

Date : 2022-04-26 No. : HMD22040017				Page 1 of 52
Applicant	:	Hip Shing Electro	onics Limited.	
		Units 1.2&3,20/F Kong, Kowloon,	F., New Treasure Centre, 10., Ng F Hong Kong	Fong Street, San Po
Supplier / Manufacturer	:	Dongguan Zhi C	heng Electronic Products Co., Ltd	
		No.32 Shangbao Road, 188 Industrial Zone, Pingshan, Tangxia, Dongguan, Guangdong, China		
Description of Sample(s)	:	Submitted sample	le(s) said to be	
		Product:	Internet, DAB/DAB+ and FM D Bluetooth	igital Radio With
		Brand Name:	REVO	
		Model No.:	SUPERCONNECT STEREO	
		FCC ID:	BZAIDFB2215H6	
Date Samples Received	:	2022-04-08		
Date Tested	:	2022-04-08 to 20)22-04-24	
Investigation Requested	:	Perform Electro Magnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.10:2013 for FCC Certification.		
Conclusions	:	The submitted product <u>COMPLIED</u> with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.		
Remarks	:	WIFI (802.11a/n	20/n40)	

Date : 2022-04-26 No. : HMD22040017

CONTENT:

Page 2 of 52

Cover Page 1 of 52 Content Page 2 of 52 **1.0 General Details** 1.1 Test Laboratory Page 3 of 52 1.2 Page 3 of 52 Equipment Under Test [EUT] Description of EUT operation 1.3 Antenna Details Page 3 of 52 1.4 Date of Order Page 3 of 52 Page 3 of 52 1.5 Submitted Sample(s) Page 3 of 52 1.6 Test Duration 1.7 Country of Origin Page 3 of 52 <u>2.0</u> **Technical Details** 2.1 Investigations Requested Page 4-5 of 52 2.2 Page 6 of 52 Test Standards and Results Summary 3.0 **Test Results** 3.1 Emission Page 7-46 of 52 Appendix A List of Measurement Equipment Page 47 of 52 **Appendix B** Photograph(s) of Product Page 48-52 of 52

Date : 2022-04-26

No. : HMD22040017

Page 3 of 52

1.0 General Details

1.1 Test Laboratory

The Hong Kong Standards and Testing Centre Ltd.EMC Laboratory10 Dai Wang Street, Taipo Industrial Estate, New Territories, Hong KongTelephone:852 2666 1888Fax:852 2664 4353

1.2 Equipment Under Test [EUT]

Description of Sample(s) Product: Internet, DAB/DAB+ and FM Digital Radio With Bluetooth Dongguan Zhi Cheng Electronic Products Co., Ltd. Manufacturer: No.32 Shangbao Road, 188 Industrial Zone, Pingshan, Tangxia, Dongguan, Guangdong, China Brand Name: REVO Model Number: SUPERCONNECT STEREO Rating: 18.0Vd.c. by adapter The AC/DC adapter was provided by the applicant with following details: Brand name: REVO, Model no.: GPE036W-A180200-Z Input: 100-240Va.c. 50/60Hz 0.9A, Output: 18.0Vd.c. 2.0A 36.0W

1.2.1 Description of EUT Operation

The Equipment Under Test (EUT) is an Internet, DAB/DAB+ and FM Digital Radio With Bluetooth. The transmission signal is digital modulated with channel frequency range 5150-5250MHz.

1.3 Antenna Details

Antenna Type:PCB antennaAntenna Gain:3.5dBi

- **1.4 Date of Order** 2022-04-08
- **1.5 Submitted Sample(s):** 1 Sample
- **1.6 Test Duration** 2022-04-08 to 2022-04-24
- 1.7 Country of Origin China

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26

No. : HMD22040017

Page 4 of 52

2.0 <u>Technical Details</u>

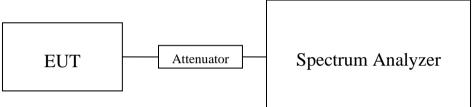
2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 Regulations and ANSI C63.10:2013 for FCC Certification. According FCC KDB 789033D02 Measurement Guidance, Duty cycle \geq 98%. The test mode sample is provided by manufacturer.

