STC Test Report

Date: 2016-08-05
Page 1 of 91
No.: DMA000106

Applicant:	Hip Shing Electronics Limited Units $1.2 \& 3,20 / \mathrm{F}$.,New Treasure Centre, 10., Ng Fong Street, San Po Kong, Kowloon, Hong Kong	
Manufacturer:	Dongguan Zhi Cheng Electronic Products Co., Ltd. No. 11 Shangbao Road, 188 Industrial Zone, Pingshan, Tangxia, Dongguan, Guangdong, China	
Description of Sample(s):	Product:	Internet/FM Digital Radio With Bluetooth and Spotify
	Brand Name:	Como Audio
	Model Number:	Solo
	FCC ID:	BZAWDFB16SOLO
Date Sample(s) Received:	2016-07-26	

Date Tested:

2016-07-29 to 2016-08-03

Investigation Requested:

Conclusion(s):

Remark(s):

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2015 and ANSI C63.10: 2013 for FCC Certification.

The submitted product COMPLIED with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.

Authorized Signatofy
ElectroMagnetic Compatibility Department For and on behalf of
The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 2 of 91
No.: DMA000106

CONTENT:

Cover
Page 1 of 91
Content
Page 2 of 91

1.0 General Details

1.1 Test Laboratory

Page 3 of 91
1.2 Equipment Under Test [EUT]

Page 3 of 91
Description of EUT operation
1.3 Date of Order Page 3 of 91
1.4 Submitted Sample Page 3 of 91
1.5 Test Duration Page 3 of 91
1.6 Country of Origin Page 3 of 91
1.7 RF Module Details Page 4 of 91
1.8 Antenna Details Page 4 of 91

2.0 Technical Details

2.1 Investigations Requested Page 5 of 91
2.2 Test Standards and Results Summary Page 5 of 91
2.3 Table for Test Modes Page 6 of 91

3.0 Test Results

3.1 Emission Page 7-86 of 91

Appendix A

List of Measurement Equipment Page 87 of 91

Appendix B

Photographs
Page 88-91 of 91

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 3 of 91 No.: DMA000106

1.0 General Details

1.1 Test Laboratory

The Hong Kong Standards and Testing Centre Ltd. EMC Laboratory 10 Dai Wang Street, Taipo Industrial Estate, New Territories, Hong Kong Telephone: $\quad 85226661888$
Fax: 85226644353

1.2 Equipment Under Test [EUT] Description of Sample(s)

Product: Internet/FM Digital Radio with Bluetooth and Spotify
Manufacturer: Dongguan Zhi Cheng Electronic Products Co., Ltd. No. 11 Shangbao Road, 188 Industrial Zone, Pingshan, Tangxia, Dongguan, Guangdong, China
Brand Name:
Model Number:
Rating:

Como Audio
Solo
$100-240$ Va.c. $50 / 60 \mathrm{~Hz}$

1.2.1 Description of EUT Operation

The Equipment Under Test (EUT) is a Internet/FM Digital Radio With Bluetooth and Spotify. The r.f. signal was modulated by IC and type of modulation was frequency hopping spread spectrum Modulation.

1.3 Date of Order

2016-07-26

1.4 Submitted Sample(s):

1 Sample
1.5 Test Duration

2016-07-29 to 2016-08-03

1.6 Country of Origin

China

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 4 of 91 No.: DMA000106

1.7 RF Module Details

Module Model Number:	BM153
Module FCC ID:	
Module Transmission Type:	Bluetooth V4.1
Modulation:	FHSS (GFSK / $\pi / 4-$ DQPSK/ 8DPSK)
Data Rates:	$1 \mathrm{MBps}:$ GFSK
	$2 \mathrm{MBps}: \pi / 4-$ DQPSK
	$3 \mathrm{MBps}: 8 \mathrm{DPSK}$
Frequency Range:	$2400-2483.5 \mathrm{MHz}$
Carrier Frequencies:	$2402 \mathrm{MHz}-2480 \mathrm{MHz}$

Module Specification (specification provided by manufacturer)
1.8 Antenna Details
$\begin{array}{ll}\text { Antenna Type: } & \text { Meander Line antenna } \\ \text { Antenna Gain: } & 2.12 \mathrm{dBi}\end{array}$

The Hong Kong Standards and Testing Centre Ltd.
10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

STC Test Report

Date：2016－08－05
Page 5 of 91 No．：DMA000106

2．0 Technical Details

2．1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR［Codes of Federal Regulations］Part 15： 2015 Regulations and ANSI C63．10： 2013 for FCC Certification．

2．2 Test Standards and Results Summary Tables

EMISSION Results Summary						
Test Condition	Test Requirement	Test Method	Class／ Severity	Test Result		
				Pass	Fail	N／A
Maximum Peak Conducted Output Power	$\begin{aligned} & \text { FCC 47CFR } \\ & 15.247(\mathrm{~b})(1) \end{aligned}$	$\begin{gathered} \hline \text { ANSI C63.10: } \\ 2013 \end{gathered}$	N／A	区	\square	\square
Radiated Spurious Emissions	FCC 47CFR 15.209	$\begin{gathered} \text { ANSI C63.10: } \\ 2013 \end{gathered}$	N／A	区	\square	\square
AC Mains Conducted Emissions	FCC 47CFR 15.207	$\begin{gathered} \text { ANSI C63.10: } \\ 2013 \end{gathered}$	N／A	区	\square	\square
Number of Hopping Frequency	FCC 47CFR 15.247 （b）（1）	$\begin{gathered} \text { ANSI C63.10: } \\ 2013 \\ \hline \end{gathered}$	N／A	区	\square	\square
20dB Bandwidth	$\begin{aligned} & \text { FCC 47CFR } \\ & 15.247(\mathrm{a})(2) \end{aligned}$	$\begin{gathered} \text { ANSI C63.10: } \\ 2013 \end{gathered}$	N／A	区	\square	\square
Hopping Channel Separation	$\begin{aligned} & \text { FCC 47CFR } \\ & 15.247(\mathrm{a})(1) \end{aligned}$	$\begin{gathered} \hline \text { ANSI C63.10: } \\ 2013 \end{gathered}$	N／A	区	\square	\square
Band－edge measurement （Radiated）	FCC 47CFR 15．247（d）	$\begin{gathered} \text { ANSI C63.10: } \\ 2013 \end{gathered}$	N／A	区	\square	\square
Pseudorandom Hopping Algorithm	$\begin{aligned} & \text { FCC 47CFR } \\ & 15.247(\mathrm{a})(1) \end{aligned}$	N／A	N／A	区	\square	\square
Time of Occupancy （Dwell Time）	$\begin{gathered} \text { FCC 47CFR } \\ 15.247(\mathrm{a})(1)(\mathrm{iii}) \\ \hline \end{gathered}$	$\begin{gathered} \text { ANSI C63.10: } \\ 2013 \\ \hline \end{gathered}$	N／A	区	\square	\square
Antenna requirement	FCC 47CFR 15.203	N／A	N／A	区	\square	\square
RF Exposure	FCC 47CFR 15．247（i）	N／A	N／A	区	\square	\square

