

Engineering Test Report No. 2300550-02			
Report Date	June 16, 2023		
Manufacturer Name	Winegard Company		
Manufacturer Address	2736 Mt Pleasant St Burlington, IA 52601		
Product Name	BLE Sensor		
Model Nos.	HS-PIR1, HS-H2O1, HS-CC01, and HS	S-TMP1	
Date Received	June 12, 2023		
Test Dates	June 12, 2023 through June 16, 2023		
Specifications	FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B Innovation, Science, and Economic Development Canada, ICES-003 FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 Innovation, Science, and Economic Development Canada, RSS-GEN Innovation, Science, and Economic Development Canada, RSS-247		
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107	
Signature	Javin Condenas		
Tested by	Javier Cardenas		
Signature	Kaymond J Klouda,		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illi	nois – 44894	
PO Number	P539046-00		
of our name or trademark, with respect to the test sat of the quality or characteri specifically and expressly upon the information that material error or omission specifically address the iss	is permitted only with our prior written permiss mples identified herein. The results set forth in stics of the lot from which a test sample was to noted. Our report includes all of the tests required you provided to us. You have 60 days from dat caused by our negligence, provided, however sue you wish to raise. A failure to raise such is	eport to or for any other person or entity, or use ssion. This report sets forth our findings solely in this report are not indicative or representative taken or any similar or identical product unless uested by you and the results thereof based ate of issuance of this report to notify us of any r, that such notice shall be in writing and shall assue within the prescribed time shall constitute is conducted and the correctness of the report	
This report shall not be rep	produced, except in full, without the written ap	proval of Elite Electronic Engineering Inc.	
	g Incorporated certifies that the information c	ontained in this report was obtained under ederal Regulations" Title 47 Part 15, Subpart C.	

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	.3
2.	Introduction	.4
2.1.	Scope of Tests	.4
2.2.	Purpose	.4
2.3.	Identification of the EUT	.4
3.	Power Input	.4
4.	Grounding	.4
5.	Support Equipment	.4
6.	Interconnect Leads	
7.	Modifications Made to the EUT	.5
8.	Modes of Operation	.5
9.	Test Specifications	.5
10.	Test Plan	
11.	Deviation, Additions to, or Exclusions from Test Specifications	.6
12.	Laboratory Conditions	.6
13.	Summary	.6
14.	Sample Calculations	
15.	Statement of Conformity	
16.	Certification	
17.	Photographs of EUT	. 8
18.	Equipment List	
19.	Block Diagram of Test Setup	
20.	Part 15B Radiated Emissions	
22.	Case Spurious Radiated Emissions	
23.	Scope of Accreditation	54

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
-	20 JUN 2023	Initial Release of Engineering Test Report No. 2300550-02

2. Introduction

2.1. Scope of Tests

This document presents the results of a limited series of radiated emissions and case spurious emissions and tests that were performed on four (4) Winegard Company BLE Sensors, Model Nos. HS-PIR1, HS-H2O1, HS-CC01, and HS-TMP1 (hereinafter referred to as the Equipment Under Test (EUT)). The EUTs were manufactured and submitted for testing by Winegard Company located in Burlington, IA.

2.2. Purpose

The test series was performed to determine if the EUTs meet the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, §15.109 and Subpart C, §15.247 for a Digital Modulation intentional radiator operating within the 2400 – 2483.5MHz band.

The test series was also performed to determine if the EUTs meet the RF emission requirements of the ICES-003 specification, Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-Gen and Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-247 for a Digital Modulation intentional radiator operating within the 2400 – 2483.5MHz band.

Testing was performed in accordance with ANSI C63.4-2014 and ANSI C63.10-2013.

2.3. Identification of the EUT

The EUTs were identified as follows:

EUT Identification				
Product Description	BLE Sensor			
Model/Part Nos.	HS-PIR1, HS-H2O1, HS-CC01, and HS-TMP1			
Serial Nos.	Var1, Var2, Var3 and Var4			
Size of EUT	4.5cm Length x 6.0cm Width x 2.0cm depth			
Software/Firmware Version	Version 20230606			
Device Type	Digitally Modulated Transmission Device			
Band of Operation	2400 – 2483.5MHz			

The EUTs listed above were used throughout the test series.

3. Power Input

The EUTs were powered by 3VDC from an internal lithium battery.

4. Grounding

The EUTs were not connected to ground.

5. Support Equipment

The EUTs were submitted for testing along with the following support equipment:

Description	Model #	S/N
Laptop	NA	NA

6. Interconnect Leads

The following interconnect cables were submitted with the test item:

Item	Description
UART to USB	Connects laptop to EUT for radio configuration

7. Modifications Made to the EUT

No modifications were made to the EUTs during the testing.

8. Modes of Operation

The EUTs and all peripheral equipment were energized. Each unit was programmed to transmit in one of the following modes:

Mode	Description		
Тх	Bluetooth: - Continuous Tx at 2402MHz, Power Setting = 4dBm - Continuous Tx at 2440MHz, Power Setting = 4dBm - Continuous Tx at 2480MHz, Power Setting = 4dBm		
Standby	EUT was powered and the Bluetooth radio was configured to receive across the 2.4GHz to 2.4835GHz range.		

9. Test Specifications

The tests were performed to selected portions of, and in accordance with, the test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart B
- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division, Guidance For Compliance Measurements On Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 April 2, 2019 KDB 558074 D01v05r02
- RSS-Gen Issue 5, February 2020, Amendment 2, Innovation, Science, and Economic Development Canada, "General Requirements for Compliance of Radio Apparatus"
- RSS-247 Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Winegard Company and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science,

and Economic Development Canada, ICES-003, FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247, Innovation, Science, and Economic Development Canada, RSS-247, and ANSI C63.4-2014 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value
Temperature	23°C
Relative Humidity	29%
Atmospheric Pressure	1005mb

13. Summary

The following EMC tests were performed, and the results are shown below:

Test Description	Requirements	Test Method	Results	
Part 15B Radiated Emissions	FCC 15.109 ICES-003	ANSI C63.4:2014	Conforms	
Case Spurious Radiated Emissions	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Conforms	

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$.

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (- PA (dB)) + DC (dB)$

To convert the Field Strength dB μ V/m term to μ V/m, the dB μ V/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in μ V/m terms.

Formula 2: FS (μ V/m) = AntiLog [(FS (dB μ V/m))/20]

15. Statement of Conformity

The Winegard Company BLE Sensors, Model Nos. HS-PIR1, HS-H2O1, HS-CC01 and HS-TMP1, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247.

16. Certification

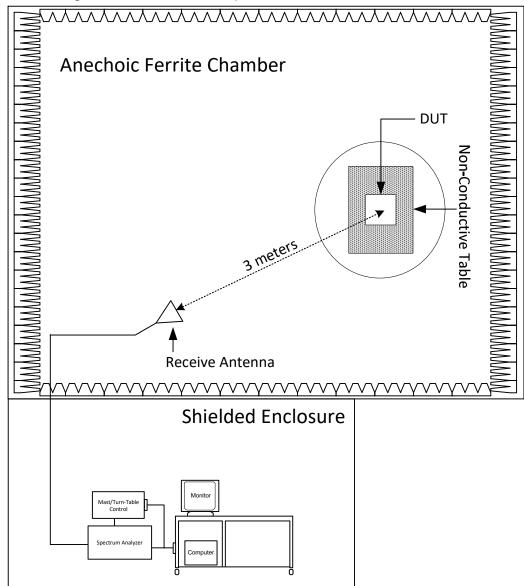
Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained

under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUTs as received by the customer on the test date specified. Any electrical or mechanical modifications made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUTs

Photo removed for short-term confidentiality purposes.
HS-PIR1
Photo removed for short-term confidentiality purposes.
HS-H2O1

F	Photo removed for short-term confidentiality purposes.
	HS-CC01
F	Photo removed for short-term confidentiality purposes.
	HS-TMP1


18. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW0	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-30-20G20R6G	PL2926/0646	20GHZ-26.5GHZ	9/21/2022	9/21/2023
APW14	PREAMPLIFIER	PLANAR	PE2-35-120-5R0- 10-12-SFF	PL22671	1-20GHz	9/21/2022	9/21/2023
GSF0	VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	260452	9kHz to 6GHz	9/2/2022	9/2/2024
NHG1	STANDARD GAIN HORN ANTENNA	NARDA	638		18-26.5GHZ	NOTE 1	
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	11/17/2022	11/17/2024
NWQ1	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS-LINDGREN	3117	66655	1GHZ-18GHZ	5/26/2022	5/26/2024
NWQ2	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66659	1GHZ-18GHZ	4/27/2022	4/27/2024
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	4/10/2023	4/10/2024
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	12/8/2022	12/8/2023
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
T1E19	10DB 25W ATTENUATOR	WEINSCHEL	46-10-43	CM5687	DC-18GHZ	5/18/2022	5/18/2024
T2SG	20DB 25W ATTENUATOR	WEINSCHEL	46-20-34	CD5016	DC-18GHZ	1/4/2022	1/4/2024
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE			N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XPQ4	HIGH PASS FILTER	K&L MICROWAVE	11SH10- 4800/X20000-O/O	1	4.8-20GHZ	9/7/2021	9/7/2023

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Part 15B Radiated Emissions

EUT Information								
Manufacturer	Winegard Company							
Product	BLE Sensor							
Model No.	HS-PIR1, HS-H2O1, HS-CC01 and HS-TMP1							
Serial No.	Var1, Var2, Var3 and Var4							
Mode	Standby							

	Test Site Information								
Setup Format	Tabletop								
Height of Support	N/A								
Type of Test Site	Semi-Anechoic Chamber								
Test Site Used	R29F								
Type of Antennas Used	Below 1GHz: Bilog (or equivalent)								
	Above 1GHz: Double-ridged waveguide (or equivalent)								
Highest Internal Frequency	2.4GHz								
Highest Measurement Frequency	13GHz								
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.								