2.1.0 Operating conditions for the EUT

The sample went into test mode handled by the manufacturer using the software.

Date : 2022-04-26 : HMD22040017 No.


Page 5 of 52

2.1.1 **EUT Duty cycle**

The EUT shall be configured or modified to transmit continuously. The intent is to test at 100% duty cycle; however, a small reduction in duty cycle (to no lower than 98%) is permitted if required by the EUT for amplitude control purposes.

The test mode sample is provided by manufacturer.

Test setup

Results

results				
Mode	On Time	Period	Duty Cycle	Duty Cycle
	(msec)	(msec)	X (Linear)	(%)*
802.11a	1	1	1	100
802.11n20	1	1	1	100
802.11n40	1	1	1	100

-*: If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission. D

	uty	cycle:	802.	11a
--	-----	--------	------	-----

Spectrum		2 aug eg ez					
RefLevel 30.00 dBr Att 50 d		BW 3 MHz BW 3 MHz					
●1AP Clrw	5 - 3WI 1 m5 - VI	BW 3 MH2					
			м	1[1]		. 1	6.35 dBm .00000 ms
20 dBm		÷					
10 dBm		_					IM
						ht fill for the	P postelen H
-20 dBm			1	- I 4	- P	1 .	
-30 dBm		r					
-40 dBm		-					
-50 dBm							
-60 dBm							
CF 5.18 GHz		691	pts				100.0 µs/

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Page 6 of 52

Date : 2022-04-26 No. : HMD22040017

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary						
Test Condition	Test Requirement	Test Method	Class /	Т	Test Result	
			Severity	Pass	Failed	N/A
Maximum Peak Output Power	15.407(a)(1)	ANSI C63.10:2013	N/A	\boxtimes		
Radiated Emissions	15.205(a)	ANSI C63.10:2013	N/A	\boxtimes		
	15.209					
	15.407(b)					
Conducted Emissions	FCC 47CFR 15.207	ANSI C63.10:2013	N/A	\boxtimes		
Power Spectral Density	15.407(a)	ANSI C63.10:2013	N/A	\boxtimes		
26 dB Bandwidth and 99% Occupied Bandwidth	15.407(a)	ANSI C63.10:2013	N/A			
Antenna requirement	FCC 47CFR 15.203	N/A	N/A			

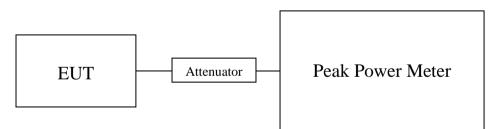
Note: N/A - Not Applicable

Date : 2022-04-26 No. : HMD22040017

Page 7 of 52

3.0 Test Results

3.1 Emission


3.1.1 Maximum Peak Output Power

Test Requirement:	FCC 47CFR 15.407(a)(1)		
Test Method:	ANSI C63.10: 2013/ KDB 789033D02		
Test Date:	2022-04-18		
Mode of Operation:	WIFI Tx mode		
Ambient Temperature: 25°C	Relative Humidity: 51%	Atmospheric Pressure: 101 kPa	

Test Method:

The RF output of the EUT was connected to the peak power meter. All the attenuation or cable loss will be added to the measured maximum output power. The results are recorded in Watt.

Test Setup:

Note: a temporary antenna connector was soldered to the RF output.

Date : 2022-04-26 No. : HMD22040017 Page 8 of 52

Limits for Peak Output Power of Fundamental & Harmonics Emissions [FCC 47CFR 15.247]:

For Digital Transmission systems in 5150-5250 MHz Band: 0.25 Watt (24dBm)

Results of WiFi mode 802.11 a, (5150MHz to 5250MHz) : Pass (TX Unit) Maximum conducted output power					
Channel	Frequency (MHz)	Output Power (Watt)			
Low	5180	0.01262			
Middle	5200	0.01014			
High	5240	0.01193			

Results of WiFi mode 802.11 n20, (5150MHz to 5250MHz) : Pass (TX Unit) Maximum conducted output power

Channel	Frequency (MHz)	Output Power (Watt)
Low	5180	0.01307
Middle	5200	0.01059
High	5240	0.01263

Results of WiFi mode 802.11 n40, (5190MHz to 5230MHz): Pass (TX Unit) Maximum conducted output power					
Channel	Frequency (MHz)	Output Power (Watt)			
Low	5190	0.01154			
High	5230	0.01145			

