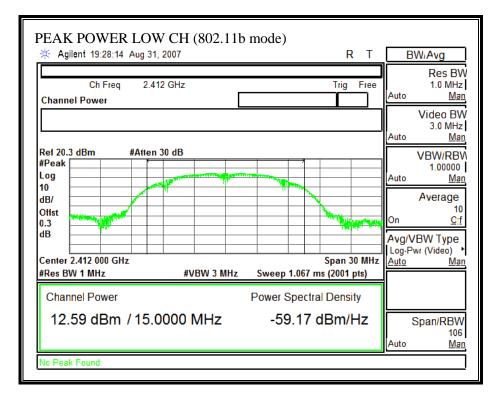
Page 20 of 75

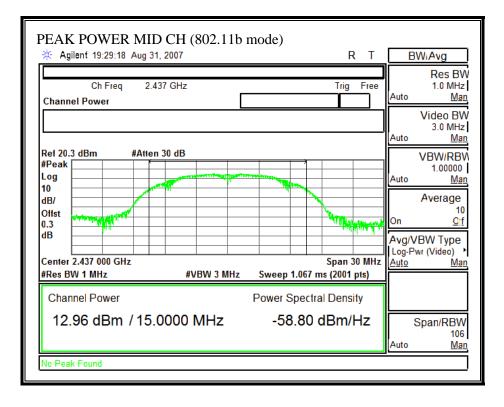
#### **RESULTS**

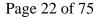
The maximum antenna gain is 1dBi @ 2.45GHz for other than fixed, point-to-point operations, therefore the limit is still 30 dBm for 2.45GHz band.

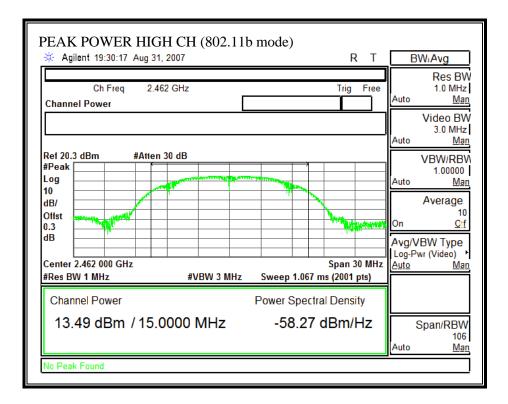
No non-compliance noted:

802.11b Mode


| Channel | Frequency | Peak Power | Limit | Margin        |
|---------|-----------|------------|-------|---------------|
|         | (MHz)     | (dBm)      | (dBm) | ( <b>dB</b> ) |
| Low     | 2412      | 12.59      | 30    | -17.41        |
| Middle  | 2437      | 12.96      | 30    | -17.04        |
| High    | 2462      | 13.49      | 30    | -16.51        |

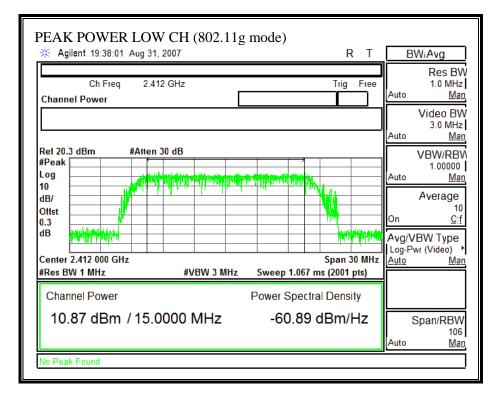

802.11g Mode

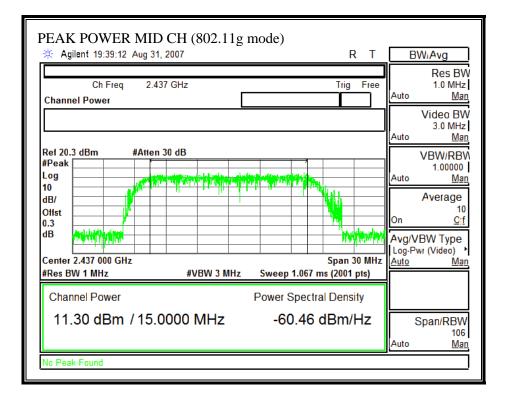

| Channel | Frequency |       |       | Margin        |  |
|---------|-----------|-------|-------|---------------|--|
|         | (MHz)     | (dBm) | (dBm) | ( <b>dB</b> ) |  |
| Low     | 2412      | 10.87 | 30    | -19.13        |  |
| Middle  | 2437      | 11.30 | 30    | -18.70        |  |
| High    | 2462      | 11.39 | 30    | -18.61        |  |


Page 21 of 75

#### OUTPUT POWER (802.11b MODE)








Page 23 of 75

#### OUTPUT POWER (802.11g MODE)





Page 24 of 75

| 🔆 Agilent 19:43:05 Aug 31, 2007           |                          | R L             | BW/Avg                               |
|-------------------------------------------|--------------------------|-----------------|--------------------------------------|
| Ch Freq 2.462 GHz<br>Channel Power        | Т                        | rig Free<br>Aut | Res BV<br>1.0 MHz<br>to <u>Ma</u>    |
|                                           |                          | Aut             | Video BV<br>3.0 MHz<br>to <u>Ma</u>  |
| Rei 20.3 dBm #Atten 30 dB<br>#Peak<br>Log |                          | Aut             | VBW/RB<br>1.00000<br>to <u>Ma</u>    |
| dB/<br>Offst                              |                          | On              | Average<br>10<br><u>Qif</u>          |
| dB Center 2.462 000 GHz                   | Spa                      |                 | g/VBW Type<br>g-Pwr (Video)<br>to Ma |
| #Res BW 1 MHz #VBV                        | 3 MHz Sweep 1.067 ms (20 | )01 pts)        |                                      |
| Channel Power                             | Power Spectral De        | ensity          |                                      |
| 11.39 dBm / 15.0000 M                     | Hz -60.38 dBr            | n/Hz            | Span/RBW<br>106<br>to <u>Ma</u>      |

Page 25 of 75

### 7.1.4. AVERAGE POWER

#### AVERAGE POWER LIMIT

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

#### **RESULTS**

The cable assembly insertion loss of 0.3 dB (including 0 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

#### 802.11b Mode

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 10.75 |
| Middle  | 2437      | 11.10 |
| High    | 2462      | 11.11 |

802.11g Mode

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 8.69  |
| Middle  | 2437      | 9.04  |
| High    | 2462      | 9.62  |

Page 26 of 75

### 7.1.5. PEAK POWER SPECTRAL DENSITY (FCC)

#### **LIMIT**

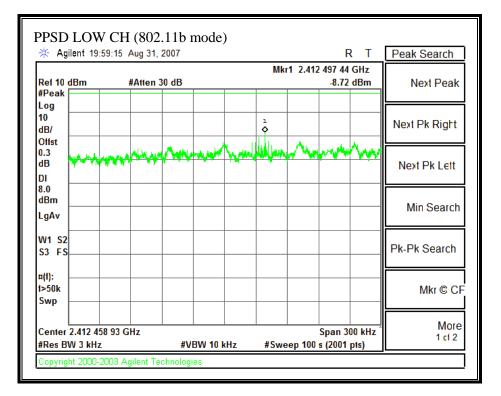
§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

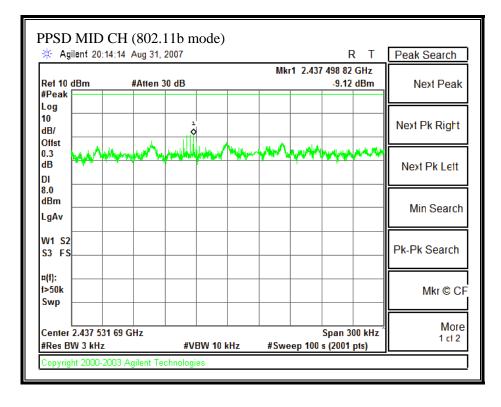
#### TEST PROCEDURE

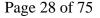
The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

#### **RESULTS**

#### 802.11b Mode


| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
|---------|--------------------|---------------|----------------|----------------|--|
| Low     | 2412               | -8.72         | 8              | -16.72         |  |
| Middle  | 2437               | -9.12         | 8              | -17.12         |  |
| High    | 2462               | -8.41         | 8              | -16.41         |  |

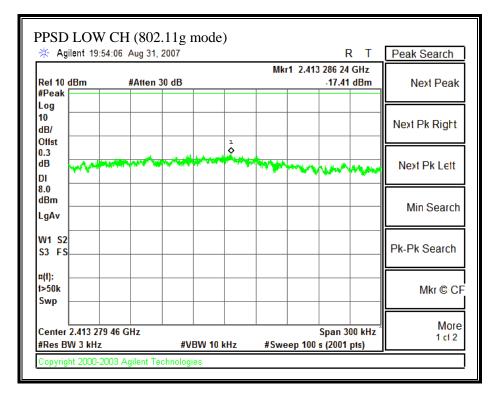

#### 802.11g Mode

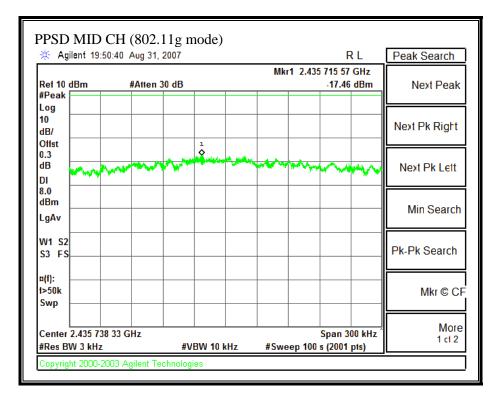

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------|--------------------|---------------|----------------|----------------|
| Low     | 2412               | -17.41        | 8              | -25.41         |
| Middle  | 2437               | -17.46        | 8              | -25.46         |
| High    | 2462               | -16.89        | 8              | -24.89         |

