



| Engineering Test Report No. 2300550-01                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Report Date                                                                                                                                                                                                        | June 16, 2023                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Manufacturer Name                                                                                                                                                                                                  | Winegard Company                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Manufacturer Address                                                                                                                                                                                               | 2736 Mt Pleasant St<br>Burlington, IA 52601                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Product Name                                                                                                                                                                                                       | BLE sensor                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Model No.                                                                                                                                                                                                          | HS-SSET                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Date Received                                                                                                                                                                                                      | June 12, 2023                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Test Dates                                                                                                                                                                                                         | June 12, 2023 through June 16, 2023                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Specifications                                                                                                                                                                                                     | FCC "Code of Federal Regulations" Titl<br>Innovation, Science, and Economic Dev<br>FCC "Code of Federal Regulations" Titl<br>Innovation, Science, and Economic Dev<br>Innovation, Science, and Economic Dev                                                                                                                                                           | velopment Canada, ICES-003<br>le 47 Part 15, Subpart C, Section 15.247<br>velopment Canada, RSS-GEN                                                                                                                                                                                                                                                                                                                                                                                |  |
| Test Facility                                                                                                                                                                                                      | Elite Electronic Engineering, Inc.<br>1516 Centre Circle,<br>Downers Grove, IL 60515                                                                                                                                                                                                                                                                                  | FCC Reg. Number: 269750<br>IC Reg. Number: 2987A<br>CAB Identifier: US0107                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Signature                                                                                                                                                                                                          | Javier Condenas                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Tested by                                                                                                                                                                                                          | Javier Cardenas                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Signature                                                                                                                                                                                                          | Raymond J Klouda                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Approved by                                                                                                                                                                                                        | Raymond J. Klouda,<br>Registered Professional Engineer of Illi                                                                                                                                                                                                                                                                                                        | nois – 44894                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| PO Number                                                                                                                                                                                                          | P539046-00                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| of our name or trademark,<br>with respect to the test sar<br>of the quality or characteri<br>specifically and expressly<br>upon the information that<br>material error or omission<br>specifically address the iss | is permitted only with our prior written permiss<br>mples identified herein. The results set forth in<br>stics of the lot from which a test sample was t<br>noted. Our report includes all of the tests requivou<br>you provided to us. You have 60 days from dat<br>caused by our negligence, provided, however<br>sue you wish to raise. A failure to raise such is | eport to or for any other person or entity, or use<br>ssion. This report sets forth our findings solely<br>in this report are not indicative or representative<br>aken or any similar or identical product unless<br>uested by you and the results thereof based<br>ate of issuance of this report to notify us of any<br>r, that such notice shall be in writing and shall<br>assue within the prescribed time shall constitute<br>is conducted and the correctness of the report |  |
| This report shall not be rep                                                                                                                                                                                       | produced, except in full, without the written ap                                                                                                                                                                                                                                                                                                                      | proval of Elite Electronic Engineering Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                    | g Incorporated certifies that the information of                                                                                                                                                                                                                                                                                                                      | ontained in this report was obtained under<br>ederal Regulations" Title 47 Part 15, Subpart C                                                                                                                                                                                                                                                                                                                                                                                      |  |

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.



#### **Table of Contents**

| 1.   | Report Revision History                                         | 3  |
|------|-----------------------------------------------------------------|----|
| 2.   | Introduction                                                    |    |
| 2.1. | Scope of Tests                                                  | 4  |
| 2.2. | Purpose                                                         | 4  |
| 2.3. | Identification of the EUT                                       | 4  |
| 3.   | Power Input                                                     | 4  |
| 4.   | Grounding                                                       | 4  |
| 5.   | Support Equipment                                               | 4  |
| 6.   | Interconnect Leads                                              | 5  |
| 7.   | Modifications Made to the EUT                                   | 5  |
| 8.   | Modes of Operation                                              | 5  |
| 9.   | Test Specifications                                             | 5  |
| 10.  | Test Plan                                                       |    |
| 11.  | Deviation, Additions to, or Exclusions from Test Specifications | 6  |
| 12.  | Laboratory Conditions                                           | 6  |
| 13.  | Summary                                                         | 6  |
| 14.  | Sample Calculations                                             |    |
| 15.  | Statement of Conformity                                         | 7  |
| 16.  | Certification                                                   | 7  |
| 17.  | Photographs of EUT                                              | 8  |
| 18.  | Equipment List                                                  | 10 |
| 19.  | Block Diagram of Test Setup                                     |    |
| 20.  | Part 15B Radiated Emissions                                     |    |
| 22.  | DTS Bandwidth – 6dB Bandwidth                                   |    |
| 23.  | Occupied Bandwidth (99%)                                        |    |
| 24.  | Effective Isotropic Radiated Power (EIRP)                       | 31 |
| 25.  | Case Spurious Radiated Emissions                                |    |
| 26.  | Band-Edge Compliance                                            |    |
| 27.  | Power Spectral Density                                          |    |
| 28.  | Scope of Accreditation                                          | 62 |

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.



# 1. Report Revision History

| Revision | Date        | Description                                               |
|----------|-------------|-----------------------------------------------------------|
| -        | 20 JUN 2023 | Initial Release of Engineering Test Report No. 2300550-01 |

## 2. Introduction

#### 2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Winegard Company BLE sensor (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Winegard Company located in Burlington, IA.

#### 2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, §15.109 and Subpart C, §15.247 for a Digital Modulation intentional radiator operating within the 2400 – 2483.5MHz band.

The test series was also performed to determine if the EUT meets the RF emission requirements of the ICES-003 specification, Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-Gen and Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-247 for a Digital Modulation intentional radiator operating within the 2400 – 2483.5MHz band.

Testing was performed in accordance with ANSI C63.4-2014 and ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

| EL                           | IT Identification                        |
|------------------------------|------------------------------------------|
| Product Description          | BLE sensor                               |
| Model/Part No.               | HS-SSET                                  |
| Serial No.                   | Parent                                   |
| Size of EUT                  | 4.5cm Length x 6.0cm Width x 2.0cm depth |
| Software/Firmware Version    | Version 20230606                         |
| Device Type                  | Digitally Modulated Transmission Device  |
| Band of Operation            | 2400 – 2483.5MHz                         |
| Modulation Type              | GFSK                                     |
| Antenna Type                 | Trace antenna                            |
| EIRP                         | 5.5mW (7.4dBm)                           |
| 6dB Bandwidth                | 749.3kHz                                 |
| Occupied Bandwidth (99% CBW) | 1.175MHz                                 |
| Emission Classification      | 1M17F1D                                  |

The EUT listed above was used throughout the test series.

#### 3. Power Input

The EUT was powered by 3VDC from an internal lithium battery.

#### 4. Grounding

The EUT was not connected to ground.

### 5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

| Description | Model # | S/N |
|-------------|---------|-----|
| Laptop      | NA      | NA  |



### 6. Interconnect Leads

The following interconnect cables were submitted with the test item:

| Item        | Description                                    |
|-------------|------------------------------------------------|
| UART to USB | Connects laptop to EUT for radio configuration |

## 7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

### 8. Modes of Operation

The EUT and all peripheral equipment were energized. The unit was programmed to transmit in one of the following modes:

| Mode    | Description                                                                                                                                                            |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тх      | Bluetooth:<br>- Continuous Tx at 2402MHz, Power Setting = 4dBm<br>- Continuous Tx at 2440MHz, Power Setting = 4dBm<br>- Continuous Tx at 2480MHz, Power Setting = 4dBm |
| Standby | EUT was powered and the Bluetooth radio was configured to receive across the 2.4GHz to 2.4835GHz range.                                                                |

#### 9. Test Specifications

The tests were performed to selected portions of, and in accordance with, the test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart B
- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division, Guidance For Compliance Measurements On Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 April 2, 2019 KDB 558074 D01v05r02
- RSS-Gen Issue 5, February 2020, Amendment 2, Innovation, Science, and Economic Development Canada, "General Requirements for Compliance of Radio Apparatus"
- RSS-247 Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

#### 10. Test Plan

No test plan was provided. Instructions were provided by personnel from Winegard Company and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart B and Innovation, Science, and Economic Development Canada, ICES-003, FCC "Code of Federal Regulations" Title 47 Part 15, Subpart



C, Section 15.247, Innovation, Science, and Economic Development Canada, RSS-247, and ANSI C63.4-2014 specifications.

# 11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

# 12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

| Ambient Parameters   | Value  |
|----------------------|--------|
| Temperature          | 23°C   |
| Relative Humidity    | 29%    |
| Atmospheric Pressure | 1005mb |

### 13. Summary

The following EMC tests were performed, and the results are shown below:

| Test Description                          | Requirements               | Test Method      | S/N    | Results  |
|-------------------------------------------|----------------------------|------------------|--------|----------|
| Part 15B Radiated Emissions               | FCC 15.109<br>ICES-003     | ANSI C63.4:2014  | Parent | Conforms |
| Occupied Bandwidth (99%)                  | FCC 15.247<br>ISED RSS-247 | ANSI C63.10:2013 | Parent | Conforms |
| Effective Isotropic Radiated Power (EIRP) | FCC 15.247<br>ISED RSS-247 | ANSI C63.10:2013 | Parent | Conforms |
| Case Spurious Radiated Emissions          | FCC 15.247<br>ISED RSS-247 | ANSI C63.10:2013 | Parent | Conforms |
| Band-Edge Compliance                      | FCC 15.247<br>ISED RSS-247 | ANSI C63.10:2013 | Parent | Conforms |
| Power Spectral Density                    | FCC 15.247<br>ISED RSS-247 | ANSI C63.10:2013 | Parent | Conforms |

# 14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL  $(dB\mu V) = MTR (dB\mu V) + CF (dB)$ .

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS  $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$ 

To convert the Field Strength dB $\mu$ V/m term to  $\mu$ V/m, the dB $\mu$ V/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in  $\mu$ V/m terms.

Formula 2: FS ( $\mu$ V/m) = AntiLog [(FS (dB $\mu$ V/m))/20]

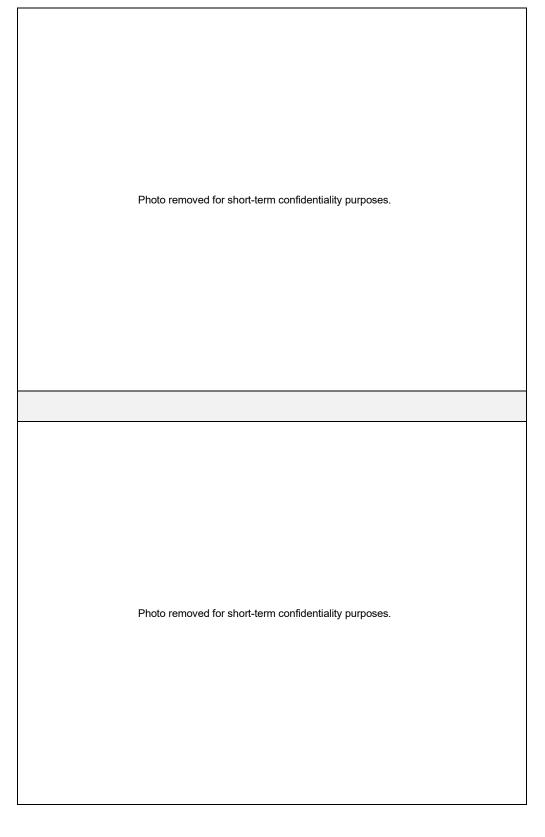


## 15. Statement of Conformity

The Winegard Company BLE sensor, Model No. HS-SSET, Serial No. Parent did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247.

## 16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT as received by the customer on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.




# 17. Photographs of EUT

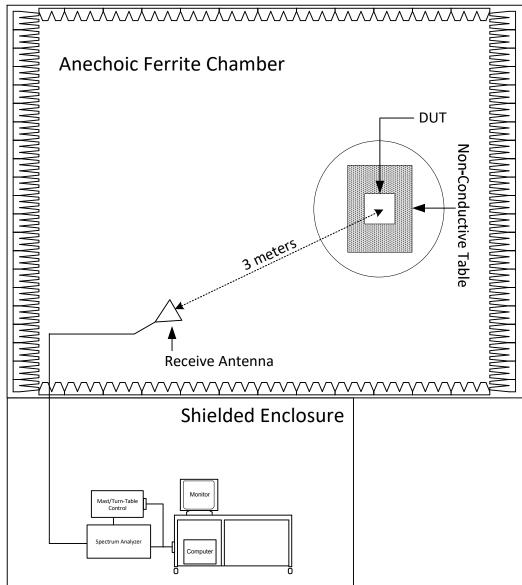
Photo removed for short-term confidentiality purposes. Photo removed for short-term confidentiality purposes.










# 18. Equipment List

| Eq ID | Equipment Description              | Manufacturer       | Model No.                    | Serial No.  | Frequency<br>Range | Cal Date   | Due Date   |
|-------|------------------------------------|--------------------|------------------------------|-------------|--------------------|------------|------------|
| APW0  | PREAMPLIFIER                       | PLANAR ELECTRONICS | PE2-30-<br>20G20R6G          | PL2926/0646 | 20GHZ-26.5GHZ      | 9/21/2022  | 9/21/2023  |
| APW14 | PREAMPLIFIER                       | PLANAR             | PE2-35-120-5R0-<br>10-12-SFF | PL22671     | 1-20GHz            | 9/21/2022  | 9/21/2023  |
| GSF0  | VECTOR SIGNAL GENERATOR            | ROHDE & SCHWARZ    | SMBV100A                     | 260452      | 9kHz to 6GHz       | 9/2/2022   | 9/2/2024   |
| NHG1  | STANDARD GAIN HORN<br>ANTENNA      | NARDA              | 638                          |             | 18-26.5GHZ         | NOTE 1     |            |
| NTA3  | BILOG ANTENNA                      | TESEQ              | 6112D                        | 32853       | 25-1000MHz         | 11/17/2022 | 11/17/2024 |
| NWQ1  | DOUBLE RIDGED WAVEGUIDE<br>ANTENNA | ETS-LINDGREN       | 3117                         | 66655       | 1GHZ-18GHZ         | 5/26/2022  | 5/26/2024  |
| NWQ2  | DOUBLE RIDGED WAVEGUIDE<br>ANTENNA | ETS LINDGREN       | 3117                         | 66659       | 1GHZ-18GHZ         | 4/27/2022  | 4/27/2024  |
| RBG2  | EMI ANALYZER                       | ROHDE & SCHWARZ    | ESW44                        | 101591      | 2HZ-44GHZ          | 4/10/2023  | 4/10/2024  |
| RBG4  | EMI ANALYZER                       | ROHDE & SCHWARZ    | ESW44                        | 103007      | 2HZ-44GHZ          | 12/8/2022  | 12/8/2023  |
| SES0  | 24VDC POWER SUPPLY                 | P-TRANS            | FS-32024-1M                  | 001         | 18-27VDC           | NOTE 1     |            |
| T1E19 | 10DB 25W ATTENUATOR                | WEINSCHEL          | 46-10-43                     | CM5687      | DC-18GHZ           | 5/18/2022  | 5/18/2024  |
| T2SG  | 20DB 25W ATTENUATOR                | WEINSCHEL          | 46-20-34                     | CD5016      | DC-18GHZ           | 1/4/2022   | 1/4/2024   |
| VBV2  | CISPR EN FCC ICES RE.EXE           | ELITE              | CISPR EN FCC<br>ICES RE.EXE  |             |                    | N/A        |            |
| WKA1  | SOFTWARE, UNIVERSAL RCV<br>EMI     | ELITE              | UNIV_RCV_EMI                 | 1           |                    | I/O        |            |
| XPQ4  | HIGH PASS FILTER                   | K&L MICROWAVE      | 11SH10-<br>4800/X20000-O/O   | 1           | 4.8-20GHZ          | 9/7/2021   | 9/7/2023   |

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.



19. Block Diagram of Test Setup



Radiated Measurements Test Setup



# 20. Part 15B Radiated Emissions

| EUT Information |                  |
|-----------------|------------------|
| Manufacturer    | Winegard Company |
| Product         | BLE sensor       |
| Model No.       | HS-SSET          |
| Serial No.      | Parent           |
| Mode            | Standby          |

| Test Site Information            |                                                                                                                                                            |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Setup Format                     | Tabletop                                                                                                                                                   |  |
| Height of Support                | NA                                                                                                                                                         |  |
| Type of Test Site                | Semi-Anechoic Chamber                                                                                                                                      |  |
| Test Site Used                   | R29F                                                                                                                                                       |  |
| Type of Antennas Used            | Below 1GHz: Bilog (or equivalent)                                                                                                                          |  |
| Type of Antennas Osed            | Above 1GHz: Double-ridged waveguide (or equivalent)                                                                                                        |  |
| Highest Internal Frequency       | 2.4GHz                                                                                                                                                     |  |
| Highest Measurement<br>Frequency | 13GHz                                                                                                                                                      |  |
| Notes                            | The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized. |  |

| Measurement Uncertainty                                                                                               |                                        |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Measurement Type                                                                                                      | Expanded<br>Measurement<br>Uncertainty |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz) | 4.3                                    |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)     | 3.1                                    |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)    | 3.2                                    |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz) | 3.3                                    |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz) | 3.4                                    |

#### Requirements

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the values in the following tables.