Calculated measurement uncertainty

: 30MHz to 1GHz 1GHz to 26GHz 1.7dB

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 9 of 52

3.1.2 Radiated Emissions

Test Requirement:	FCC 47CFR 15.209 & 15.407(b)
Test Method:	ANSI C63.10:2013/ KDB 789033D02
Test Date:	2022-04-19
Mode of Operation:	WIFI Tx mode

Ambient Temperature: 24°C

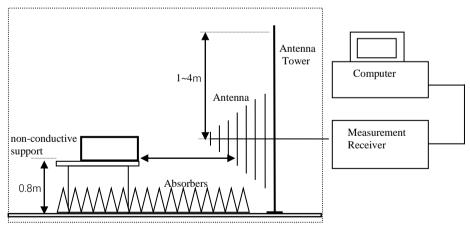
Relative Humidity: 52%

Atmospheric Pressure: 101 kPa

Test Method:

For emission measurements at or below 1 GHz, the sample was placed 0.8m above the ground plane of semianechoic Chamber*. For emission measurements above 1 GHz, the sample was placed 1.5m above the ground plane of semi-anechoic Chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

* Semi-Anechoic chamber located on the G/F of The Hong Kong Standards and Testing Centre Ltd. with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 607756.



Date : 2022-04-26 No. : HMD22040017

Page 10 of 52

Spectrum Analyzer Setting:		
9KHz – 30MHz (Pk & Av)	RBW:	10kHz
	VBW:	30kHz
	Sweep:	Auto
	Span:	Fully capture the emissions being measured
	Trace:	• •
30MHz – 1GHz (QP)	RBW:	120kHz
	VBW:	120kHz
	Sweep:	Auto
	Span:	Fully capture the emissions being measured
	Trace:	• •
Above 1GHz (Pk)	RBW:	1MHz
~ /	VBW:	1MHz
	Sweep:	Auto
	Span:	
	Trace:	
Above 1GHz (Av)	RBW:	1MHz
	VBW:	10Hz
	Sweep:	
	Sweep. Span:	
	Trace:	Max. hold
The second se	Trace.	1910A. 11010

Test Setup:

Ground Plane

Absorbers placed on top of the ground plane are for measurements above 1000MHz only.
Measurements between 30MHz to 1000MHz made with Bi-log antennas, above 1000MHz horn antennas are used.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017 Page 11 of 52

Limits for Radiated Emissions FCC 47 CFR 15.407]:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further.

(3) The provisions of §15.205 apply to intentional radiators operating under this section.

Frequency Range	Quasi-Peak Limits
[MHz]	[µV/m]
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of Tx mode (5180.0 MHz) (802.11a) (9kHz - 30MHz): Pass

Field Strength of Spurious Emissions								
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	MHz $dB\mu V$ dB/m $dB\mu V/m$ $\mu V/m$ $\mu V/m$							
	Emissions	detected are 1	nore than 20	dB below the	FCC Limits			

Result of Tx mode (5180.0 MHz) (802.11a) (1GHz-40GHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB				
10360.0	48.5	8.90	57.4	68.2	10.8	Vertical			
10360.0	47.3	8.70	56.0	68.2	12.2	Horizontal			
15540.0	45.2	11.80	57.0	68.2	11.2	Vertical			
15540.0	44.1	11.90	56.0	68.2	12.2	Horizontal			
20720.0	44.6	12.20	56.8	68.2	11.4	Vertical			
20720.0	43.6	12.40	56.0	68.2	12.2	Horizontal			
25900.0	43.2	13.10	56.3	68.2	11.9	Vertical			
25900.0	43.0	13.30	56.3	68.2	11.9	Horizontal			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 12 of 52

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
1 2	Level @3m	Factor	Strength	@3m	U	Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB	-				
10360.0	33.1	8.90	42.0	54.0	12.0	Vertical				
10360.0	32.2	8.70	40.9	54.0	13.1	Horizontal				
15540.0	30.9	11.80	42.7	54.0	11.3	Vertical				
15540.0	31.4	11.90	43.3	54.0	10.7	Horizontal				
20720.0	30.6	12.20	42.8	54.0	11.2	Vertical				
20720.0	30.1	12.40	42.5	54.0	11.5	Horizontal				
25900.0	30.8	13.10	43.9	54.0	10.1	Vertical				
25900.0	30.9	13.30	44.2	54.0	9.8	Horizontal				