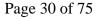
Page 27 of 75

#### PEAK POWER SPECTRAL DENSITY (802.11b MODE)







| PPSD<br>🔆 Agi             |             |         |            |                                          | mode     | e)    |      |         | F                  | 2 L      | Peak Search    |
|---------------------------|-------------|---------|------------|------------------------------------------|----------|-------|------|---------|--------------------|----------|----------------|
| Ref 10 o<br>#Peak         |             |         | #Atten 3   |                                          |          |       | Mkı  | 1 2.462 | 493 97             |          | Next Peak      |
| Log<br>10<br>dB/<br>Offst |             |         |            |                                          |          |       |      |         |                    |          | Next Pk Right  |
| 0.3<br>dB<br>DI           | <b>~~</b> ^ | n hum   | Marthe Way | an a | free and | Mary- | \m\\ | /w//w/  | ~~~~               | <u> </u> | Next Pk Lett   |
| 8.0<br>dBm<br>LgAv        |             |         |            |                                          |          |       |      |         |                    |          | Min Search     |
| W1 S2<br>S3 FS            |             |         |            |                                          |          |       |      |         |                    |          | Pk-Pk Search   |
| ¤(f):<br>f>50k<br>Swp     |             |         |            |                                          |          |       |      |         |                    |          | Mkr © CF       |
| Center 3<br>#Res B\       |             |         | Hz         | #V                                       | BW 10 F  | (Hz   | #Swe | ep 100  | Span 3(<br>s (2001 |          | More<br>1 ct 2 |
| Copyrig                   | nt 2000-    | 2003 Aç | gilent Te  | chnologi                                 | es       |       |      |         |                    |          |                |

Page 29 of 75

#### PEAK POWER SPECTRAL DENSITY (802.11g MODE)







| PPSD<br>🔆 Agi             |           |        |           | 0              | mode    | e)  |      |           | F                 | хт        | Peak Search    |
|---------------------------|-----------|--------|-----------|----------------|---------|-----|------|-----------|-------------------|-----------|----------------|
| Ref 10 c<br>#Peak         |           |        | #Atten 3  |                |         |     | Mki  | 1 2.457   |                   | GHz       | Next Peak      |
| Log<br>10<br>dB/<br>Offst |           |        |           |                |         | 1   |      |           |                   |           | Next Pk Right  |
| 0.3<br>dB<br>DI<br>8.0    | v         | ~~~    | ****      | and the second | Yyrryd  |     | w.   | <b>~~</b> | vw                | the state | Next Pk Lett   |
| dBm<br>LgAv               |           |        |           |                |         |     |      |           |                   |           | Min Search     |
| W1 S2<br>S3 FS            |           |        |           |                |         |     |      |           |                   |           | Pk-Pk Search   |
| ¤(f):<br>f>50k<br>Swp     |           |        |           |                |         |     |      |           |                   |           | Mkr © CF       |
| Center∷<br>#Res B\        |           |        | Hz        | #V             | BW 10 I | (Hz | #Swe | ep 100    | Span 3<br>s (2001 |           | More<br>1 ct 2 |
| Copyrigh                  | nt 2000-: | 2003 A | gilent Te | chnologi       | es      |     |      |           |                   |           |                |

Page 31 of 75

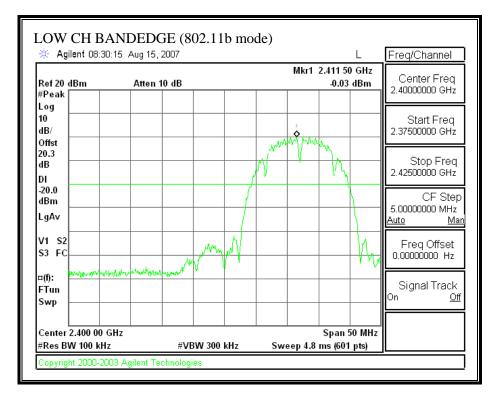
### 7.1.6. CONDUCTED SPURIOUS EMISSIONS

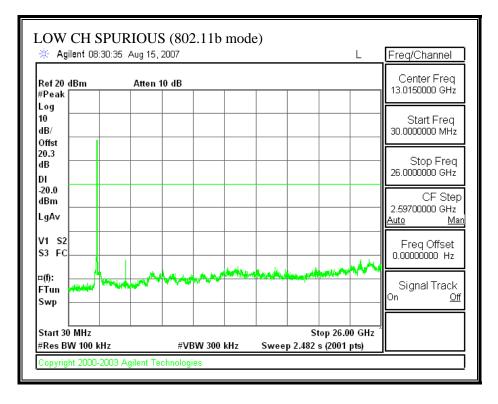
#### LIMITS

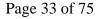
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(a).

#### TEST PROCEDURE

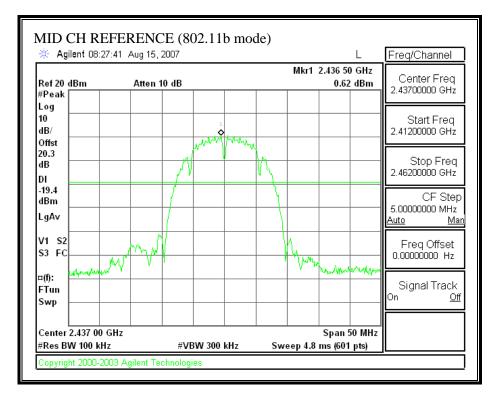
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

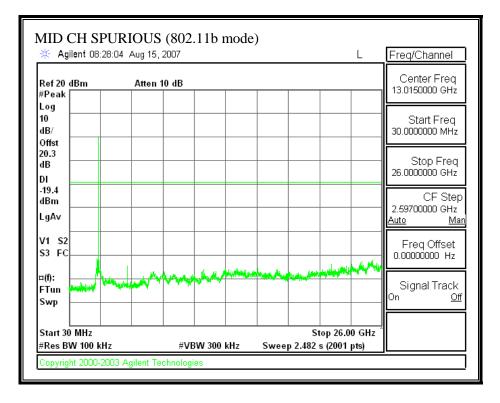

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

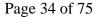

#### **RESULTS**


No non-compliance noted:

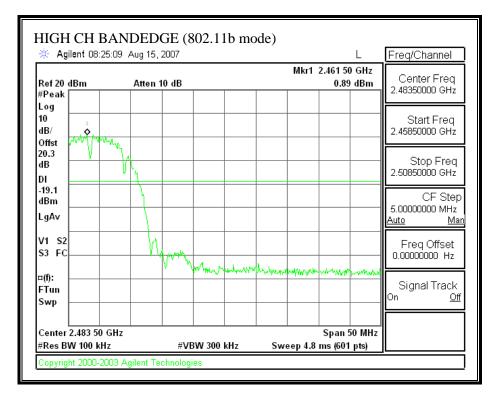
Page 32 of 75

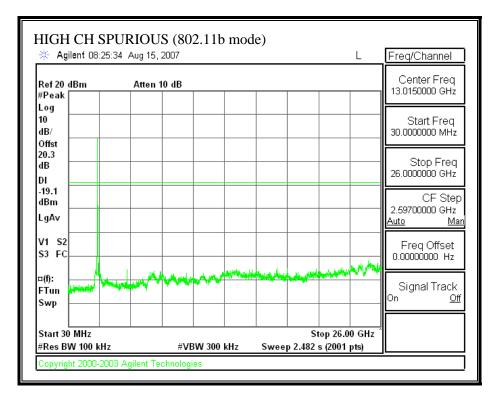

#### SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

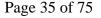


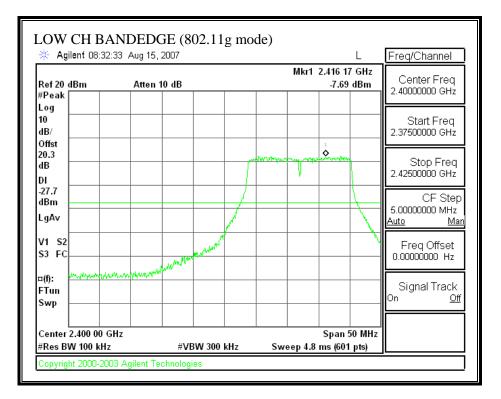


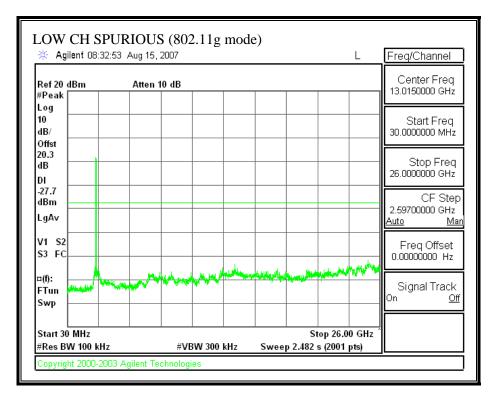


#### SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

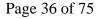


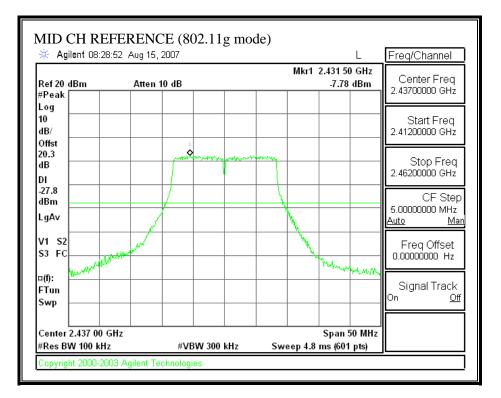


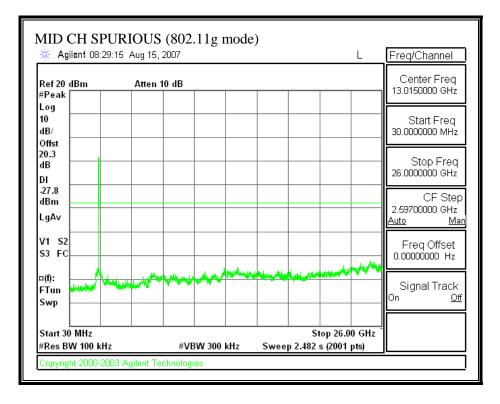


#### SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

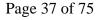


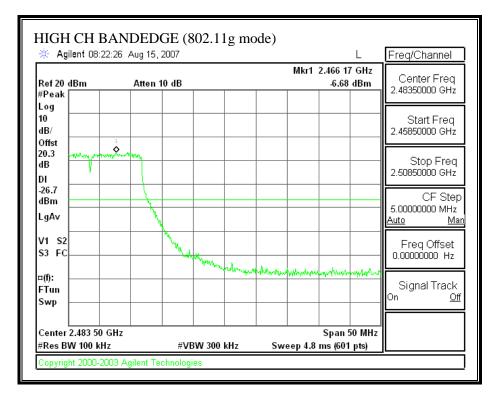




#### SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)

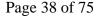






## SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)






## SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)







## 7.2. RADIATED EMISSIONS

## LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

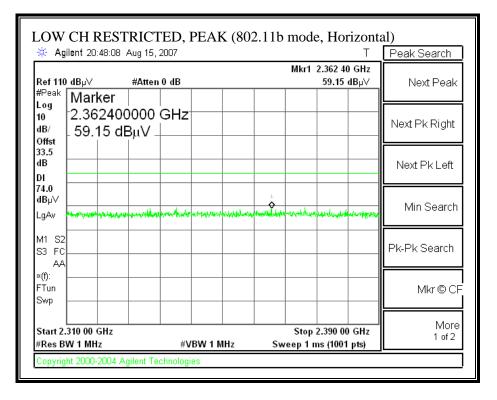
| Frequency Range | Field Strength Limit | Field Strength Limit |
|-----------------|----------------------|----------------------|
| (MHz)           | (uV/m) at 3 m        | (dBuV/m) at 3 m      |
| 30 - 88         | 100                  | 40                   |
| 88 - 216        | 150                  | 43.5                 |
| 216 - 960       | 200                  | 46                   |
| Above 960       | 500                  | 54                   |

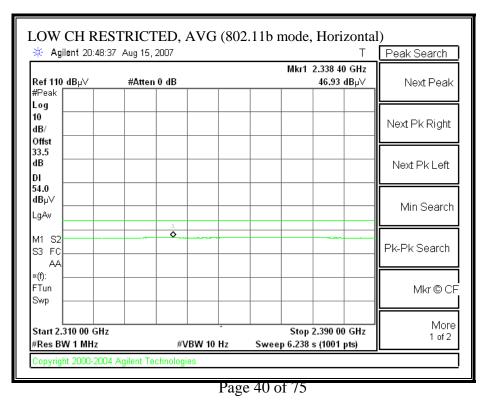
## TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

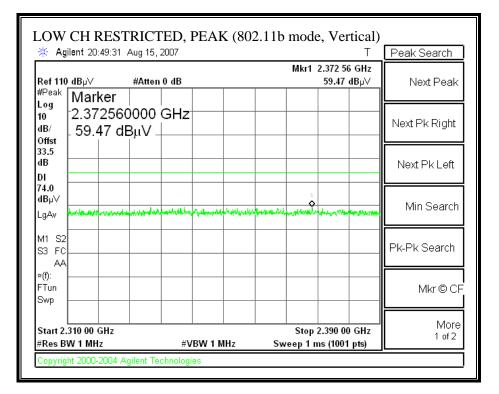
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

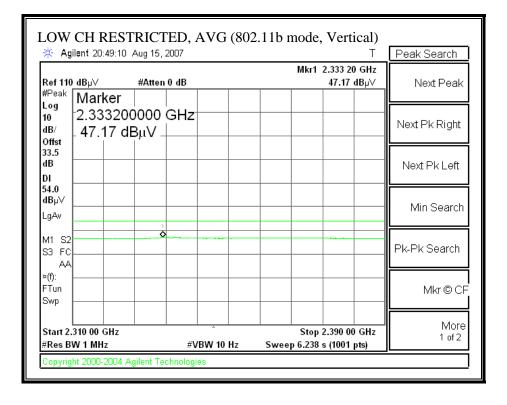

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

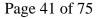

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 39 of 75

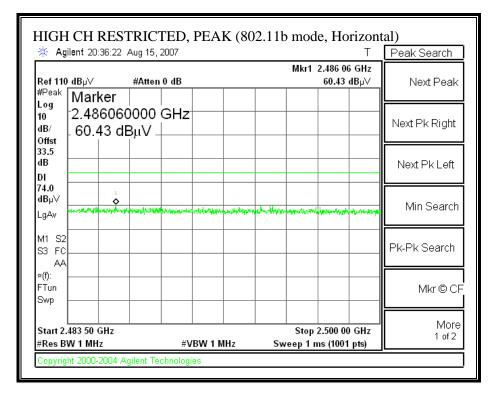
## 7.2.1. TRANSMITTER ABOVE 1 GHz FOR 2400 TO 2483.5 MHz BAND

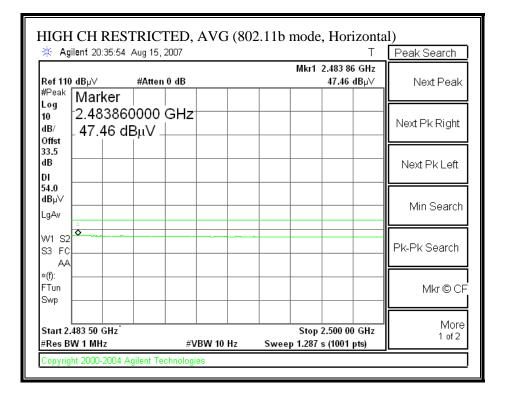

## RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)



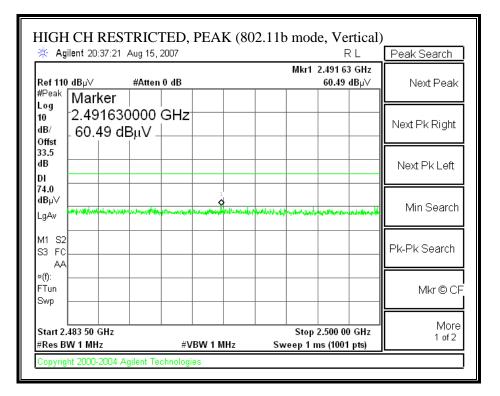

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000 FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