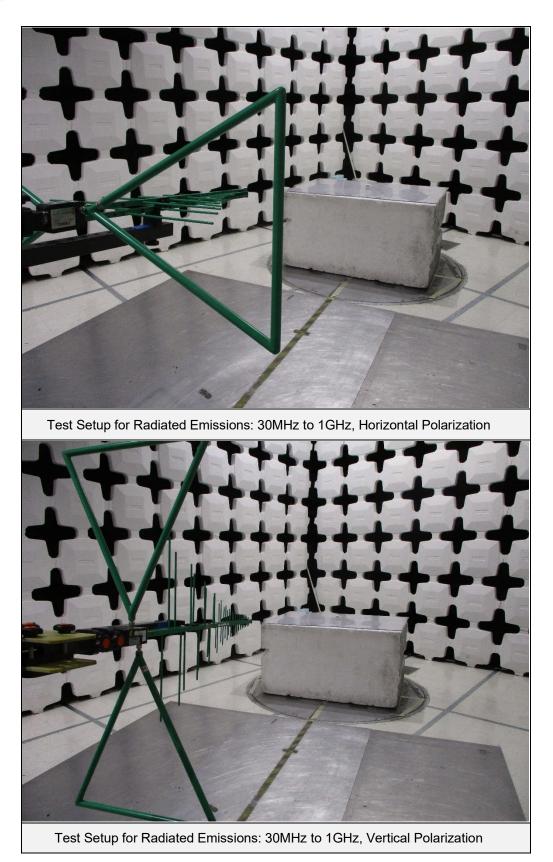


| FCC Part 15 Cl                 | ass B Radiated Emissions Limits (30  | MHz to 1GHz)               |
|--------------------------------|--------------------------------------|----------------------------|
| Frequency of Emission<br>(MHz) | Field Strength<br>(µV/m)             | Field Strength<br>(dBµV/m) |
| 30 – 88                        | 100                                  | 40                         |
| 88 – 216                       | 150                                  | 43.5                       |
| 216 – 960                      | 200                                  | 46                         |
| Above 960                      | 500                                  | 54                         |
| FCC Part 15                    | Class B Radiated Emissions Limits (A | Above 1GHz)                |
| Frequency of Emission<br>(MHz) | Peak Limit<br>(dBµV/m)               | Average Limit<br>(dBµV/m)  |
| Above 1000                     | 74                                   | 54                         |

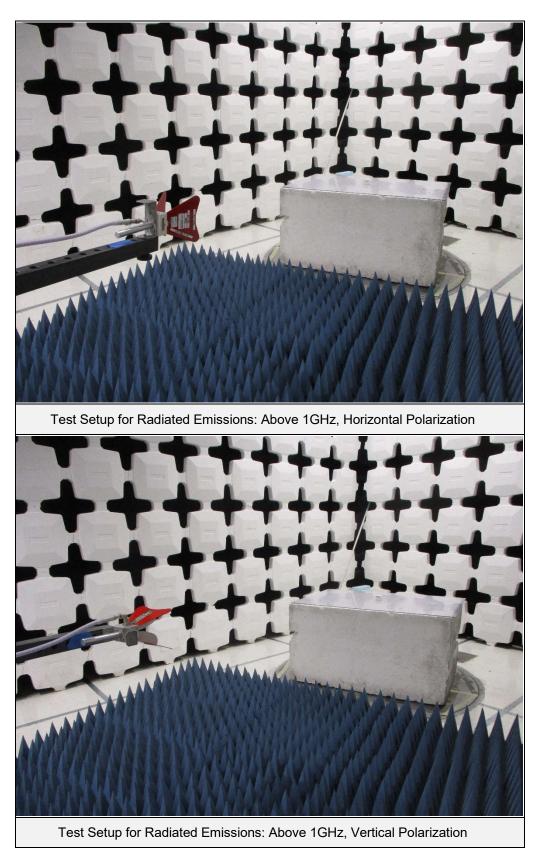
| ICES-003 C                                                     | ass B Radiated Emissions Limits (30N   | MHz to 1GHz)                            |  |  |  |  |
|----------------------------------------------------------------|----------------------------------------|-----------------------------------------|--|--|--|--|
| Frequency Range<br>(MHz)                                       | Field Strength at 3 meters<br>(dBµV/m) | Field Strength at 10 meters<br>(dBµV/m) |  |  |  |  |
| 30 – 88                                                        | 40                                     | 30                                      |  |  |  |  |
| 88 – 216                                                       | 43.5                                   | 33.1                                    |  |  |  |  |
| 216 – 230                                                      | 46                                     | 35.6                                    |  |  |  |  |
| 230 – 960                                                      | 47                                     | 37                                      |  |  |  |  |
| 960 – 1000                                                     | 54                                     | 43.5                                    |  |  |  |  |
| ICES-003 Class B Radiated Emissions Limits (At and Above 1GHz) |                                        |                                         |  |  |  |  |
| Frequency Range<br>(GHz)                                       | Average<br>(dBµV/m)                    | Peak<br>(dBµV/m)                        |  |  |  |  |
| 1 – F <sub>M</sub>                                             | 54                                     | 74                                      |  |  |  |  |
| $F_{M}$ = highest measurement frequency                        | -                                      | •                                       |  |  |  |  |



#### Procedure


Since a quasi-peak detector and an average detector requires long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.

The EUT and all peripheral equipment were placed on an 80cm high non-conductive stand. The broadband measuring antenna was positioned at a 3-meter distance from the EUT. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 13GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted.


Final radiated emissions were performed on all significant broadband and narrowband emissions found in the exploratory sweeps using the following methods:

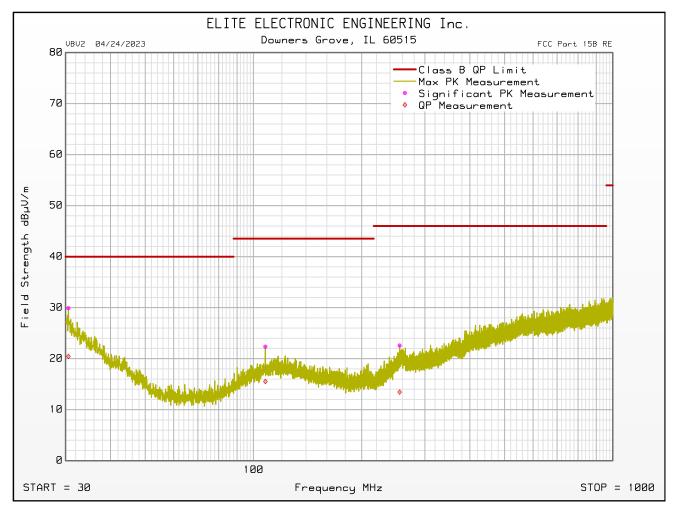
- Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
  - a) The EUT was rotated so that all sides were exposed to the receiving antenna.
  - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
  - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
  - d) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.



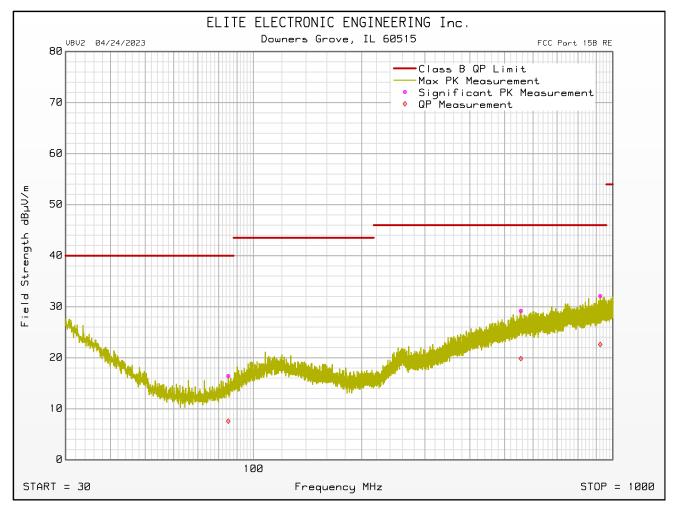









| Manufacturer :            | Winegard Company         |
|---------------------------|--------------------------|
| Model :                   | HS-SSET                  |
| Serial Number :           | Parent                   |
| DUT Mode :                | Standby                  |
| Turntable Step Angle (°): | 45                       |
| Mast Positions (cm) :     | 120, 200, 340            |
| Scan Type :               | Stepped Scan             |
| Test RBW :                | 120 kHz                  |
| Prelim Dwell Time (s) :   | 0.0001                   |
| Notes :                   | Rx - Sweep               |
| Test Engineer :           | J. Cardenas              |
| Test Date :               | Jun 16, 2023 08:06:56 AM |


| Freq<br>MHz | Peak<br>Mtr<br>Rdg<br>dBuV | QP<br>Mtr<br>Rdg<br>dBuV | Ant<br>Fac<br>dB/m | Amp<br>Fac<br>dB | Cbl<br>Fac<br>dB | Dist<br>Corr<br>dB | Peak<br>Total<br>dBµV/m | QP<br>Total<br>dBµV/m | QP<br>Limit<br>dBµV/m | QP<br>Lim<br>Mrg<br>dB | Ant<br>Pol | Mast<br>Ht<br>cm | Azim | Excessive<br>QP<br>Level |
|-------------|----------------------------|--------------------------|--------------------|------------------|------------------|--------------------|-------------------------|-----------------------|-----------------------|------------------------|------------|------------------|------|--------------------------|
| 30.540      | 5.3                        | -4.1                     | 24.2               | 0.0              | 0.4              | 0.0                | 29.9                    | 20.4                  | 40.0                  | -19.6                  | Horizontal | 200              | 180  |                          |
| 85.080      | 2.2                        | -6.6                     | 13.8               | 0.0              | 0.4              | 0.0                | 16.4                    | 7.6                   | 40.0                  | -32.4                  | Vertical   | 120              | 90   |                          |
| 107.920     | 4.1                        | -2.7                     | 17.8               | 0.0              | 0.4              | 0.0                | 22.4                    | 15.5                  | 43.5                  | -28.0                  | Horizontal | 340              | 270  |                          |
| 255.120     | 2.8                        | -6.3                     | 19.0               | 0.0              | 0.8              | 0.0                | 22.6                    | 13.5                  | 46.0                  | -32.5                  | Horizontal | 200              | 135  |                          |
| 554.640     | 3.3                        | -6.0                     | 24.7               | 0.0              | 1.1              | 0.0                | 29.2                    | 19.8                  | 46.0                  | -26.2                  | Vertical   | 120              | 225  |                          |
| 922 620     | 4 1                        | -5.4                     | 26.5               | 0.0              | 1.5              | 0.0                | 32.1                    | 22.6                  | 46.0                  | -23.4                  | Vertical   | 340              | 225  |                          |



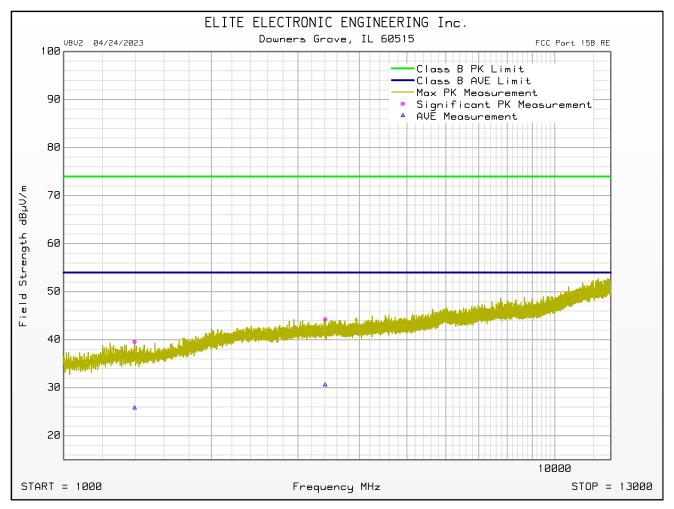
| Model:Serial Number:DUT Mode:Turntable Step Angle (°):Mast Positions (cm):Antenna Polarization:Scan Type:Test RBW:Prelim Dwell Time (s):Notes:Test Engineer: | Winegard Company<br>HS-SSET<br>Parent<br>Standby<br>45<br>120, 200, 340<br>Horizontal<br>Stepped Scan<br>120 kHz<br>0.0001<br>Rx - Sweep<br>J. Cardenas<br>Jun 16, 2023 08:06:56 AM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|





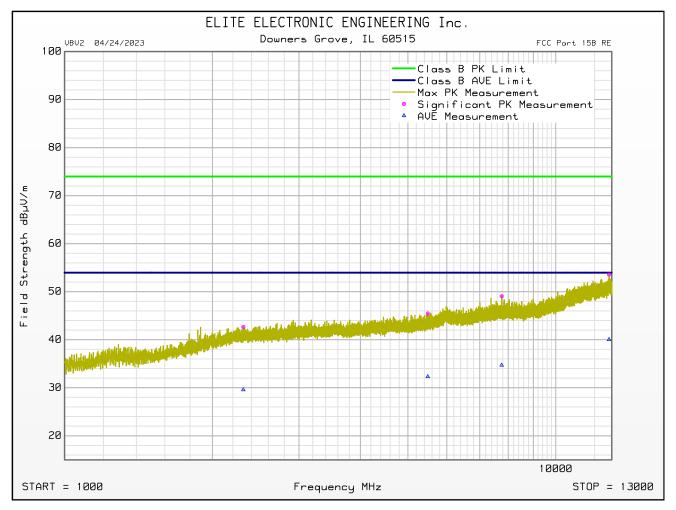





| Manufacturer :            | Winegard Company         |
|---------------------------|--------------------------|
| Model :                   | HS-SSET                  |
| Serial Number :           | Parent                   |
| DUT Mode :                | Standby                  |
| Turntable Step Angle (°): | 45                       |
| Mast Positions (cm) :     | 120, 200, 340            |
| Scan Type :               | Stepped Scan             |
| Test RBW :                | 1 MHz                    |
| Prelim Dwell Time (s) :   | 0.0001                   |
| Notes :                   | Rx - Sweep               |
| Test Engineer :           | J. Cardenas              |
| Test Date :               | Jun 15, 2023 01:07:34 PM |

| Freq<br>MHz | Peak<br>Mtr Rdg<br>dBuV | Ant<br>Fac<br>dB/m | Amp<br>Fac<br>dB | Cbl<br>Fac<br>dB | Dist<br>Corr<br>dB | Peak<br>Total<br>dBµV/m | Peak<br>Limit<br>dBµV/m | Peak<br>Lim Mrg<br>dB | Ant<br>Pol | Mast<br>Ht<br>cm | Azim | Excessive<br>Peak<br>Level |
|-------------|-------------------------|--------------------|------------------|------------------|--------------------|-------------------------|-------------------------|-----------------------|------------|------------------|------|----------------------------|
| 1394.500    | 49.3                    | 28.7               | -40.3            | 1.9              | 0.0                | 39.6                    | 74.0                    | -34.4                 | Horizontal | 340              | 225  |                            |
| 2311.000    | 47.8                    | 32.4               | -40.1            | 2.5              | 0.0                | 42.7                    | 74.0                    | -31.3                 | Vertical   | 340              | 135  |                            |
| 3408.500    | 47.5                    | 33.2               | -39.6            | 3.2              | 0.0                | 44.2                    | 74.0                    | -29.7                 | Horizontal | 340              | 315  |                            |
| 5487.000    | 46.1                    | 34.8               | -39.4            | 4.0              | 0.0                | 45.5                    | 74.0                    | -28.5                 | Vertical   | 340              | 0    |                            |
| 7759.500    | 47.2                    | 36.5               | -39.5            | 4.9              | 0.0                | 49.1                    | 74.0                    | -24.9                 | Vertical   | 120              | 315  |                            |
| 12834 000   | 46.8                    | 39.2               | -38 5            | 61               | 0.0                | 53.6                    | 74.0                    | -20.4                 | Vertical   | 340              | 90   |                            |

| Freq<br>MHz | Average<br>Mtr Rdg<br>dBuV | Ant<br>Fac<br>dB/m | Amp<br>Fac<br>dB | Cbl<br>Fac<br>dB | Dist<br>Corr<br>dB | Average<br>Total<br>dBµV/m | Average<br>Limit<br>dBµV/m | Average<br>Lim Mrg<br>dB | Ant<br>Pol | Mast<br>Ht<br>cm | Azim | Excessive<br>Average<br>Level |
|-------------|----------------------------|--------------------|------------------|------------------|--------------------|----------------------------|----------------------------|--------------------------|------------|------------------|------|-------------------------------|
| 1394.500    | 35.5                       | 28.7               | -40.3            | 1.9              | 0.0                | 25.8                       | 54.0                       | -28.2                    | Horizontal | 340              | 225  |                               |
| 2311.000    | 34.7                       | 32.4               | -40.1            | 2.5              | 0.0                | 29.6                       | 54.0                       | -24.4                    | Vertical   | 340              | 135  |                               |
| 3408.500    | 33.8                       | 33.2               | -39.6            | 3.2              | 0.0                | 30.6                       | 54.0                       | -23.4                    | Horizontal | 340              | 315  |                               |
| 5487.000    | 32.9                       | 34.8               | -39.4            | 4.0              | 0.0                | 32.3                       | 54.0                       | -21.7                    | Vertical   | 340              | 0    |                               |
| 7759.500    | 32.8                       | 36.5               | -39.5            | 4.9              | 0.0                | 34.7                       | 54.0                       | -19.3                    | Vertical   | 120              | 315  | -                             |
| 12834.000   | 33.3                       | 39.2               | -38.5            | 6.1              | 0.0                | 40.0                       | 54.0                       | -14.0                    | Vertical   | 340              | 90   |                               |




| Prelim Dwell Time (s): 0.0001Notes: Rx - SweepTest Engineer: J. Cardenas | Scan Type : Stepped Scan<br>Test RBW : 1 MHz | Dor ModeStandbyTurntable Step Angle (°):45Mast Positions (cm):120, 200, 340Antenna Polarization:Horizontal | Manufacturer: Winegard CompanyModel: HS-SSETSerial Number: ParentDUT Mode: Standby                                                                                          |
|--------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Date : Jun 15, 2023 01:07:34 PM                                     | Notes : Rx - Sweep                           | Test RBW: 1 MHzPrelim Dwell Time (s): 0.0001Notes: Rx - Sweep                                              | Turntable Step Angle (°):45Mast Positions (cm):120, 200, 340Antenna Polarization:HorizontalScan Type:Stepped ScanTest RBW:1 MHzPrelim Dwell Time (s):0.0001Notes:Rx - Sweep |





| Manufacturer<br>Model<br>Serial Number<br>DUT Mode<br>Turntable Step Angle (°)        | :                                       | Winegard Company<br>HS-SSET<br>Parent<br>Standby<br>45                                               |
|---------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|
| Scan Type<br>Test RBW<br>Prelim Dwell Time (s)<br>Notes<br>Test Engineer<br>Test Date | : : : : : : : : : : : : : : : : : : : : | Vertical<br>Stepped Scan<br>1 MHz<br>0.0001<br>Rx - Sweep<br>J. Cardenas<br>Jun 15, 2023 01:07:34 PM |