Note：N／A－Not Applicable

The Hong Kong Standards and Testing Centre Ltd．

[^0]
STC Test Report

Date: 2016-08-05
Page 6 of 91
No.: DMA000106

2.3 Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate in the table below is the worst case rate with respect to the specific test item.
Investigation has been done on all the possible configurations for searching the worst cases.
The device was realized by test software.
The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Peak Conducted Output Power	GFSK $/ \pi / 4-\mathrm{DQPSK} / 8 \mathrm{DPSK}$	$1 \mathrm{MBps} / 2 \mathrm{MBps} / 3 \mathrm{MBps}$
Hopping Channel Separation	GFSK $/ \pi / 4-\mathrm{DQPSK} / 8 \mathrm{DPSK}$	$1 \mathrm{MBps} / 2 \mathrm{MBps} / 3 \mathrm{MBps}$
Number of Hopping Frequency	GFSK $/ \pi / 4-\mathrm{DQPSK} / 8 \mathrm{DPSK}$	$1 \mathrm{MBps} / 2 \mathrm{MBps} / 3 \mathrm{MBps}$
Time of Occupancy(Dwell Time)	$8 \mathrm{DPSK}(\mathrm{DH1} / \mathrm{DH} 3 / \mathrm{DH5})$	3 MBps
Radiated Spurious Emissions	$\mathrm{GFSK} / \pi / 4-\mathrm{DQPSK} / 8 \mathrm{DPSK}$	$1 \mathrm{MBps} / 2 \mathrm{MBps} / 3 \mathrm{MBps}$
Band-edge compliance of Conducted Emission	GFSK $/ \pi / 4-\mathrm{DQPSK} / 8 \mathrm{DPSK}$	$1 \mathrm{MBps} / 2 \mathrm{MBps} / 3 \mathrm{MBps}$

$\underline{\text { STC Test Report }}$

Date: 2016-08-05
Page 7 of 91 No.: DMA000106

$3.0 \quad$ Test Results

3.1 Emission

3.1.1 Maximum Peak Conducted Output Power

Test Requirement:	FCC 47CFR 15.247(b)(1)
Test Method:	ANSI C63.10: 2013
Test Date:	2016-08-02
Mode of Operation:	Tx mode

Test Method:

A temporary antenna connector was soldered to the RF output.The RF output of the EUT was connected to the spectrum analyzer. All the attenuation or cable loss will be added to the measured maximum output power. The results are recorded in Watt.

Spectrum Analyzer Setting:

RBW $=3 \mathrm{MHz}, V B W=3 \mathrm{MHz}$, Sweep $=$ Auto, Span $=10 \mathrm{MHz}$
Detector $=$ Peak, Trace $=$ Max. hold

Test Setup:

Note: a temporary antenna connector was soldered to the RF output.

STC Test Report

Date: 2016-08-05
Page 8 of 91
No.: DMA000106

Limits for Maximum Peak Conducted Output Power [FCC 47CFR 15.247]:

The maximum peak output power shall not exceeded the following limits:
For frequency hopping systems employing at least 75 hopping channels: 1 Watt
For all other frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band: 0.125 Watts
For Digital Transmission systems in 2400-2483.5 MHz Band: 1 Watt
Results of Bluetooth Communication mode (GFSK) (Fundamental Power): Pass

Transmitter Frequency (MHz)	Maximum conducted output power (Watt)		
2402	0.000840		
Transmitter Frequency (MHz) 2441 Maximum conducted output power (Watt) Transmitter Frequency (MHz) 0.000790 2480 Maximum conducted output power (Watt)		$.$	0.000620
:---			

Results of Bluetooth Communication mode ($\pi / 4$-DQPSK) (Fundamental Power): Pass

Transmitter Frequency (MHz)	Maximum conducted output power (Watt)
2402	0.000760

Transmitter Frequency (MHz)	Maximum conducted output power (Watt)
2441	0.000720

Transmitter Frequency (MHz)	Maximum conducted output power (Watt)
2480	0.000500

Results of Bluetooth Communication mode (8 DPSK) (Fundamental Power): Pass

Transmitter Frequency (MHz)	Maximum conducted output power (Watt)
2402	0.000770
Transmitter Frequency (MHz)	Maximum conducted output power (Watt)
2441	0.000740
Transmitter Frequency (MHz)	Maximum conducted output power (Watt)
2480	0.000540
Calculated measurement uncertainty	30 MHz to 1 GHz 1.7 dB 1 GHz to 18 GHz 1.7 dB

Remark:

1. All test data for each data rate were verified, but only the worst case was reported.
2. The EUT is programmed to transmit signals continuously for all testing.

STC Test Report

Date: 2016-08-05
Page 9 of 91
No.: DMA000106

Test plot of Maximum Peak Conducted Output Power :
Bluetooth Communication mode (GFSK, 2402MHz)

Bluetooth Communication mode (GFSK, 2441 MHz)

The Hong Kong Standards and Testing Centre Ltd.
10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

STC Test Report

Date: 2016-08-05

Bluetooth Communication mode (GFSK, 2480 MHz)

Bluetooth Communication mode ($\pi / 4$ DQPSK, 2402 MHz)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Bluetooth Communication mode ($\pi / 4$ DQPSK, 2441 MHz)

Bluetooth Communication mode ($\pi / 4$ DQPSK, 2480 MHz)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 12 of 91
No.: DMA000106

Bluetooth Communication mode (8DPSK, 2402MHz)

Bluetooth Communication mode (8DPSK, 2441MHz)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 13 of 91

No.: DMA000106

Bluetooth Communication mode (8DPSK, 2480 MHz)

STC Test Report

Date: 2016-08-05
Page 14 of 91

3.1.2 Radiated Spurious Emissions

Test Requirement: \quad FCC 47CFR 15.209
Test Method: ANSI C63.10: 2013
Test Date:
Mode of Operation:
2016-08-02
Tx mode / Bluetooth Communication mode

Test Method:

For emission measurements at or below 1 GHz , the sample was placed 0.8 m above the ground plane of semi-anechoic Chamber*. For emission measurements above 1 GHz , the sample was placed 1.5 m above the ground plane of semi-anechoic Chamber*.Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1 m to 4 m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.
*: Semi-Anechoic chamber located on the G/F of The Hong Kong Standards and Testing Centre Ltd. with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 607756.

STC Test Report

Date: 2016-08-05
Page 15 of 91 No.: DMA000106

Spectrum Analyzer Setting:

$9 \mathrm{KHz}-30 \mathrm{MHz}(\mathrm{Pk} \& \mathrm{Av})$	RBW: VBW: Sweep: Span: Trace:	$\begin{aligned} & 10 \mathrm{kHz} \\ & 30 \mathrm{kHz} \\ & \text { Auto } \\ & \text { Fully capture the emissions being measured } \\ & \text { Max. hold } \end{aligned}$
$30 \mathrm{MHz}-1 \mathrm{GHz}(\mathrm{QP})$	RBW: VBW: Sweep: Span: Trace:	$\begin{aligned} & 120 \mathrm{kHz} \\ & 120 \mathrm{kHz} \end{aligned}$ Auto Fully capture the emissions being measured Max. hold
Above 1GHz (Pk \& Av)	RBW: VBW: Sweep: Span: Trace:	1 MHz 3 MHz Auto Fully capture the emissions being measured Max. hold

Test Setup:

Ground Plane

- Absorbers placed on top of the ground plane are for measurements above 1000 MHz only.
- Measurements between 30 MHz to 1000 MHz made with Bi-log antennas, above 1000 MHz horn antennas are used, 9 kHz to 30 MHz loop antennas are used.

STC Test Report

Date: 2016-08-05
Page 16 of 91
No.: DMA000106

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
$[\mathrm{MHz}]$	$[\mu \mathrm{V} / \mathrm{m}]$
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$
$1.705-30$	30
$30-88$	100
$88-216$	150
$216-960$	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000 MHz are based on measurements employing an average detector.