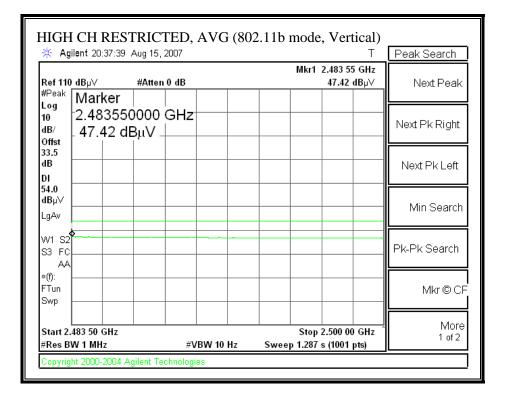

## RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)









## **RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)**



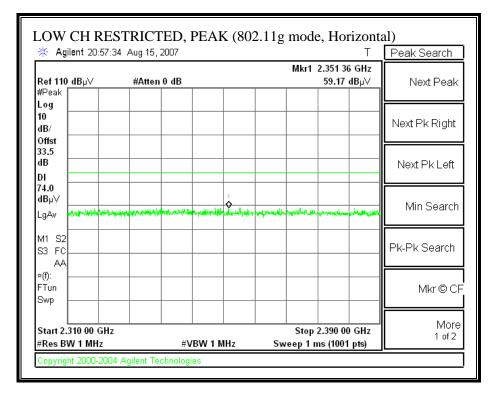


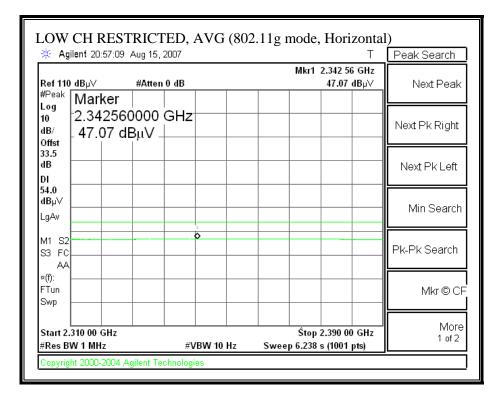



## RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)



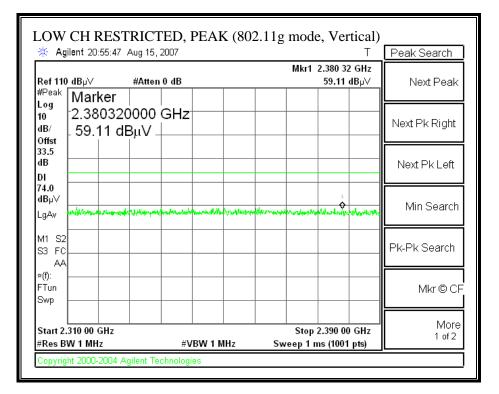


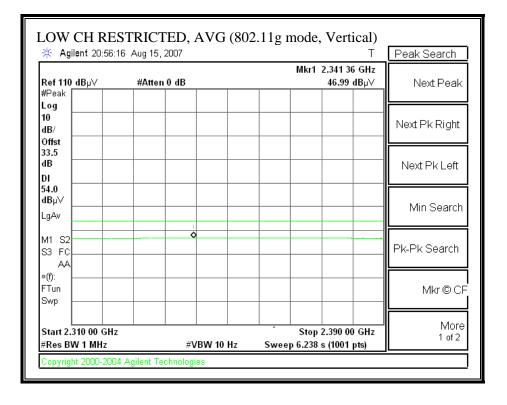




#### HARMONICS AND SPURIOUS EMISSIONS (b MODE)

| ate: 09        |                   | Devin Cha    | ng            |              |            |                |               |            |              |              |          |          |                |                |                                           |
|----------------|-------------------|--------------|---------------|--------------|------------|----------------|---------------|------------|--------------|--------------|----------|----------|----------------|----------------|-------------------------------------------|
|                | -                 | EUT only     | ug            |              |            |                |               |            |              |              |          |          |                |                |                                           |
|                | 3 Mode<br>1124 an |              |               |              |            |                |               |            |              |              |          |          |                |                |                                           |
| louel.         | 1124 au           | u 1125       |               |              |            |                |               |            |              |              |          |          |                |                |                                           |
| est Equ        | uipmen            | <u>t:</u>    |               |              |            |                |               |            |              |              |          |          |                |                |                                           |
| Н              | orn 1-'           | 18GHz        | Pre-ar        | nplifer      | 1-260      | SHz            | Pre-ampli     | fer 2      | 6-40GH:      | z            | Н        | orn > 18 | GHz            |                | Limit                                     |
| T60; S         | 5/N: 2238         | @3m .        | ▼ T144 M      | liteq 30     | 08A009     | 31 🖵           |               |            |              | -            |          |          |                | -              | FCC 15.209 🖵                              |
| - Hi Freq      | uency Cab         | les —        |               |              |            | _              | ,             |            |              | - ·          |          |          |                |                |                                           |
| :              | 2 foot            | cable        | 3             | footo        | able       |                | 12 foo        | ot ca      | ble          |              | HPF      | Re       | eject Filte    |                | <mark>x Measurements</mark><br>W=VBW=1MHz |
|                |                   |              |               |              |            | -              | B-5m Cha      | mber       | -            |              |          | • R      | 001            |                | ge Measurements                           |
|                |                   |              |               |              |            | •              |               |            |              |              |          |          |                | RBW=           | 1MHz ; VBW=10Hz                           |
| f              |                   |              | Read Avg.     | AF           | CL         | Amp            | Duty Cycle    |            | Peak         | Avg          | Pk Lim   | -        |                | Avg Mar        | Notes                                     |
| GHz            | (m)               | dBuV         | dBuV          | dB/m         | dB         | dB             | dB            | dB         | dBuV/m       | dBuV/m       | dBuV/m   | dBuV/m   | dB             | dB             | (V/H)                                     |
| .078           | 3.0               | 48.6         | 40.4          | 25.6         | 3.3        | -39.4          | 0.0           | 0.0        | 38.2         | 30.0         | 74       | 54       | -35.8          | -24.0          | V                                         |
| .188           | 3.0<br>3.0        | 51.5<br>49.7 | 46.1 38.6     | 25.9<br>33.0 | 3.5<br>7.1 | -39.2<br>-36.5 | 0.0<br>-4.4   | 0.0<br>0.0 | 41.7<br>53.3 | 36.2<br>37.8 | 74<br>74 | 54<br>54 | -32.3<br>-20.7 | -17.8<br>-16.2 | V                                         |
| .236           | 3.0               | 42.6         | 30.3          | 35.4         | 8.6        | -36.2          | -4.4          | 0.0        | 50.4         | 33.7         | 74       | 54       | -23.6          | -20.3          | v                                         |
| .078           | 3.0               | 48.5         | 38.9          | 25.6         | 3.3        | -39.4          | 0.0           | 0.0        | 38.1         | 28.5         | 74       | 54       | -35.9          | -25.5          | H                                         |
| .188           | 3.0<br>3.0        | 49.3<br>56.6 | 42.9<br>44.6  | 25.9<br>33.0 | 3.5<br>7.1 | -39.2<br>-36.5 | 0.0<br>-4.4   | 0.0<br>0.0 | 39.5<br>60.3 | 33.1<br>43.8 | 74<br>74 | 54<br>54 | -34.5<br>-13.7 | -20.9<br>-10.2 | <u>н</u><br>Н                             |
| .236           | 3.0               | 43.1         | 31.6          | 35.4         | 8.6        | -36.2          | -4.4          | 0.0        | 50.9         | 34.9         | 74       | 54       | -23.1          | -19.1          | H                                         |
| MID CH (2      | 2437MH:           | :)           |               |              |            |                |               |            |              |              |          |          |                |                |                                           |
| .078           | 3.0               | 49.4         | 41.1          | 25.6         | 3.3        | -39.4          | 0.0           | 0.0        | 38.9         | 30.7         | 74       | 54       | -35.1          | -23.3          | V                                         |
| 1.188<br>1.874 | 3.0<br>3.0        | 50.8<br>52.1 | 45.2<br>41.4  | 25.9<br>33.1 | 3.5<br>7.2 | -39.2<br>-36.5 | 0.0<br>-4.4   | 0.0<br>0.0 | 40.9<br>55.9 | 35.3<br>40.7 | 74<br>74 | 54<br>54 | -33.1<br>-18.1 | -18.7<br>-13.3 | V                                         |
| .311           | 3.0               | 43.5         | 31.9          | 35.5         | 8.6        | -36.2          | -4.4          | 0.0        | 51.4         | 35.4         | 74       | 54       | -22.6          | -18.6          | V                                         |
| .078           | 3.0               | 48.2         | 39.0          | 25.6         | 3.3        | -39.4          | 0.0           | 0.0        | 37.8         | 28.6         | 74       | 54       | -36.2          | -25.4          | H                                         |
| .188<br>.874   | 3.0<br>3.0        | 50.2<br>60.1 | 43.1 47.0     | 25.9<br>33.1 | 3.5<br>7.2 | -39.2<br>-36.5 | 0.0<br>-4.4   | 0.0<br>0.0 | 40.4<br>63.8 | 33.2<br>46.3 | 74<br>74 | 54<br>54 | -33.6<br>-10.2 | -20.8<br>-7.7  | <u>H</u>                                  |
| .311           | 3.0               | 43.3         | 32.2          | 35.5         | 8.6        | -36.2          | -4.4          | 0.0        | 51.2         | 35.7         | 74       | 54<br>54 | -22.8          | -18.3          | H                                         |
| II CH (24      | 62MHz)            |              |               |              |            |                | I             |            |              |              |          |          |                |                |                                           |
| .078           | 3.0               | <b>49.</b> 7 | 41.4          | 25.6         | 3.3        | -39.4          | 0.0           | 0.0        | 39.3         | 31.0         | 74       | 54       | -34.7          | -23.0          | V                                         |
| .188           | 3.0<br>3.0        | 50.6<br>52.3 | 41.4          | 25.9         | 3.5<br>7.2 | -39.2          | 0.0           | 0.0<br>0.0 | 40.7         | 31.6<br>40.8 | 74<br>74 | 54<br>54 | -33.3          | -22.4<br>-13.2 | V                                         |
| .924<br>.386   | 3.0               | 52.3<br>42.5 | 41.4 29.9     | 33.1<br>35.6 | 7.2<br>8.7 | -36.5<br>-36.2 | -4.4<br>-4.4  | 0.0        | 56.1<br>50.5 | 40.8<br>33.4 | 74       | 54<br>54 | -17.9<br>-23.5 | -13.2<br>-20.6 | v                                         |
| .078           | 3.0               | 49.3         | 40.0          | 25.6         | 3.3        | -39.4          | 0.0           | 0.0        | 38.8         | 29.6         | 74       | 54       | -35.2          | - <b>24.4</b>  | H                                         |
| .188           | 3.0               | 50.2         | 43.2          | 25.9         | 3.5        | -39.2          | 0.0           | 0.0        | 40.4         | 33.4         | 74       | 54       | -33.6          | -20.6          | <u>H</u>                                  |
| .924<br>.386   | 3.0<br>3.0        | 60.9<br>44.4 | 47.5<br>32.2  | 33.1<br>35.6 | 7.2<br>8.7 | -36.5<br>-36.2 | -4.4<br>-4.4  | 0.0<br>0.0 | 64.7<br>52.5 | 46.9<br>35.8 | 74<br>74 | 54<br>54 | -9.3<br>-21.5  | -7.1<br>-18.2  | H                                         |
|                |                   |              |               |              |            |                |               | 1          |              |              |          |          |                |                |                                           |
| ev. 4.12.7     | 7                 |              |               |              |            |                |               |            |              |              |          |          |                |                |                                           |
|                |                   |              |               |              |            |                |               |            |              |              |          |          |                |                |                                           |
|                | f                 | Measureme    | ent Frequency | y            |            | Amp            | Preamp Gain   |            |              |              |          | Avg Lim  | Average F      | ield Strengtl  | n Limit                                   |
|                | Dist              | Distance to  | Antenna       |              |            | D Corr         | Distance Corr | ect to     | 3 meters     |              |          | Pk Lim   | Peak Field     | l Strength Li  | mit                                       |
|                |                   | Analyzer R   | eading        |              |            | Avg            | Average Field | l Streng   | gth @ 3 m    |              |          | -        | -              | Average Li     |                                           |
|                | AF                | Antenna Fa   | ctor          |              |            | Peak           | Calculated Pe | ak Fiel    | d Strength   |              |          | Pk Mar   | Margin vs.     | Peak Limit     |                                           |