Measurement Uncertainty								
Measurement Type	Expanded Measurement Uncertainty							
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3							
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1							
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2							
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3							
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4							

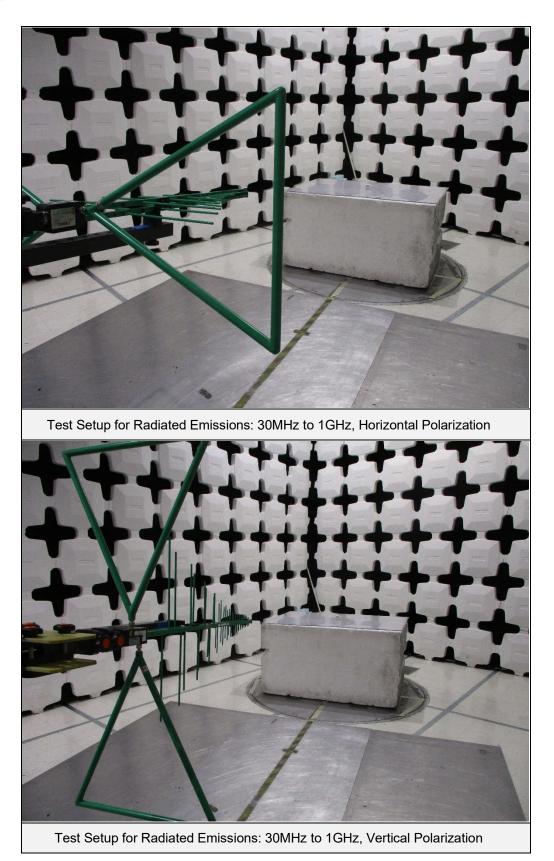
Requirements

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the values in the following tables.

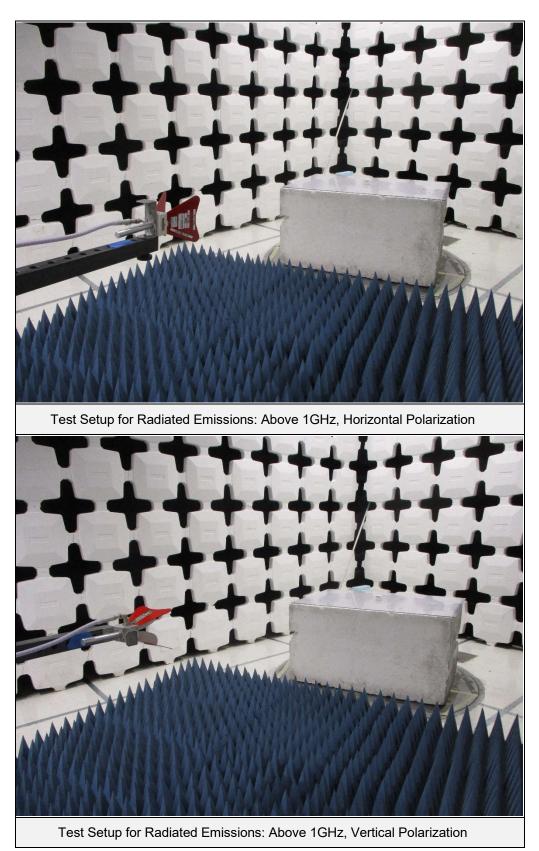
FCC Part 15 Class B Radiated Emissions Limits (30MHz to 1GHz)									
Frequency of Emission (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)							
30 - 88	100	40							
88 – 216	150	43.5							
216 – 960	200	46							
Above 960	500	54							
FCC Part 15	FCC Part 15 Class B Radiated Emissions Limits (Above 1GHz)								
Frequency of Emission (MHz)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)							
Above 1000	74	54							

ICES-003 Class B Radiated Emissions Limits (30MHz to 1GHz)									
Frequency Range (MHz)	Field Strength at 3 meters (dBµV/m)	Field Strength at 10 meters (dBμV/m)							
30 – 88	40	30							
88 – 216	43.5	33.1							
216 – 230	46	35.6							
230 – 960	47	37							
960 - 1000	54	43.5							
ICES-003 Class	s B Radiated Emissions Limits (At an	d Above 1GHz)							
Frequency Range (GHz)	Average (dBµV/m)	Peak (dBµV/m)							
1 — Fм	54	74							
F_{M} = highest measurement frequency	•								

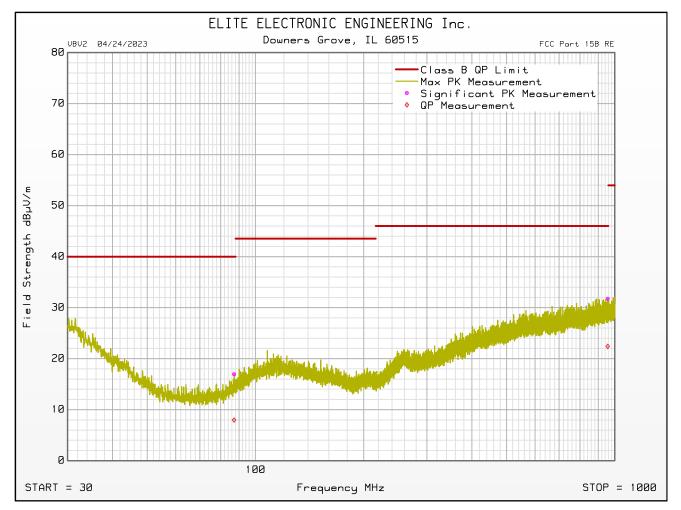
Procedure


Since a quasi-peak detector and an average detector requires long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.

The EUT and all peripheral equipment were placed on an 80cm high non-conductive stand. The broadband measuring antenna was positioned at a 3-meter distance from the EUT. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 13GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted.

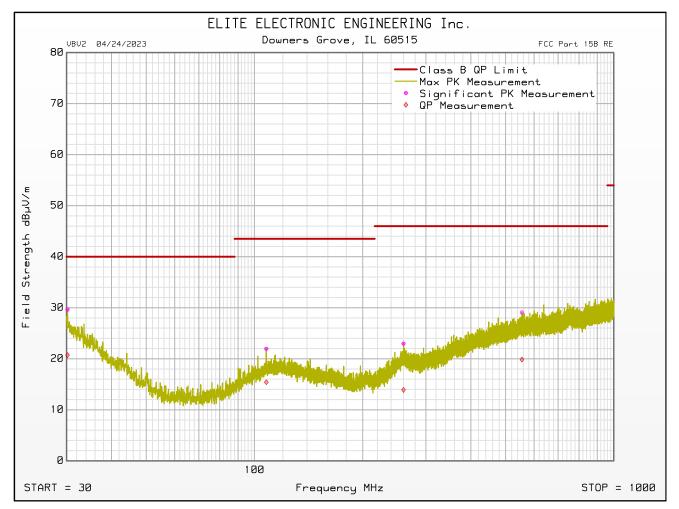

Final radiated emissions were performed on all significant broadband and narrowband emissions found in the exploratory sweeps using the following methods:

- Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - a) The EUT was rotated so that all sides were exposed to the receiving antenna.
 - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
 - d) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.



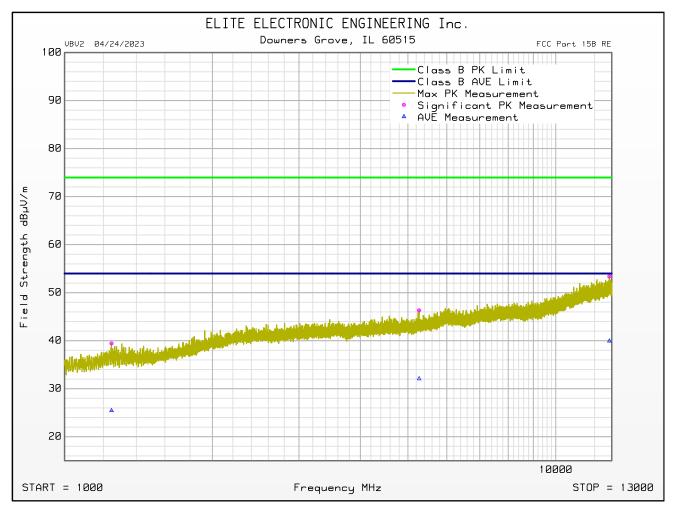
Manufacturer :	Winegard Company
Model :	HS-PIR1
Serial Number :	Var1
DUT Mode :	Standby
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	Rx - Sweep
Test Engineer :	J. Cardenas
Test Date :	Jun 16, 2023 08:30:44 AM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive QP Level
30.180	4.8	-4.1	24.4	0.0	0.4	0.0	29.6	20.7	40.0	-19.3	Vertical	340	0	
87.180	2.4	-6.6	14.2	0.0	0.4	0.0	17.0	8.0	40.0	-32.0	Horizontal	120	45	
107.860	3.7	-2.8	17.8	0.0	0.4	0.0	22.0	15.4	43.5	-28.1	Vertical	340	270	
259.860	2.7	-6.4	19.5	0.0	0.8	0.0	23.0	13.9	46.0	-32.1	Vertical	340	45	
555.000	3.2	-6.0	24.7	0.0	1.1	0.0	29.1	19.8	46.0	-26.2	Vertical	200	90	
955.620	3.2	-6.1	27.0	0.0	1.5	0.0	31.7	22.4	46.0	-23.6	Horizontal	340	225	



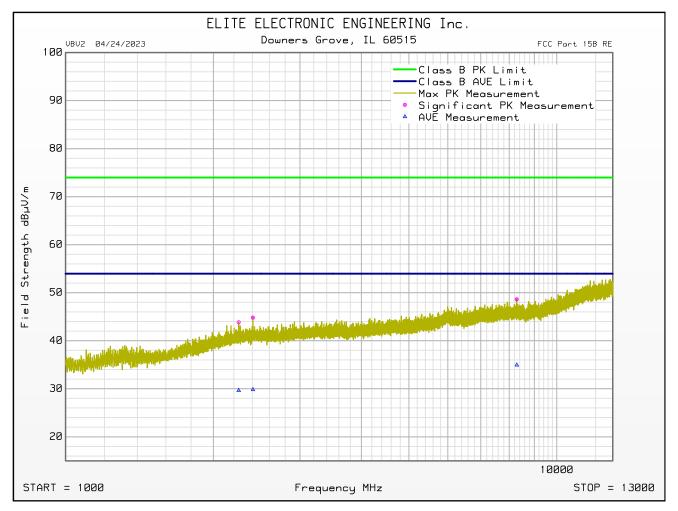
Model:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:	Winegard Company HS-PIR1 Var1 Standby 45 120, 200, 340 Horizontal Stepped Scan 120 kHz 0.0001 Rx - Sweep
Notes :	Rx - Sweep
5	J. Cardenas Jun 16, 2023 08:30:44 AM

Model : Serial Number :	Winegard Company HS-PIR1 Var1 Standby 45
Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:Test Engineer:	45 120, 200, 340 Vertical Stepped Scan 120 kHz 0.0001 Rx - Sweep J. Cardenas Jun 16, 2023 08:30:44 AM


Manufacturer :	Winegard Company
Model :	HS-PIR1
Serial Number :	Var1
DUT Mode :	Standby
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	Rx - Sweep
Test Engineer :	J. Cardenas
Test Date :	Jun 15, 2023 12:38:24 PM