Result of Tx mode (2402.0 MHz) (GFSK mode) ($9 \mathrm{kHz}-\mathbf{3 0 M H z}$): Pass

Field Strength of Spurious Emissions							
Peak Value							
Frequency	Measured	Correction	Field	Field	Limit	E-Field	
	Level						
MHz	dBuV	Factor dB / m	Strength $\mathrm{dBuV} / \mathrm{m}$	Strength uV / m	uV / m	Polarity	
Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (2402.0 MHz) (GFSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions						
Peak Value						

STC Test Report

Date: 2016-08-05
Page 17 of 91
No.: DMA000106

Result of Tx mode (2402.0 MHz) (GFSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value						
Frequency MHz	Measured Level@3m dBuV	Correction Factor dB / m		Limit @ 3m $\mathrm{dBuV} / \mathrm{m}$	Margin $\mathrm{dBuV} / \mathrm{m}$	E-Field Polarity
4804.0	0.8	41.5	42.3	54.0	11.7	Vertical
4804.0	-2.9	42.4	39.5	54.0	14.5	Horizontal
7206.0	-4.9	45.1	40.2	54.0	13.8	Vertical
7206.0	-7.7	46.2	38.5	54.0	15.5	Horizontal
9608.0	-8.0	48.0	40.0	54.0	14.0	Vertical
9608.0	-11.0	48.8	37.8	54.0	16.2	Horizontal
12010.0	-12.9	51.8	38.9	54.0	15.1	Vertical
12010.0	-15.2	52.4	37.2	54.0	16.8	Horizontal

Result of Tx mode (2441.0 MHz) (GFSK mode) ($9 \mathrm{kHz}-30 \mathrm{MHz}$): Pass

Field Strength of Spurious Emissions								
Peak Value								
Frequency	Measured							
	Level							
MHz	Correction Factor $\mathrm{dB} / \mathrm{mV}$	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Field Strength uV / m	Limit	E-Field Polarity			
Emissions detected are more than 20 dB below the FCC Limits								

Result of Tx mode (2441.0 MHz) (GFSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions							
Peak Value							
MHz	Level @3m dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Limit $@ 3 \mathrm{~m}$ $\mathrm{dBuV} / \mathrm{m}$	Margin	E-Field Polarity $\mathrm{dBuV} / \mathrm{m}$	
4882.0	15.8	41.6	57.4	74.0	16.6	Vertical	
4882.0	11.7	42.5	54.2	74.0	19.8	Horizontal	
7323.0	1.6	53.2	54.8	74.0	19.2	Vertical	
7323.0	6.4	46.3	52.7	74.0	21.3	Horizontal	
9764.0	7	48.1	55.1	74.0	18.9	Vertical	
9764.0	4.4	48.9	53.3	74.0	20.7	Horizontal	
12205.0	3.1	51.6	54.7	74.0	19.3	Vertical	
12205.0	1.0	52.5	53.5	74.0	20.5	Horizontal	

STC Test Report

Date: 2016-08-05
Page 18 of 91
No.: DMA000106

Result of Tx mode (2441.0 MHz) (GFSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions							
Average Value							
MHz	Level @3m dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Limit $@ 3 \mathrm{~m}$ $\mathrm{dBuV} / \mathrm{m}$	Margin	E-Field Polarity $\mathrm{dBuV} / \mathrm{m}$	
4882.0	0.6	41.6	42.2	54.0	11.8	Vertical	
4882.0	-3.6	42.5	38.9	54.0	15.1	Horizontal	
7323.0	-5.8	45.2	39.4	54.0	14.6	Vertical	
7323.0	-8.7	46.3	37.6	54.0	16.4	Horizontal	
9764.0	-8.1	48.1	40.0	54.0	14.0	Vertical	
9764.0	-10.8	48.9	38.1	54.0	15.9	Horizontal	
12205.0	-12.0	51.6	39.6	54.0	14.4	Vertical	
12205.0	-14.1	52.5	38.4	54.0	15.6	Horizontal	

Result of Tx mode (2480.0 MHz) (GFSK mode) $(9 \mathrm{kHz}-30 \mathrm{MHz})$: Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	$\begin{gathered} \hline \text { Measured } \\ \text { Level } \\ \text { dBuV } \\ \hline \end{gathered}$	Correction Factor dB / m		Field Strength uV / m	Limit uV / m	E-Field Polarity
Emissions detected are more than 20 dB below the FCC Limits						

Result of Tx mode (2480.0 MHz) (GFSK mode) (Above 1GHz): Pass

\left.| Field Strength of Spurious Emissions | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Value | | | | | | | |$\right]$ Margin \(\left.\begin{array}{c}E-Field

Polarity\end{array}\right]\)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 19 of 91
No.: DMA000106

Result of Tx mode (2480.0 MHz) (GFSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions							
Average Value							

Result of Tx mode (2402.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) $(9 \mathrm{kHz}-30 \mathrm{MHz}$): Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Field Strength uV / m	Limit uV / m	E-Field Polarity
Emissions detected are more than 20 dB below the FCC Limits						

Result of Tx mode (2402.0 MHz) ($\pi / 4-$ DQPSK mode) (Above 1 GHz): Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level @3m $\mathrm{dB} \mu \mathrm{V}$	Correction Factor dB / m		Limit @ 3 m $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	E-Field Polarity
4804.0	16.5	41.5	58.0	74.0	16.0	Vertical
4804.0	12.3	42.4	54.7	74.0	19.3	Horizontal
7206.0	10.7	45.1	55.8	74.0	18.2	Vertical
7206.0	8.5	46.2	54.7	74.0	19.3	Horizontal
9608.0	7.3	48.0	55.3	74.0	18.7	Vertical
9608.0	5.4	48.8	54.2	74.0	19.8	Horizontal
12010.0	3.4	51.8	55.2	74.0	18.8	Vertical
12010.0	1.2	52.4	53.6	74.0	20.4	Horizontal

STC Test Report

Date: 2016-08-05
Page 20 of 91
No.: DMA000106

Result of Tx mode (2402.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) (Above 1 GHz): Pass

Field Strength of Spurious Emissions						
Average Value						

Result of Tx mode (2441.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) $(9 \mathrm{kHz}-30 \mathrm{MHz})$: Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level dBuV	Correction Factor dB / m	Field Strength $d B u V / m$	Field Strength uV / m	Limit uV / m	E-Field Polarity
Emissions detected are more than 20 dB below the FCC Limits						

Result of Tx mode (2441.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) (Above 1GHz): Pass

\left.| Field Strength of Spurious Emissions | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Value | | | | | | |\(\right\left.] $$
\begin{array}{c}\text { Margin }\end{array}
$$ \begin{array}{c}E-Field

Polarity\end{array}\right]\)

STC Test Report

Date: 2016-08-05
Page 21 of 91
No.: DMA000106

Result of Tx mode (2441.0 MHz) ($\pi / 4-$ DQPSK mode) (Above 1 GHz): Pass

Field Strength of Spurious Emissions							
Average Value							

Result of Tx mode (2480.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) $(9 \mathrm{kHz}-30 \mathrm{MHz})$: Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level dBuV	Correction Factor dB / m		Field Strength uV / m	Limit uV / m	E-Field Polarity
Emissions detected are more than 20 dB below the FCC Limits						