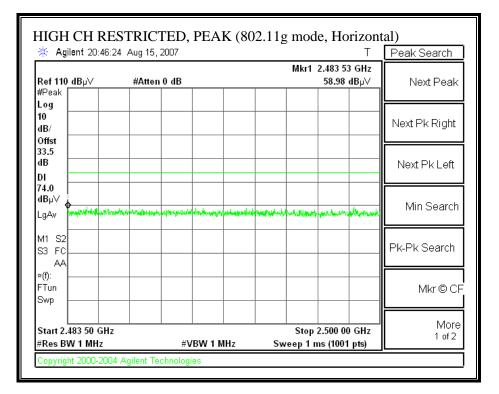
Page 44 of 75

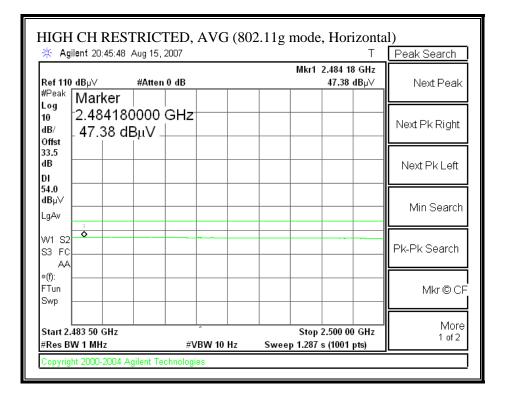

## RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)





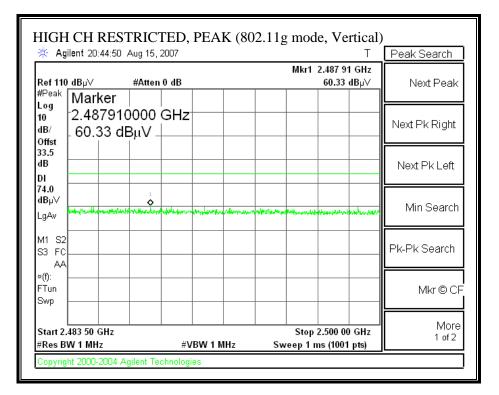


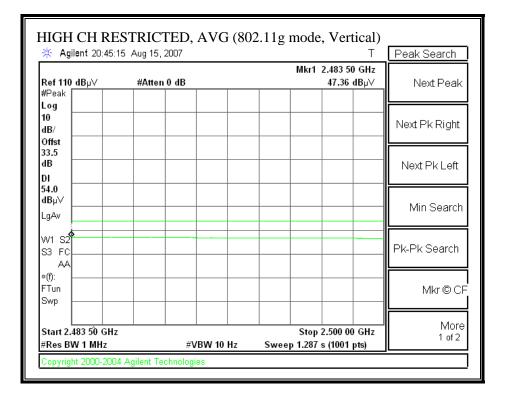


### RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

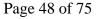








## RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)






## RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)



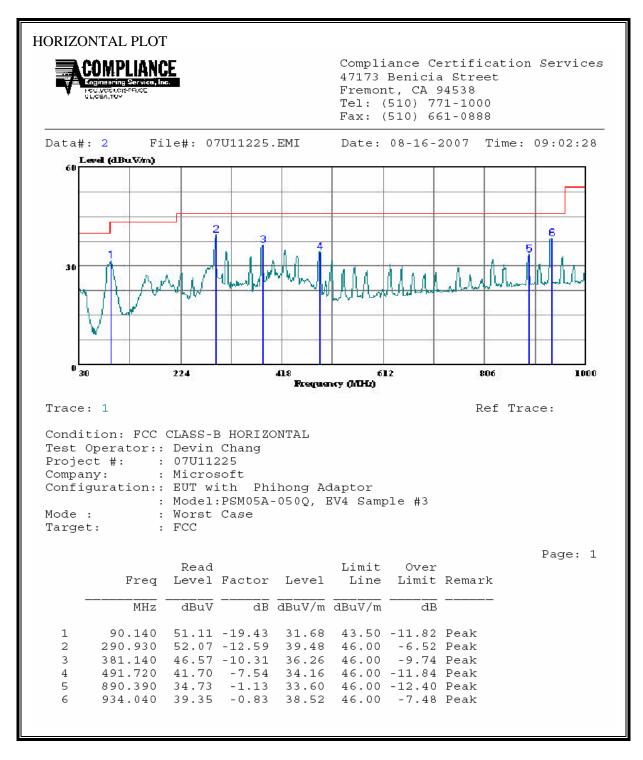




#### HARMONICS AND SPURIOUS EMISSIONS (g MODE)

|                  | uipmen             | -                                                    |                   |                     |            |                              |              |                   |                                            |               |                  |                   |                         | 1                                                               |                                                  |
|------------------|--------------------|------------------------------------------------------|-------------------|---------------------|------------|------------------------------|--------------|-------------------|--------------------------------------------|---------------|------------------|-------------------|-------------------------|-----------------------------------------------------------------|--------------------------------------------------|
|                  | orn 1-<br>S/N: 223 | 18GHz<br>8 @3m                                       |                   | nplifer<br>liteq 30 |            |                              | Pre-am       | plifer            | 26-40GH                                    | z             | H                | orn > 180         | GHz                     | +                                                               | Limit<br>FCC 15.209 -                            |
|                  | quency Cal         |                                                      |                   | foot c              | able       |                              | 121          | foot c            | able                                       |               | HPF              | De                | ject Filte              | _ Peak                                                          | Measurements                                     |
|                  | 21000              | - cabic                                              |                   |                     |            | •                            | B-5m C       |                   |                                            |               | nir              |                   | 001                     | RBV<br>Avera                                                    | W=VBW=1MHz<br>ge Measurements<br>IMHz ; VBW=10Hz |
| f<br>GHz         | Dist<br>(m)        | Read Pk<br>dBuV                                      | Read Avg.<br>dBuV | AF<br>dB/m          | CL<br>dB   | Amp<br>dB                    | D Corr<br>dB | Fltr<br>dB        | Peak<br>dBuV/m                             | Avg<br>dBnV/m | Pk Lim<br>dBuV/m | Avg Lim<br>dBuV/m | Pk Mar<br>dB            | Avg Mar<br>dB                                                   | Notes<br>(V/H)                                   |
| .O CH (2         | 412MHz             | )                                                    |                   |                     |            |                              |              |                   |                                            |               |                  |                   |                         |                                                                 |                                                  |
| .188<br>.824     | 3.0<br>3.0         | 51.8<br>45.8                                         | 46.7<br>30.9      | 25.9<br>33.0        | 3.5<br>7.1 | -39.2<br>-36.5               | 0.0<br>-4.4  | 0.0<br>0.0        | 41.9<br>49.5                               | 36.8<br>30.1  | 74<br>74         | 54<br>54          | -32.1<br>-24.5          | -17.2<br>-23.9                                                  | V                                                |
| .824             | 3.0                | 45.8<br>48.7                                         | 30.9<br>41.4      | 33.0<br>25.9        | 7.1<br>3.5 | -30.5<br>-39.2               | -4.4<br>0.0  | 0.0               | 49.5<br>38.8                               | 30.1<br>31.6  | 74<br>74         | 54<br>54          | -24.5<br>-35.2          | -23.9<br>-22.4                                                  | <br>Н                                            |
| .824             | 3.0                | 54.1                                                 | 36.2              | 33.0                | 7.1        | -36.5                        | -4.4         | 0.0               | 57.8                                       | 35.4          | 74               | 54                | -16.2                   | -18.6                                                           | H                                                |
|                  | 2437MH             |                                                      |                   |                     |            |                              |              |                   |                                            |               |                  |                   |                         |                                                                 |                                                  |
| .188             | 3.0                | 50.8                                                 | 45.6              | 25.9                | 3.5        | -39.2                        | 0.0          | 0.0               | 40.9                                       | 35.8          | 74               | 54                | -33.1                   | -18.2                                                           | v                                                |
| .874<br>.188     | 3.0<br>3.0         | 46.8<br>48.9                                         | 31.5<br>41.3      | 33.1<br>25.9        | 7.2<br>3.5 | -36.5<br>-39.2               | -4.4<br>0.0  | 0.0<br>0.0        | 50.5<br>39.0                               | 30.8<br>31.5  | 74<br>74         | 54<br>54          | -23.5<br>-35.0          | -23.2<br>-22.5                                                  | V<br>н                                           |
| .100             | 3.0                | 48.9<br>56.0                                         | 37.4              | 23.9<br>33.1        | 3.5<br>7.2 | -39.2                        | -4.4         | 0.0               | 59.8                                       | 36.7          | 74               | 54<br>54          | -35.0                   | -17.3                                                           | H                                                |
|                  | 462MHz)            |                                                      |                   |                     |            |                              |              |                   |                                            |               |                  |                   |                         |                                                                 |                                                  |
| п Сн (24<br>.188 | 462MHz)<br>3.0     | 50.2                                                 | 45.8              | 25.9                | 3.5        | -39.2                        | 0.0          | 0.0               | 40.3                                       | 35.9          | 74               | 54                | -33.7                   | -18.1                                                           | v                                                |
| .924             | 3.0                | 48.8                                                 | 32.7              | 33.1                | 7.2        | -36.5                        | -4.4         | 0.0               | 52.7                                       | 32.0          | 74               | 54                | - <b>21.3</b>           | -22.0                                                           | v                                                |
| .188             | 3.0                | 49.1                                                 | 41.7              | 25.9                | 3.5        | -39.2                        | 0.0          | 0.0               | 39.3                                       | 31.8          | 74               | 54<br>54          | -34.7                   | -22.2                                                           | H                                                |
| .924             | 3.0                | 57.9                                                 | 39.5              | 33.1                | 7.2        | -36.5                        | -4.4         | 0.0               | 61.7                                       | 38.9          | 74               | 54                | -12.3                   | -15.1                                                           | Н                                                |
| tev. 4.12.       | f<br>Dist          | Measureme<br>Distance to<br>Analyzer R<br>Antenna Fa | eading            | 4                   |            | Amp<br>D Corr<br>Avg<br>Peak | Average      | Correc<br>Field S | ct to 3 mete<br>Strength @<br>c Field Stre | 3 m           |                  | Pk Lim<br>Avg Mar | Peak Field<br>Margin vs | 7ield Strength<br>1 Strength Li<br>. Average Li<br>. Peak Limit | mit                                              |
|                  | CL                 | Cable Loss                                           |                   |                     |            | HPF                          | High Pas     |                   |                                            | 5             |                  |                   | <u>.</u>                |                                                                 |                                                  |
|                  |                    |                                                      |                   |                     |            |                              | 0            |                   |                                            |               |                  |                   |                         |                                                                 |                                                  |