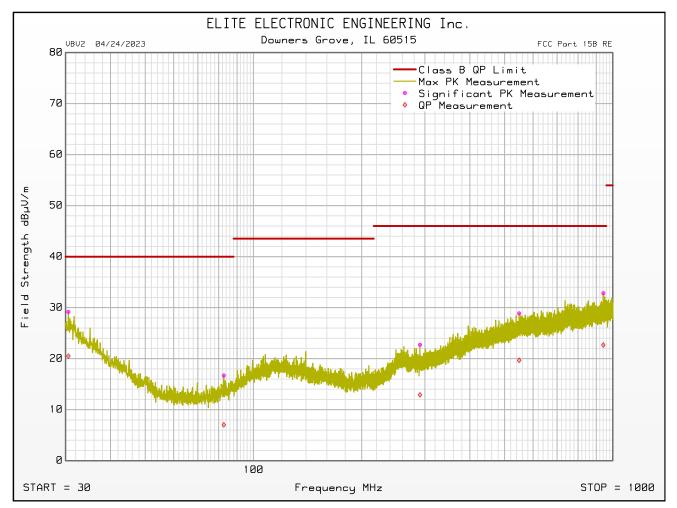
Freq MHz	Peak Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Peak Level
1246.000	49.6	28.8	-40.7	1.8	0.0	39.4	74.0	-34.6	Horizontal	120	90	
2251.000	49.1	32.3	-40.0	2.5	0.0	43.8	74.0	-30.1	Vertical	340	270	
2406.000	49.8	32.6	-40.2	2.6	0.0	44.8	74.0	-29.2	Vertical	120	135	
5267.500	47.4	34.6	-39.6	3.9	0.0	46.3	74.0	-27.7	Horizontal	200	45	
8287.500	46.4	36.8	-39.5	4.9	0.0	48.6	74.0	-25.3	Vertical	340	315	
12849 000	46.6	39.2	-38.5	61	0.0	53.4	74.0	-20.6	Horizontal	120	135	

Freq MHz	Average Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Average Total dBµV/m	Average Limit dBµV/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Average Level
1246.000	35.6	28.8	-40.7	1.8	0.0	25.4	54.0	-28.6	Horizontal	120	90	
2251.000	34.9	32.3	-40.0	2.5	0.0	29.6	54.0	-24.3	Vertical	340	270	
2406.000	34.8	32.6	-40.2	2.6	0.0	29.8	54.0	-24.2	Vertical	120	135	
5267.500	33.1	34.6	-39.6	3.9	0.0	32.1	54.0	-21.9	Horizontal	200	45	
8287.500	32.7	36.8	-39.5	4.9	0.0	35.0	54.0	-19.0	Vertical	340	315	-
12849.000	33.1	39.2	-38.5	6.1	0.0	39.9	54.0	-14.1	Horizontal	120	135	



Model:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:Test Engineer:	120, 200, 340 Horizontal Stepped Scan 1 MHz 0.0001 Rx - Sweep J. Cardenas
0	Jun 15, 2023 12:38:24 PM
	Call 10, 2020 12:00.211 M

Manufacturer Model Serial Number DUT Mode Turntable Step Angle (°) Mast Positions (cm) Antenna Polarization Scan Type Test RBW Prelim Dwell Time (s) Notes Test Engineer		Winegard Company HS-PIR1 Var1 Standby 45 120, 200, 340 Vertical Stepped Scan 1 MHz 0.0001 Rx - Sweep J. Cardenas
0		
Test Date	:	Jun 15, 2023 12:38:24 PM

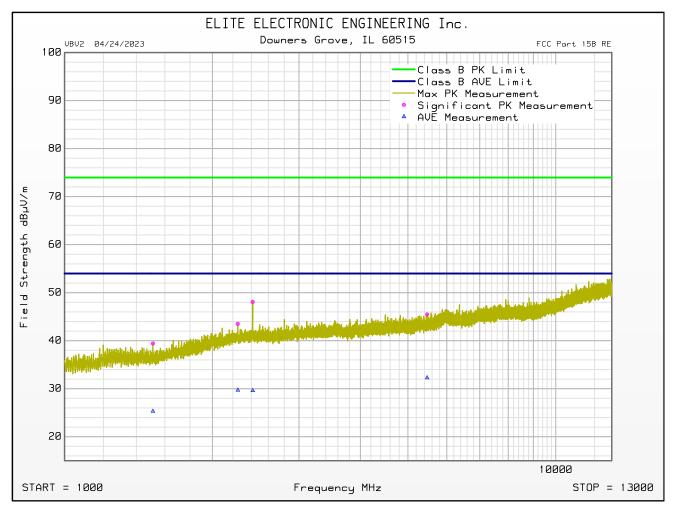


Manufacturer :	Winegard Company						
Model :	HS-HŽO1						
Serial Number :	Var2						
DUT Mode :	Standby						
Turntable Step Angle (°):	45						
Mast Positions (cm) :	120, 200, 340						
Scan Type :	Stepped Scan						
Test RBW :	120 kHz						
Prelim Dwell Time (s) :	0.0001						
Notes :	Rx - Sweep						
Test Engineer :	J. Cardenas						
Test Date :	Jun 16, 2023 08:51:41 AM						

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive QP Level
30.540	4.6	-4.0	24.2	0.0	0.4	0.0	29.2	20.5	40.0	-19.5	Horizontal	200	45	
82.680	2.9	-6.7	13.4	0.0	0.4	0.0	16.7	7.0	40.0	-33.0	Horizontal	340	45	
107.980	3.9	-4.5	17.8	0.0	0.4	0.0	22.1	13.7	43.5	-29.8	Vertical	120	180	
290.640	3.2	-6.6	18.8	0.0	0.8	0.0	22.7	12.9	46.0	-33.1	Horizontal	200	270	
548.760	3.1	-6.1	24.7	0.0	1.1	0.0	28.9	19.7	46.0	-26.3	Horizontal	120	90	
941.220	4.4	-5.7	26.9	0.0	1.5	0.0	32.8	22.7	46.0	-23.3	Horizontal	120	90	

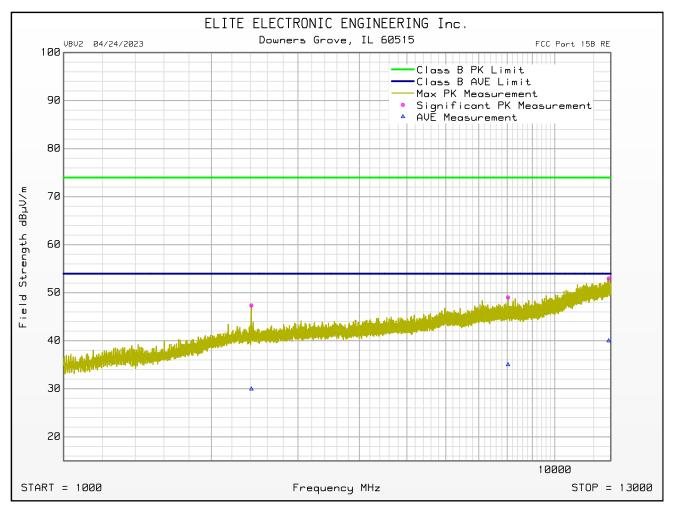
Manufacturer Model Serial Number DUT Mode Turntable Step Angle (°) Mast Positions (cm) Antenna Polarization Scan Type Test RBW Prelim Dwell Time (s) Notes Test Engineer		Winegard Company HS-H2O1 Var2 Standby 45 120, 200, 340 Horizontal Stepped Scan 120 kHz 0.0001 Rx - Sweep J. Cardenas
0		
Test Date	:	Jun 16, 2023 08:51:41 AM

Model:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:	Winegard Company HS-H2O1 Var2 Standby 45 120, 200, 340 Vertical Stepped Scan 120 kHz 0.0001
Test RBW :	120 kHz
Notes :	Rx - Sweep
0	J. Cardenas Jun 16, 2023 08:51:41 AM



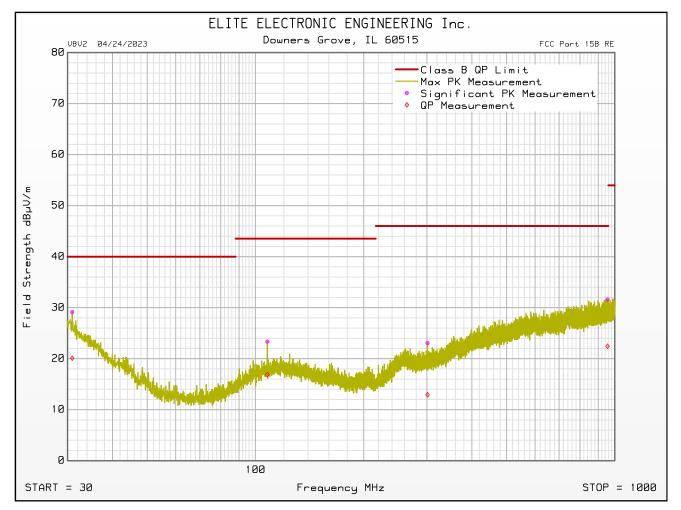
Manufacturer	:	Winegard Company
Model	HS-H2O1	
Serial Number	:	Var2
DUT Mode	:	Standby
Turntable Step Angle (°)):	45
Mast Positions (cm)	:	120, 200, 340
Scan Type	:	Stepped Scan
Test RBW	:	1 MHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	Rx - Sweep
Test Engineer	:	J. Cardenas
Test Date	:	Jun 15, 2023 12:10:17 PM