## 22. DTS Bandwidth - 6dB Bandwidth

| EUT Information |                  |  |  |  |
|-----------------|------------------|--|--|--|
| Manufacturer    | Winegard Company |  |  |  |
| Product         | BLE sensor       |  |  |  |
| Model No.       | HS-SSET          |  |  |  |
| Serial No.      | Parent           |  |  |  |
| Mode            | Тх               |  |  |  |

| Test Setup Details |          |  |  |  |
|--------------------|----------|--|--|--|
| Setup Format       | Tabletop |  |  |  |
| Height of Support  | N/A      |  |  |  |
| Measurement Method | Radiated |  |  |  |
| Type of Test Site  | Tabletop |  |  |  |
| Test Site Used     | N/A      |  |  |  |
| Notes              | None     |  |  |  |

| Measurement Uncertainty                                                                     |             |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|                                                                                             | Expanded    |  |  |  |  |
| Measurement Type                                                                            | Measurement |  |  |  |  |
|                                                                                             | Uncertainty |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 4.3         |  |  |  |  |
| site) (30 MHz – 1000 MHz)                                                                   | 4.5         |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 3.1         |  |  |  |  |
| site) (1 GHz – 6 GHz)                                                                       | 3.1         |  |  |  |  |

Requirements

Systems using digital modulation techniques shall have a minimum 6dB bandwidth of 500kHz

Procedure

The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 100kHz, the video bandwidth (VBW) was set to the same as or 3 times greater than the RBW, and the span was set to 3 times the RBW.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was then screenshot and saved.



| MultiView 📕                                | Receiver              | × Spectrum            | Spi     | ectrum 2 🛛 🔆           | × Spectrum        | 3 🔆 🗙    |               |                                                  | •                                  |
|--------------------------------------------|-----------------------|-----------------------|---------|------------------------|-------------------|----------|---------------|--------------------------------------------------|------------------------------------|
| Ref Level 103<br>Att                       | 0 dB 🖷 SW             | T 100 ms 🖷 VB         |         | <b>1ode</b> Auto Sweep | )                 | _        | Fi            | requency 2.4                                     | 020000 GHz                         |
| Input<br>1 Frequency S                     | 1 AC PS               | On No                 | tch Off |                        |                   |          |               |                                                  | e 2Pk Max                          |
| 100 dBµV                                   | чеер                  |                       |         |                        |                   |          |               | M1[2]                                            | 66.17 dBµ∀                         |
| 100 000                                    |                       |                       |         |                        |                   |          |               |                                                  | .40175520 GHz                      |
| 90 dBµV                                    |                       |                       |         |                        |                   |          |               |                                                  |                                    |
| 80 dBµV                                    |                       |                       |         |                        |                   |          |               |                                                  |                                    |
| 70 dBµV                                    |                       |                       |         | M1                     |                   |          |               |                                                  |                                    |
| co douv                                    |                       |                       |         | J.                     | ^~~~ <u>⊺2</u>    |          |               |                                                  |                                    |
| 60 dBµ∨                                    |                       |                       |         |                        | ~                 | N N      |               |                                                  |                                    |
| 50 dBµ∨                                    |                       |                       |         |                        |                   |          |               |                                                  |                                    |
| 40 dBµV                                    |                       |                       | /       |                        |                   |          |               |                                                  |                                    |
|                                            |                       |                       | $\sim$  |                        |                   | 1 Jon    | h.            |                                                  |                                    |
| 30 dBµ∨                                    |                       | ٦,                    | V       |                        |                   | ······   |               |                                                  |                                    |
| 20 dBµV<br>10 dBµV                         | M. J. J. Laborer Mart | Muntwe                |         |                        |                   |          | Werner Werner | an monter all all all all all all all all all al | human                              |
| wilwww.wilw₩win/w <sup>r/</sup><br>10 dBµ∨ | www.www.              |                       |         |                        |                   |          |               |                                                  | and could all and the water of the |
|                                            |                       |                       |         |                        |                   |          |               |                                                  |                                    |
| CF 2.402 GHz                               |                       |                       | 1001 pt | s                      | 50                | 0.0 kHz/ |               |                                                  | Span 5.0 MHz                       |
| 2 Marker Tabl                              |                       |                       |         |                        |                   |          |               |                                                  |                                    |
| Type Ref                                   |                       | X-Value<br>4017552 GI | 17 6    | Y-Value<br>6.17 dBμV   | ndB               | Function |               | Function R                                       |                                    |
| M1<br>T1                                   | 2 <b>2</b>            | 2.4016953 G           |         | 60.33 dBµV             | naB<br>ndB down ( | RW/      |               | 674.30 <sup>0</sup>                              | 0 dB<br>kHz                        |
| T2                                         | 2                     | 2.4023696 G           |         | 59.97 dBuV             | O Factor          |          |               |                                                  | 61.7                               |

# DTS Bandwidth

| Manufacturer  | : | Winegard Company                         |
|---------------|---|------------------------------------------|
| Model Number  | : | HS-SSET                                  |
| Serial Number | : | Parent                                   |
| Mode          | : | Tx                                       |
| Line Tested   | : | NA                                       |
| Parameters    | : | Carrier Freq = 2402MHz, PWR Setting 4dBm |
| DTS BW        | : | 674.3kHz                                 |
| Date          | : | 6/12/2023 9:15:37 AM                     |
| Notes         | : | None                                     |
|               |   |                                          |



| MultiView                   | Receiver                          | × Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctrum   | × Spectrum             | 2 ×        |          |          |               |         | •                |
|-----------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------|----------|----------|---------------|---------|------------------|
| RefLevel 10<br>Att<br>Input | 2.00 dBµV<br>0 dB = SV<br>1 AC PS | VT 100 ms 🖷 VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | <b>Iode</b> Auto Sweep |            |          | F        | requency      | 2.44(   | 00000 GHz        |
| 1 Frequency S               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         | ● 2Pk Max        |
| 100 dBµV                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          | MI            | [2]     |                  |
| , i                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         | 4026970 GHz      |
| 90 dBµ∨                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| 80 dBµV                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| 70 dBµV                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
|                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| 60 dBµ∨                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| 50 dBµ∨                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| 40 dBµV                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| 30 dBµV                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            | *        | <u>h</u> |               |         |                  |
| ·<br>I .                    |                                   | A. Bana Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                        |            |          | N. Walks |               |         |                  |
| 20 dBUV                     | addination was                    | and the second sec |         |                        |            |          |          | Martin Martin | hrwy    | Molegania        |
| 10 dBµV−−−−                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                        |            |          |          |               |         |                  |
| CF 2.44 GHz                 | <u> </u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1001 pt | <u> </u>               |            | 0.0 kHz/ |          |               |         | pan 5.0 MHz      |
| 2 Marker Tabl               | 0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1001 pt | -                      | 50         |          |          |               |         | part of official |
| Type Ref                    |                                   | X-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Y-Value                |            | Function |          | Funct         | ion Res | ult              |
| M1                          |                                   | .4402697 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hz 6    | 6.36 dBµV              | ndB        | - anodon |          |               | 6.0 (   |                  |
| Τ1                          | 2                                 | 2.4396553 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 60.37 dBµV             | ndB down I | ЗW       |          | 719           | .30 kH  |                  |
| T2                          | 2                                 | 2.4403746 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hz      | 60.42 dBµV             | Q Factor   |          |          |               | 3392    | .7               |

### **DTS Bandwidth**

| Manufacturer  | : | Winegard Company                         |
|---------------|---|------------------------------------------|
| Model Number  | : | HS-SSET                                  |
| Serial Number | : | Parent                                   |
| Mode          | : | Tx                                       |
| Line Tested   | : | NA                                       |
| Parameters    | : | Carrier Freq = 2402MHz, PWR Setting 4dBm |
| DTS BW        | : | 719.3kHz                                 |
| Date          | : | 6/12/2023 9:53:40 AM                     |
| Notes         | : | None                                     |
|               |   |                                          |



| MultiView              | Receiver              | × Spe           | ctrum   | × Spectrum      | 2 <b>X</b> |           |          |             | •                       |
|------------------------|-----------------------|-----------------|---------|-----------------|------------|-----------|----------|-------------|-------------------------|
| RefLevel 10            | 0 dB 🖷 S              | WT 100 ms 🖷 VBV |         | Mode Auto Sweep | ,          |           |          | Frequency   | 2.4800000 GHz           |
| Input<br>1 Frequency S |                       | S On Not        | ich Oli |                 |            |           |          |             | ● 2Pk Max               |
| 100 dBµV               | чеср                  |                 |         |                 |            |           |          | Nd 1        | [2] 68.15 dBµ∀          |
| 100 000                |                       |                 |         |                 |            |           |          |             | 2.47974530 GHz          |
| 90 dBµV                |                       |                 |         |                 |            |           |          |             |                         |
| 80 dBµ∨                |                       |                 |         |                 |            |           |          |             |                         |
| 70 dBµV                |                       |                 |         | M1              |            |           |          |             |                         |
|                        |                       |                 |         |                 |            |           |          |             |                         |
| 60 dBµV                |                       |                 |         |                 |            |           |          |             |                         |
| 50 dBµV                |                       |                 | /       |                 |            | <u>\</u>  |          |             |                         |
|                        |                       |                 |         |                 |            |           |          |             |                         |
| 40 dBµV                |                       | June            | many    |                 |            |           | N.       |             |                         |
| 30 dBµV                |                       | v               |         |                 |            |           | <u> </u> |             |                         |
| an druk                |                       | Normal March    |         |                 |            |           | WWW W    | marken      |                         |
| 20 dBUV                | more half that marine |                 |         |                 |            |           |          | o douber of | the moderate management |
| 10 dBµV                |                       |                 |         |                 |            |           |          |             |                         |
|                        |                       |                 |         |                 |            |           |          |             |                         |
| CF 2.48 GHz            |                       |                 | 1001 p  | ts              | 50         | 00.0 kHz/ |          |             | Span 5.0 MHz            |
| 2 Marker Tabl          |                       |                 |         |                 |            |           |          |             |                         |
| Type Ref               |                       | X-Value         | -       | Y-Value         |            | Function  |          | Funct       | ion Result              |
| M1                     |                       | 2.4797453 GI    |         | 58.15 dBµV      | ndB        | D.W.      |          | 740         | 6.0 dB<br>.30 kHz       |
| T1<br>T2               | 2                     | 2.4796404 G     |         | 62.19 dBµV      | ndB down I | D M       |          | /49         | 30 KHZ                  |

# DTS Bandwidth

| Manufacturer  | : | Winegard Company                         |
|---------------|---|------------------------------------------|
| Model Number  | : | HS-SSET                                  |
| Serial Number | : | Parent                                   |
| Mode          | : | Tx                                       |
| Line Tested   | : | NA                                       |
| Parameters    | : | Carrier Freq = 2402MHz, PWR Setting 4dBm |
| DTS BW        | : | 749.3kHz                                 |
| Date          | : | 6/12/2023 9:57:15 AM                     |
| Notes         | : | None                                     |
|               |   |                                          |



# 23. Occupied Bandwidth (99%)

| EUT Information |                  |  |  |  |
|-----------------|------------------|--|--|--|
| Manufacturer    | Winegard Company |  |  |  |
| Product         | BLE sensor       |  |  |  |
| Model No.       | HS-SSET          |  |  |  |
| Serial No.      | Parent           |  |  |  |
| Mode            | Тх               |  |  |  |

| Test Setup Details |          |  |  |  |
|--------------------|----------|--|--|--|
| Setup Format       | Tabletop |  |  |  |
| Height of Support  | N/A      |  |  |  |
| Measurement Method | Radiated |  |  |  |
| Type of Test Site  | Tabletop |  |  |  |
| Test Site Used     | N/A      |  |  |  |
| Notes              | None     |  |  |  |

| Measurement Uncertainty                                                                     |             |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|                                                                                             | Expanded    |  |  |  |  |
| Measurement Type                                                                            | Measurement |  |  |  |  |
|                                                                                             | Uncertainty |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 4.3         |  |  |  |  |
| site) (30 MHz – 1000 MHz)                                                                   | 4.5         |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 3.1         |  |  |  |  |
| site) (1 GHz – 6 GHz)                                                                       | 3.1         |  |  |  |  |

Procedure

The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 1% to 5% of the actual occupied / x dB bandwidth, the video bandwidth (VBW) was set to at least 3 times greater than the RBW, and the span was set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.



| MultiView 📒 Receiver                                  | X Spectrum X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spectrum 2     | × Spectrum | 3 🔆 🗙                                   |          |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------------------------------------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 102.00 dBµV   Att 0 dB ● SW   Input 1 AC    | ● RBW 200 kHz<br>T 100 ms ● VBW 1 MHz<br>On Notch Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mode Auto Swee | p          | _                                       | Fr       | equency 2       | 2.4020000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 Occupied Bandwidth                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 | ● 2Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100 dBµV                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          | M1[:            | 2] 68.05 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          | _               | 2.40226970 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| oo dhull                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90 dBµV                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80 dBµV                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | M1         |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70 dBµV                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 dвµV                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |            | T2                                      |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>D</sup>   |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 dBµ∨                                               | <i>[[[</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            | $\rightarrow$                           |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 10 11                                              | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |            | "Mary                                   |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 dBµV                                               | and manual and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | No.      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         | <u> </u> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 dвµV                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         | L V      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | . whether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |            |                                         | June 1   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 dBUV- warman and and and and and and and and and a | and a low of the second s |                |            |                                         |          | fundance alexan | an a hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20 dBUV - Andrew Marker Andrew Marker                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          | 1 1000          | all and the second of the seco |
| -14-2010 - 12                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBµV                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 0004                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 2.402 GHz                                          | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ots            | 50         | 10.0 kHz/                               |          |                 | Span 5.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 Marker Table                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |            |                                         |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type Ref Trc                                          | X-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-Value        |            | Function                                |          |                 | n Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.05 dBµV     | Occ Bw     |                                         |          |                 | 4062 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T1 2                                                  | 2.40143179 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53.74 dBµV     | Occ Bw Cer |                                         |          | 2.40            | 2015294 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## 99% Occ Bandwidth

| Manufacturer  | : | Winegard Company                         |
|---------------|---|------------------------------------------|
| Model Number  | : | HS-SSET                                  |
| Serial Number | : | Parent                                   |
| Mode          | : | Tx                                       |
| Line Tested   | : | NA                                       |
| Parameters    | : | Carrier Freq = 2402MHz, PWR Setting 4dBm |
| 99% BW        | : | 1.167MHz                                 |
| Date          | : | 6/12/2023 9:16:08 AM                     |
| Notes         | : | None                                     |
|               |   |                                          |



| MultiView                                                   | Receiver                        | × Spe                  | ectrum                   | × Spectrun            | n 2 🗙               |           |          |                                               |                         | •     |
|-------------------------------------------------------------|---------------------------------|------------------------|--------------------------|-----------------------|---------------------|-----------|----------|-----------------------------------------------|-------------------------|-------|
| RefLevel 102                                                |                                 | ● RE<br>/T 100 ms ● VB | 3W 200 kHz<br>3W 1 MHz 1 | Mode Auto Sweer       |                     |           |          |                                               | 2 4400000 6             |       |
| Input                                                       | 1 AC PS                         |                        |                          | Mode Auto Sweep       | )                   |           |          | requency                                      | 2.4400000 G             | ΠZ    |
| 1 Occupied Ba                                               | ndwidth                         |                        |                          |                       |                     |           |          |                                               | ● 2Pk Ma                | ах    |
| 100 dBµ∨                                                    |                                 |                        |                          |                       |                     |           |          | M1                                            | [2] 66.59 dE            | Зр∀   |
|                                                             |                                 |                        |                          |                       |                     |           |          |                                               | 2.44026470 0            | GHz   |
| 90 dBµV                                                     |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
| 90 dbp+                                                     |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
|                                                             |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
| 80 dBµV                                                     |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
|                                                             |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
| 70 dBµV                                                     |                                 |                        |                          |                       | M1                  |           |          |                                               |                         |       |
| ro appr                                                     |                                 |                        |                          |                       | × ×                 |           |          |                                               |                         |       |
|                                                             |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
| 60 dBµV                                                     |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
|                                                             |                                 |                        | T1                       | K                     |                     | T2        |          |                                               |                         |       |
| 50 dBµV                                                     |                                 |                        | ×                        |                       |                     | X         |          |                                               |                         |       |
| 56 dbp+                                                     |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
|                                                             |                                 |                        |                          |                       |                     | n.        |          |                                               |                         |       |
| 40 dBµV                                                     |                                 |                        | - www.www.               |                       |                     | - nor     | n.       |                                               |                         |       |
|                                                             |                                 |                        | 1                        |                       |                     |           |          |                                               |                         |       |
| 30 dвµV                                                     |                                 | av.                    |                          |                       |                     |           | <u>\</u> |                                               |                         |       |
|                                                             |                                 | a mark water           |                          |                       |                     |           | N        |                                               |                         |       |
|                                                             | M                               | and                    |                          |                       |                     |           | · wi,,   | munu                                          |                         |       |
| 20 dBUV-<br>walkahowywalatha                                | user the tenter the the termine |                        |                          |                       |                     |           |          | " WOM AND | Munthymaniteriner       | New A |
| or aprop and an arr s − 1 − − − − − − − − − − − − − − − − − |                                 |                        |                          |                       |                     |           |          |                                               | Marthan Martin B        | - Wi  |
| 10 dBµV                                                     |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
|                                                             |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
|                                                             |                                 |                        |                          |                       |                     |           |          |                                               |                         |       |
| CF 2.44 GHz                                                 |                                 |                        | 1001 p                   | ts                    | 50                  | 00.0 kHz/ |          |                                               | Span 5.0 M              | IHZ   |
| 2 Marker Table                                              |                                 |                        |                          |                       |                     | _         |          |                                               |                         | _     |
| Type Ref                                                    |                                 | X-Value<br>2.4402647 ( |                          | Y-Value<br>56.59 dBµV |                     | Function  |          |                                               | ion Result<br>32003 MHz |       |
| M1<br>T1                                                    | 2 2                             | 2.43942456             |                          | 52.63 dBuV            | Occ Bw<br>Occ Bw Ce | ntroid    |          |                                               | .4400115 GHz            |       |
| T2                                                          | 2                               | 2.44059844             |                          | 52.34 dBµV            | Occ Bw Fre          |           |          |                                               | .4997515 kHz            |       |