Result of Tx mode (2480.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level @ 3 m dBuV	Correction Factor dB/m		Limit @3m $\mathrm{dBuV} / \mathrm{m}$	Margin $\mathrm{dBuV} / \mathrm{m}$	E-Field Polarity
4960.0	16.0	41.4	57.4	74.0	16.6	Vertical
4960.0	12.0	42.7	54.7	74.0	19.3	Horizontal
7440.0	9.6	45.6	55.2	74.0	18.8	Vertical
7440.0	5.8	46.5	52.3	74.0	21.7	Horizontal
9920.0	6.7	48.6	55.3	74.0	18.7	Vertical
9920.0	3.2	49.7	52.9	74.0	21.1	Horizontal
12400.0	3.4	51.7	55.1	74.0	18.9	Vertical
12400.0	0.5	52.7	53.2	74.0	20.8	Horizontal

STC Test Report

Date: 2016-08-05
Page 22 of 91
No.: DMA000106

Result of Tx mode (2480.0 MHz) ($\pi / 4-\mathrm{DQPSK}$ mode) (Above 1 GHz): Pass

Field Strength of Spurious Emissions Average Value						
Frequency MHz	Measured Level@3m dBuV	Correction Factor dB / m		Limit @3m $\mathrm{dBuV} / \mathrm{m}$	Margin $\mathrm{dBuV} / \mathrm{m}$	E-Field Polarity
4960.0	0.9	41.4	42.3	54.0	11.7	Vertical
4960.0	-3.2	42.7	39.5	54.0	14.5	Horizontal
7440.0	-5.7	45.6	39.9	54.0	14.1	Vertical
7440.0	-9.3	46.5	37.2	54.0	16.8	Horizontal
9920.0	-8.4	48.6	40.2	54.0	13.8	Vertical
9920.0	-12.0	49.7	37.7	54.0	16.3	Horizontal
12400.0	-11.9	51.7	39.8	54.0	14.2	Vertical
12400.0	-14.6	52.7	38.1	54.0	15.9	Horizontal

Result of Tx mode (2402.0 MHz) (8DPSK mode) $(9 \mathrm{kHz}-30 \mathrm{MHz})$: Pass

Field Strength of Spurious Emissions							
Frequency	Measured	Correction	Field	Field	Limit	E-Field	
	Level						
MHz	dBuV	Factor dB / m	Strength $\mathrm{dBuV} / \mathrm{m}$	Strength uV / m	uV / m	Polarity	
Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (2402.0 MHz) (8DPSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level@3m $\mathrm{dB} \mu \mathrm{V}$	Correction Factor dB/m	Field Strength $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Limit } \\ @ 3 \mathrm{~m} \\ \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { Margin } \\ & \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{aligned}$	E-Field Polarity
4804.0	16.3	41.5	57.8	74.0	16.2	Vertical
4804.0	12.4	42.4	54.8	74.0	19.2	Horizontal
7206.0	10.4	45.1	55.5	74.0	18.5	Vertical
7206.0	8.0	46.2	54.2	74.0	19.8	Horizontal
9608.0	7.6	48.0	55.6	74.0	18.4	Vertical
9608.0	5.1	48.8	53.9	74.0	20.1	Horizontal
12010.0	3.3	51.8	55.1	74.0	18.9	Vertical
12010.0	1.3	52.4	53.7	74.0	20.3	Horizontal

STC Test Report

Date: 2016-08-05
Page 23 of 91
No.: DMA000106

Result of Tx mode (2402.0 MHz) (8DPSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions Average Value							
Frequency	Measured Level @3m dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Limit $@ 3 \mathrm{~m}$ $\mathrm{dBuV} / \mathrm{m}$	Margin	E-Field PBuV/m	
4804.0	1.2	41.5	42.7	54.0	11.3	Vertical	
4804.0	-2.9	42.4	39.5	54.0	14.5	Horizontal	
7206.0	-4.9	45.1	40.2	54.0	13.8	Vertical	
7206.0	-7.2	46.2	39.0	54.0	15.0	Horizontal	
9608.0	-7.5	48.0	40.5	54.0	13.5	Vertical	
9608.0	-10.1	48.8	38.7	54.0	15.3	Horizontal	
12010.0	-12.0	51.8	39.8	54.0	14.2	Vertical	
12010.0	-13.8	52.4	38.6	54.0	15.4	Horizontal	

Result of Tx mode (2441.0 MHz) (8DPSK mode) $(9 \mathrm{kHz}-30 \mathrm{MHz})$: Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level dBuV	Correction Factor dB / m		Field Strength uV/m	Limit uV / m	E-Field Polarity
Emissions detected are more than 20 dB below the FCC Limits						

Result of Tx mode (2441.0 MHz) (8DPSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions							
Peak Value							
MHz	Level @3m dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Limit $@ 3 \mathrm{~m}$ $\mathrm{dBuV} / \mathrm{m}$	Margin	E-Field Polarity $\mathrm{dBuV} / \mathrm{m}$	
4882.0	15.8	41.6	57.4	74.0	16.6	Vertical	
4882.0	11.7	42.5	54.2	74.0	19.8	Horizontal	
7323.0	2.0	53.2	55.2	74.0	18.8	Vertical	
7323.0	7.0	46.3	53.3	74.0	20.7	Horizontal	
9764.0	7.1	48.1	55.2	74.0	18.8	Vertical	
9764.0	4.0	48.9	52.9	74.0	21.1	Horizontal	
12205.0	3.7	51.6	55.3	74.0	18.7	Vertical	
12205.0	0.6	52.5	53.1	74.0	20.9	Horizontal	

STC Test Report

Date: 2016-08-05
Page 24 of 91
No.: DMA000106

Result of Tx mode (2441.0 MHz) (8DPSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions						
Average Value						

Result of Tx mode (2480.0 MHz) (8DPSK mode) $(9 \mathrm{kHz}-30 \mathrm{MHz})$: Pass

Field Strength of Spurious Emissions						
Peak Value						
Frequency	Measured	Correction	Field Level MHz EBuV	Factor dB / m	Field Strength dBuV/m	Strength uV / m

Result of Tx mode (2480.0 MHz) (8DPSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions Peak Value						
Frequency MHz	Measured Level@3m dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Limit @3m $\mathrm{dBuV} / \mathrm{m}$	Margin $\mathrm{dBuV} / \mathrm{m}$	E-Field Polarity
4960.0	16.0	41.4	57.4	74.0	16.6	Vertical
4960.0	11.0	42.7	53.7	74.0	20.3	Horizontal
7440.0	10.5	45.6	56.1	74.0	17.9	Vertical
7440.0	6.8	46.5	53.3	74.0	20.7	Horizontal
9920.0	7	48.6	55.6	74.0	18.4	Vertical
9920.0	3.8	49.7	53.5	74.0	20.5	Horizontal
12400.0	3.6	51.7	55.3	74.0	18.7	Vertical
12400.0	0.1	52.7	52.8	74.0	21.2	Horizontal