Result of Tx mode (5200 MHz) (802.11a) (9kHz - 30MHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBµV	dB/m	dBµV/m	$\mu V/m$	μV/m			
	Emissions	detected are 1	nore than 20	dB below the	FCC Limits			

Result of Tx mode (5200 MHz) (802.11a) (1GHz-40GHz): Pass

		Field Streng		is Emissions						
	Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	$dB\mu V/m$	$dB\mu V/m$	dB					
10400.0	48.5	8.90	57.4	68.2	10.8	Vertical				
10400.0	47.6	8.70	56.3	68.2	11.9	Horizontal				
15600.0	45.1	11.80	56.9	68.2	11.3	Vertical				
15600.0	43.9	11.90	55.8	68.2	12.4	Horizontal				
20800.0	44.0	12.20	56.2	68.2	12.0	Vertical				
20800.0	43.5	12.40	55.9	68.2	12.3	Horizontal				
26000.0	42.3	13.10	55.4	68.2	12.8	Vertical				
26000.0	41.1	13.30	54.4	68.2	13.8	Horizontal				

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB					
10400.0	33.0	8.90	41.9	54.0	12.1	Vertical				
10400.0	30.6	8.70	39.3	54.0	14.7	Horizontal				
15600.0	30.9	11.80	42.7	54.0	11.3	Vertical				
15600.0	31.1	11.90	43.0	54.0	11.0	Horizontal				
20800.0	29.6	12.20	41.8	54.0	12.2	Vertical				
20800.0	29.5	12.40	41.9	54.0	12.1	Horizontal				
26000.0	28.5	13.10	41.6	54.0	12.4	Vertical				
26000.0	28.3	13.30	41.6	54.0	12.4	Horizontal				

Result of Tx mode (5240 MHz) (802.11a) (9kHz - 30MHz): Pass

Field Strength of Spurious Emissions								
	Peak Value							
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBµV	dB/m	dBµV/m	μV/m	μV/m			
	Emissions	detected are 1	nore than 20	dB below the	FCC Limits			

Result of Tx mode (5240 MHz) (802.11a) (1GHz-25GHz): Pass

	Field Strength of Spurious Emissions								
	Peak Value								
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBµV	dB/m	$dB\mu V/m$	dBµV/m	dB				
10480.0	49.5	8.90	58.4	68.2	9.8	Vertical			
10480.0	48.6	8.70	57.3	68.2	10.9	Horizontal			
17520.0	45.3	11.80	57.1	68.2	11.1	Vertical			
17520.0	44.7	11.90	56.6	68.2	11.6	Horizontal			
20960.0	43.6	12.20	55.8	68.2	12.4	Vertical			
20960.0	44.2	12.40	56.6	68.2	11.6	Horizontal			
26200.0	43.1	13.10	56.2	68.2	12.0	Vertical			
26200.0	43.0	13.30	56.3	68.2	11.9	Horizontal			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10480.0	31.5	8.90	40.4	54.0	13.6	Vertical				
10480.0	31.9	8.70	40.6	54.0	13.4	Horizontal				
17520.0	31.1	11.80	42.9	54.0	11.1	Vertical				
17520.0	30.9	11.90	42.8	54.0	11.2	Horizontal				
20960.0	29.3	12.20	41.5	54.0	12.5	Vertical				
20960.0	29.5	12.40	41.9	54.0	12.1	Horizontal				
26200.0	27.4	13.10	40.5	54.0	13.5	Vertical				
26200.0	27.6	13.30	40.9	54.0	13.1	Horizontal				

Result of Tx mode (5180 MHz) (802.11n20) (9kHz - 30MHz): Pass

Field Strength of Spurious Emissions								
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBµV	dB/m	dBµV/m	μV/m	μV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (5180 MHz) (802.11n20) (1GHz-40GHz): Pass