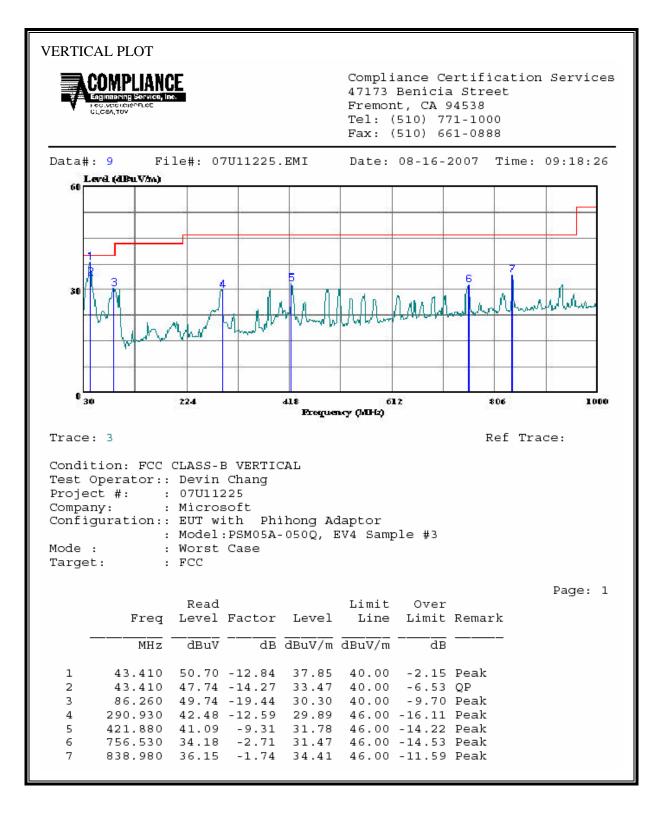
Page 49 of 75


#### HARMONICS AND SPURIOUS EMISSIONS (RX MODE)

| 2 foot ca<br>f Dist R | able<br>•                                                 | 3 f      | foot ca                   | able       |                              | 121          | Horn 1-18GHz         Pre-amplifer 1-26GHz         Pre-amplifer 26-40GHz         Horn > 18GHz         Limit           T60; S/N: 2238 @3m         T144 Miteg 3008A00931         +         +         FCC 15.209         + |                                            |               |               |                   |                          |                                                           |                                           |  |  |
|-----------------------|-----------------------------------------------------------|----------|---------------------------|------------|------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|---------------|-------------------|--------------------------|-----------------------------------------------------------|-------------------------------------------|--|--|
| Hz (m)                | •                                                         |          | 2 foot cable 3 foot cable |            |                              |              |                                                                                                                                                                                                                        |                                            |               | REJECT FILTER |                   |                          | k Measurements<br>W=VBW=1MHz                              |                                           |  |  |
| Hz (m)                | I DI. D                                                   |          |                           |            | •                            | B-5m C       | hambe                                                                                                                                                                                                                  | er 🔻                                       |               |               | •                 |                          |                                                           | <b>ge Measurements</b><br>1MHz ; VBW=10Hz |  |  |
|                       | dBuV                                                      | <u> </u> | AF<br>dB/m                | CL<br>dB   | Amp<br>dB                    | D Corr<br>dB | Fltr<br>dB                                                                                                                                                                                                             | Peak<br>dBuV/m                             | Avg<br>dBuV/m | 1             | Avg Lim<br>dBuV/m | Pk Mar<br>dB             | Avg Mar<br>dB                                             | Notes<br>(V/H)                            |  |  |
|                       | ĺ                                                         |          |                           |            |                              |              |                                                                                                                                                                                                                        |                                            |               |               |                   |                          |                                                           | <u> </u>                                  |  |  |
| 8 3.0<br>6 3.0        | 49.9<br>49.7                                              |          | 25.9<br>27.2              | 3.5<br>4.2 | -39.2<br>-38.5               | 0.0<br>0.0   | 0.0<br>0.0                                                                                                                                                                                                             | 40.0<br>42.7                               | 34.8<br>36.5  | 74<br>74      | 54<br>54          | -34.0<br>-31.3           | -19.2<br>-17.5                                            | <u>v</u>                                  |  |  |
| 8 3.0                 | 49.2                                                      |          | 25.9                      | 3.5        | -39.2                        | 0.0          | 0.0                                                                                                                                                                                                                    | 39.4                                       | 33.7          | 74<br>74      | 54<br>54          | -34.6                    | -17.3                                                     | H                                         |  |  |
| Dist Di<br>Read Ai    | leasurement<br>istance to A<br>nalyzer Rea<br>ntenna Fact | ding     |                           |            | Amp<br>D Corr<br>Avg<br>Peak | Average      | Correc<br>Field S                                                                                                                                                                                                      | ct to 3 mete<br>Strength @<br>c Field Stre | 3 m           |               | Pk Lim<br>Avg Mar | Peak Field<br>Margin vs. | ield Strengt<br>I Strength Li<br>Average Li<br>Peak Limit | imit<br>imit                              |  |  |
| CL C                  | able Loss                                                 |          |                           |            | HPF                          | High Pas     | s Filter                                                                                                                                                                                                               |                                            |               |               |                   |                          |                                                           |                                           |  |  |

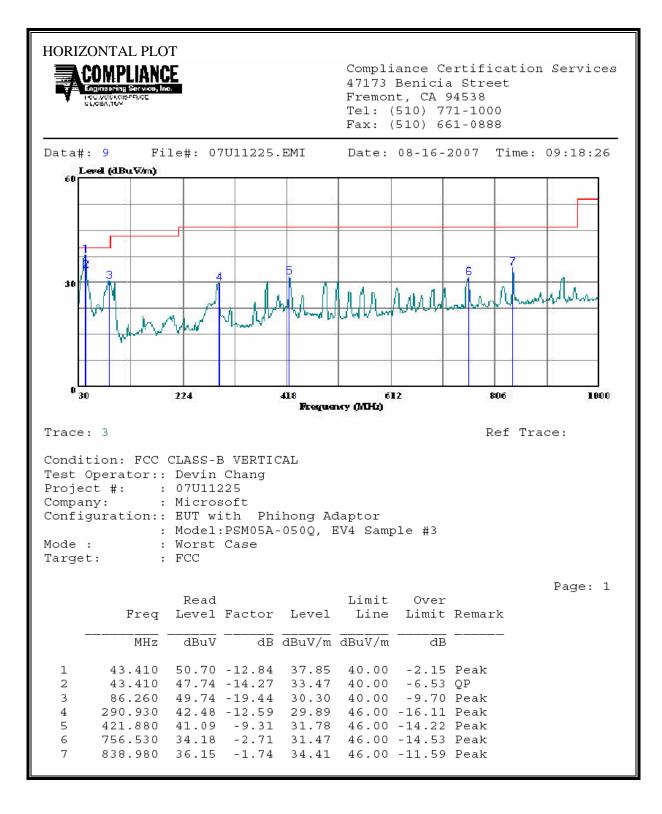
Page 50 of 75

## 7.2.2. RADIATED EMISSIONS BELOW 1 GHz


#### SPURIOUS EMISSIONS 30 TO 1000 MHz (PHIHONG ADAPTOR, HORIZONTAL)

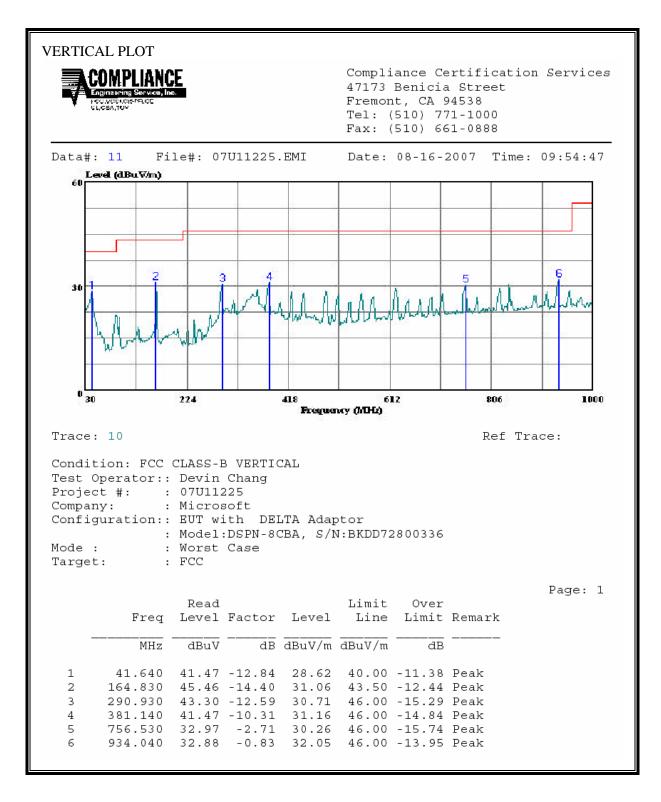


Page 51 of 75


COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000 FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