### 99% Occ Bandwidth

| Manufacturer  | : | Winegard Company                         |
|---------------|---|------------------------------------------|
| Model Number  | : | HS-SSET                                  |
| Serial Number | : | Parent                                   |
| Mode          | : | Tx                                       |
| Line Tested   | : | NA                                       |
| Parameters    | : | Carrier Freq = 2402MHz, PWR Setting 4dBm |
| 99% BW        | : | 1.173MHz                                 |
| Date          | : | 6/12/2023 9:54:13 AM                     |
| Notes         | : | None                                     |
|               |   |                                          |



| MultiView              |               | × Spe                                         | ctrum                  | × Spectrun      | n 2 🗙      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
|------------------------|---------------|-----------------------------------------------|------------------------|-----------------|------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|
| RefLevel 103<br>Att    |               | ● RB<br>T 100 ms ● VB                         | ₩ 200 kHz<br>₩ 1 MHz N | 1ode Auto Sweer | 0          |           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | requency 2     | .4800000 GHz     |
| Input<br>1 Occupied Ba | 1 AC PS       | On Not                                        | t <b>ch</b> Off        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ● 2Pk Max        |
| 100 dBµV               | nawiaan       |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1[2           |                  |
| · ·                    |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 2.48026470 GHz   |
| 90 dBµ∨                |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 90 dBh4                |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
|                        |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 80 dBµV                |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
|                        |               |                                               |                        |                 | M1         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 70 dBµV                |               |                                               |                        |                 | ~          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
|                        |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 60 dBµ∨                |               |                                               | T1 .                   |                 |            | T2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
|                        |               |                                               | <b>y</b>               |                 |            | N.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 50 dBµV                |               |                                               | /                      |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
|                        |               |                                               | . And a start          |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 40 dBµV                |               |                                               | Amaran                 |                 |            | - Ann     | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |
| 40 UBPV                |               | می می اور |                        |                 |            |           | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |
|                        |               | WANNE                                         |                        |                 |            |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                  |
| 30 dBµ∨                |               | Allert                                        |                        |                 |            |           | have the second se |                |                  |
| 30 dBµV                | and and the   | hav.                                          |                        |                 |            |           | - · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | month adress 1 | halpertention    |
| BR. ABRY Twomphone     | Anna have the |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Malph Madanapana |
|                        |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| 10 dBµV                |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| · ·                    |               |                                               |                        |                 |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |
| CF 2.48 GHz            |               |                                               | 1001 pt                | <br>\$          | 50         | 0.0 kHz/  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Span 5.0 MHz     |
| 2 Marker Tabl          | P             |                                               | 1001 pt                | ~               | 50         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | opan oro minz    |
| Type Ref               | Trc           | X-Value                                       |                        | Y-Value         |            | Function  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Function       | n Result         |
| M1                     |               | .4802647 G                                    |                        | 9.19 dBµV       | Occ Bw     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.17523        | 0738 MHz         |
| T1                     | 2             | 2.47942396 (                                  |                        | 55.13 dBµV      | Occ Bw Cer |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 0011573 GHz      |
| T2                     | 2             | 2.48059919 (                                  | эНZ                    | 54.93 dBµV      | Occ Bw Fre | eq utrset |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.57          | 2520494 kHz      |

### 99% Occ Bandwidth

| Manufacturer  | : | Winegard Company                         |
|---------------|---|------------------------------------------|
| Model Number  | : | HS-SSET                                  |
| Serial Number | : | Parent                                   |
| Mode          | : | Tx                                       |
| Line Tested   | : | NA                                       |
| Parameters    | : | Carrier Freq = 2402MHz, PWR Setting 4dBm |
| 99% BW        | : | 1.175MHz                                 |
| Date          | : | 6/12/2023 9:56:33 AM                     |
| Notes         | : | None                                     |
|               |   |                                          |



# 24. Effective Isotropic Radiated Power (EIRP)

| EUT Information |                  |  |  |  |
|-----------------|------------------|--|--|--|
| Manufacturer    | Winegard Company |  |  |  |
| Product         | BLE sensor       |  |  |  |
| Model No.       | HS-SSET          |  |  |  |
| Serial No.      | Parent           |  |  |  |
| Mode            | Тх               |  |  |  |

| Test Setup Details    |                                         |  |  |  |
|-----------------------|-----------------------------------------|--|--|--|
| Setup Format          | Tabletop                                |  |  |  |
| Height of Support     | N/A                                     |  |  |  |
| Measurement Method    | Radiated                                |  |  |  |
| Type of Test Site     | Semi-Anechoic Chamber                   |  |  |  |
| Test Site Used        | R29F                                    |  |  |  |
| Type of Antennas Used | Double-ridged waveguide (or equivalent) |  |  |  |
| Notes                 | None                                    |  |  |  |

| Measurement Uncertainty                                                                     |             |
|---------------------------------------------------------------------------------------------|-------------|
|                                                                                             | Expanded    |
| Measurement Type                                                                            | Measurement |
|                                                                                             | Uncertainty |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 4.3         |
| site) (30 MHz – 1000 MHz)                                                                   | 4.5         |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 3.1         |
| site) (1 GHz – 6 GHz)                                                                       | 3.1         |

Requirements

The output power shall not exceed 4W (36dBm).

#### Procedure

The EUT was placed on the non-conductive stand and set to transmit. A double ridged waveguide antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 6dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle, and high channels.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna (double ridged waveguide antenna for all measurements above 1GHz) was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss (and antenna gain for all measurements above 1GHz), as required. The peak power output was calculated for low, middle, and high hopping frequencies.



| Test Details |                           |  |  |  |
|--------------|---------------------------|--|--|--|
| Manufacturer | Winegard Company          |  |  |  |
| EUT          | BLE sensor                |  |  |  |
| Model No.    | HS-SSET                   |  |  |  |
| Serial No.   | Parent                    |  |  |  |
| Mode         | Tx                        |  |  |  |
| Result       | Max EIRP = 5.5mW (7.4dBm) |  |  |  |
| Notes        | None                      |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Wide BW<br>Meter<br>Reading<br>(dBµV) | Matched<br>Sig Gen<br>Reading<br>(dBm) | Equivalent<br>Antenna<br>Gain<br>(dB) | Cable<br>Loss<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|---------------|------------|---------------------------------------|----------------------------------------|---------------------------------------|-----------------------|---------------|----------------|----------------|
| 2402.00       | Н          | 67.1                                  | 4.9                                    | 5.3                                   | 3.4                   | 6.7           | 36.0           | -29.3          |
| 2402.00       | V          | 62.4                                  | 1.4                                    | 5.3                                   | 3.4                   | 3.2           | 36.0           | -32.8          |
| 2440.00       | Н          | 67.2                                  | 5.7                                    | 5.2                                   | 3.5                   | 7.4           | 36.0           | -28.6          |
| 2440.00       | V          | 61.9                                  | 0.8                                    | 5.2                                   | 3.5                   | 2.6           | 36.0           | -33.4          |
| 2480.00       | Н          | 66.9                                  | 4.3                                    | 5.2                                   | 3.5                   | 6.0           | 36.0           | -30.0          |
| 2400.00       | V          | 61.0                                  | -0.8                                   | 5.2                                   | 3.5                   | 0.9           | 36.0           | -35.1          |



# 25. Case Spurious Radiated Emissions

| EUT Information |                  |  |  |  |
|-----------------|------------------|--|--|--|
| Manufacturer    | Winegard Company |  |  |  |
| Product         | BLE sensor       |  |  |  |
| Model No.       | HS-SSET          |  |  |  |
| Serial No.      | Parent           |  |  |  |
| Mode            | Tx               |  |  |  |

| Test Setup Details    |                                                    |  |
|-----------------------|----------------------------------------------------|--|
| Setup Format          | Tabletop                                           |  |
| Height of Support     | N/A                                                |  |
| Type of Test Site     | Semi-Anechoic Chamber                              |  |
| Test Site Used        | R29F                                               |  |
| Type of Antennas Used | Below 1GHz: Bilog (or equivalent)                  |  |
|                       | 1 – 18GHz: Double-Ridged Waveguide (or equivalent) |  |
|                       | Above 18GHz: Horn (or equivalent)                  |  |
| Notes                 | None                                               |  |

| Measurement Uncertainty                                                                                               |                                        |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Measurement Type                                                                                                      | Expanded<br>Measurement<br>Uncertainty |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz) | 4.3                                    |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)     | 3.1                                    |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)    | 3.2                                    |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz) | 3.3                                    |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz) | 3.4                                    |  |

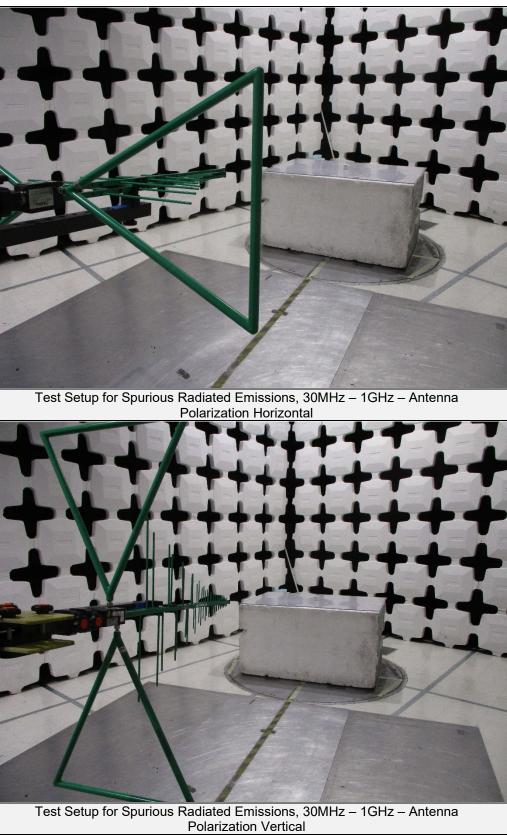


#### Procedure

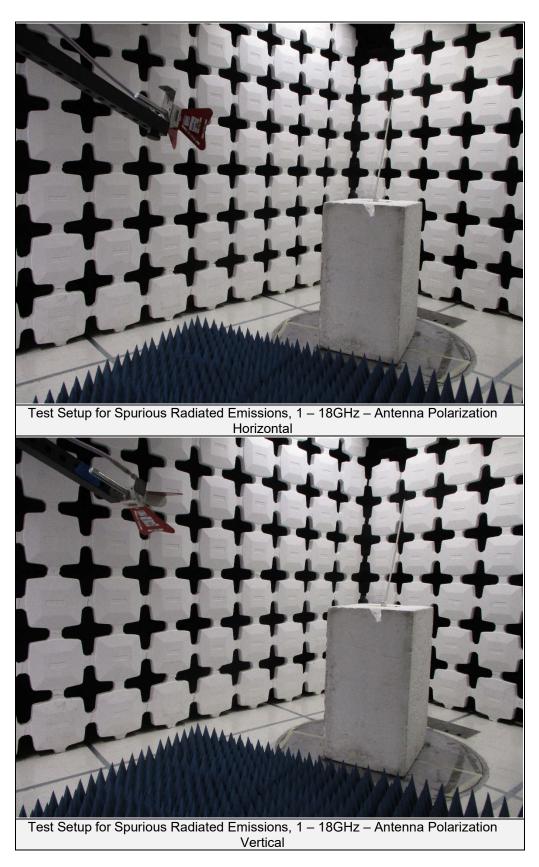
Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 25GHz was investigated using a peak detector function.

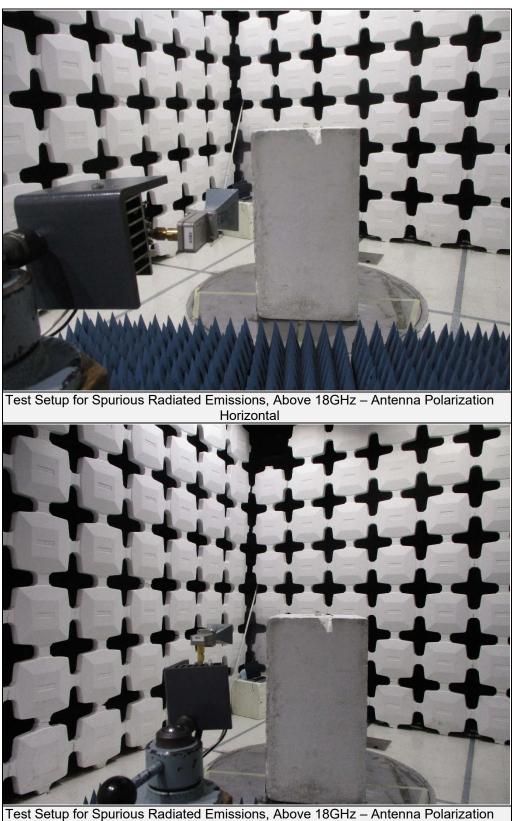
The final open field emission tests were then manually performed over the frequency range of 30MHz to 25GHz.


- 1) For all harmonics not in the restricted bands, the following procedure was used:
  - a) The field strength of the fundamental was measured using a double ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
  - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
  - c) To ensure that maximum or worst-case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
    - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
    - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
    - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
    - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
  - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
  - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
  - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
  - c) To ensure that maximum or worst-case emission levels were measured, the following steps were taken when taking all measurements:
    - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
    - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components




were measured.

- iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
- iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
- d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in §15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in §15.209(a), then the emissions are remeasured using a quasi-peak detector.
- e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).
- f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.