		Field Streng	th of Spuriou	is Emissions						
	Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10360.0	48.8	8.90	57.7	68.2	10.5	Vertical				
10360.0	48.0	8.70	56.7	68.2	11.5	Horizontal				
15540.0	43.2	11.80	55.0	68.2	13.2	Vertical				
15540.0	44.2	11.90	56.1	68.2	12.1	Horizontal				
20720.0	41.9	12.20	54.1	68.2	14.1	Vertical				
20720.0	43.6	12.40	56.0	68.2	12.2	Horizontal				
25900.0	42.1	13.10	55.2	68.2	13.0	Vertical				
25900.0	41.5	13.30	54.8	68.2	13.4	Horizontal				

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10360.0	33.2	8.90	42.1	54.0	11.9	Vertical				
10360.0	32.6	8.70	41.3	54.0	12.7	Horizontal				
15540.0	31.1	11.80	42.9	54.0	11.1	Vertical				
15540.0	30.2	11.90	42.1	54.0	11.9	Horizontal				
20720.0	29.1	12.20	41.3	54.0	12.7	Vertical				
20720.0	26.9	12.40	39.3	54.0	14.7	Horizontal				
25900.0	29.3	13.10	42.4	54.0	11.6	Vertical				
25900.0	29.0	13.30	42.3	54.0	11.7	Horizontal				

Result of Tx mode (5200 MHz) (802.11n20) (1GHz-40GHz): Pass

	Field Strength of Spurious Emissions							
Peak Value								
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBµV	dB/m	dBµV/m	μV/m	μV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (5200 MHz) (802.11n20) (1GHz-40GHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB				
10400.0	48.2	8.90	57.1	68.2	11.1	Vertical			
10400.0	47.3	8.70	56.0	68.2	12.2	Horizontal			
15600.0	43.6	11.80	55.4	68.2	12.8	Vertical			
15600.0	44.1	11.90	56.0	68.2	12.2	Horizontal			
20800.0	43.5	12.20	55.7	68.2	12.5	Vertical			
20800.0	43.5	12.40	55.9	68.2	12.3	Horizontal			
26000.0	42.6	13.10	55.7	68.2	12.5	Vertical			
26000.0	42.7	13.30	56.0	68.2	12.3	Horizontal			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 16 of 52

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m	-	Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10400.0	33.6	8.90	42.5	54.0	11.5	Vertical				
10400.0	31.3	8.70	40.0	54.0	14.1	Horizontal				
15600.0	31.1	11.80	42.9	54.0	11.1	Vertical				
15600.0	30.0	11.90	41.9	54.0	12.1	Horizontal				
20800.0	28.9	12.20	41.1	54.0	12.9	Vertical				
20800.0	28.5	12.40	40.9	54.0	13.1	Horizontal				
26000.0	27.9	13.10	41.0	54.0	13.0	Vertical				
26000.0	27.7	13.10	40.8	54.0	13.2	Horizontal				

Result of Tx mode (5240 MHz) (802.11n20) (1GHz-40GHz): Pass

Field Strength of Spurious Emissions								
	Peak Value							
Frequency	Measured	Correction	Field	Field	Limit	E-Field		
	Level	Factor	Strength	Strength		Polarity		
MHz	dBµV	dB/m	dBµV/m	μV/m	μV/m			
	Emissions detected are more than 20 dB below the FCC Limits							

Result of Tx mode (5240 MHz) (802.11n20) (1GHz-40GHz): Pass

		Field Streng	th of Spuriou	15 Emissions				
Peak Value								
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB			
10480.0	47.2	8.90	56.1	68.2	12.1	Vertical		
10480.0	47.3	8.70	56.0	68.2	12.2	Horizontal		
17520.0	44.1	11.80	55.9	68.2	12.3	Vertical		
17520.0	43.9	11.90	55.8	68.2	12.4	Horizontal		
20960.0	44.2	12.20	56.4	68.2	11.8	Vertical		
20960.0	43.9	12.40	56.3	68.2	11.9	Horizontal		
26200.0	44.5	13.10	57.6	68.2	10.6	Vertical		
26200.0	44.1	13.30	57.4	68.2	10.8	Horizontal		