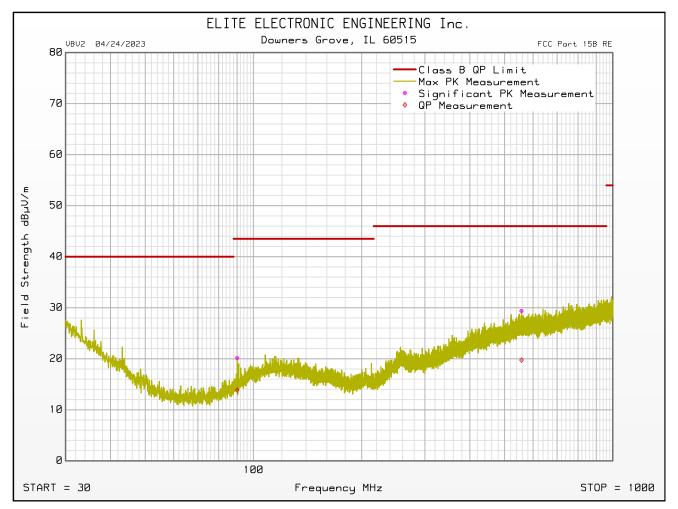
Freq MHz	Peak Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Peak Level
1513.000	49.2	28.5	-40.2	2.0	0.0	39.4	74.0	-34.6	Horizontal	120	270	
2252.000	48.8	32.3	-40.0	2.5	0.0	43.5	74.0	-30.5	Horizontal	200	0	
2411.000	52.4	32.6	-40.2	2.6	0.0	47.3	74.0	-26.6	Vertical	120	0	
2414.500	53.1	32.6	-40.2	2.6	0.0	48.1	74.0	-25.9	Horizontal	340	315	1
5470.000	46.1	34.8	-39.4	4.0	0.0	45.5	74.0	-28.5	Horizontal	340	270	
8031.000	47.0	36.7	-39.6	4.9	0.0	49.0	74.0	-25.0	Vertical	120	90	
12873.000	46.2	39.2	-38.5	6.1	0.0	53.0	74.0	-21.0	Vertical	200	135	
Freq MHz	Average Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Average Total dBµV/m	Average Limit dBµV/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Average Level
	Mtr Rdg	Fac	Fac	Fac	Corr	Total	Limit	Lim Mrg		Ht		Average
MHz 1513.000	Mtr Rdg dBuV	Fac dB/m	Fac dB	Fac dB	Corr dB	Total dBµV/m	Limit dBµV/m	Lim Mrg dB	Pol	Ht cm	۰	Average
MHz	Mtr Rdg dBuV 35.1	Fac dB/m 28.5	Fac dB -40.2	Fac dB 2.0	Corr dB 0.0	Total dBµV/m 25.3	Limit dBµV/m 54.0	Lim Mrg dB -28.7	Pol Horizontal	Ht cm 120	۰	Average
MHz 1513.000 2252.000	Mtr Rdg dBuV 35.1 34.9	Fac dB/m 28.5 32.3	Fac dB -40.2 -40.0	Fac dB 2.0 2.5	Corr dB 0.0 0.0	Total dBµV/m 25.3 29.7	Limit dBµV/m 54.0 54.0	Lim Mrg dB -28.7 -24.3	Pol Horizontal Horizontal	Ht cm 120 200	° 270 0	Average
MHz 1513.000 2252.000 2411.000	Mtr Rdg dBuV 35.1 34.9 35.0	Fac dB/m 28.5 32.3 32.6	Fac dB -40.2 -40.0 -40.2	Fac dB 2.0 2.5 2.6	Corr dB 0.0 0.0 0.0	Total dBμV/m 25.3 29.7 30.0	Limit dBµV/m 54.0 54.0 54.0	Lim Mrg dB -28.7 -24.3 -24.0	Pol Horizontal Horizontal Vertical	Ht cm 120 200 120	。 270 0 0	Average
MHz 1513.000 2252.000 2411.000 2414.500	Mtr Rdg dBuV 35.1 34.9 35.0 34.6	Fac dB/m 28.5 32.3 32.6 32.6	Fac dB -40.2 -40.0 -40.2 -40.2	Fac dB 2.0 2.5 2.6 2.6	Corr dB 0.0 0.0 0.0 0.0	Total dBμV/m 25.3 29.7 30.0 29.6	Limit dBµV/m 54.0 54.0 54.0 54.0	Lim Mrg dB -28.7 -24.3 -24.0 -24.4	Pol Horizontal Horizontal Vertical Horizontal	Ht cm 120 200 120 340	° 270 0 0 315	Average



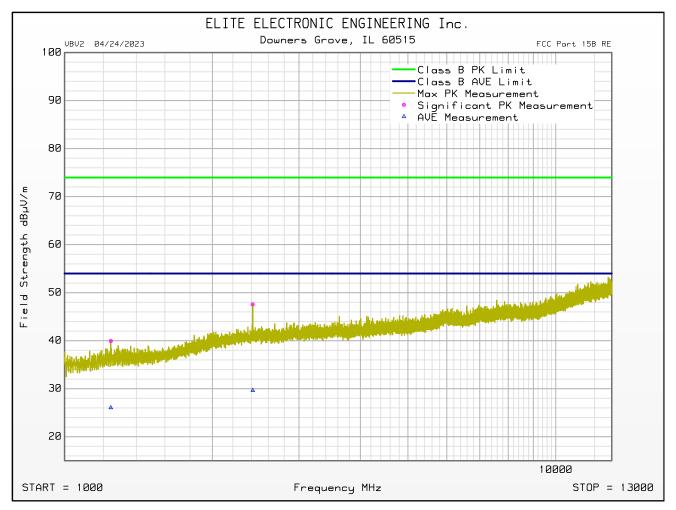
Manufacturer Model Serial Number DUT Mode Turntable Step Angle (°)	:	Winegard Company HS-H2O1 Var2 Standby 45
Mast Positions (cm)		120, 200, 340 Horizontal Stepped Scan 1 MHz 0.0001 Rx - Sweep J. Cardenas Jun 15, 2023 12:10:17 PM

Manufacturer	:	Winegard Company
Model	:	HS-H2O1
Serial Number	:	Var2
DUT Mode	:	Standby
Turntable Step Angle (°)):	45
Mast Positions (cm)	:	120, 200, 340
Antenna Polarization	:	Vertical
Scan Type	:	Stepped Scan
Test RBW	:	1 MHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	Rx - Sweep
Test Engineer	:	J. Cardenas
Test Date	:	Jun 15, 2023 12:10:17 PM



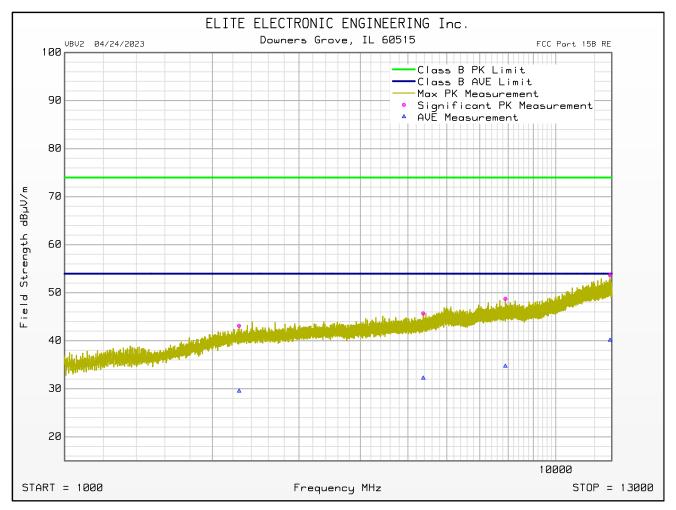

Manufacturer	Winegard Company						
Model	HS-CC01						
Serial Number	:	Var3					
DUT Mode	:	Standby					
Turntable Step Angle (°)	45						
Mast Positions (cm)	:	120, 200, 340					
Scan Type	:	Stepped Scan					
Test RBW	:	120 kHz					
Prelim Dwell Time (s)	:	0.0001					
Notes	:	Rx - Sweep					
Test Engineer	:	J. Cardenas					
Test Date	:	Jun 16, 2023 09:09:55 AM					

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive QP Level
30.900	4.8	-4.2	23.9	0.0	0.4	0.0	29.1	20.1	40.0	-19.9	Horizontal	340	0	
90.100	4.8	-1.5	14.9	0.0	0.4	0.0	20.1	13.8	43.5	-29.7	Vertical	120	0	
107.920	5.1	-1.3	17.8	0.0	0.4	0.0	23.3	16.9	43.5	-26.6	Horizontal	200	315	
301.200	3.3	-6.8	19.0	0.0	0.8	0.0	23.0	12.9	46.0	-33.1	Horizontal	120	315	
557.040	3.5	-6.1	24.7	0.0	1.1	0.0	29.4	19.7	46.0	-26.3	Vertical	120	180	
954 480	31	-6.1	27.0	0.0	1.5	0.0	31.6	22.4	46.0	-23.6	Horizontal	340	270	


Manufacturer	:	Winegard Company
Model	:	HS-CC01
Serial Number	:	Var3
DUT Mode	:	Standby
Turntable Step Angle (°)):	45
Mast Positions (cm)	:	120, 200, 340
Scan Type	:	Stepped Scan
Test RBW	:	1 MHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	Rx - Sweep
Test Engineer	:	J. Cardenas
Test Date	:	Jun 15, 2023 11:43:35 AM

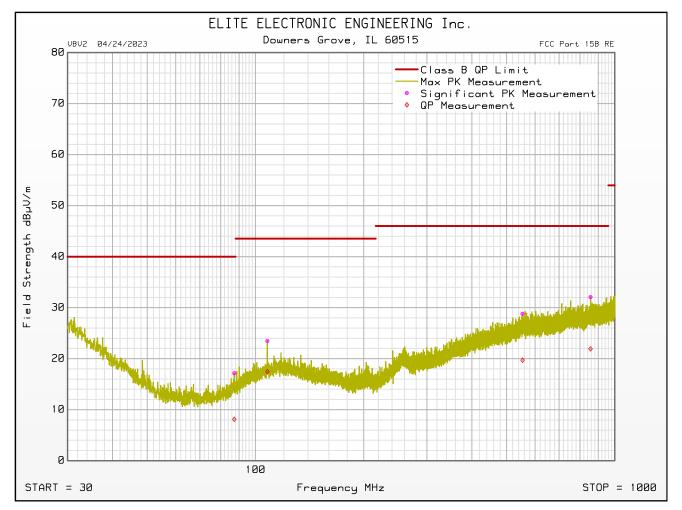
Freq MHz	Peak Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Peak Level
1242.000	50.1	28.8	-40.7	1.8	0.0	39.9	74.0	-34.1	Horizontal	200	225	
2265.500	48.3	32.3	-40.0	2.5	0.0	43.1	74.0	-30.9	Vertical	200	90	
2414.500	52.6	32.6	-40.2	2.6	0.0	47.6	74.0	-26.4	Horizontal	200	270	
5371.000	46.5	34.7	-39.5	3.9	0.0	45.7	74.0	-28.3	Vertical	200	270	
7896.000	46.8	36.6	-39.6	4.9	0.0	48.7	74.0	-25.2	Vertical	340	315	
12888 000	46.9	39.2	-38 5	61	0.0	53.7	74.0	-20.3	Vertical	340	90	