## SPURIOUS EMISSIONS 30 TO 1000 MHz (PHIHONG ADAPTOR, VERTICAL)

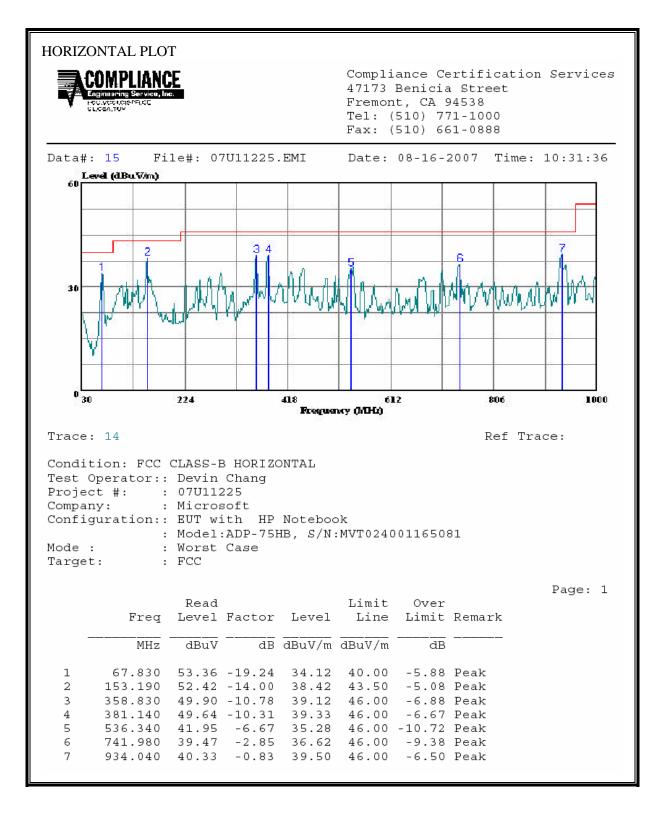



Page 52 of 75

## SPURIOUS EMISSIONS 30 TO 1000 MHz (DELTA ADAPTOR, HORIZONTAL)

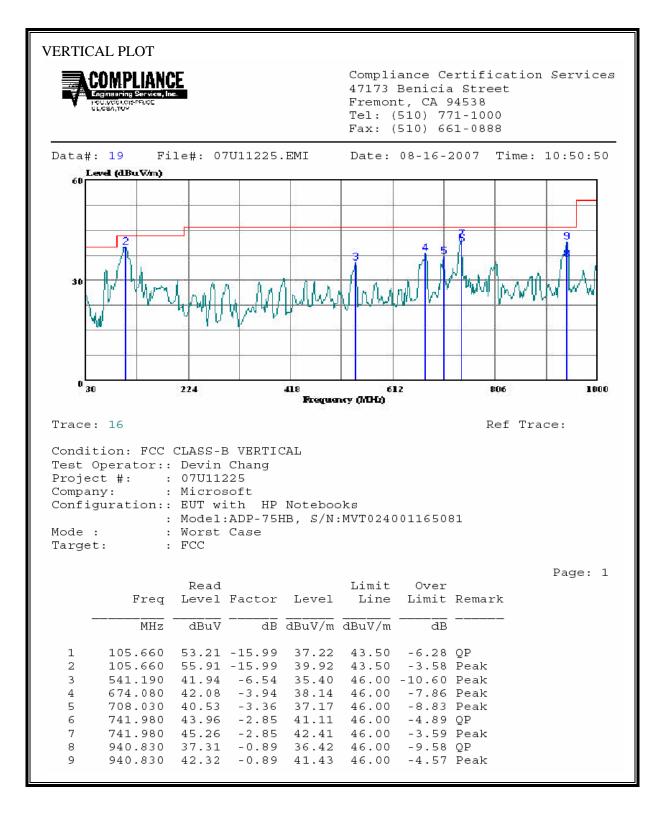


Page 53 of 75


## SPURIOUS EMISSIONS 30 TO 1000 MHz (DELTA ADAPTOR, VERTICAL)



Page 54 of 75


COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000 FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

## SPURIOUS EMISSIONS 30 TO 1000 MHz (EUT WITH NOTEBOOK, HORIZONTAL)



Page 55 of 75

## SPURIOUS EMISSIONS 30 TO 1000 MHz (EUT WITH NOTEBOOK, VERTICAL)



Page 56 of 75

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000 FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

# 7.3. POWERLINE CONDUCTED EMISSIONS

## LIMIT

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

| Frequency of Emission (MHz) | Conducted I | Limit (dBuV) |
|-----------------------------|-------------|--------------|
|                             | Quasi-peak  | Average      |
| 0.15-0.5                    | 66 to 56    | 56 to 46 *   |
| 0.5-5                       | 56          | 46           |
| 5-30                        | 60          | 50           |

Decreases with the logarithm of the frequency.

## TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

## **RESULTS**

No non-compliance noted.

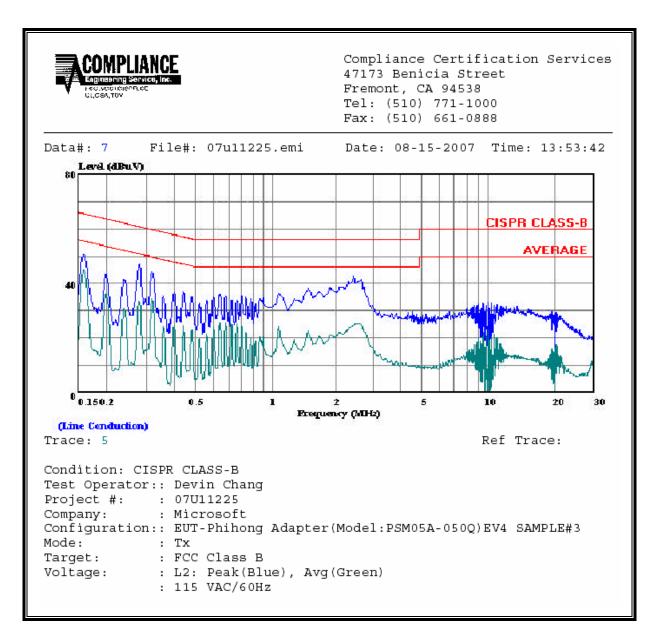
Page 57 of 75

1


#### **<u>6 WORST EMISSIONS</u>**

#### PHIHONG ADAPTOR

|           |           | CONDUC    | TED EMISS | IONS D. | ATA (115 | VAC 60H | z)      |         |        |
|-----------|-----------|-----------|-----------|---------|----------|---------|---------|---------|--------|
| Freq.     |           | Reading   |           | Closs   | Limit    | FCC_B   | Marg    | çin     | Remark |
| (MHz)     | PK (dBuV) | QP (dBuV) | AV (dBuV) | (dB)    | QP       | AV      | QP (dB) | AV (dB) | L1/L2  |
| 0.16      | 48.59     |           | 37.49     | 0.00    | 65.52    | 55.52   | -16.93  | -18.03  | L1     |
| 0.32      | 40.31     |           | 34.05     | 0.00    | 59.71    | 49.71   | -19.40  | -15.66  | L1     |
| 2.65      | 42.56     |           | 23.80     | 0.00    | 56.00    | 46.00   | -13.44  | -22.20  | L1     |
| 0.16      | 50.49     |           | 45.01     | 0.00    | 65.52    | 55.52   | -15.03  | -10.51  | L2     |
| 0.28      | 46.86     |           | 33.18     | 0.00    | 60.82    | 50.82   | -13.96  | -17.64  | L2     |
| 2.54      | 42.69     |           | 25.33     | 0.00    | 56.00    | 46.00   | -13.31  | -20.67  | L2     |
| 6 Worst ] | Data      |           |           |         |          |         |         |         |        |


Page 58 of 75

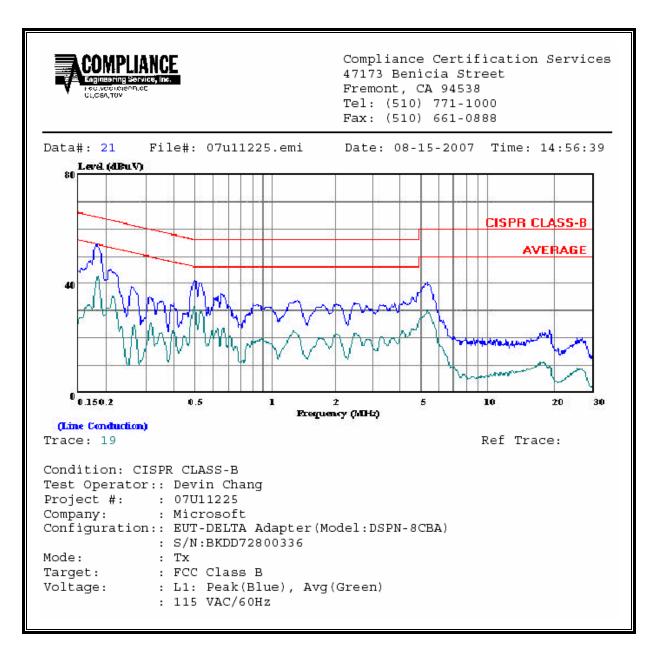
## LINE 1 RESULTS



Page 59 of 75

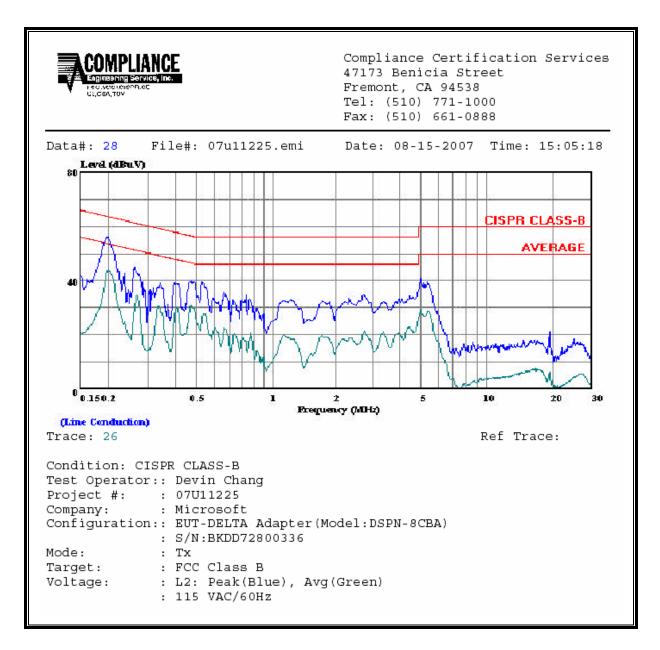
## LINE 2 RESULTS




Page 60 of 75

## DETLA ADAPTOR

|           |           | CONDUC    | TED EMISS | IONS D. | ATA (115 | VAC 60H | z)      |         |        |
|-----------|-----------|-----------|-----------|---------|----------|---------|---------|---------|--------|
| Freq.     |           | Reading   |           | Closs   | Limit    | FCC_B   | Marg    | gin     | Remark |
| (MHz)     | PK (dBuV) | QP (dBuV) | AV (dBuV) | (dB)    | QP       | AV      | QP (dB) | AV (dB) | L1/L2  |
| 0.18      | 53.92     |           | 42.56     | 0.00    | 64.39    | 54.39   | -10.47  | -11.83  | L1     |
| 0.50      | 41.13     |           | 30.49     | 0.00    | 56.02    | 46.02   | -14.89  | -15.53  | L1     |
| 5.51      | 39.36     |           | 29.99     | 0.00    | 60.00    | 50.00   | -20.64  | -20.01  | L1     |
| 0.20      | 55.95     |           | 43.46     | 0.00    | 63.69    | 53.69   | -7.74   | -10.23  | L2     |
| 0.26      | 45.19     |           | 32.22     | 0.00    | 61.37    | 51.37   | -16.18  | -19.15  | L2     |
| 5.08      | 41.72     |           | 29.29     | 0.00    | 60.00    | 50.00   | -18.28  | -20.71  | L2     |
| 6 Worst I | <br>Data  |           |           |         |          |         |         |         |        |