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 25 of 91
No.: DMA000106

Result of Tx mode (2480.0 MHz) (8DPSK mode) (Above 1GHz): Pass

Field Strength of Spurious Emissions							
Average Value							
MHz	Level @3m dBuV	Correction Factor dB / m	Field Strength $\mathrm{dBuV} / \mathrm{m}$	Limit $@ 3 \mathrm{~m}$ $\mathrm{dBuV} / \mathrm{m}$	Margin	E-Field Polarity $\mathrm{dBuV} / \mathrm{m}$	
4960.0	0.9	41.4	42.3	54.0	11.7	Vertical	
4960.0	-4.2	42.7	38.5	54.0	15.5	Horizontal	
7440.0	-4.8	45.6	40.8	54.0	13.2	Vertical	
7440.0	-8.3	46.5	38.2	54.0	15.8	Horizontal	
9920.0	-8.1	48.6	40.5	54.0	13.5	Vertical	
9920.0	-11.4	49.7	38.3	54.0	15.7	Horizontal	
12400.0	-11.7	51.7	40.0	54.0	14.0	Vertical	
12400.0	-15.0	52.7	37.7	54.0	16.3	Horizontal	

Remarks:

* Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000 MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.
Correction Factor included Antenna Factor and Cable Attenuation.
Calculated measurement uncertainty: $\quad(9 \mathrm{kHz}-30 \mathrm{MHz}): 2.0 \mathrm{~dB}$
($30 \mathrm{MHz}-1 \mathrm{GHz}$): 4.9 dB
$(1 \mathrm{GHz}-6 \mathrm{GHz}): 4.02 \mathrm{~dB}$
($6 \mathrm{GHz}-26.5 \mathrm{GHz}$): 4.03 dB
Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

STC Test Report

Date: 2016-08-05
Page 26 of 91
No.: DMA000106

Radiated Emissions Measurement:

Limit :

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205 (a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

Result: Band-edge Compliance of RF Radiated Emissions (GFSK Lowest)

Field Strength of Band-edge Compliance Peak Value						
Frequency MHz	Measured Level@3m $\mathrm{dB} \mu \mathrm{V}$	Correction Factor dB / m	Field Strength $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Limit @3m $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	E-Field Polarity
2390.0	11.5	36.8	48.3	74.0	25.7	Vertical
2390.0	8.8	36.4	45.2	74.0	28.8	Horizontal

Field Strength of Band-edge Compliance Average Value						
Frequency MHz	Measured Level@3m $\mathrm{dB} \mu \mathrm{V}$	Correction Factor dB / m			Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	E-Field Polarity
2390.0	1.1	36.8	37.9	54.0	16.1	Vertical
2390.0	-1.7	36.4	34.7	54.0	19.3	Horizontal

Result: Band-edge Compliance of RF Radiated Emissions (GFSK Highest)

Field Strength of Band-edge Compliance							
Peak Value							

Field Strength of Band-edge Compliance							
Average Value							

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 27 of 91
No.: DMA000106

Radiated Emissions Measurement:

Limit :

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205 (a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

Result: Band-edge Compliance of RF Radiated Emissions ($\pi / 4$-DQPSK Lowest)

Field Strength of Band-edge Compliance							
Peak Value							

Field Strength of Band-edge Compliance							
Average Value							

Result: Band-edge Compliance of RF Radiated Emissions ($\pi / 4$-DQPSK Highest)

Field Strength of Band-edge Compliance							
Peak Value							

Field Strength of Band-edge Compliance							
Average Value							

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 28 of 91
No.: DMA000106

Radiated Emissions Measurement:

Limit :

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205 (a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section $5.205(\mathrm{c})$).

Result: Band-edge Compliance of RF Radiated Emissions (8DPSK Lowest)

Field Strength of Band-edge Compliance							
Peak Value							

Field Strength of Band-edge Compliance Average Value						
Frequency MHz	Measured Level@3m $\mathrm{dB} \mu \mathrm{V}$	Correction Factor dB / m			Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	E-Field Polarity
2390.0	0.9	36.8	37.7	54.0	16.3	Vertical
2390.0	1.6	36.4	38.0	54.0	16.0	Horizontal

Result: Band-edge Compliance of RF Radiated Emissions (8DPSK Highest)

Field Strength of Band-edge Compliance							
Peak Value							

Field Strength of Band-edge Compliance							
Average Value							

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 29 of 91
No.: DMA000106

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
$[\mathrm{MHz}]$	$[\mathrm{JV} / \mathrm{m}]$
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$
$1.705-30$	30
$30-88$	100
$88-216$	150
$216-960$	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000 MHz are based on measurements employing an average detector.

Result of Bluetooth Communication mode (2402 MHz , GFSK) ($\mathbf{3 0 M H z} \mathbf{- 1 G H z}$): Pass
Please refer to the following table for result details(The data is the worst cases)
Horizontal

The Hong Kong Standards and Testing Centre Ltd.
10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

STC Test Report

Date: 2016-08-05
Page 30 of 91
No.: DMA000106

Result of Bluetooth Communication mode (2402 MHz , GFSK) (30MHz - 1GHz): Pass

Radiated Emissions Quasi-Peak					
Emission Frequency MHz	E-Field Polarity	Level @3m $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Limit @3m $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Level @3m $\mu \mathrm{V} / \mathrm{m}$	Limit @ 3 m $\mu \mathrm{V} / \mathrm{m}$
30.3	Horizontal	30.8	40.0	34.7	100
119.6	Horizontal	24.1	43.5	16.0	150
733.6	Horizontal	38.8	46.0	87.1	200

STC Test Report

Date: 2016-08-05
Page 31 of 91
No.: DMA000106

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
$[\mathrm{MHz}]$	$[\mathrm{JV} / \mathrm{m}]$
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$
$1.705-30$	30
$30-88$	100
$88-216$	150
$216-960$	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000 MHz are based on measurements employing an average detector.

Please refer to the following table for result details(The data is the worst cases)

The Hong Kong Standards and Testing Centre Ltd.
10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

STC Test Report

Date: 2016-08-05
Page 32 of 91
No.: DMA000106

Result of Bluetooth Communication mode (2402 MHz , GFSK) ($\mathbf{3 0 M H z}-\mathbf{1 G H z}$): Pass

Radiated Emissions Quasi-Peak						
Emission Frequency MHz	E-Field Polarity	Level $@ 3 \mathrm{~m}$ $\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$	Limit @3 $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Level $@ 3 \mathrm{~m}$ $\mu \mathrm{~V} / \mathrm{m}$	Limit $@ 3 \mathrm{~m}$ $\mu \mathrm{~V} / \mathrm{m}$	
42.3	Vertical	35.5	40.0	59.6	100	
45.0	Vertical	36.9	40.0	70.0	100	
59.5	Vertical	34.2	40.0	51.3	100	
97.0	Vertical	31.1	43.5	35.9	150	
115.1	Vertical	29.9	43.5	31.3	150	
530.6	Vertical	36.8	46.0	69.2	200	

Remarks:

Calculated measurement uncertainty ($30 \mathrm{MHz}-1 \mathrm{GHz}$): 4.9 dB
Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

STC Test Report

Date: 2016-08-05
Page 33 of 91 No.: DMA000106

3.1.3 AC Mains Conducted Emissions (0.15MHz to 30MHz)

Test Requirement:	FCC 47CFR 15.207
Test Method:	ANSI C63.10: 2013
Test Date:	2016-08-02
Mode of Operation:	Bluetooth Communication mode
Test Voltage:	120Va.c. 60 Hz

Test Method:

The test was performed in accordance with ANSI C63.10: 2013, with the following: an initial measurement was performed in peak and average detection mode on the live line, any emissions recorded within 30 dB of the relevant limit line were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

Test Setup:

STC Test Report

Date: 2016-08-05
Page 34 of 91
No.: DMA000106

Limit for Conducted Emissions (FCC 47 CFR 15.207):

Frequency Range $[\mathrm{MHz}]$	Quasi-Peak Limits $[\mathrm{dB} \mu \mathrm{V}]$	Average $[\mathrm{dB} \mu \mathrm{V}]$
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5.0$	56	46
$5.0-30.0$	60	50

* Decreases with the logarithm of the frequency.