Freq MHz	Average Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Average Total dBµV/m	Average Limit dBµV/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Average Level
1242.000	36.2	28.8	-40.7	1.8	0.0	26.0	54.0	-28.0	Horizontal	200	225	
2265.500	34.7	32.3	-40.0	2.5	0.0	29.5	54.0	-24.5	Vertical	200	90	
2414.500	34.6	32.6	-40.2	2.6	0.0	29.6	54.0	-24.4	Horizontal	200	270	
5371.000	33.0	34.7	-39.5	3.9	0.0	32.2	54.0	-21.8	Vertical	200	270	
7896.000	32.7	36.6	-39.6	4.9	0.0	34.7	54.0	-19.3	Vertical	340	315	-
12888.000	33.3	39.2	-38.5	6.1	0.0	40.1	54.0	-13.9	Vertical	340	90	



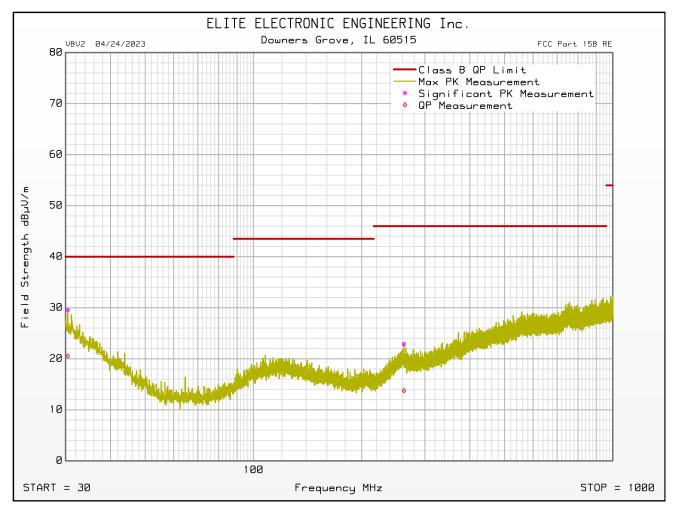
Model:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:Test Engineer:	Winegard Company HS-CC01 Var3 Standby 45 120, 200, 340 Horizontal Stepped Scan 1 MHz 0.0001 Rx - Sweep J. Cardenas Jun 15, 2023 11:43:35 AM
Test Date :	Jun 15, 2023 11:43:35 AM

Serial Number : DUT Mode : Turntable Step Angle (°): Mast Positions (cm) : Antenna Polarization : Scan Type : Test RBW : Prelim Dwell Time (s) : Notes :	HS-CC01 Var3 Standby 45 120, 200, 340 Vertical Stepped Scan 1 MHz 0.0001 Rx - Sweep
Notes :	Rx - Sweep
Test Engineer :	J. Cardenas
Test Date :	Jun 15, 2023 11:43:35 AM



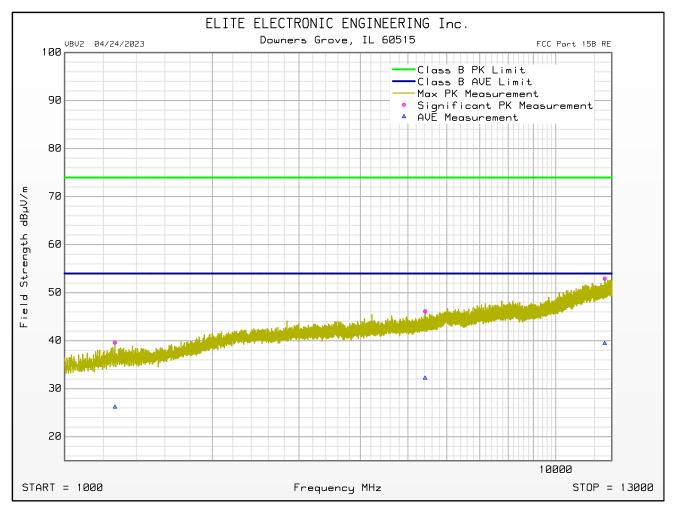
Manufacturer :	Winegard Company
Model :	HS-TMP1
Serial Number :	Var4
DUT Mode :	Standby
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	Rx - Sweep
Test Engineer :	J. Cardenas
Test Date :	Jun 16, 2023 09:28:07 AM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	QP Total dBµV/m	QP Limit dBµV/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive QP Level
30.420	4.9	-4.1	24.2	0.0	0.4	0.0	29.6	20.6	40.0	-19.4	Vertical	340	315	
87.300	2.6	-6.5	14.2	0.0	0.4	0.0	17.2	8.1	40.0	-31.9	Horizontal	340	90	
107.920	5.3	-0.8	17.8	0.0	0.4	0.0	23.5	17.5	43.5	-26.1	Horizontal	120	270	
262.080	2.8	-6.4	19.3	0.0	0.8	0.0	22.9	13.7	46.0	-32.3	Vertical	200	135	
553.800	2.9	-6.2	24.7	0.0	1.1	0.0	28.8	19.7	46.0	-26.3	Horizontal	340	180	
856 020	43	-5.9	26.3	0.0	15	0.0	32.1	21.9	46.0	-24.1	Horizontal	340	0	



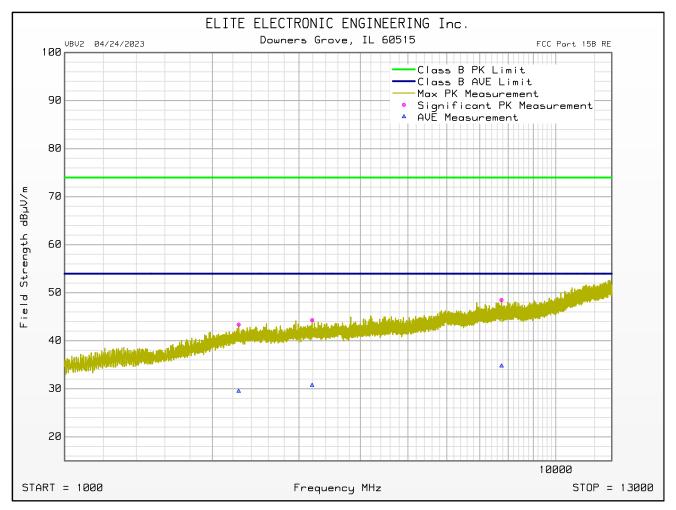
Model : Serial Number :	Winegard Company HS-TMP1 Var4 Standby
Turntable Step Angle (°):	Standby 45
	120, 200, 340
Antenna Polarization :	Horizontal
Scan Type :	Stepped Scan
Test RBW :	120 kHz
Prelim Dwell Time (s) :	0.0001
Notes :	Rx - Sweep
Test Engineer :	J. Cardenas
Test Date :	Jun 16, 2023 09:28:07 AM

Antenna Polarization:VerScan Type:StepTest RBW:120Prelim Dwell Time (s):0.00Notes:RXTest Engineer:J. C	ndby , 200, 340 tical pped Scan kHz 001 - Sweep Cardenas
Test Date : Jun	16, 2023 09:28:07 AM


Manufacturer :	Winegard Company
Model :	HS-TMP1
Serial Number :	Var4
DUT Mode :	Standby
Turntable Step Angle (°):	45
Mast Positions (cm) :	120, 200, 340
Scan Type :	Stepped Scan
Test RBW :	1 MHz
Prelim Dwell Time (s) :	0.0001
Notes :	Rx - Sweep
Test Engineer :	J. Cardenas
Test Date :	Jun 15, 2023 11:12:01 AM

Freq MHz	Peak Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dBµV/m	Peak Limit dBµV/m	Peak Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Peak Level
1266.000	49.6	28.8	-40.7	1.8	0.0	39.6	74.0	-34.4	Horizontal	340	0	
2261.500	48.6	32.3	-40.0	2.5	0.0	43.4	74.0	-30.6	Vertical	340	270	
3190.500	47.9	33.1	-39.8	3.1	0.0	44.3	74.0	-29.7	Vertical	200	135	
5419.000	46.8	34.8	-39.5	4.0	0.0	46.1	74.0	-27.9	Horizontal	340	90	
7752.000	46.6	36.5	-39.5	4.9	0.0	48.5	74.0	-25.5	Vertical	120	45	
12577 000	46.5	39.0	-38 7	61	0.0	52.9	74.0	-21.1	Horizontal	340	225	

Freq MHz	Average Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Average Total dBµV/m	Average Limit dBµV/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim	Excessive Average Level
1266.000	36.2	28.8	-40.7	1.8	0.0	26.2	54.0	-27.8	Horizontal	340	0	
2261.500	34.7	32.3	-40.0	2.5	0.0	29.5	54.0	-24.5	Vertical	340	270	
3190.500	34.3	33.1	-39.8	3.1	0.0	30.7	54.0	-23.3	Vertical	200	135	
5419.000	32.9	34.8	-39.5	4.0	0.0	32.2	54.0	-21.8	Horizontal	340	90	
7752.000	32.8	36.5	-39.5	4.9	0.0	34.7	54.0	-19.2	Vertical	120	45	-
12577.000	33.0	39.0	-38.7	6.1	0.0	39.4	54.0	-14.6	Horizontal	340	225	



Model:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:	Winegard Company HS-TMP1 Var4 Standby 45 120, 200, 340 Horizontal Stepped Scan 1 MHz 0.0001 Rx - Sweep
	•
5	J. Cardenas
Test Date :	Jun 15, 2023 11:12:01 AM

Manufacturer Model		Winegard Company HS-TMP1
Serial Number		Var4
DUT Mode	:	Standby
Turntable Step Angle (°)):	45
Mast Positions (cm)	:	120, 200, 340
Antenna Polarization	:	Vertical
Scan Type	:	Stepped Scan
Test RBW	:	1 MHz
Prelim Dwell Time (s)	:	0.0001
Notes	:	Rx - Sweep
Test Engineer	:	J. Cardenas
Test Date	:	Jun 15, 2023 11:12:01 AM

22. Case Spurious Radiated Emissions

EUT Information						
Manufacturer	Winegard Company					
Product	BLE Sensor					
Model No.	HS-PIR1, HS-H2O1, HS-CC01, and HS-TMP1					
Serial No.	Var1, Var2, Var3 and Var4					
Mode	Тх					

Test Setup Details							
Setup Format	Tabletop						
Height of Support	N/A						
Type of Test Site	Semi-Anechoic Chamber						
Test Site Used	R29F						
Type of Antonnas Lload	Below 1GHz: Bilog (or equivalent)						
Type of Antennas Used	1 – 18GHz: Double-Ridged Waveguide (or equivalent)						
Notes	N/A						

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

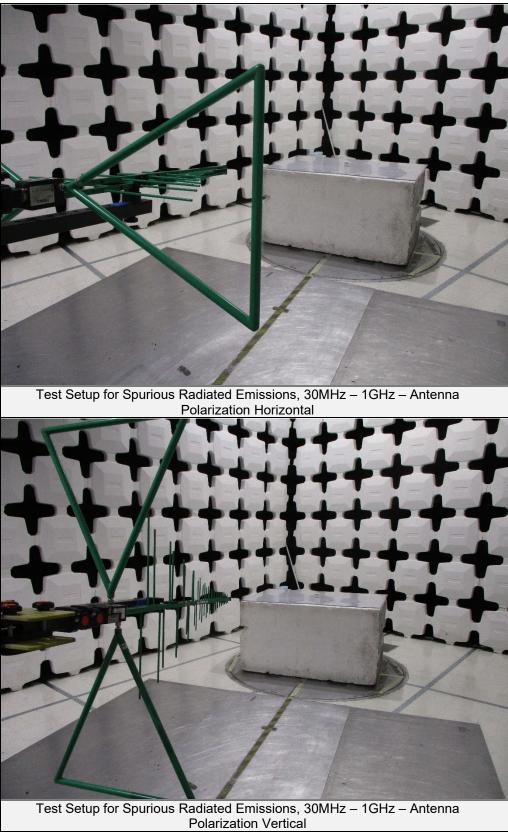
Procedure

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 18GHz was investigated using a peak detector function.