Vertical



|                  | Test Details                              |  |  |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                          |  |  |  |  |  |  |  |
| EUT              | BLE sensor                                |  |  |  |  |  |  |  |
| Model No.        | HS-SSET                                   |  |  |  |  |  |  |  |
| Serial No.       | Parent                                    |  |  |  |  |  |  |  |
| Mode             | Tx                                        |  |  |  |  |  |  |  |
| Frequency Tested | 2402MHz                                   |  |  |  |  |  |  |  |
| Notes            | Peak Measurements in the Restricted Bands |  |  |  |  |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | Cable<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB/m) | Pre<br>Amp<br>(dB) | Peak<br>Total<br>at 3m<br>(dBµV/m) | Peak<br>Total<br>at 3m<br>(μV/m) | Peak<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dBm) |
|---------------|------------|----------------------------|---------|-------------------------|-----------------------------|--------------------|------------------------------------|----------------------------------|----------------------------------|-----------------|
| 4804.00       | Н          | 48.6                       | *       | 3.7                     | 34.3                        | -39.7              | 46.9                               | 221.6                            | 5000.0                           | -27.1           |
| 4004.00       | V          | 49.3                       | *       | 3.7                     | 34.3                        | -39.7              | 47.5                               | 238.0                            | 5000.0                           | -26.4           |
| 12010.00      | Н          | 48.4                       | *       | 6.1                     | 38.8                        | -39.0              | 54.3                               | 518.0                            | 5000.0                           | -19.7           |
| 12010.00      | V          | 48.8                       | *       | 6.1                     | 38.8                        | -39.0              | 54.7                               | 543.6                            | 5000.0                           | -19.3           |
| 19216.00      | Н          | 32.0                       | *       | 2.2                     | 40.4                        | -28.2              | 46.4                               | 208.3                            | 5000.0                           | -27.6           |
| 19210.00      | V          | 32.1                       | *       | 2.2                     | 40.4                        | -28.2              | 46.5                               | 210.5                            | 5000.0                           | -27.5           |



|                  | Test Details                                 |  |  |  |  |  |  |  |
|------------------|----------------------------------------------|--|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                             |  |  |  |  |  |  |  |
| EUT              | BLE sensor                                   |  |  |  |  |  |  |  |
| Model No.        | HS-SSET                                      |  |  |  |  |  |  |  |
| Serial No.       | Parent                                       |  |  |  |  |  |  |  |
| Mode             | Tx                                           |  |  |  |  |  |  |  |
| Frequency Tested | 2402MHz                                      |  |  |  |  |  |  |  |
| Notes            | Average Measurements in the Restricted Bands |  |  |  |  |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | CBL<br>Fac<br>(dB) | Ant<br>Fac<br>(dB/m) | Pre<br>Amp<br>(dB) | Duty<br>Cycle<br>Factor<br>(dB) | Average<br>Total<br>at 3m<br>(dBµV/m) | Average<br>Total<br>at 3m<br>(μV/m) | Average<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dB) |
|---------------|------------|----------------------------|---------|--------------------|----------------------|--------------------|---------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|----------------|
| 4804.00       | Н          | 33.28                      | *       | 3.7                | 34.3                 | -39.7              | 0.0                             | 31.6                                  | 37.8                                | 500.0                               | -22.4          |
| 4004.00       | V          | 33.79                      | *       | 3.7                | 34.3                 | -39.7              | 0.0                             | 32.1                                  | 40.1                                | 500.0                               | -21.9          |
| 12010.00      | Н          | 33.69                      | *       | 6.1                | 38.8                 | -39.0              | 0.0                             | 39.6                                  | 95.5                                | 500.0                               | -14.4          |
| 12010.00      | V          | 33.72                      | *       | 6.1                | 38.8                 | -39.0              | 0.0                             | 39.6                                  | 95.8                                | 500.0                               | -14.4          |
| 10010.00      | Н          | 16.14                      | *       | 2.2                | 40.4                 | -28.2              | 0.0                             | 30.5                                  | 33.5                                | 500.0                               | -23.5          |
| 19216.00      | V          | 15.98                      | *       | 2.2                | 40.4                 | -28.2              | 0.0                             | 30.3                                  | 32.9                                | 500.0                               | -23.6          |



|                  | Test Details                              |  |  |  |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                          |  |  |  |  |  |  |  |  |
| EUT              | BLE sensor                                |  |  |  |  |  |  |  |  |
| Model No.        | HS-SSET                                   |  |  |  |  |  |  |  |  |
| Serial No.       | Parent                                    |  |  |  |  |  |  |  |  |
| Mode             | Tx                                        |  |  |  |  |  |  |  |  |
| Frequency Tested | 2402MHz                                   |  |  |  |  |  |  |  |  |
| Notes            | Peak Measurements in Non-Restricted Bands |  |  |  |  |  |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | Cable<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB/m) | Pre<br>Amp<br>(dB) | Peak<br>Total<br>at 3m<br>(dBµV/m) | Peak<br>Total<br>at 3m<br>(μV/m) | Peak<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dBm) |
|---------------|------------|----------------------------|---------|-------------------------|-----------------------------|--------------------|------------------------------------|----------------------------------|----------------------------------|-----------------|
| 2402.00       | Н          | 66.01                      |         | 2.6                     | 32.6                        | 0.0                | 101.2                              | 114763.5                         | NA                               | NA              |
| 2402.00       | V          | 60.62                      |         | 2.6                     | 32.6                        | 0.0                | 95.8                               | 61702.6                          | NA                               | NA              |
| 7206.00       | Н          | 38.46                      |         | 4.6                     | 36.3                        | -39.7              | 39.7                               | 96.9                             | 11476.3                          | -41.5           |
| 7200.00       | V          | 39.30                      |         | 4.6                     | 36.3                        | -39.7              | 40.6                               | 106.8                            | 11476.3                          | -40.6           |
| 9608.00       | Н          | 39.09                      |         | 5.2                     | 37.1                        | -39.3              | 42.1                               | 127.3                            | 11476.3                          | -39.1           |
| 9008.00       | V          | 37.62                      |         | 5.2                     | 37.1                        | -39.3              | 40.6                               | 107.5                            | 11476.3                          | -40.6           |
| 14412.00      | Н          | 37.85                      | *       | 6.6                     | 39.4                        | -38.6              | 45.3                               | 184.3                            | 11476.3                          | -35.9           |
| 14412.00      | V          | 38.03                      | *       | 6.6                     | 39.4                        | -38.6              | 45.5                               | 188.1                            | 11476.3                          | -35.7           |
| 16814.00      | Н          | 36.81                      | *       | 7.2                     | 42.2                        | -37.4              | 48.8                               | 276.4                            | 11476.3                          | -32.4           |
| 10014.00      | V          | 37.17                      | *       | 7.2                     | 42.2                        | -37.4              | 49.2                               | 288.1                            | 11476.3                          | -32.0           |
| 21618.00      | Н          | 20.97                      | *       | 2.2                     | 40.6                        | -28.5              | 35.3                               | 58.1                             | 11476.3                          | -45.9           |
| 21010.00      | V          | 21.13                      | *       | 2.2                     | 40.6                        | -28.5              | 35.4                               | 59.2                             | 11476.3                          | -45.8           |
| 24020.00      | Н          | 21.74                      | *       | 2.2                     | 40.6                        | -29.3              | 35.3                               | 58.4                             | 11476.3                          | -45.9           |
| 24020.00      | V          | 21.95                      | *       | 2.2                     | 40.6                        | -29.3              | 35.5                               | 59.9                             | 11476.3                          | -45.7           |



|                  | Test Details                              |  |  |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                          |  |  |  |  |  |  |  |
| EUT              | BLE sensor                                |  |  |  |  |  |  |  |
| Model No.        | HS-SSET                                   |  |  |  |  |  |  |  |
| Serial No.       | Parent                                    |  |  |  |  |  |  |  |
| Mode             | Тх                                        |  |  |  |  |  |  |  |
| Frequency Tested | 2440MHz                                   |  |  |  |  |  |  |  |
| Notes            | Peak Measurements in the Restricted Bands |  |  |  |  |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | Cable<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB/m) | Pre<br>Amp<br>(dB) | Peak<br>Total<br>at 3m<br>(dBµV/m) | Peak<br>Total<br>at 3m<br>(μV/m) | Peak<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dBm) |
|---------------|------------|----------------------------|---------|-------------------------|-----------------------------|--------------------|------------------------------------|----------------------------------|----------------------------------|-----------------|
| 4880.00       | Н          | 48.1                       | *       | 3.7                     | 34.2                        | -39.6              | 46.4                               | 208.7                            | 5000.0                           | -27.6           |
| 4000.00       | V          | 49.0                       | *       | 3.7                     | 34.2                        | -39.6              | 47.3                               | 230.7                            | 5000.0                           | -26.7           |
| 7320.00       | Н          | 48.4                       | *       | 4.7                     | 36.3                        | -39.6              | 49.7                               | 307.0                            | 5000.0                           | -24.2           |
| 7320.00       | V          | 48.4                       | *       | 4.7                     | 36.3                        | -39.6              | 49.7                               | 304.9                            | 5000.0                           | -24.3           |
| 12200.00      | Н          | 47.9                       | *       | 6.1                     | 38.9                        | -38.9              | 54.0                               | 499.3                            | 5000.0                           | -20.0           |
| 12200.00      | V          | 48.2                       | *       | 6.1                     | 38.9                        | -38.9              | 54.2                               | 515.6                            | 5000.0                           | -19.7           |
| 19520.00      | Н          | 32.4                       | *       | 2.2                     | 40.4                        | -27.8              | 47.3                               | 231.2                            | 5000.0                           | -26.7           |
| 19520.00      | V          | 31.4                       | *       | 2.2                     | 40.4                        | -27.8              | 46.2                               | 205.2                            | 5000.0                           | -27.7           |



|                  | Test Details                                 |  |  |  |  |  |  |  |
|------------------|----------------------------------------------|--|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                             |  |  |  |  |  |  |  |
| EUT              | BLE sensor                                   |  |  |  |  |  |  |  |
| Model No.        | HS-SSET                                      |  |  |  |  |  |  |  |
| Serial No.       | Parent                                       |  |  |  |  |  |  |  |
| Mode             | Tx                                           |  |  |  |  |  |  |  |
| Frequency Tested | 2440MHz                                      |  |  |  |  |  |  |  |
| Notes            | Average Measurements in the Restricted Bands |  |  |  |  |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | CBL<br>Fac<br>(dB) | Ant<br>Fac<br>(dB/m) | Pre<br>Amp<br>(dB) | Duty<br>Cycle<br>Factor<br>(dB) | Average<br>Total<br>at 3m<br>(dBµV/m) | Average<br>Total<br>at 3m<br>(μV/m) | Average<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dB) |
|---------------|------------|----------------------------|---------|--------------------|----------------------|--------------------|---------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|----------------|
| 4880.00       | Н          | 33.97                      | *       | 3.7                | 34.2                 | -39.6              | 0.0                             | 32.3                                  | 41.0                                | 500.0                               | -21.7          |
| 4000.00       | V          | 33.63                      | *       | 3.7                | 34.2                 | -39.6              | 0.0                             | 31.9                                  | 39.4                                | 500.0                               | -22.1          |
| 7320.00       | Н          | 33.26                      | *       | 4.7                | 36.3                 | -39.6              | 0.0                             | 34.6                                  | 53.7                                | 500.0                               | -19.4          |
| 7320.00       | V          | 32.96                      | *       | 4.7                | 36.3                 | -39.6              | 0.0                             | 34.3                                  | 51.8                                | 500.0                               | -19.7          |
| 12200.00      | Н          | 33.17                      | *       | 6.1                | 38.9                 | -38.9              | 0.0                             | 39.2                                  | 91.4                                | 500.0                               | -14.8          |
| 12200.00      | V          | 33.25                      | *       | 6.1                | 38.9                 | -38.9              | 0.0                             | 39.3                                  | 92.2                                | 500.0                               | -14.7          |
| 19520.00      | Н          | 15.41                      | *       | 2.2                | 40.4                 | -27.8              | 0.0                             | 30.3                                  | 32.6                                | 500.0                               | -23.7          |
| 19320.00      | V          | 15.18                      | *       | 2.2                | 40.4                 | -27.8              | 0.0                             | 30.0                                  | 31.7                                | 500.0                               | -23.9          |



|                  | Test Details                              |  |  |  |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                          |  |  |  |  |  |  |  |  |
| EUT              | BLE sensor                                |  |  |  |  |  |  |  |  |
| Model No.        | HS-SSET                                   |  |  |  |  |  |  |  |  |
| Serial No.       | Parent                                    |  |  |  |  |  |  |  |  |
| Mode             | Тх                                        |  |  |  |  |  |  |  |  |
| Frequency Tested | 2440MHz                                   |  |  |  |  |  |  |  |  |
| Notes            | Peak Measurements in Non-Restricted Bands |  |  |  |  |  |  |  |  |

|               |            | Meter             |         | Cable          | Antenna          | Pre         | Peak<br>Total     | Peak<br>Total   | Peak<br>Limit   |                 |
|---------------|------------|-------------------|---------|----------------|------------------|-------------|-------------------|-----------------|-----------------|-----------------|
| Freq<br>(MHz) | Ant<br>Pol | Reading<br>(dBµV) | Ambient | Factor<br>(dB) | Factor<br>(dB/m) | Amp<br>(dB) | at 3m<br>(dBµV/m) | at 3m<br>(µV/m) | at 3m<br>(µV/m) | Margin<br>(dBm) |
| 0440.00       | Н          | 66.74             |         | 2.6            | 32.6             | 0.0         | 102.0             | 125965.2        | NA              | NA              |
| 2440.00       | V          | 60.85             |         | 2.6            | 32.6             | 0.0         | 96.1              | 63936.8         | NA              | NA              |
| 9760.00       | Н          | 38.62             |         | 5.2            | 37.2             | -39.3       | 41.8              | 123.1           | 12596.5         | -40.2           |
| 9700.00       | V          | 37.29             |         | 5.2            | 37.2             | -39.3       | 40.5              | 105.6           | 12596.5         | -41.5           |
| 14640.00      | Н          | 37.60             | *       | 6.7            | 39.5             | -38.6       | 45.2              | 181.8           | 12596.5         | -36.8           |
| 14040.00      | V          | 37.44             | *       | 6.7            | 39.5             | -38.6       | 45.0              | 178.4           | 12596.5         | -37.0           |
| 17080.00      | Н          | 37.16             | *       | 7.3            | 42.4             | -37.4       | 49.5              | 297.6           | 12596.5         | -32.5           |
| 17080.00      | V          | 36.96             | *       | 7.3            | 42.4             | -37.4       | 49.3              | 290.8           | 12596.5         | -32.7           |
| 21960.00      | Н          | 22.09             | *       | 2.2            | 40.6             | -28.9       | 36.0              | 63.1            | 12596.5         | -46.0           |
| 21900.00      | V          | 22.40             | *       | 2.2            | 40.6             | -28.9       | 36.3              | 65.3            | 12596.5         | -45.7           |
| 24400.00      | Н          | 22.13             | *       | 2.2            | 40.6             | -29.3       | 35.7              | 60.9            | 12596.5         | -46.3           |
| 24400.00      | V          | 21.94             | *       | 2.2            | 40.6             | -29.3       | 35.5              | 59.6            | 12596.5         | -46.5           |



| Test Details     |                                           |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|
| Manufacturer     | Winegard Company                          |  |  |  |  |  |
| EUT              | BLE sensor                                |  |  |  |  |  |
| Model No.        | HS-SSET                                   |  |  |  |  |  |
| Serial No.       | Parent                                    |  |  |  |  |  |
| Mode             | Тх                                        |  |  |  |  |  |
| Frequency Tested | 2480MHz                                   |  |  |  |  |  |
| Notes            | Peak Measurements in the Restricted Bands |  |  |  |  |  |

| Freq     | Ant      | Meter<br>Reading | Anchicut | Cable<br>Factor | Antenna<br>Factor | Pre<br>Amp    | Peak<br>Total<br>at 3m | Peak<br>Total<br>at 3m | Peak<br>Limit<br>at 3m | Margin         |
|----------|----------|------------------|----------|-----------------|-------------------|---------------|------------------------|------------------------|------------------------|----------------|
| (MHz)    | Pol<br>H | (dBµV)<br>48.8   | Ambient  | (dB)<br>3.7     | (dB/m)<br>34.1    | (dB)<br>-39.6 | (dBµV/m)<br>47.1       | (µV/m)<br>225.3        | (µV/m)<br>5000.0       | (dBm)<br>-26.9 |
| 4960.00  | V        | 48.1             |          | 3.7             | 34.1              | -39.6         | 46.3                   | 206.7                  | 5000.0                 | -27.7          |
| 7440.00  | Н        | 4737             | *        | 4.7             | 36.3              | -39.6         | 1.5                    | 1.2                    | 5000.0                 | -72.5          |
| 7440.00  | V        | 47.5             | *        | 4.7             | 36.3              | -39.6         | 49.0                   | 282.4                  | 5000.0                 | -25.0          |
| 12400.00 | Н        | 47.4             | *        | 6.1             | 38.9              | -38.8         | 53.6                   | 478.9                  | 5000.0                 | -20.4          |
| 12400.00 | V        | 47.2             | *        | 6.1             | 38.9              | -38.8         | 53.4                   | 466.4                  | 5000.0                 | -20.6          |
| 19840.00 | Н        | 32.1             | *        | 2.2             | 40.4              | -28.0         | 46.7                   | 217.2                  | 5000.0                 | -27.2          |
| 19640.00 | V        | 32.2             | *        | 2.2             | 40.4              | -28.0         | 46.8                   | 219.7                  | 5000.0                 | -27.1          |
| 22220.00 | Н        | 32.4             | *        | 2.2             | 40.6              | -28.8         | 46.4                   | 208.5                  | 5000.0                 | -27.6          |
| 22320.00 | V        | 32.1             | *        | 2.2             | 40.6              | -28.8         | 46.1                   | 201.5                  | 5000.0                 | -27.9          |
| 2483.50  | Н        | 25.5             | *        | 2.7             | 32.7              | 0.0           | 60.8                   | 1101.2                 | 5000.0                 | -13.1          |
| 2403.30  | V        | 25.0             | *        | 2.7             | 32.7              | 0.0           | 60.3                   | 1040.8                 | 5000.0                 | -13.6          |



| Test Details     |                                              |  |  |  |  |  |
|------------------|----------------------------------------------|--|--|--|--|--|
| Manufacturer     | Winegard Company                             |  |  |  |  |  |
| EUT              | BLE sensor                                   |  |  |  |  |  |
| Model No.        | HS-SSET                                      |  |  |  |  |  |
| Serial No.       | Parent                                       |  |  |  |  |  |
| Mode             | Тх                                           |  |  |  |  |  |
| Frequency Tested | 2480MHz                                      |  |  |  |  |  |
| Notes            | Average Measurements in the Restricted Bands |  |  |  |  |  |