Limits for Conducted Emissions Test, please refer to limit lines (Quasi-Peak and Average) in the following diagram.

Result of Bluetooth Communication mode (L): PASS
Please refer to the following diagram for individual results.

The Hong Kong Standards and Testing Centre Ltd.

[^1]
STC Test Report

Date: 2016-08-05
Page 35 of 91
No.: DMA000106

Limit for Conducted Emissions (FCC 47 CFR 15.207):

Frequency Range $[\mathrm{MHz}]$	Quasi-Peak Limits $[\mathrm{dB} \mu \mathrm{V}]$	Average $[\mathrm{dB} \mu \mathrm{V}]$
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5.0$	56	46
$5.0-30.0$	60	50

* Decreases with the logarithm of the frequency.

Limits for Conducted Emissions Test, please refer to limit lines (Quasi-Peak and Average) in the following diagram.

Result of Bluetooth Communication mode (N): PASS
Please refer to the following diagram for individual results.

Conductor Live or Neutral	Frequency MHz	Quasi-peak		Average	
		Level dB $\mu \mathrm{V}$	$\begin{aligned} & \text { Limit } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	Level $\mathrm{dB} \mu \mathrm{V}$	Limit $\mathrm{dB} \mu \mathrm{V}$
Neutral	0.520	35.0	56.0	-*-	-*-
Neutral	3.940	21.8	56.0	-*-	-*-
Neutral	24.815	29.9	60.0	-*-	-*-
Neutral	0.515	-*-	-*-	30.3	46.0
Neutral	1.475	-*-	-*-	17.9	46.0
Neutral	12.290	-*-	-*-	31.6	50.0

Remarks:

Calculated measurement uncertainty $(0.15 \mathrm{MHz}-30 \mathrm{MHz}): 3.25 \mathrm{~dB}$
-*- Emission(s) that is far below the corresponding limit line.
The Hong Kong Standards and Testing Centre Ltd.

[^2]
STC Test Report

Date: 2016-08-05

3.1.4 Number of Hopping Frequency

Limit of Number of Hopping Frequency

Frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band shall use at least 15 channels

Test Method:

The RF output of the EUT was connected to the spectrum analyzer by a low loss cable.

Spectrum Analyzer Setting:

RBW $=300 \mathrm{kHz}, ~ V B W \geq$ RBW, Sweep $=$ Auto, Span $=$ the frequency band of operation
Detector $=$ Peak, Trace $=$ Max. hold

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Measurement Data:

GFSK: 79 of 79 Channel

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 37 of 91
No.: DMA000106
$\pi / 4$-DQPSK: 79 of 79 Channel

8DPSK: 79 of 79 Channel

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 38 of 91 No.: DMA000106

3.1.5 20dB Bandwidth

Test Requirement:	FCC 47CFR 15.247(a)(1)
Test Method:	ANSI C63.10: 2013
Test Date:	2016-08-01
Mode of Operation:	TX mode

Remark:

The result has been done on all the possible configurations for searching the worst cases.

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

STC Test Report

Date: 2016-08-05
Page 39 of 91
No.: DMA000106

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{kHz}]$	FCC Limits $[\mathrm{MHz}]$
2402	800.0	Within 2400-2483.5

(Lowest Operating Frequency) - (GFSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{kHz}]$	FCC Limits $[\mathrm{MHz}]$
2441	804.0	Within 2400-2483.5

(Middle Operating Frequency) - (GFSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 41 of 91
No.: DMA000106

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{kHz}]$	FCC Limits $[\mathrm{MHz}]$
2480	808.0	Within 2400-2483.5

(Highest Operating Frequency) - (GFSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 42 of 91
No.: DMA000106

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{MHz}]$	FCC Limits $[\mathrm{MHz}]$
2402	1.220	Within 2400-2483.5

(Lowest Operating Frequency) - ($\pi / 4$-DQPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 43 of 91
No.: DMA000106

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{MHz}]$	FCC Limits $[\mathrm{MHz}]$
2441	1.225	Within 2400-2483.5

(Middle Operating Frequency) - ($\pi / 4$-DQPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{MHz}]$	FCC Limits $[\mathrm{MHz}]$
2480	1.225	Within 2400-2483.5

(Highest Operating Frequency) - ($\pi / 4$-DQPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 45 of 91
No.: DMA000106

Fundamental Frequency $[\mathrm{MHz}]$	20 dB Bandwidth $[\mathrm{MHz}]$	FCC Limits $[\mathrm{MHz}]$
2402	1.220	Within 2400-2483.5

(Lowest Operating Frequency) - (8DPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{MHz}]$	FCC Limits $[\mathrm{MHz}]$
2441	1.215	Within 2400-2483.5

(Middle Operating Frequency) - (8DPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 47 of 91
No.: DMA000106

Fundamental Frequency $[\mathrm{MHz}]$	20dB Bandwidth $[\mathrm{MHz}]$	FCC Limits $[\mathrm{MHz}]$
2480	1.215	Within 2400-2483.5

(Highest Operating Frequency) - (8DPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 48 of 91
No.: DMA000106

3.1.6 Hopping Channel Separation

Requirements:

Frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

Limit:

The measured maximum bandwidth $* 2 / 3=1.225 \mathrm{MHz} * 2 / 3=817 \mathrm{kHz}$

STC Test Report

Date: 2016-08-05

Channel separation $=1 \mathrm{MHz}(>817 \mathrm{kHz}) \quad($ Lowest) (GFSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Channel separation $=1 \mathrm{MHz}(>817 \mathrm{kHz}) \quad(\mathrm{Mid}) \quad($ GFSK $)$
*RBW 300 kHz
Marker 1 [T1]
*VBW 300 kHz

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Channel separation $=1 \mathrm{MHz}(>817 \mathrm{kHz}) ~($ Highest) $($ GFSK $)$

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Channel separation $=\mathbf{1 M H z}(>817 \mathrm{kHz})($ Lowest) $)(\boldsymbol{\pi} / \mathbf{4}$ DQPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Channel separation $=1 \mathrm{MHz}(>817 \mathrm{kHz}) \quad(\mathrm{Mid})(\pi / 4 \mathrm{DQPSK})$
$\begin{array}{llllll}\text { *RBW } 300 & \mathrm{kHz} & \text { Marker } 1 & {[\mathrm{~T} 1 \mathrm{]}} & \\ \text { *VBW } 300 & \mathrm{kHz} & & 105.64 \mathrm{~dB} \mu \mathrm{~V}\end{array}$

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

$$
\text { Channel separation = } 1 \mathrm{MHz}(>817 \mathrm{kHz})(\text { Lowest) (8DPSK) }
$$

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Channel separation $=1 \mathrm{MHz}(>817 \mathrm{kHz}) \quad(\mathrm{Mid}) \quad(8 \mathrm{DPSK})$

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Channel separation $=1 \mathrm{MHz}(>817 \mathrm{kHz}) \quad$ (Highest) (8DPSK)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 58 of 91 No.: DMA000106

3.1.7 Band-edge Compliance of RF Conducted Emissions Measurement:

Limit :

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. According to the test method DA 00-705.