The final open field emission tests were then manually performed over the frequency range of 30MHz to 18GHz.

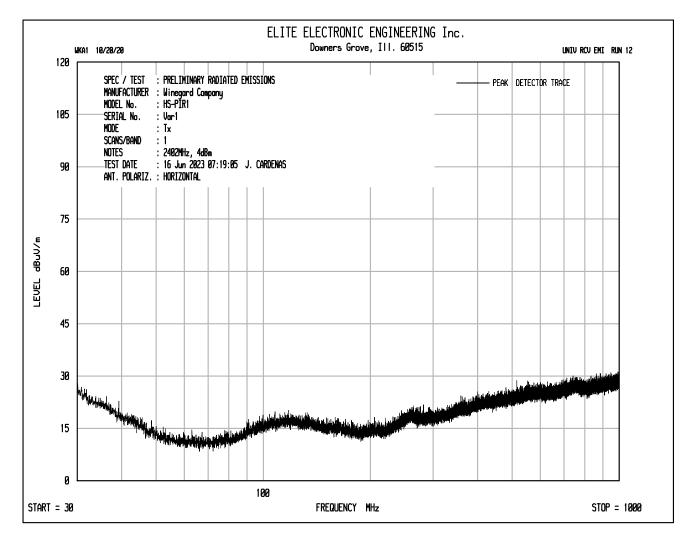
- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a double ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
 - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst-case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components

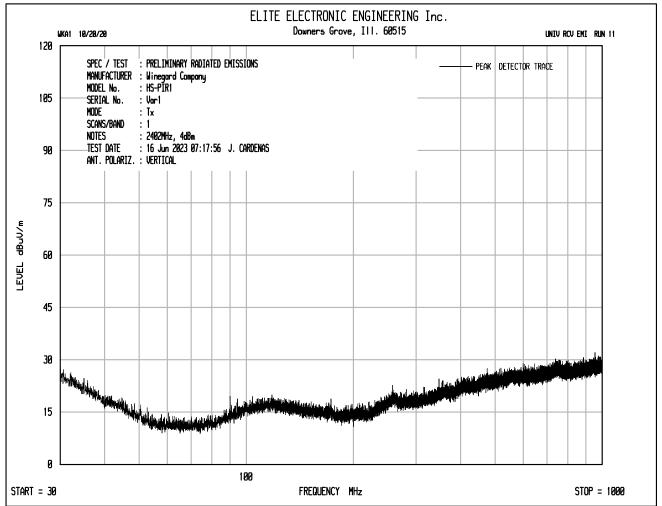


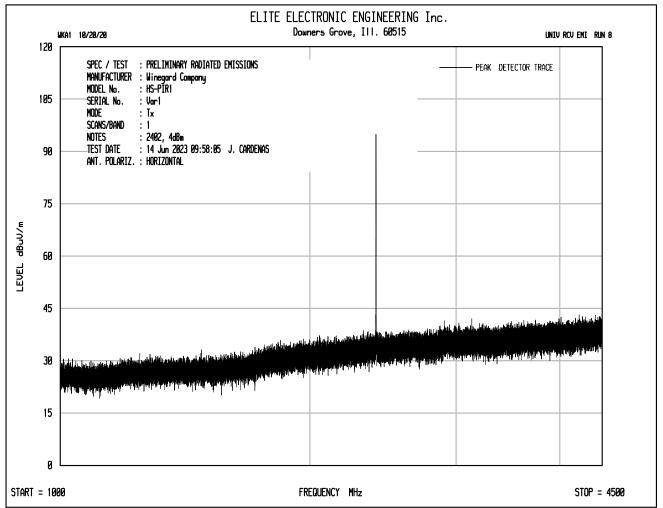
were measured.

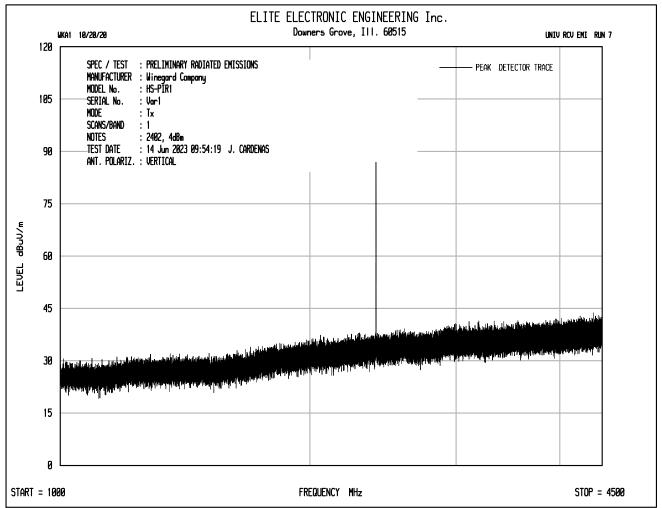
- iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
- iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
- d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in §15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in §15.209(a), then the emissions are remeasured using a quasi-peak detector.
- e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).

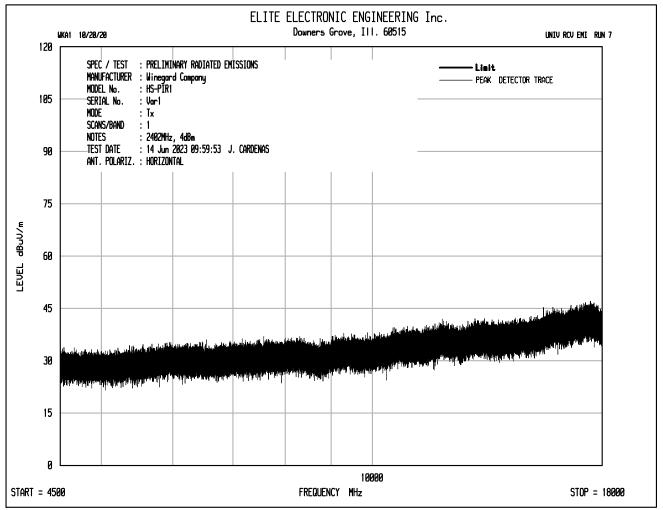
Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.