|               |            | Meter             |         | CBL         | Ant           | Pre         | Duty<br>Cycle  | Average<br>Total  | Average<br>Total | Average<br>Limit |                |
|---------------|------------|-------------------|---------|-------------|---------------|-------------|----------------|-------------------|------------------|------------------|----------------|
| Freq<br>(MHz) | Ant<br>Pol | Reading<br>(dBµV) | Ambient | Fac<br>(dB) | Fac<br>(dB/m) | Amp<br>(dB) | Factor<br>(dB) | at 3m<br>(dBµV/m) | at 3m<br>(µV/m)  | at 3m<br>(µV/m)  | Margin<br>(dB) |
| /             | H          | 35.57             | THDIGHT | 3.7         | 34.1          | -39.6       | 0.0            | 33.8              | 49.0             | 500.0            | -20.2          |
| 4960.00       | V          | 34.86             |         | 3.7         | 34.1          | -39.6       | 0.0            | 33.1              | 45.1             | 500.0            | -20.9          |
| 7440.00       | Н          | 33.14             | *       | 4.7         | 36.3          | -39.6       | 0.0            | 34.6              | 53.9             | 500.0            | -19.4          |
| 7440.00       | V          | 32.79             | *       | 4.7         | 36.3          | -39.6       | 0.0            | 34.3              | 51.7             | 500.0            | -19.7          |
| 12400.00      | Н          | 32.46             | *       | 6.1         | 38.9          | -38.8       | 0.0            | 38.7              | 85.7             | 500.0            | -15.3          |
| 12400.00      | V          | 32.34             | *       | 6.1         | 38.9          | -38.8       | 0.0            | 38.5              | 84.6             | 500.0            | -15.4          |
| 19840.00      | Н          | 14.56             | *       | 2.2         | 40.4          | -28.0       | 0.0            | 29.2              | 28.7             | 500.0            | -24.8          |
| 19640.00      | V          | 15.12             | *       | 2.2         | 40.4          | -28.0       | 0.0            | 29.7              | 30.6             | 500.0            | -24.3          |
| 22320.00      | Н          | 15.20             | *       | 2.2         | 40.6          | -28.8       | 0.0            | 29.2              | 28.8             | 500.0            | -24.8          |
| 22320.00      | V          | 15.31             | *       | 2.2         | 40.6          | -28.8       | 0.0            | 29.3              | 29.1             | 500.0            | -24.7          |
| 2483.50       | Н          | 8.14              | *       | 2.7         | 32.7          | 0.0         | 0.0            | 43.5              | 149.9            | 500.0            | -10.5          |
| 2403.30       | V          | 7.66              | *       | 2.7         | 32.7          | 0.0         | 0.0            | 43.0              | 141.9            | 500.0            | -10.9          |



|                  | Test Details                              |  |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|--|
| Manufacturer     | Winegard Company                          |  |  |  |  |  |  |
| EUT              | BLE sensor                                |  |  |  |  |  |  |
| Model No.        | HS-SSET                                   |  |  |  |  |  |  |
| Serial No.       | Parent                                    |  |  |  |  |  |  |
| Mode             | Тх                                        |  |  |  |  |  |  |
| Frequency Tested | 2480MHz                                   |  |  |  |  |  |  |
| Notes            | Peak Measurements in Non-Restricted Bands |  |  |  |  |  |  |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | Cable<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB/m) | Pre<br>Amp<br>(dB) | Peak<br>Total<br>at 3m<br>(dBµV/m) | Peak<br>Total<br>at 3m<br>(μV/m) | Peak<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dBm) |
|---------------|------------|----------------------------|---------|-------------------------|-----------------------------|--------------------|------------------------------------|----------------------------------|----------------------------------|-----------------|
| 2480.00       | Н          | 65.49                      |         | 2.7                     | 32.7                        | 0.0                | 100.9                              | 110383.3                         | NA                               | NA              |
| 2400.00       | V          | 59.95                      |         | 2.7                     | 32.7                        | 0.0                | 95.3                               | 58331.6                          | NA                               | NA              |
| 9920.00       | Н          | 39.05                      | *       | 5.3                     | 37.2                        | -39.2              | 42.3                               | 130.0                            | 11038.3                          | -38.6           |
| 9920.00       | V          | 37.53                      | *       | 5.3                     | 37.2                        | -39.2              | 40.8                               | 109.1                            | 11038.3                          | -40.1           |
| 14880.00      | Н          | 37.17                      | *       | 6.8                     | 39.9                        | -38.5              | 45.3                               | 184.0                            | 11038.3                          | -35.6           |
| 14000.00      | V          | 37.43                      | *       | 6.8                     | 39.9                        | -38.5              | 45.6                               | 189.6                            | 11038.3                          | -35.3           |
| 17360.00      | Н          | 37.21                      | *       | 7.4                     | 42.5                        | -37.4              | 49.6                               | 303.7                            | 11038.3                          | -31.2           |
| 17300.00      | V          | 37.47                      | *       | 7.4                     | 42.5                        | -37.4              | 49.9                               | 312.9                            | 11038.3                          | -31.0           |
| 24800.00      | Н          | 22.16                      | *       | 2.2                     | 40.6                        | -29.3              | 35.7                               | 60.9                             | 11038.3                          | -45.2           |
| 24000.00      | V          | 22.11                      | *       | 2.2                     | 40.6                        | -29.3              | 35.6                               | 60.5                             | 11038.3                          | -45.2           |



### 26. Band-Edge Compliance

| EUT Information |                  |  |  |  |  |  |
|-----------------|------------------|--|--|--|--|--|
| Manufacturer    | Winegard Company |  |  |  |  |  |
| Product         | BLE sensor       |  |  |  |  |  |
| Model No.       | HS-SSET          |  |  |  |  |  |
| Serial No.      | Parent           |  |  |  |  |  |
| Mode            | Тх               |  |  |  |  |  |

|                                                                           | Test Setup Details    |  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Setup Format                                                              | Tabletop              |  |  |  |  |  |
| Setup Format                                                              | Floor Standing        |  |  |  |  |  |
| Height of Support                                                         | N/A                   |  |  |  |  |  |
|                                                                           |                       |  |  |  |  |  |
| Measurement Method                                                        | Radiated              |  |  |  |  |  |
| Measurement Method                                                        | Antenna Conducted     |  |  |  |  |  |
| Type of Test Site                                                         | Semi-Anechoic Chamber |  |  |  |  |  |
| Type of Test Site                                                         | Elite Test Bench      |  |  |  |  |  |
| Type of Antennas Used Above 1GHz: Double-Ridged Waveguide (or equivalent) |                       |  |  |  |  |  |
| Notes                                                                     | None                  |  |  |  |  |  |

| Measurement Uncertainty                                                                     |             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
|                                                                                             | Expanded    |  |  |  |  |  |
| Measurement Type                                                                            | Measurement |  |  |  |  |  |
|                                                                                             | Uncertainty |  |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 4.3         |  |  |  |  |  |
| site) (30 MHz – 1000 MHz)                                                                   | 4.5         |  |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 3.1         |  |  |  |  |  |
| site) (1 GHz – 6 GHz)                                                                       | J. I        |  |  |  |  |  |

#### Procedure

#### 1) Low Band Edge:

- a) The EUT was set to transmit continuously at the channel closest to the low band-edge.
- b) The EUT was maximized for worst case emissions at the measuring antenna and the maximum meter reading was recorded.
- c) To determine the band edge compliance, the following spectrum analyzer settings were used:
  - Center Frequency = 2400MHz (low band-edge frequency).
  - Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
  - Resolution Bandwidth (RBW) =  $\geq$  1% of the span.
  - 'Max-Hold' function was engaged.
- d) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
- e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)
- f) The analyzer's display was then screenshot and saved.

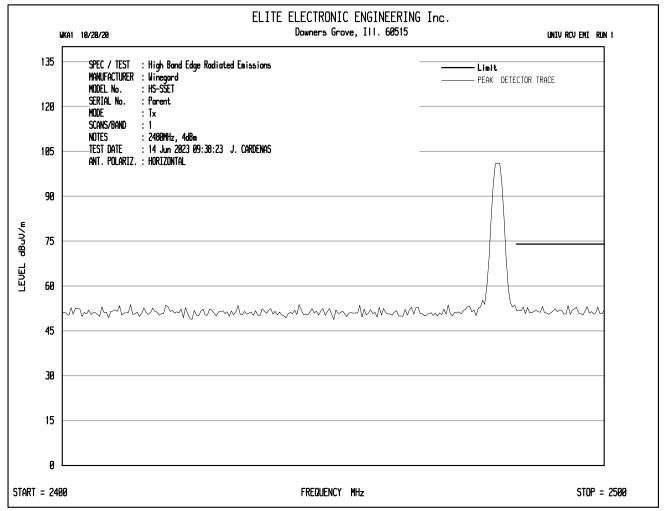


- 2) High Band Edge:
  - a) The EUT was setup inside the test chamber on a non-conductive stand and set to transmit continuously at the channel closest to the high band-edge.
  - b) A broadband measuring antenna was placed at a test distance of 3 meters from the EUT. The antenna was connected to the input of a spectrum analyzer.
  - c) The center frequency of the analyzer was set to the high band edge (2483.5MHz).
  - d) The Resolution Bandwidth was set to 1MHz.
  - e) To ensure that the maximum or worst-case emission level was measured, the following steps were taken:
    - The EUT was rotated so that all of its sides were exposed to the receiving antenna.
    - Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
    - o The EUT was rotated so that all of its sides were exposed to the receiving antenna.
    - The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
    - The highest measured peak reading and the highest measured average reading were recorded.

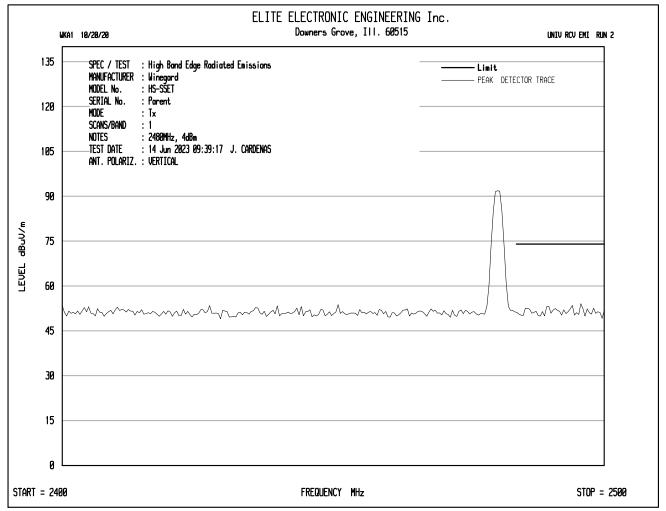


| Test Details     |                  |  |  |  |  |  |
|------------------|------------------|--|--|--|--|--|
| Manufacturer     | Winegard Company |  |  |  |  |  |
| EUT              | BLE sensor       |  |  |  |  |  |
| Model No.        | HS-SSET          |  |  |  |  |  |
| Serial No.       | Parent           |  |  |  |  |  |
| Mode             | Тх               |  |  |  |  |  |
| Frequency Tested | 2402MHz          |  |  |  |  |  |
| Notes            | Low Band Edge    |  |  |  |  |  |

| MultiView 🗧                  | Receiver               |         | × Spe   | ctrum | 关 🗙 sı  | oectrum 2 🛛 🗕 🕇 | × Spectrum | з Х     |            |               | -                     |
|------------------------------|------------------------|---------|---------|-------|---------|-----------------|------------|---------|------------|---------------|-----------------------|
| Ref Level 10<br>Att<br>Input | 0 dBµV<br>0 dB<br>1 AC |         | 1.01 ms |       |         | Mode Auto Sweep | )          |         | Fn         | equency 2.40  | 000000 GHz            |
| 1 Frequency S                |                        |         |         |       |         |                 |            |         |            |               | ● 2Pk Max             |
| 100 dBµV                     |                        |         |         |       |         |                 |            |         |            |               | <del>67.93 dBµV</del> |
|                              |                        |         |         |       |         |                 |            |         |            |               | .4022850 GHz          |
|                              |                        |         |         |       |         |                 |            |         |            | -             |                       |
| 90 dBµV                      |                        |         |         |       |         |                 |            |         |            |               |                       |
| So dop i                     |                        |         |         |       |         |                 |            |         |            |               |                       |
|                              |                        |         |         |       |         |                 |            |         |            |               |                       |
| 80 dBµV                      |                        |         |         |       |         |                 |            |         |            |               |                       |
| 00 000                       |                        |         |         |       |         |                 |            |         |            |               |                       |
|                              |                        |         |         |       |         |                 |            |         |            |               |                       |
| 70 dBµV                      |                        |         |         |       |         |                 |            | M1      |            |               |                       |
| 70 ubµv                      |                        |         |         |       |         |                 |            |         |            |               |                       |
|                              |                        |         |         |       |         |                 |            | / ~~ \  |            |               |                       |
| co dout                      |                        |         |         |       |         |                 |            | / \     |            |               |                       |
| 60 dBµ∨                      |                        |         |         |       |         |                 |            |         |            |               |                       |
|                              |                        |         |         |       |         |                 | 1          | 1 \     |            |               |                       |
|                              |                        |         |         |       |         |                 | /          |         |            |               |                       |
| 50 dBµV                      | H1 48.1                | 80 dBuV |         |       |         |                 | /          |         |            |               |                       |
|                              |                        |         | -       |       |         |                 | /          |         |            |               |                       |
|                              |                        |         |         |       |         |                 | /          |         |            |               |                       |
| 40 dBµ∨                      |                        |         |         |       |         |                 | Å          | ``      |            |               |                       |
|                              |                        |         |         |       |         |                 | [          |         |            |               |                       |
|                              |                        |         |         |       |         |                 | /          |         |            |               |                       |
| 30 dBµV                      |                        |         |         |       |         |                 |            |         | + {        |               |                       |
|                              |                        |         |         |       |         |                 | 1          |         | \ <u>`</u> |               |                       |
|                              |                        |         |         |       |         |                 | Ň          |         | N.         | M             |                       |
| 20 dBµV                      |                        |         |         |       | 6       | a ashi          | A-15-      |         |            | March March M | Wellowman             |
| wwwwwww                      | mann                   | www     | mmm     | www   | mounder | anno ward       |            |         |            | human         | an attender           |
|                              |                        |         |         |       |         |                 |            |         |            |               |                       |
| 10 dBµV                      | +                      |         |         |       |         |                 |            |         |            |               |                       |
| 1                            |                        |         |         |       |         | V1 2 4(         |            |         |            |               |                       |
|                              |                        |         |         |       |         | VI 2.70         |            |         |            |               |                       |
| CF 2.4 GHz                   |                        |         |         |       | 1001 p  | ts              | 1          | .5 MHz/ |            | 5             | pan 15.0 MHz          |




| Test Details     |                                                |  |  |  |  |  |
|------------------|------------------------------------------------|--|--|--|--|--|
| Manufacturer     | Winegard Company                               |  |  |  |  |  |
| EUT              | BLE sensor                                     |  |  |  |  |  |
| Model No.        | HS-SSET                                        |  |  |  |  |  |
| Serial No.       | Parent                                         |  |  |  |  |  |
| Mode             | Тх                                             |  |  |  |  |  |
| Frequency Tested | 2480MHz                                        |  |  |  |  |  |
| Notes            | High Band Edge – Peak and Average Measurements |  |  |  |  |  |


| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | Cable<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB/m) | Pre<br>Amp<br>(dB) | Peak<br>Total<br>at 3m<br>(dBµV/m) | Peak<br>Total<br>at 3m<br>(µV/m) | Peak<br>Limit<br>at 3m<br>(µV/m) | Margin<br>(dBm) |
|---------------|------------|----------------------------|---------|-------------------------|-----------------------------|--------------------|------------------------------------|----------------------------------|----------------------------------|-----------------|
| 2492 50       | Н          | 25.5                       | *       | 2.7                     | 32.7                        | 0.0                | 60.8                               | 1101.2                           | 5000.0                           | -13.1           |
| 2483.50       | V          | 25.0                       | *       | 2.7                     | 32.7                        | 0.0                | 60.3                               | 1040.8                           | 5000.0                           | -13.6           |

| Freq<br>(MHz) | Ant<br>Pol | Meter<br>Reading<br>(dBµV) | Ambient | CBL<br>Fac<br>(dB) | Ant<br>Fac<br>(dB/m) | Pre<br>Amp<br>(dB) | Duty<br>Cycle<br>Factor<br>(dB) | Average<br>Total<br>at 3m<br>(dBµV/m) | Average<br>Total<br>at 3m<br>(μV/m) | Average<br>Limit<br>at 3m<br>(μV/m) | Margin<br>(dB) |
|---------------|------------|----------------------------|---------|--------------------|----------------------|--------------------|---------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|----------------|
| 2492 50       | Н          | 8.14                       | *       | 2.7                | 32.7                 | 0.0                | 0.0                             | 43.5                                  | 149.9                               | 500.0                               | -10.5          |
| 2483.50       | V          | 7.66                       | *       | 2.7                | 32.7                 | 0.0                | 0.0                             | 43.0                                  | 141.9                               | 500.0                               | -10.9          |











| EUT Information |                  |  |  |  |  |  |
|-----------------|------------------|--|--|--|--|--|
| Manufacturer    | Winegard Company |  |  |  |  |  |
| Product         | BLE sensor       |  |  |  |  |  |
| Model No.       | HS-SSET          |  |  |  |  |  |
| Serial No.      | Parent           |  |  |  |  |  |
| Mode            | Tx               |  |  |  |  |  |

| Test Setup Details    |                                                     |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------------|--|--|--|--|--|--|
| Setup Format          | Tabletop                                            |  |  |  |  |  |  |
| Height of Support     | N/A                                                 |  |  |  |  |  |  |
| Measurement Method    | Radiated                                            |  |  |  |  |  |  |
| Type of Test Site     | Semi-Anechoic Chamber                               |  |  |  |  |  |  |
| Test Site Used        | R29F                                                |  |  |  |  |  |  |
| Type of Antennas Used | Above 1GHz: Double-Ridged Waveguide (or equivalent) |  |  |  |  |  |  |
| Notes                 | None                                                |  |  |  |  |  |  |

| Measurement Uncertainty                                                                     |             |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|
|                                                                                             | Expanded    |  |  |  |  |  |  |
| Measurement Type                                                                            | Measurement |  |  |  |  |  |  |
|                                                                                             | Uncertainty |  |  |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 4.3         |  |  |  |  |  |  |
| site) (30 MHz – 1000 MHz)                                                                   | 4.5         |  |  |  |  |  |  |
| Radiated disturbance (electric field strength on an open area test site or alternative test | 3.1         |  |  |  |  |  |  |
| site) (1 GHz – 6 GHz)                                                                       | 3.1         |  |  |  |  |  |  |

#### Requirement

The power spectral density from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

#### Procedure

- 1) The EUT was setup inside the test chamber on a non-conductive stand and set to transmit.
- 2) A broadband measuring antenna was placed 3m from the EUT.
- 3) The EUT was rotated, and the antenna was moved up and down from 1 to 4m to maximize the field strength.
- 4) To determine the power spectral density, the following spectrum analyzer settings were used for Channel 1:
  - a) Center Frequency = Transmit Frequency
  - b) Span = 1.5 × the DTS (6dB) bandwidth
  - c) Resolution Bandwidth (RBW) = > DTS (6dB) bandwidth
  - d) Sweep time = Auto
  - e) Detector = Peak
  - f) Trace Function = Max-Hold
- 5) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. (This reading corresponds to the peak output power measured for the mid channel.)
- 6) A display line was then placed on the corresponding +8dBm level.
- 7) The analyzers display was then screenshot and saved.