Page 61 of 75

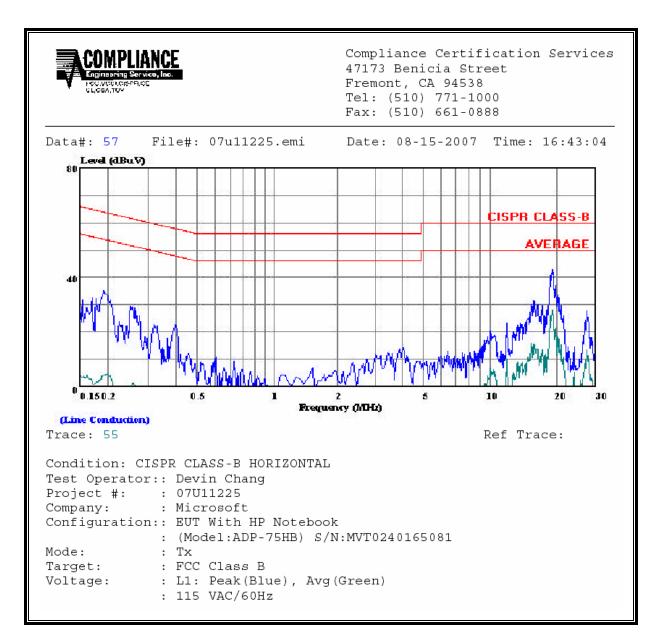
## LINE 1 RESULTS



Page 62 of 75

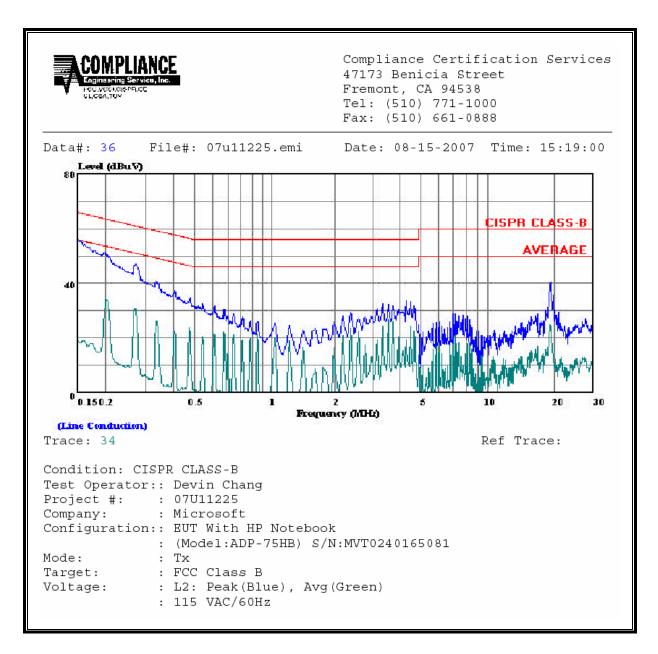
## LINE 2 RESULTS




Page 63 of 75

## EUT WITH NOTEBOOK

| Freq.     |           | Reading   | TED EMISS | Closs | Limit | FCC B |         |        |                 |
|-----------|-----------|-----------|-----------|-------|-------|-------|---------|--------|-----------------|
| (MHz)     | PK (dBuV) | QP (dBuV) | AV (dBuV) |       | QP    | AV    | QP (dB) |        | Remark<br>L1/L2 |
| 0.19      | 35.37     |           | 4.64      | 0.00  | 63.99 | 53.99 | -28.62  | -49.35 | L1              |
| 15.97     | 30.78     |           | 15.60     | 0.00  | 60.00 | 50.00 | -29.22  | -34.40 | L1              |
| 19.22     | 42.93     |           | 28.00     | 0.00  | 60.00 | 50.00 | -17.07  | -22.00 | L1              |
| 0.20      | 55.63     |           | 33.90     | 0.00  | 63.53 | 53.53 | -7.90   | -19.63 | L2              |
| 4.38      | 33.43     |           | 24.28     | 0.00  | 56.00 | 46.00 | -22.57  | -21.72 | L2              |
| 19.33     | 40.41     |           | 24.84     | 0.00  | 60.00 | 50.00 | -19.59  | -25.16 | L2              |
| 6 Worst I | Data      |           |           |       |       |       |         |        |                 |


Page 64 of 75

#### LINE 1 RESULTS



Page 65 of 75

## LINE 2 RESULTS



Page 66 of 75

# 7.4. MAXIMUM PERMISSIBLE EXPOSURE

#### FCC RULES

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

|                          |                                     |                                     | ( )                       |                             |
|--------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------------------|
| Frequency range<br>(MHz) | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time<br>(minutes) |
| (A) Lim                  | nits for Occupational               | l/Controlled Exposu                 | res                       |                             |
| 0.3–3.0                  | 614                                 | 1.63                                | *(100)                    | 6                           |
| 3.0–30                   | 1842/f                              | 4.89/f                              | *(900/f2)                 | 6                           |
| 30–300                   | 61.4                                | 0.163                               | 1.0                       | 6                           |
| 300–1500                 |                                     |                                     | f/300                     | 6                           |
| 1500–100,000             |                                     |                                     | 5                         | 6                           |
| (B) Limits               | for General Populati                | on/Uncontrolled Ex                  | posure                    |                             |
| 0.3–1.34                 | 614                                 | 1.63                                | *(100)                    | 30                          |
| 1.34–30                  | 824 <i>/</i> f                      | 2.19/f                              | *(180/f <sup>2</sup> )    | 30                          |

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

#### TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

| Frequency range<br>(MHz)           | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time<br>(minutes) |
|------------------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------------------|
| 30–300<br>300–1500<br>1500–100,000 | 27.5                                | 0.073                               | 0.2<br>f/1500<br>1.0      | 30<br>30<br>30              |

f = frequency in MHz
 \* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 67 of 75

## IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

## Table 5

# Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

| 1<br>Frequency<br>(MHz) | 2<br>Electric Field<br>Strength; rms<br>(V/m) | 3<br>Magnetic Field<br>Strength; rms<br>(A/m) | 4<br>Power<br>Density<br>(W/m <sup>2</sup> ) | 5<br>Averaging<br>Time<br>(min) |
|-------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------|
| 0.003–1                 | 280                                           | 2.19                                          |                                              | 6                               |
| 1–10                    | 280/f                                         | 2.19/ <i>f</i>                                |                                              | 6                               |
| 10–30                   | 28                                            | 2.19/ <i>f</i>                                |                                              | 6                               |
| 30–300                  | 28                                            | 0.073                                         | 2*                                           | 6                               |
| 300–1 500               | 1.585 <i>f</i> <sup>0.5</sup>                 | 0.0042f <sup>0.5</sup>                        | f/150                                        | 6                               |
| 1 500–15 000            | 61.4                                          | 0.163                                         | 10                                           | 6                               |
| 15 000–150 000          | 61.4                                          | 0.163                                         | 10                                           | 616 000 /f <sup>1.2</sup>       |
| 150 000–300 000         | 0.158f <sup>0.5</sup>                         | 4.21 x 10 <sup>-4</sup> f <sup>0.5</sup>      | 6.67 x 10 <sup>-5</sup> f                    | 616 000 /f <sup>1.2</sup>       |

\* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m<sup>2</sup> is equivalent to 1 mW/cm<sup>2</sup>.
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 68 of 75

## **CALCULATIONS**

Given

 $E = \sqrt{(30 * P * G)} / d$ 

and

 $S = E^{2}/3770$ 

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

 $d = 0.282 * 10 \wedge ((P + G) / 20) / \sqrt{S}$ 

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P+G)} / 10) / (d^2)$ 

The power density in units of mW/cm<sup>2</sup> is converted to units of W/m<sup>2</sup> by multiplying by a factor of 10.

Page 69 of 75

## LIMITS

From FCC 1.1310 Table 1 (B), the maximum value of S =  $1.0 \text{ mW/cm}^2$ 

From IC Safety Code 6, Section 2.2 Table 5 Column 4,  $S = 10 \text{ W/m}^2$ 

## **RESULTS**

| Mode    | Band    | MPE      | Output | Antenna | FCC Power | <b>IC Power</b> |
|---------|---------|----------|--------|---------|-----------|-----------------|
|         |         | Distance | Power  | Gain    | Density   | Density         |
|         |         | (cm)     | (dBm)  | (dBi)   | (mW/cm^2) | (W/m^2)         |
| 802.11b | 2.4 GHz | 20.0     | 13.49  | 1.00    | 0.00559   | 0.06            |
| 802.11g | 2.4 GHz | 20.0     | 11.39  | 1.00    | 0.00345   | 0.03            |

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 70 of 75