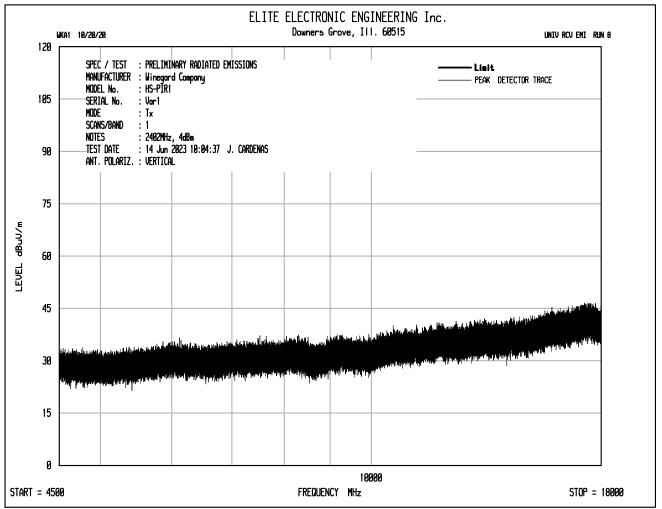


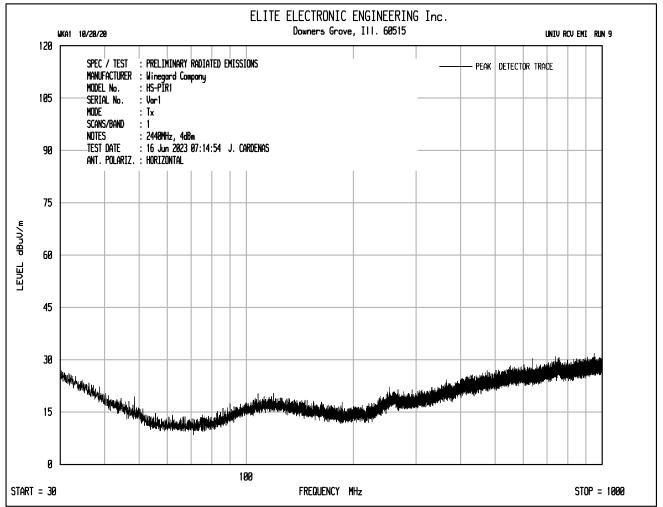


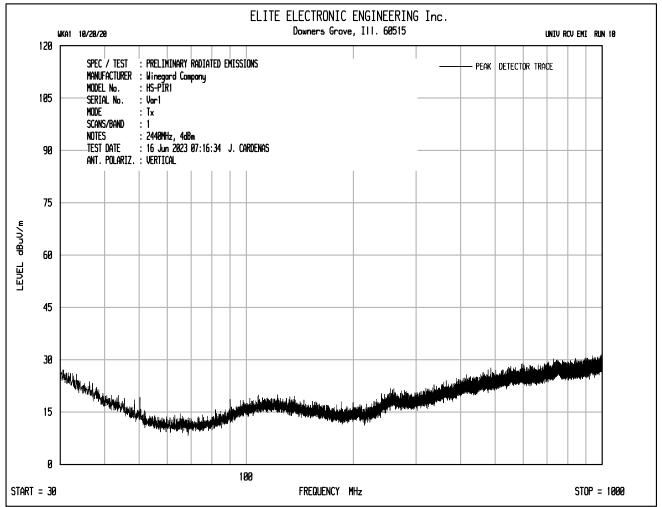


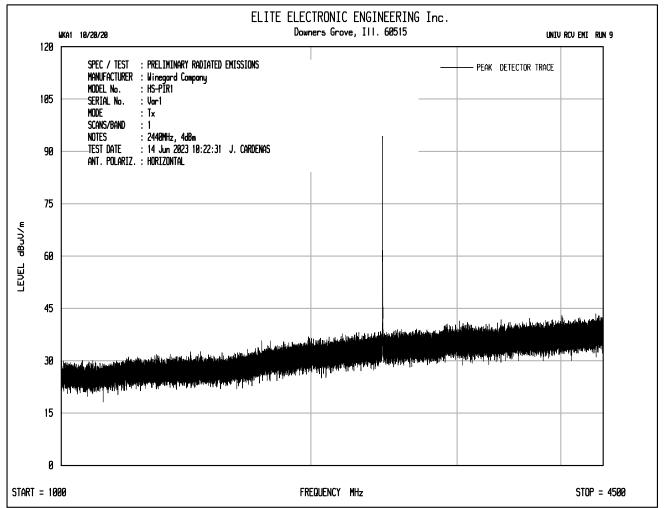


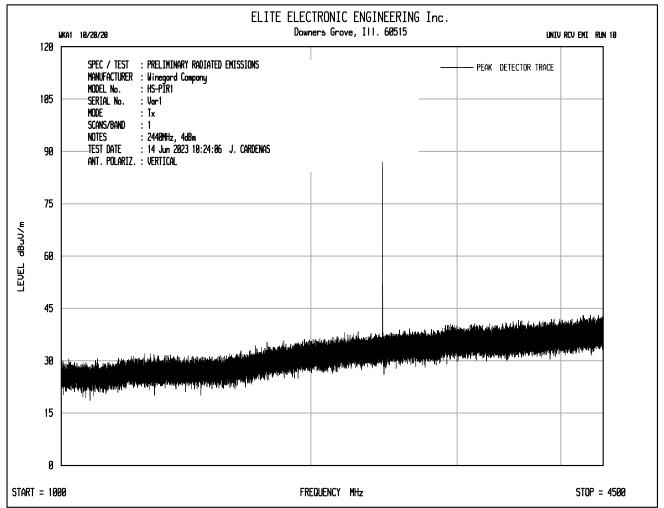


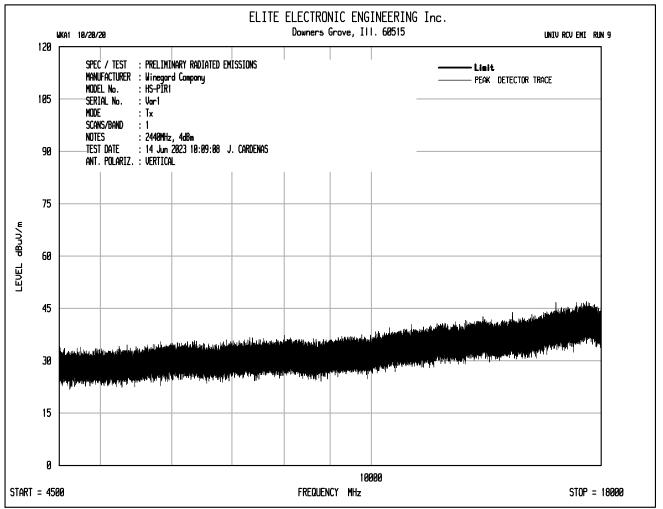


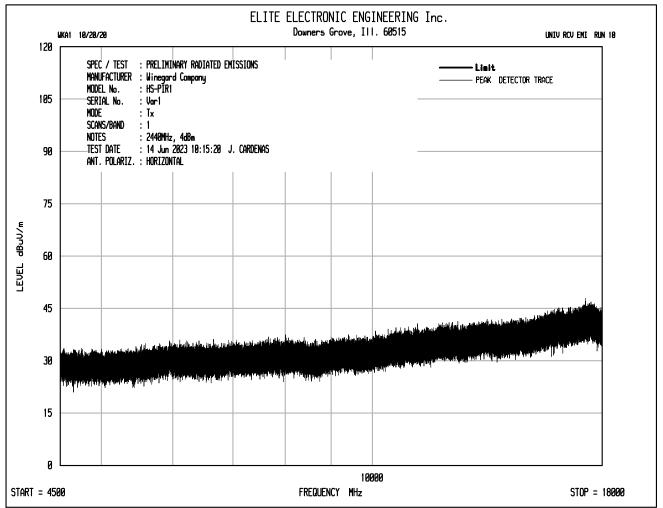


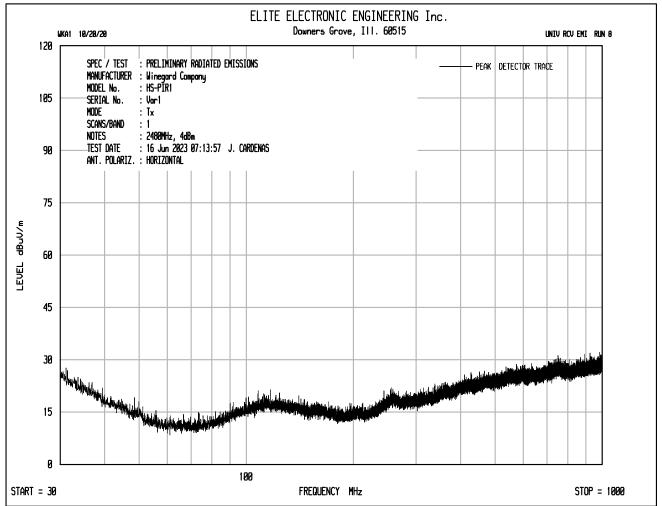


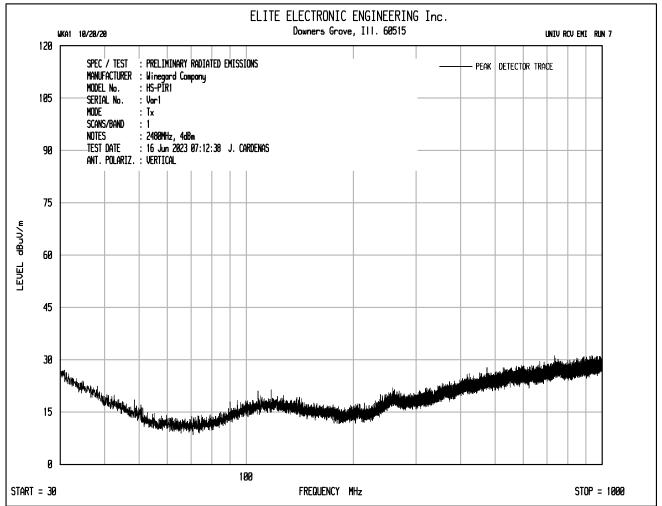


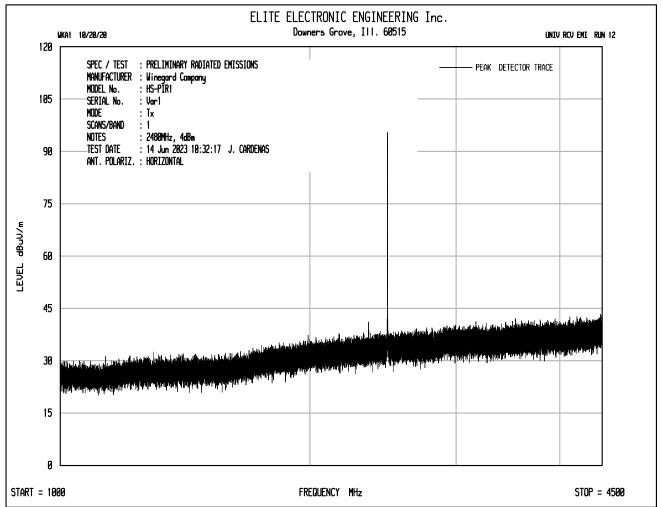


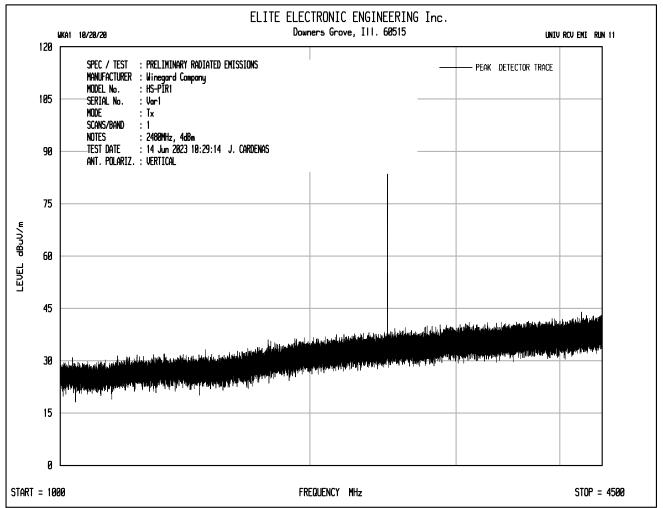


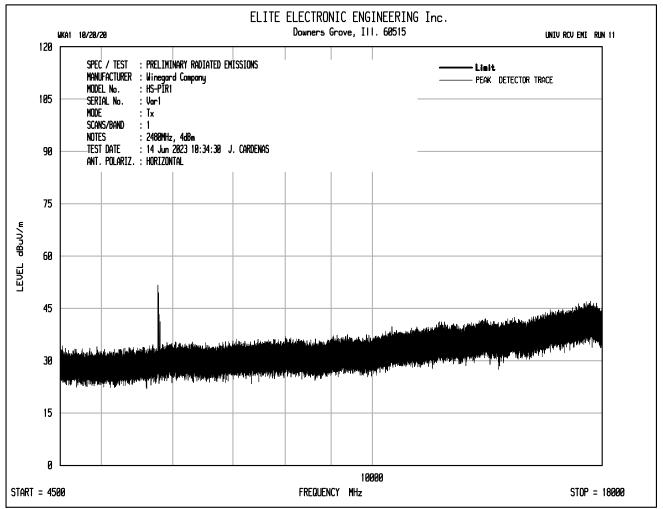


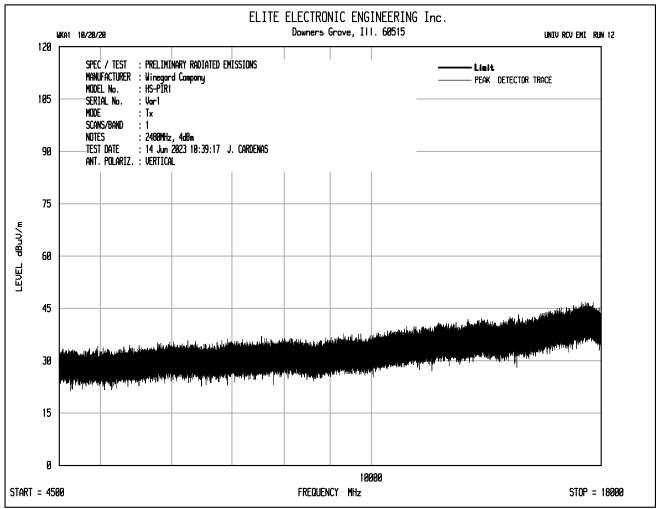












	Test Details						
Manufacturer	Winegard Company						
EUT	BLE Sensor						
Model No.	HS-PIR1						
Serial No.	Var1						
Mode	Tx						
Frequency Tested	2402MHz						
Notes	Peak Measurements in the Restricted Bands						