- 8) The analyzers display was then screenshot and saved.
- 9) The equivalent power of the highest measured emission was then determined using the substitution method.



| MultiView                       | Receiver      | × Spe         | ctrum                                | × Spectrun             | 12 X |           |     |                 | •                     |
|---------------------------------|---------------|---------------|--------------------------------------|------------------------|------|-----------|-----|-----------------|-----------------------|
| Ref Level 102.0<br>Att<br>Input | 0 dB 🖷 SW     | T 100 ms 👄 VB | W 100 kHz<br>W 300 kHz M<br>otch Off | <b>Node</b> Auto Sweep | )    |           | Fre | equency 2.4     | 020000 GHz            |
| 1 Frequency Swe                 |               |               |                                      |                        |      |           |     |                 | 😑 2Pk Max             |
| 100 dBµV                        |               |               |                                      |                        |      |           |     | M1[2]           | <del>65.81 dBμV</del> |
|                                 |               |               |                                      |                        |      |           |     | 2               | 40175020 GHz          |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 90 dBµ∨                         |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 80 dBµV                         |               |               |                                      |                        |      |           |     |                 |                       |
| 00 000                          |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               | _             |                                      |                        |      |           |     |                 |                       |
| 70 dBµV                         | H1 71.600 dBµ | V             | M1                                   |                        |      |           |     |                 |                       |
|                                 |               |               | <b>X</b>                             | _                      |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 60 dBµ∨                         |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 50 dBµV                         |               |               |                                      |                        |      |           |     |                 |                       |
| 50 GDP (                        | _             |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 40 dBµ∨                         |               |               |                                      |                        |      |           |     | $ \rightarrow $ |                       |
| -amon more                      | www.ober      |               |                                      |                        |      |           |     | The way         | mound                 |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 30 dBµV                         |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 20 dBµV                         |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| 10 dBµV                         |               |               |                                      |                        |      |           |     |                 |                       |
|                                 |               |               |                                      |                        |      |           |     |                 |                       |
| CF 2.402 GHz                    |               |               | 1001 pt                              |                        | 20   | 0.0 kHz/  |     |                 | Span 2.0 MHz          |
|                                 |               |               | 1001 pt                              |                        | 20   | 1010 N12/ |     |                 | opan 2.0 militz       |

| Manufacturer  | : | Winegard Company                                                |
|---------------|---|-----------------------------------------------------------------|
| Model Number  | : | HS-SSET                                                         |
| Serial Number | : | Parent                                                          |
| Mode          | : | Тх                                                              |
| Line Tested   | : | Horizontal Antenna Polarization                                 |
| Parameters    | : | Power Spectral Density Plot                                     |
| Date          | : | 6/14/2023 6:55:47 AM                                            |
| Notes         | : | Limit line on the plot was placed at a level equivalent to 8dBm |
|               |   |                                                                 |

|         |     |         | Calculated | Equivalent |       |       |       |        |
|---------|-----|---------|------------|------------|-------|-------|-------|--------|
|         |     | Meter   | Sig. Gen.  | Antenna    | Cable | Peak  |       |        |
| Freq.   | Ant | Reading | Reading    | Gain       | Loss  | Power | Limit | Margin |
| MHz     | Pol | (dBuV)  | (dBm)      | (dB)       | (dB)  | (dBm) | dBm   | dB     |
| 2401.75 | Н   | 65.8    | 0.5        | 5.3        | 3.4   | 2.4   | 8.0   | -5.6   |



| MultiView Receiver                 | × Spectrum                               | × Spectrum 2 >  | <          |           | •                                     |
|------------------------------------|------------------------------------------|-----------------|------------|-----------|---------------------------------------|
|                                    | ● RBW 100 kHz<br>VT 100 ms ● VBW 300 kHz | Mode Auto Sweep | _          | Frequency | 2.4020000 GHz                         |
| Input 1 AC PS<br>1 Frequency Sweep | On Notch Off                             |                 |            |           | ● 2Pk Max                             |
| 100 dBµV                           |                                          |                 |            | M1        | [2] 61.24 dBµV                        |
|                                    |                                          |                 |            |           | 2.40175020 GHz                        |
| 90 dBµV                            |                                          |                 |            |           |                                       |
|                                    |                                          |                 |            |           |                                       |
| 80 dBµ∨                            |                                          |                 |            |           |                                       |
| 70 dвµv Вл. 20. 200 dв             |                                          |                 |            |           |                                       |
|                                    | M1                                       |                 |            |           |                                       |
| 60 dBµV                            |                                          | \               |            |           |                                       |
|                                    |                                          |                 |            |           |                                       |
| 50 dBµV                            |                                          |                 |            |           |                                       |
| 40 dBµV                            |                                          |                 |            | \         |                                       |
| uning and the second               |                                          |                 |            |           | Vena entretermen                      |
| 30 dBµV                            |                                          |                 |            |           | · · · · · · · · · · · · · · · · · · · |
| 20 dBµV                            |                                          |                 |            |           |                                       |
|                                    |                                          |                 |            |           |                                       |
| 10 dBµV                            |                                          |                 |            |           |                                       |
|                                    |                                          |                 |            |           |                                       |
| CF 2.402 GHz                       | 1001 p                                   | ts              | 200.0 kHz/ |           | Span 2.0 MHz                          |

| Manufacturer  | : | Winegard Company                                                |
|---------------|---|-----------------------------------------------------------------|
| Model Number  | : | HS-SSET                                                         |
| Serial Number | : | Parent                                                          |
| Mode          | : | Тх                                                              |
| Line Tested   | : | Vertical Antenna Polarization                                   |
| Parameters    | : | Power Spectral Density Plot                                     |
| Date          | : | 6/14/2023 6:59:22 AM                                            |
| Notes         | : | Limit line on the plot was placed at a level equivalent to 8dBm |
|               |   |                                                                 |

|         |     |         | Calculated | Equivalent |       |       |       |        |
|---------|-----|---------|------------|------------|-------|-------|-------|--------|
|         |     | Meter   | Sig. Gen.  | Antenna    | Cable | Peak  |       |        |
| Freq.   | Ant | Reading | Reading    | Gain       | Loss  | Power | Limit | Margin |
| MHz     | Pol | (dBuV)  | (dBm)      | (dB)       | (dB)  | (dBm) | dBm   | dB     |
| 2401.75 | V   | 61.2    | -3.2       | 5.3        | 3.4   | -1.3  | 8.0   | -9.3   |

| MultiView                     | Receiver                           | × Spectrum                        | ×s                                 | pectrum 2              | × Spectrum | з 🗙       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                            |
|-------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------|------------|-----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Ref Level 107<br>Att<br>Input | 7.00 dBµV<br>0 dB ● SW1<br>1 AC PS | ● RBV<br>I 100 ms ● VBV<br>On Not | V 100 kHz<br>V 300 kHz M<br>ch Off | <b>Mode</b> Auto Sweep |            |           | Fn | equency 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400000 GHz                   |
| 1 Frequency S                 |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 2Pk Max                    |
| 100 dBµV                      |                                    |                                   |                                    |                        |            |           |    | M1[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.99 dBµV<br>2.44026970 GHz |
| 100 0000                      |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 90 dBµ∨                       |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 80 dBµV                       |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 70 dBµ∀                       | H1 71.500 dBµ                      | V                                 |                                    |                        |            | M1        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 60 dBµV                       |                                    |                                   |                                    |                        |            | ·         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                               |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 50 dBµV                       |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 40 dBµV                       | ner warden have                    |                                   |                                    |                        |            |           |    | and the second s | when the growing of the      |
| 30 dBµV                       |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 20 dBµV                       |                                    |                                   |                                    |                        |            |           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 10 dBµV<br>CF 2.44 GHz        |                                    |                                   | 1001 p                             |                        |            | 00.0 kHz/ |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 2.0 MHz                 |

| Manufacturer  | : | Winegard Company                                                |
|---------------|---|-----------------------------------------------------------------|
| Model Number  | : | HS-SSET                                                         |
| Serial Number | : | Parent                                                          |
| Mode          | : | Тх                                                              |
| Line Tested   | : | Horizontal Antenna Polarization                                 |
| Parameters    | : | Power Spectral Density Plot                                     |
| Date          | : | 6/14/2023 7:14:38 AM                                            |
| Notes         | : | Limit line on the plot was placed at a level equivalent to 8dBm |
|               |   |                                                                 |

|         |     |         | Calculated | Equivalent |       |       |       |        |
|---------|-----|---------|------------|------------|-------|-------|-------|--------|
|         |     | Meter   | Sig. Gen.  | Antenna    | Cable | Peak  |       |        |
| Freq.   | Ant | Reading | Reading    | Gain       | Loss  | Power | Limit | Margin |
| MHz     | Pol | (dBuV)  | (dBm)      | (dB)       | (dB)  | (dBm) | dBm   | dB     |
| 2440.26 | Н   | 66.0    | 0.7        | 5.5        | 3.4   | 2.7   | 8.0   | -5.3   |



| MultiView 📑                   | Receiver                          | × Spectrum     | n 🗙 s                                  | pectrum 2       | × Spectrum | 3 🔆 🗙    |   |          |      |                                        |
|-------------------------------|-----------------------------------|----------------|----------------------------------------|-----------------|------------|----------|---|----------|------|----------------------------------------|
| Ref Level 103<br>Att<br>Input | 2.00 dBµV<br>0 dB ● S\<br>1 AC PS | VT 100 ms 👄 VB | 3W 100 kHz<br>3W 300 kHz 1<br>5tch Off | Mode Auto Sweep | _          | _        | F | requency | 2.44 | 00000 GHz                              |
| 1 Frequency S                 | weep                              |                |                                        |                 |            |          |   |          |      | 2Pk Max                                |
| 100 dBµV                      |                                   |                |                                        |                 |            |          |   | M1       | [2]  | <del>—61.69 dBµV</del><br>44026170 GHz |
| 90 dBµV                       |                                   |                |                                        |                 |            |          |   |          |      |                                        |
| 80 dBµV                       |                                   |                |                                        |                 |            |          |   |          |      |                                        |
| 70 dвµV                       | <u>H1_70.600 dB</u>               | uv.            |                                        |                 |            |          |   |          |      |                                        |
| 60 dBµV                       |                                   |                |                                        |                 |            | M1<br>V  |   |          |      |                                        |
| 50 dBµV                       |                                   |                |                                        |                 |            |          |   |          |      |                                        |
|                               |                                   |                |                                        |                 |            |          |   |          |      |                                        |
| 40 dBµV                       |                                   |                |                                        |                 |            |          |   |          | ~    |                                        |
| 30 dBµV                       | a approved                        |                |                                        |                 |            |          |   |          | mark | Autor Carrow Contraction Contraction   |
| 20 dBµV                       |                                   |                |                                        |                 |            |          |   |          |      |                                        |
| 10 dвµV                       |                                   |                |                                        |                 |            |          |   |          |      |                                        |
|                               |                                   |                |                                        |                 |            |          |   |          |      |                                        |
| CF 2.44 GHz                   |                                   |                | 1001 pt                                | ts              | 20         | 0.0 kHz/ |   |          |      | Span 2.0 MHz                           |

| Manufacturer  | : | Winegard Company                                                |
|---------------|---|-----------------------------------------------------------------|
| Model Number  | : | HS-SSET                                                         |
| Serial Number | : | Parent                                                          |
| Mode          | : | Тх                                                              |
| Line Tested   | : | Vertical Antenna Polarization                                   |
| Parameters    | : | Power Spectral Density Plot                                     |
| Date          | : | 6/14/2023 7:54:49 AM                                            |
| Notes         | : | Limit line on the plot was placed at a level equivalent to 8dBm |
|               |   |                                                                 |

|         |     |         | Calculated | Equivalent |       |       |       |        |
|---------|-----|---------|------------|------------|-------|-------|-------|--------|
|         |     | Meter   | Sig. Gen.  | Antenna    | Cable | Peak  |       |        |
| Freq.   | Ant | Reading | Reading    | Gain       | Loss  | Power | Limit | Margin |
| MHz     | Pol | (dBuV)  | (dBm)      | (dB)       | (dB)  | (dBm) | dBm   | dB     |
| 2440.27 | V   | 61.7    | -2.7       | 5.5        | 3.4   | -0.7  | 8.0   | -8.7   |

| MultiView 📒                  | Receiver                                       | × Spectrum                         | 🔆 🗙 🗧                            | Spectrum 2      | × Spectrum | з 🗙      |     |             | •                           |
|------------------------------|------------------------------------------------|------------------------------------|----------------------------------|-----------------|------------|----------|-----|-------------|-----------------------------|
| Ref Level 10<br>Att<br>Input | 7.00 dBµV<br>0 dB ● SW <sup>-</sup><br>1 AC PS | ● RBV<br>I 100 ms ● VBV<br>On Note | V 100 kHz<br>V 300 kHz<br>ch Off | Mode Auto Sweep |            |          | Fre | equency 2.4 | 800000 GHz                  |
| 1 Frequency S                |                                                |                                    |                                  |                 |            |          |     |             | ● 2Pk Max                   |
|                              |                                                |                                    |                                  |                 |            |          |     | M1[2]       | 64.59 dBµV<br>.48026370 GHz |
| 100 dBµV                     |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 90 dBµ∨                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 80 dBµV                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 70 dBµV                      | H1 71.300 dBµ                                  | v                                  |                                  |                 |            |          |     |             |                             |
|                              |                                                |                                    |                                  |                 |            | M1       |     |             |                             |
| 60 dBµ∨                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 50 dBµV                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 40 dBµV                      |                                                |                                    |                                  |                 |            |          |     |             | andrenan                    |
| 30 dBµV                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 20 dBµV                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| 10 dBµV                      |                                                |                                    |                                  |                 |            |          |     |             |                             |
| CF 2.48 GHz                  |                                                |                                    | 1001                             | ots             | 20         | 0.0 kHz/ |     |             | Span 2.0 MHz                |

| Manufacturer  | : | Winegard Company                                                |
|---------------|---|-----------------------------------------------------------------|
| Model Number  | : | HS-SSET                                                         |
| Serial Number | : | Parent                                                          |
| Mode          | : | Тх                                                              |
| Line Tested   | : | Horizontal Antenna Polarization                                 |
| Parameters    | : | Power Spectral Density Plot                                     |
| Date          | : | 6/14/2023 7:27:22 AM                                            |
| Notes         | : | Limit line on the plot was placed at a level equivalent to 8dBm |
|               |   |                                                                 |

|         |     |         | Calculated | Equivalent |       |       |       |        |
|---------|-----|---------|------------|------------|-------|-------|-------|--------|
|         |     | Meter   | Sig. Gen.  | Antenna    | Cable | Peak  |       |        |
| Freq.   | Ant | Reading | Reading    | Gain       | Loss  | Power | Limit | Margin |
| MHz     | Pol | (dBuV)  | (dBm)      | (dB)       | (dB)  | (dBm) | dBm   | dB     |
| 2480.26 | Н   | 64.6    | -0.7       | 5.6        | 3.4   | 1.5   | 8.0   | -6.5   |

| MultiView                   | Receiver             | × Spectrum                        | ×                                | Spectrum 2      | × Spectrum | з 🗙           |     |             | •                           |
|-----------------------------|----------------------|-----------------------------------|----------------------------------|-----------------|------------|---------------|-----|-------------|-----------------------------|
| RefLevel 10<br>Att<br>Input |                      | ● RBV<br>T 100 ms ● VBV<br>On Not | V 100 kHz<br>V 300 kHz<br>ch Off | Mode Auto Sweep |            |               | Fre | equency 2.4 | 800000 GHz                  |
| 1 Frequency                 |                      |                                   |                                  |                 |            |               |     |             | ● 2Pk Max                   |
| 100 dBµV                    |                      |                                   |                                  |                 |            |               |     | M1[2]<br>2  | 60.15 dBµV<br>,48026370 GHz |
| 100 00011                   |                      |                                   |                                  |                 |            |               |     |             |                             |
| 90 dBµ∨                     |                      |                                   |                                  |                 |            |               |     |             |                             |
| 80 dBµV                     |                      |                                   |                                  |                 |            |               |     |             |                             |
| -70-dBpV                    | H1 70,500 dB         | <u>e//</u>                        |                                  |                 |            |               |     |             |                             |
| 60 dBµV                     |                      |                                   |                                  |                 |            | M1            |     |             |                             |
|                             |                      |                                   |                                  |                 |            |               |     |             |                             |
| 50 dBµV                     |                      |                                   |                                  |                 |            |               |     |             |                             |
| 40 dBµV                     |                      |                                   |                                  |                 |            |               |     |             |                             |
| 30 dBµV                     | the second all water |                                   |                                  |                 |            |               |     |             | a when the start when       |
| 20 dBµV                     |                      |                                   |                                  |                 |            |               |     |             |                             |
| 10 dBµV                     |                      |                                   |                                  |                 |            |               |     |             |                             |
| CF 2.48 GHz                 |                      |                                   | 1001                             | pts             | 20         | )<br>0.0 kHz/ | 1   | 1           | Span 2.0 MHz                |

| Manufacturer  | : | Winegard Company                                                |
|---------------|---|-----------------------------------------------------------------|
| Model Number  | : | HS-SSET                                                         |
| Serial Number | : | Parent                                                          |
| Mode          | : | Тх                                                              |
| Line Tested   | : | Vertical Antenna Polarization                                   |
| Parameters    | : | Power Spectral Density Plot                                     |
| Date          | : | 6/14/2023 7:30:37 AM                                            |
| Notes         | : | Limit line on the plot was placed at a level equivalent to 8dBm |
|               |   |                                                                 |

|         |     |         | Calculated | Equivalent |       |       |       |        |
|---------|-----|---------|------------|------------|-------|-------|-------|--------|
|         |     | Meter   | Sig. Gen.  | Antenna    | Cable | Peak  |       |        |
| Freq.   | Ant | Reading | Reading    | Gain       | Loss  | Power | Limit | Margin |
| MHz     | Pol | (dBuV)  | (dBm)      | (dB)       | (dB)  | (dBm) | dBm   | dB     |
| 2480.26 | V   | 60.2    | -4.2       | 5.6        | 3.4   | -2.1  | 8.0   | -10.1  |