Remark: Emissions under the fixed frequency mode and hopping mode have been investigated, the worst-case measurement results were recorded in the test report

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	49.75
2400 - Lowest Fundamental (2402)	

Band-edge Compliance of RF Conducted Emissions (GFSK Lowest) (Hopping on)

[^3]
STC Test Report

Date: 2016-08-05
Page 59 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the Fundamental $[\mathrm{dB}]$
$[\mathrm{MHz}]$	50.13
2400 - Lowest Fundamental (2402)	

Band-edge Compliance of RF Conducted Emissions (GFSK Lowest) (Hopping off)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 60 of 91 No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	52.37
Highest Fundamental $(2480)-2483.5$	

Band-edge Compliance of RF Conducted Emissions (GFSK Highest) (Hopping on)
*RBW 100 kHz Marker 1 [T1]

The Hong Kong Standards and Testing Centre Ltd.

[^4]
STC Test Report

Date: 2016-08-05
Page 61 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	$[\mathrm{dB}]$
Highest Fundamental $(2480)-2483.5$	53.74

Band-edge Compliance of RF Conducted Emissions (GFSK Highest) (Hopping off)

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 62 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	43.61

Band-edge Compliance of RF Conducted Emissions ($\pi / 4$ DQPSK Lowest) (Hopping on)

*RBW 100 kHz Marker 1 [T1]

The Hong Kong Standards and Testing Centre Ltd.

[^5]
STC Test Report

Date: 2016-08-05
Page 63 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the Fundamental $[\mathrm{dB}]$
$[\mathrm{MHz}]$	46.96
2400 - Lowest Fundamental (2402)	

Band-edge Compliance of RF Conducted Emissions ($\pi / 4$ DQPSK Lowest) (Hopping off)
8) *RBW 100 kHz Marker 1 [T1]
$\begin{array}{llrr}\text { *RBW } 100 & \mathrm{kHz} & \text { Marker } 1 \mathrm{lT1}] \\ \text { *VBW } 300 \mathrm{kHz} & -0.94 \mathrm{dBm}\end{array}$

The Hong Kong Standards and Testing Centre Ltd.

[^6]
STC Test Report

Date: 2016-08-05
Page 64 of 91 No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	50.08
Highest Fundamental $(2480)-2483.5$	

Band-edge Compliance of RF Conducted Emissions ($\pi / 4$ DQPSK Highest) (Hopping on)
*RBW 100 kHz Marker 1 [T1]]

The Hong Kong Standards and Testing Centre Ltd.

[^7]
STC Test Report

Date: 2016-08-05
Page 65 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	$[\mathrm{dB}]$
Highest Fundamental $(2480)-2483.5$	53.36

Band-edge Compliance of RF Conducted Emissions ($\pi / 4$ DQPSK Highest) (Hopping off)

The Hong Kong Standards and Testing Centre Ltd.

[^8]
STC Test Report

Date: 2016-08-05
Page 66 of 91 No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	45.01

Band-edge Compliance of RF Conducted Emissions (8DPSK Lowest) (Hopping on)
*RBW 100 kHz Marker 1 [T1]
*VBW $300 \mathrm{kHz} \quad-1.17 \mathrm{dBm}$

The Hong Kong Standards and Testing Centre Ltd.

[^9]
STC Test Report

Date: 2016-08-05
Page 67 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the Fundamental $[\mathrm{dB}]$
$[\mathrm{MHz}]$	48.70

Band-edge Compliance of RF Conducted Emissions (8DPSK Lowest) (Hopping off)
*RBW 100 kHz Marker 1 [T1]
*VBW $300 \mathrm{kHz} \quad-0.97 \mathrm{dBm}$

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 68 of 91 No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the
Fundamental	
$[\mathrm{MHz}]$	51.41
Highest Fundamental $(2480)-2483.5$	

Band-edge Compliance of RF Conducted Emissions (8DPSK Highest) (Hopping on)

The Hong Kong Standards and Testing Centre Ltd.

[^10]
STC Test Report

Date: 2016-08-05
Page 69 of 91
No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Frequency Range	Radiated Emission Attenuated below the Fundamental $[\mathrm{dB}]$
$[\mathrm{MHz}]$	52.30
Highest Fundamental $(2480)-2483.5$	

Band-edge Compliance of RF Conducted Emissions (8DPSK Highest) (Hopping off)

The Hong Kong Standards and Testing Centre Ltd.

[^11]
STC Test Report

Date: 2016-08-05
Page 70 of 91 No.: DMA000106

Band-edge Compliance of RF Conducted Emissions Measurement:

Limit :

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. According to the test method DA 00-705.

Remark: Emissions under the fixed frequency mode and hopping mode have been investigated, the worst-case measurement results were recorded in the test report

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 71 of 91
No.: DMA000106

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 72 of 91
No.: DMA000106

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 73 of 91
No.: DMA000106

3.1.8 Time of Occupancy (Dwell Time)

Requirements:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed.

No requirements for Digital Transmission System.
Dwell Time = Pulse Duration * hop rate / number of channel * observation duration
Observed duration: $0.4 \mathrm{~s} \times 79=31.6 \mathrm{~s}$

Measurement Data:

Channel Occupied in 8DPSK: 79 of 79 Channel

The Hong Kong Standards and Testing Centre Ltd.

[^12]report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Ltd For Conditions of Issuance of this test report, please refer to the overleaf or Homepage

STC Test Report

Date: 2016-08-05
Page 74 of 91
No.: DMA000106

DH5 Packet:

DH5 Packet permit maximum 1600/79/6 $=3.37$ hops per second in each channel (5 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times $3.37 \times 31.6=106.6$ within 31.6 seconds

Fig. A
[Pulse duration of Lowest Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fig. B
[Pulse duration of Middle Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fig. C

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 77 of 91
No.: DMA000106

DH3 Packet:

DH3 Packet permit maximum 1600/79/4 $=5.06$ hops per second in each channel (3 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times $5.06 \times 31.6=160$ within 31.6 seconds

Fig. D
[Pulse duration of Lowest Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fig. E
[Pulse duration of Middle Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05

Fig. F
[Pulse duration of Highest Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 80 of 91
No.: DMA000106

DH1 Packet:

DH1 Packet permit maximum 1600/79/2 $=10.12$ hops per second in each channel (3 time slots RX, 1 time slot TX). The Dwell time is the time duration of the pulse times $10.12 \times 31.6=320$ within 31.6 seconds

Fig. G
[Pulse duration of Lowest Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 81 of 91
No.: DMA000106

Fig. H
[Pulse duration of Middle Channel]

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 82 of 91
No.: DMA000106

Fig. I
[Pulse duration of Highest Channel]

Time of occupancy (Dwell Time):

Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (\mathbf{s})	Limits (\mathbf{s})	Test Results
DH5	2402	2.82	0.267	0.400	Complies
DH5	2441	2.79	0.264	0.400	Complies
DH5	2480	2.84	0.269	0.400	Complies
DH3	2402	1.72	0.272	0.400	Complies
DH3	2441	1.68	0.265	0.400	Complies
DH3	2480	1.65	0.261	0.400	Complies
DH1	2402	0.39	0.123	0.400	Complies
DH1	2441	0.38	0.120	0.400	Complies
DH1	2480	0.38	0.120	0.400	Complies

STC Test Report

Date: 2016-08-05
Page 83 of 91 No.: DMA000106

3.1.9 Channel Centre Frequency

Requirements:

Frequency hopping system in the $2400-2483.5 \mathrm{MHz}$ band shall use at least 79 (Channel 1 to 79) nonoverlapping channels.