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (μV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
	H	48.6	*	3.7	34.3	-39.7	46.9	220.3	5000.0	-27.1
4804.00	V	47.6	*	3.7	34.3	-39.7	45.9	196.6	5000.0	-28.1
12010.00	Н	48.1	*	6.1	38.8	-39.0	54.0	502.7	5000.0	-20.0
12010.00	V	48.7	*	6.1	38.8	-39.0	54.6	539.9	5000.0	-19.3

	Test Details
Manufacturer	Winegard Company
EUT	BLE Sensor
Model No.	HS-PIR1
Serial No.	Var1
Mode	Тх
Frequency Tested	2402MHz
Notes	Average Measurements in the Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (µV/m)	Average Limit at 3m (µV/m)	Margin (dB)
	H	34.44	*	3.7	34.3	-39.7	0.0	32.7	43.3	500.0	-21.3
4804.00	V	34.54	*	3.7	34.3	-39.7	0.0	32.8	43.8	500.0	-21.2
12010.00	Н	34.70	*	6.1	38.8	-39.0	0.0	40.6	107.2	500.0	-13.4
12010.00	V	34.69	*	6.1	38.8	-39.0	0.0	40.6	107.1	500.0	-13.4

	Test Details							
Manufacturer	Winegard Company							
EUT	BLE Sensor							
Model No.	HS-PIR1							
Serial No.	Var1							
Mode	Тх							
Frequency Tested	2402MHz							
Notes	Peak Measurements in Non-Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (μV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
2402.00	Н	65.23		2.6	32.6	0.0	100.4	104906.8	NA	NA
2402.00	V	61.24		2.6	32.6	0.0	96.4	66268.0	NA	NA
7206.00	Н	38.62		4.6	36.3	-39.7	39.9	98.7	10490.7	-40.5
7200.00	V	37.90		4.6	36.3	-39.7	39.2	90.9	10490.7	-41.2
9608.00	Н	39.80		5.2	37.1	-39.3	42.8	138.2	10490.7	-37.6
9000.00	V	37.11		5.2	37.1	-39.3	40.1	101.4	10490.7	-40.3

	Test Details							
Manufacturer	Winegard Company							
EUT	BLE Sensor							
Model No.	HS-PIR1							
Serial No.	Var1							
Mode	Тх							
Frequency Tested	2440MHz							
Notes	Peak Measurements in the Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (μV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
4880.00	Н	48.8	*	3.7	34.2	-39.6	47.1	225.7	5000.0	-26.9
4000.00	V	48.1	*	3.7	34.2	-39.6	46.4	207.8	5000.0	-27.6
7320.00	Н	48.3	*	4.7	36.3	-39.6	49.6	302.4	5000.0	-24.4
7320.00	V	47.9	*	4.7	36.3	-39.6	49.3	290.1	5000.0	-24.7
12200.00	Н	47.5	*	6.1	38.9	-38.9	53.6	476.2	5000.0	-20.4
12200.00	V	47.6	*	6.1	38.9	-38.9	53.6	478.4	5000.0	-20.4

	Test Details							
Manufacturer	Winegard Company							
EUT	BLE Sensor							
Model No.	HS-PIR1							
Serial No.	Var1							
Mode	Tx							
Frequency Tested	2440MHz							
Notes	Average Measurements in the Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (μV/m)	Average Limit at 3m (μV/m)	Margin (dB)
4880.00	Н	34.91	*	3.7	34.2	-39.6	0.0	33.2	45.7	500.0	-20.8
4000.00	V	34.80	*	3.7	34.2	-39.6	0.0	33.1	45.1	500.0	-20.9
7220.00	Н	34.64	*	4.7	36.3	-39.6	0.0	36.0	62.9	500.0	-18.0
7320.00	V	33.97	*	4.7	36.3	-39.6	0.0	35.3	58.2	500.0	-18.7
12200.00	Н	34.12	*	6.1	38.9	-38.9	0.0	40.2	101.9	500.0	-13.8
12200.00	V	34.00	*	6.1	38.9	-38.9	0.0	40.0	100.5	500.0	-13.9

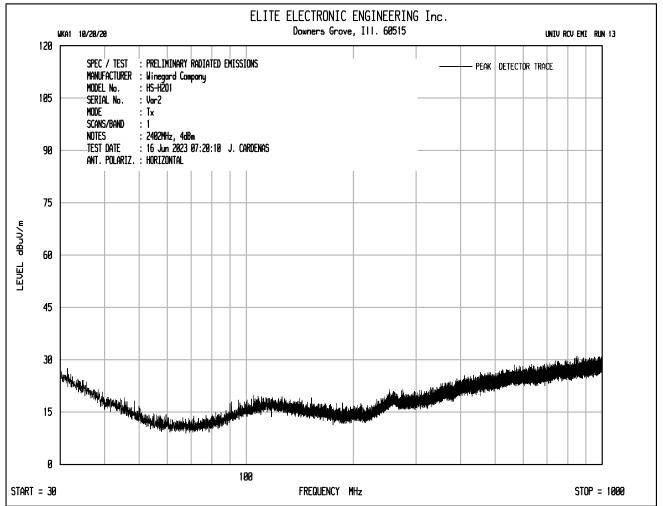
	Test Details						
Manufacturer	Winegard Company						
EUT	BLE Sensor						
Model No.	HS-PIR1						
Serial No.	Var1						
Mode	Тх						
Frequency Tested	2440MHz						
Notes	Peak Measurements in Non-Restricted Bands						

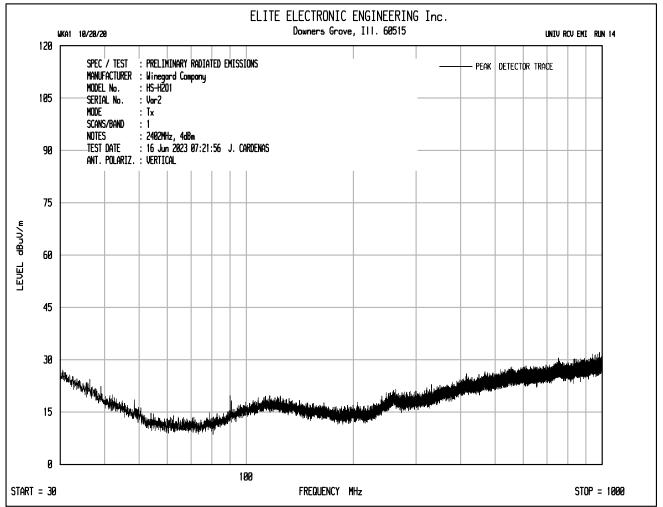
Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBuV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
/	H	64.52	THDIOIIL	2.6	32.6	0.0	99.8	97555.2	NA	NA
2440.00	V	58.23		2.6	32.6	0.0	93.5	47288.0	NA	NA
9760.00	Н	39.31		5.2	37.2	-39.3	42.5	133.3	9755.5	-37.3
9100.00	V	37.82		5.2	37.2	-39.3	41.0	112.3	9755.5	-38.8

	Test Details							
Manufacturer	Winegard Company							
EUT	BLE Sensor							
Model No.	HS-PIR1							
Serial No.	Var1							
Mode	Тх							
Frequency Tested	2480MHz							
Notes	Peak Measurements in the Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (μV/m)	Peak Limit at 3m (μV/m)	Margin (dBm)
4960.00	Н	48.9	*	3.7	34.1	-39.6	47.1	226.6	5000.0	-26.9
4960.00	V	49.5	*	3.7	34.1	-39.6	47.7	243.7	5000.0	-26.2
7440.00	Н	48.6	*	4.7	36.3	-39.6	50.1	319.0	5000.0	-23.9
7440.00	V	47.6	*	4.7	36.3	-39.6	49.1	285.3	5000.0	-24.9
12400.00	Н	47.5	*	6.1	38.9	-38.8	53.7	486.1	5000.0	-20.2
12400.00	V	47.6	*	6.1	38.9	-38.8	53.8	488.9	5000.0	-20.2

	Test Details							
Manufacturer	Winegard Company							
EUT	BLE Sensor							
Model No.	HS-PIR1							
Serial No.	Var1							
Mode	Tx							
Frequency Tested	2480MHz							
Notes	Average Measurements in the Restricted Bands							


Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (μV/m)	Average Limit at 3m (μV/m)	Margin (dB)
4960.00	Н	34.84	*	3.7	34.1	-39.6	0.0	33.1	45.0	500.0	-20.9
	V	34.58	*	3.7	34.1	-39.6	0.0	32.8	43.7	500.0	-21.2
7440.00	Н	34.34	*	4.7	36.3	-39.6	0.0	35.8	61.8	500.0	-18.2
	V	33.69	*	4.7	36.3	-39.6	0.0	35.2	57.4	500.0	-18.8
12400.00	Н	33.64	*	6.1	38.9	-38.8	0.0	39.8	98.2	500.0	-14.1
	V	33.67	*	6.1	38.9	-38.8	0.0	39.9	98.6	500.0	-14.1


Test Details					
Manufacturer	Winegard Company				
EUT	BLE Sensor				
Model No.	HS-PIR1				
Serial No.	Var1				
Mode	Тх				
Frequency Tested	2480MHz				
Notes	Peak Measurements in Non-Restricted Bands				

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBuV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
2480.00	H	64.38	7 (1101011)	2.7	32.7	0.0	99.7	97141.2	NA	NA
	V	61.30		2.7	32.7	0.0	96.7	68140.2	NA	NA
9920.00	Н	38.04	*	5.3	37.2	-39.2	41.3	115.7	9714.1	-38.5
	V	36.81	*	5.3	37.2	-39.2	40.0	100.4	9714.1	-39.7