#### 28. Scope of Accreditation



#### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163 Email: blugo@elitetest.com Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123 Email: reking@elitetest.com Website: www.elitetest.com

#### ELECTRICAL

Valid To: June 30, 2023

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

| Test Technology:              | Test Method(s) <sup>1</sup> :                                                                                                                                                                                                                                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transient Immunity            | ISO 7637-2 (including emissions); ISO 7637-3;<br>ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;<br>CS-11979, Section 6.4; CS.00054, Section 5.9;<br>EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);<br>GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;<br>ECE Regulation 10.06 Annex 10 |
| Electrostatic Discharge (ESD) | ISO 10605 (2001, 2008);<br>CS-11979 Section 7.0; CS.00054, Section 5.10;<br>EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;<br>GMW 3097 Section 3.6                                                                                                                                    |
| Conducted Emissions           | CISPR 25 (2002, 2008), Sections 6.2 and 6.3;<br>CISPR 25 (2016), Sections 6.3 and 6.4;<br>CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;<br>GMW 3097, Section 3.3.2;<br>EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)                                                            |
| Radiated Emissions Anechoic   | CISPR 25 (2002, 2008), Section 6.4;<br>CISPR 25 (2016), Section 6.5;<br>CS-11979, Section 5.3; CS.00054, Section 5.6.3;<br>GMW 3097, Section 3.3.1;<br>EMC-CS-2009.1 (RE 310); FMC1278 (RE310);                                                                                               |

(A2LA Cert. No. 1786.01) Revised 08/08/2022

Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org



| Test Technology:                                                                   | Test Method(s) <sup>1</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vehicle Radiated Emissions                                                         | CISPR 12; CISPR 36; ICES-002;<br>ECE Regulation 10.06 Annex 5                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bulk Current Injection (BCI)                                                       | ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1;<br>GMW 3097, Section 3.4.1; SAE J1113-4;<br>EMC-CS-2009.1 (RI112); FMC1278 (RI112);<br>ECE Regulation 10.06 Annex 9                                                                                                                                                                                                                                                                                                               |
| Radiated Immunity Anechoic<br>(Including Radar Pulse)                              | ISO 11452-2; ISO 11452-5;<br>CS-11979, Section 6.2; CS.00054, Section 5.8.2;<br>GMW 3097, Section 3.4.2;<br>EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21;<br>ECE Regulation 10.06 Annex 9                                                                                                                                                                                                                                                                                              |
| Radiated Immunity Magnetic Field                                                   | ISO 11452-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Radiated Immunity Reverb                                                           | ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3;<br>EMC-CS-2009.1 (RI114); FMC1278 (RI114);<br>ISO 11452-11                                                                                                                                                                                                                                                                                                                                                                                        |
| Radiated Immunity<br>(Portable Transmitters)                                       | ISO 11452-9;<br>EMC-CS-2009.1 (RI115); FMC1278 (RI115)                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle Radiated Immunity (ALSE)                                                   | ISO 11451-2; ECE Regulation 10.06 Annex 6                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vehicle Product Specific EMC<br>Standards                                          | EN 14982; EN ISO 13309; ISO 13766; EN 50498;<br>EC Regulation No. 2015/208; EN 55012                                                                                                                                                                                                                                                                                                                                                                                                           |
| Electrical Loads                                                                   | ISO 16750-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Emissions<br>Radiated and Conducted<br>(3m Semi-anechoic chamber,<br>up to 40 GHz) | 47 CFR, FCC Part 15 B (using ANSI C63.4:2014);<br>47 CFR, FCC Part 18 (using FCC MP-5:1986);<br>ICES-001; ICES-003; ICES-005;<br>IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004);<br>IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010);<br>KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008);<br>CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003);<br>CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1;<br>CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1;<br>IEC/CISPR 22 (1997); |

EN 55022 (1998) + A1(2000);

CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband) ECE Regulation 10.06 Annex 14 (Conducted)

EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);

Page 2 of 8



| Test Technology:                                                  | Test Method(s) <sup>1</sup> :                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Emissions (cont'd)</b><br>Cellular Radiated Spurious Emissions | ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12;<br>ETSI TS 134 124 UMTS; 3GPP TS 34.124;<br>ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124                                                                                                                                                                                   |
| Current Harmonics                                                 | IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2;<br>KS C 9610-3-2; ECE Regulation 10.06 Annex 11                                                                                                                                                                                                                                 |
| Flicker and Fluctuations                                          | IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3;<br>KS C 9610-3-3; ECE Regulation 10.06 Annex 12                                                                                                                                                                                                                                 |
| <b>Immunity</b><br>Electrostatic Discharge                        | IEC 61000-4-2, Ed. 1.2 (2001);<br>IEC 61000-4-2 (1995) + A1(1998) + A2(2000);<br>EN 61000-4-2 (1995); EN 61000-4-2 (2009-05);<br>KN 61000-4-2 (2008-5);<br>RRL Notice No. 2008-4 (May 20, 2008);<br>IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2;<br>KS C 9610-4-2; IEEE C37.90.3 2001                                        |
| Radiated Immunity                                                 | IEC 61000-4-3 (1995) + A1(1998) + A2(2000);<br>IEC 61000-4-3, Ed. 3.0 (2006-02);<br>IEC 61000-4-3, Ed. 3.2 (2010);<br>KN 61000-4-3 (2008-5);<br>RRL Notice No. 2008-4 (May 20, 2008);<br>IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;<br>KS C 9610-4-3; IEEE C37.90.2 2004                                                   |
| Electrical Fast Transient/Burst                                   | IEC 61000-4-4, Ed. 2.0 (2004-07);<br>IEC 61000-4-4, Ed. 2.1 (2011);<br>IEC 61000-4-4 (1995) + A1(2000) + A2(2001);<br>KN 61000-4-4 (2008-5);<br>RRL Notice No. 2008-5 (May 20, 2008);<br>IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4;<br>KS C 9610-4-4; ECE Regulation 10.06 Annex 15                                        |
| Surge                                                             | IEC 61000-4-5 (1995) + A1(2000);<br>IEC 61000-4-5, Ed 1.1 (2005-11);<br>EN 61000-4-5 (1995) + A1(2001);<br>KN 61000-4-5 (2008-5);<br>RRL Notice No. 2008-4 (May 20, 2008);<br>IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5;<br>KS C 9610-4-5;<br>IEEE C37.90.1 2012; IEEE STD C62.41.2 2002;<br>ECE Regulation 10.06 Annex 16 |

Page 3 of 8



| <u>Test Technology:</u>                                             | Test Method(s) <sup>1</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunity (cont'd)<br>Conducted Immunity                             | IEC 61000-4-6 (1996) + A1(2000);<br>IEC 61000-4-6, Ed 2.0 (2006-05);<br>IEC 61000-4-6 Ed. 3.0 (2008);<br>KN 61000-4-6 (2008-5);<br>RRL Notice No. 2008-4 (May 20, 2008);<br>EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6;<br>EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Power Frequency Magnetic Field<br>Immunity ( <i>Down to 3 A/m</i> ) | IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009);<br>EN 61000-4-8 (1994) + A1(2000);<br>KN 61000-4-8 (2008-5);<br>RRL Notice No. 2008-4 (May 20, 2008);<br>IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Voltage Dips, Short Interrupts, and Line<br>Voltage Variations      | IEC 61000-4-11, Ed. 2 (2004-03);<br>KN 61000-4-11 (2008-5);<br>RRL Notice No. 2008-4 (May 20, 2008);<br>IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11;<br>KS C 9610-4-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ring Wave                                                           | IEC 61000-4-12, Ed. 2 (2006-09);<br>EN 61000-4-12:2006;<br>IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;<br>IEEE STD C62.41.2 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Generic and Product Specific EMC<br>Standards                       | IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;<br>KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2;<br>KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3;<br>AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3;<br>IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;<br>KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2;<br>EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3;<br>EN 55015; EN 60730-1; EN 60945; IEC 60533;<br>EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2;<br>AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2;<br>IEC/CISPR 24; AS/NZS CISPR 24; EN 55035; KN 24;<br>IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35;<br>KS C 9835; IEC 60601-1-2; JIS T0601-1-2 |
| TxRx EMC Requirements                                               | EN 301 489-1; EN 301 489-3; EN 301 489-9;<br>EN 301 489-17; EN 301 489-19; EN 301 489-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page 4 of 8



| Test Technology:                  | Test Method(s) <sup>1</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| European Radio Test Standards     | ETSI EN 300 086-1; ETSI EN 300 086-2;<br>ETSI EN 300 113-1; ETSI EN 300 113-2;<br>ETSI EN 300 220-1; ETSI EN 300 220-2;<br>ETSI EN 300 220-3-1; ETSI EN 300 220-3-2;<br>ETSI EN 300 330-1; ETSI EN 300 330-2;<br>ETSI EN 300 440-1; ETSI EN 300 440-2;<br>ETSI EN 300 422-1; ETSI EN 300 422-2;<br>ETSI EN 300 328; ETSI EN 301 893;<br>ETSI EN 301 511; ETSI EN 301 908-1;<br>ETSI EN 908-2; ETSI EN 908-13;<br>ETSI EN 303 413; ETSI EN 302 502;<br>EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4                                                                                 |
| Canadian Radio Tests              | RSS-102 (RF Exposure Evaluation <sup>MEAS</sup> );<br>RSS-102 (Nerve Stimulation <sup>MEAS</sup> ) (5Hz to 400kHz);<br>SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123;<br>RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133;<br>RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141;<br>RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192;<br>RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210;<br>RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222;<br>RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248;<br>RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN |
| Mexico Radio Tests                | IFT-008-2015; NOM-208-SCFI-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Japan Radio Tests                 | Radio Law No. 131, Ordinance of MPT No. 37, 1981,<br>MIC Notification No. 88:2004, Table No. 22-11;<br>ARIB STD-T66, Regulation 18                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Taiwan Radio Tests                | LP-0002 (July 15, 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Australia/New Zealand Radio Tests | AS/NZS 4268; Radiocommunications (Short Range Devices)<br>Standard (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hong Kong Radio Tests             | HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7;<br>HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057;<br>HKCA 1073                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Korean Radio Test Standards       | KN 301 489-1; KN 301 489-3; KN 301 489-9;<br>KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125;<br>KS X 3130; KS X 3126; KS X 3129                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vietnam Radio Test Standards      | QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT;<br>QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT;<br>QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT;<br>QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vietnam EMC Test Standards        | QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT;<br>QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Page 5 of 8



#### Test Technology:

#### Test Method(s) 1:

| Unlicensed Radio Frequency Devices<br>(3 Meter Semi-Anechoic Room)                                                                                                                                                                                                | 47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H<br>(using ANSI C63.10:2013, ANSI C63.17:2013 and<br>FCC KDB 905462 D02 (v02))                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Licensed Radio Service Equipment                                                                                                                                                                                                                                  | 47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)                                                                                                     |
| <i>OTA (Over the Air) Performance</i><br>GSM, GPRS, EGPRS<br>UMTS (W-CDMA)<br>LTE including CAT M1<br>A-GPS for UMTS/GSM<br>LTS A-GPS, A-GLONASS,<br>SIB8/SIB16<br>Large Device/Laptop/Tablet Testing<br>Integrated Device Testing<br>WiFi 802.11 a/b/g/n/a       | CTIA Test Plan for Wireless Device Over-the-Air<br>Performance (Method for Measurement for Radiated Power<br>and Receiver Performance) V3.8.2;<br>CTIA Test Plan for RF Performance Evaluation of WiFi<br>Mobile Converged Devices V2.1.0 |
| Electrical Measurements and<br>Simulation<br><u>AC Voltage / Current</u><br>(1mV to 5kV) 60 Hz<br>(0.1V to 250V) up to 500 MHz<br>(1µA to 150A) 60 Hz<br><u>DC Voltage / Current</u><br>(1mV to 15-kV) / (1µA to 10A)<br>Power Factor / Efficiency / Crest Factor | FAA AC 150/5345-10H<br>FAA AC 150/5345-43J<br>FAA AC 150/5345-44K<br>FAA AC 150/5345-46E<br>FAA AC 150/5345-47C<br>FAA EB 67D                                                                                                             |

On the following products and materials:

(Up to 10 kV / 5 kA) (Combination

(Power to 30kW)

 $(1m\Omega \text{ to } 4000M\Omega)$ 

Wave and Ring Wave)

Resistance

Surge

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

<sup>1</sup> When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA *R101 - General Requirements- Accreditation of ISO-IEC 17025 Laboratories.* 

Page 6 of 8



Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table  $A.1^2$ 

| Rule Subpart/Technology                                                                                                                                              | Test Method                                            | Maximum<br>Frequency<br>(MHz) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|
| <u>Unintentional Radiators</u><br>Part 15B                                                                                                                           | ANSI C63.4:2014                                        | 40000                         |
| Industrial, Scientific, and Medical Equipment<br>Part 18                                                                                                             | FCC MP-5 (February 1986)                               | 40000                         |
| Intentional Radiators<br>Part 15C                                                                                                                                    | ANSI C63.10:2013                                       | 40000                         |
| <u>Unlicensed Personal Communication</u><br><u>Systems Devices</u><br>Part 15D                                                                                       | ANSI C63.17:2013                                       | 40000                         |
| <u>U-NII without DFS Intentional Radiators</u><br>Part 15E                                                                                                           | ANSI C63.10:2013                                       | 40000                         |
| <u>U-NII with DFS Intentional Radiators</u><br>Part 15E                                                                                                              | FCC KDB 905462 D02 (v02)                               | 40000                         |
| UWB Intentional Radiators<br>Part 15F                                                                                                                                | ANSI C63.10:2013                                       | 40000                         |
| BPL Intentional Radiators<br>Part 15G                                                                                                                                | ANSI C63.10:2013                                       | 40000                         |
| White Space Device Intentional Radiators<br>Part 15H                                                                                                                 | ANSI C63.10:2013                                       | 40000                         |
| Commercial Mobile Services (FCC Licensed<br>Radio Service Equipment)<br>Parts 22 (cellular), 24, 25 (below 3 GHz),<br>and 27                                         | ANSI/TIA-603-E;<br>TIA-102.CAAA-E;<br>ANSI C63.26:2015 | 40000                         |
| <u>General Mobile Radio Services (FCC</u><br><u>Licensed Radio Service Equipment)</u><br>Parts 22 (non-cellular), 90 (below 3 GHz),<br>95, 97, and 101 (below 3 GHz) | ANSI/TIA-603-E;<br>TIA-102.CAAA-E;<br>ANSI C63.26:2015 | 40000                         |
| <u>Citizens Broadband Radio Services (FCC</u><br><u>Licensed Radio Service Equipment)</u><br>Part 96                                                                 | ANSI/TIA-603-E;<br>TIA-102.CAAA-E;<br>ANSI C63.26:2015 | 40000                         |
| (A2LA Cert. No. 1786.01) Revised 08/08/2022                                                                                                                          |                                                        | Page 7 of 8                   |



Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table  $A.1^2$ 

| Rule Subpart/Technology                                 | Test Method                         | Maximum<br>Frequency<br>(MHz) |
|---------------------------------------------------------|-------------------------------------|-------------------------------|
| Maritime and Aviation Radio Services<br>Parts 80 and 87 | ANSI/TIA-603-E;<br>ANSI C63.26:2015 | 40000                         |
| Microwave and Millimeter Bands Radio<br>Services        |                                     |                               |
| Parts 25, 30, 74, 90 (above 3 GHz), 97                  | ANSI/TIA-603-E:                     | 40000                         |
| (above 3 GHz), and 101                                  | TIA-102.CAAA-E;                     |                               |
|                                                         | ANSI C63.26:2015                    |                               |
| Broadcast Radio Services                                |                                     |                               |
| Parts 73 and 74 (below 3 GHz)                           | ANSI/TIA-603-E;                     | 40000                         |
|                                                         | TIA-102.CAAA-E;                     |                               |
|                                                         | ANSI C63.26:2015                    |                               |
| Signal Boosters                                         |                                     |                               |
| Part 20 (Wideband Consumer Signal                       | ANSI C63.26:2015                    | 40000                         |
| Boosters, Provider-specific signal boosters,            |                                     |                               |
| and Industrial Signal Boosters)                         |                                     |                               |
| Section 90.219                                          |                                     |                               |

<sup>2</sup> Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Page 8 of 8





# **Accredited Laboratory**

A2LA has accredited

## ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

### **Electrical Testing**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 19th day of May 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.