The EUT operates in according with the Bluetooth system specification within the $2400-2483.5 \mathrm{MHz}$ frequency band.
RF channels for Bluetooth systems are spaced 1 MHz and are ordered in channel number k . In order to comply with out-of-band regulations, a lower frequency guard band of 2.0 MHz and a higher frequency guard band of 3.5 MHz is used.

The operating frequencies of each channel are as follows:
First RF channel start from $2400 \mathrm{MHz}+2 \mathrm{MHz}$ guard band $=2402 \mathrm{MHz}$
Frequency of RF Channel $=2402+\mathrm{k} \mathrm{MHz}, \mathrm{k}=1, \ldots, 79($ Channel separation $=1 \mathrm{MHz})$

STC Test Report

Date: 2016-08-05
Page 84 of 91
No.: DMA000106

3.1.10 Pseudorandom Hopping Algorithm

Requirements:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

EUT Pseudorandom Hopping Algorithm

The EUT is a Bluetooth device, the Pseudo-random hopping pattern; hopping characteristics and algorithm are based on the Bluetooth specification.

STC Test Report

Date: 2016-08-05
Page 85 of 91
No.: DMA000106

3.1.11 Antenna Requirement

Test Requirements: § $\mathbf{1 5 . 2 0 3}$

Test Specification:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Results:

This is Meander Line antenna. There is no external antenna, the antenna gain $=2.12 \mathrm{dBi}$. User is unable to remove or changed the Antenna.

STC Test Report

Date: 2016-08-05
Page 86 of 91
No.: DMA000106

3.1.12 RF Exposure

Test Requirement:
FCC 47CFR 15.247(i)
Test Date:
2016-08-03
Mode of Operation:
Tx mode

Test Method:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

Test Results:

The EUT complied with the requirement(s) of this section.
EUT meets the requirements of these sections as proven through MPE calculation
The MPE calculation for EUT @ 20cm
Based on the highest $\mathrm{P}=0.84 \mathrm{~mW}$

$$
\begin{aligned}
\mathrm{Pd} & =\mathrm{PG} / 4 \mathrm{p} \mathrm{i}^{*} \mathrm{R}^{2}=(0.84 \times 1.63) / 12.566 *(20)^{2} \\
& =(1.369) / 12.566 \mathrm{x} 400=1.369 / 5026.4 \\
& =0.000272 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned}
$$

where:

* $\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm} 2$
* $\mathrm{G}=$ Antenna numeric gain (1.63); $\log \mathrm{G}=\mathrm{g} / 10(\mathrm{~g}=2.12 \mathrm{dBi})$.
* $\mathrm{P}=$ Conducted RF power to antenna (0.84 mW).
* $\mathrm{R}=$ Minimum allowable distance. $(20 \mathrm{~cm})$
*The power density $\mathrm{Pd}=0.000344 \mathrm{~mW} / \mathrm{cm}^{2}$ is less than $1 \mathrm{~mW} / \mathrm{cm}^{2}$ (listed MPE limit)
*The SAR evaluation is not needed (this is a desk top device, $\mathrm{R}>20 \mathrm{~cm}$)
* The EUT(antenna) must be 0.2 meters away from the General Population.

STC Test Report

Date: 2016-08-05
Page 87 of 91
No.: DMA000106

Appendix A

List of Measurement Equipment

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM299	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	3115	00114120	$2016 / 04 / 27$	$2018 / 04 / 27$
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A
EM216	MINI MAST SYSTEM	EMCO	2075	00026842	N/A	N/A
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A
EM218	ANECHOIC CHAMBER	ETS-Lindgren	FACT-3	--	$2016 / 04 / 24$	$2017 / 04 / 24$
EM355	Biconilog Antenna	ETS-Lindgren	3143 B	00094856	$2016 / 03 / 03$	$2018 / 03 / 03$
EM229	EMI Test Receiver	R\&S	ESIB40	100248	$2016 / 06 / 01$	$2017 / 06 / 01$
EM181	EMI TEST RECEIVER	ROHDE \& SCHWARZ	ESIB7	100072	$2016 / 06 / 01$	$2017 / 06 / 01$
EM145	EMI Test Receiver	R \& S	ESCS 30	$830245 / 021$	$2016 / 06 / 01$	$2017 / 06 / 01$
EM353	LOOP ANTENNA	ETS_LINDGREN	6502	00206533	$2016 / 03 / 16$	$2018 / 03 / 16$
EM302	Precision Omnidirectional Dipole $(1-6 G H z)$	Seibersdorf Laboratories	POD 16	$161806 / \mathrm{L}$	$2016 / 05 / 11$	$2018 / 05 / 11$
EM303	Precision Omnidirectional Dipole $(6-18 G H z)$	Seibersdorf Laboratories	POD 618	$6181908 / \mathrm{L}$	$2016 / 05 / 11$	$2018 / 05 / 11$

Line Conducted

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM119	LISN	R \& S	ESH3-Z5	0831.5518 .52	$2015 / 10 / 22$	$2016 / 10 / 22$
EM145	EMI Test Receiver	R \& S	ESCS 30	$830245 / 021$	$2016 / 06 / 01$	$2017 / 06 / 01$
EM179	IMPULSE LIMITER	ROHDE \& SCHWARZ	ESH3-Z2	$357-$ $8810.52 / 54$	$2016 / 01 / 11$	$2017 / 01 / 11$
EM154	SHIELDING ROOM	SIEMENS MATSUSHITA COMPONENTS	N/A	$803-740-057-$ 99 A	$2012 / 02 / 03$	$2017 / 02 / 03$
N/A	mEASUREMENT AND EVALUATION SOFTWARE	ROHDE \& SCHWARZ	esib-k1	v 1.20	n / a	n / a

Remarks:-
N/A Not Applicable or Not Available

STC Test Report

Date: 2016-08-05
Page 88 of 91
No.: DMA000106

Appendix B

Photographs of EUT

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
Page 89 of 91
No.: DMA000106

Photographs of EUT

STC Test Report

Date: 2016-08-05
No.: DMA000106

Photographs of EUT

The Hong Kong Standards and Testing Centre Ltd.

STC Test Report

Date: 2016-08-05
No.: DMA000106

Photographs of EUT

The Hong Kong Standards and Testing Centre Ltd.

[^0]: Tel：（852） 26661888
 10 Dai Wang Street，Taipo Industrial Estate，N．T．，Hong Kong
 Fax：（852） 26644353 E－mail：hkstc＠hkstc．org Homepage：www．stc－group．org

[^1]: Tel: (852) 26661888
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^2]: $$
 \begin{gathered}
 10 \text { Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong } \\
 \text { Tel: (852) } 26661888 \quad \text { Fax: (852) } 26644353 \text { E-mail: hkstc@hkstc.org Homepage: www.stc-group.org }
 \end{gathered}
 $$

[^3]: Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^4]: Tel: (852) 26661888
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^5]: 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^6]: 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^7]: Tel: (852) 26661888
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 (852) 26644353 E-mail: hkstc@hkstc.

[^8]: Tel: (852) 26661888

[^9]: 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 Tel: (852) 26661888 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^10]: Tel: (852) 26661888
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 (852) 26644353 E-mail: hkstc@hkstc.o

[^11]: Tel: (852) 26661888
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 Fax: (852) 26644353 E-mail: hkstc@hkstc.org Homepage: www.stc-group.org

[^12]: Tel: (852) 26661888
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong
 10 Dai Wang Street, Taipo Industrial Estate, N.T., Hong Kong