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10480.0	32.6	8.90	41.5	54.0	12.5	Vertical				
10480.0	33.0	8.70	41.7	54.0	12.3	Horizontal				
17520.0	29.5	11.80	41.3	54.0	12.7	Vertical				
17520.0	30.3	11.90	42.2	54.0	11.8	Horizontal				
20960.0	30.1	12.40	42.5	54.0	11.5	Vertical				
20960.0	29.2	12.40	41.6	54.0	12.4	Horizontal				
26200.0	28.5	13.10	41.6	54.0	12.4	Vertical				
26200.0	28.0	13.30	41.3	54.0	12.7	Horizontal				

Result of Tx mode (5190.0 MHz) (802.11n40) (9kHz - 30MHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Field	Limit	E-Field			
	Level	Factor	Strength	Strength		Polarity			
MHz	dBµV	dB/m	dBµV/m	μV/m	μV/m				
	Emissions	detected are 1	nore than 20	dB below the	FCC Limits	-			

Result of Tx mode (5190 MHz) (802.11n40) (1GHz-40GHz): Pass

		Field Streng	th of Spuriou	is Emissions						
	Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10380.0	47.9	8.90	56.8	68.2	11.4	Vertical				
10380.0	47.1	8.70	55.8	68.2	12.4	Horizontal				
15570.0	45.2	11.80	57.0	68.2	11.2	Vertical				
15570.0	44.1	11.90	56.0	68.2	12.2	Horizontal				
20760.0	43.6	12.20	55.8	68.2	12.4	Vertical				
20760.0	44.2	12.40	56.6	68.2	11.6	Horizontal				
25950.0	43.8	13.10	56.9	68.2	11.3	Vertical				
25950.0	44.1	13.30	57.4	68.2	10.8	Horizontal				

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10380.0	33.1	8.90	42.0	54.0	12.0	Vertical				
10380.0	32.6	8.70	41.3	54.0	12.7	Horizontal				
15570.0	30.5	11.80	42.3	54.0	11.7	Vertical				
15570.0	30.9	11.90	42.8	54.0	11.2	Horizontal				
20760.0	31.1	12.20	43.3	54.0	10.7	Vertical				
20760.0	30.7	12.40	43.1	54.0	10.9	Horizontal				
25950.0	30.1	13.10	43.2	54.0	10.8	Vertical				
25950.0	29.2	13.30	42.5	54.0	11.5	Horizontal				

Result of Tx mode (5230 MHz) (802.11n40) (9kHz - 30MHz): Pass

Field Strength of Spurious Emissions							
Peak Value							
Frequency	Measured	Correction	Field	Field	Limit	E-Field	
	Level	Factor	Strength	Strength		Polarity	
MHz	dBµV	dB/m	dBµV/m	μV/m	μV/m		
	Emissions detected are more than 20 dB below the FCC Limits						

Result of Tx mode (5230 MHz) (802.11n40) (1GHz-40GHz): Pass

	Field Strength of Spurious Emissions								
Peak Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field			
	Level @3m	Factor	Strength	@3m		Polarity			
MHz	dBµV	dB/m	$dB\mu V/m$	dBµV/m	dB				
10460.0	48.2	8.90	57.1	68.2	11.1	Vertical			
10460.0	47.3	8.70	56.0	68.2	12.2	Horizontal			
15690.0	45.1	11.80	56.9	68.2	11.3	Vertical			
15690.0	44.2	11.90	56.1	68.2	12.1	Horizontal			
20920.0	43.6	12.20	55.8	68.2	12.4	Vertical			
20920.0	44.6	12.40	57.0	68.2	11.2	Horizontal			
26150.0	44.1	13.10	57.2	68.2	11.0	Vertical			
26150.0	43.6	13.30	56.9	68.2	11.4	Horizontal			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

	Field Strength of Spurious Emissions Average Value									
Frequency	Measured	Correction	Field	Limit	Margin	E-Field				
	Level @3m	Factor	Strength	@3m		Polarity				
MHz	dBµV	dB/m	dBµV/m	dBµV/m	dB					
10460.0	33.1	8.90	42.0	54.0	12.0	Vertical				
10460.0	32.5	8.70	41.2	54.0	12.8	Horizontal				
15690.0	30.2	11.80	42.0	54.0	12.0	Vertical				
15690.0	31.1	11.90	43.0	54.0	11.0	Horizontal				
20920.0	30.6	12.20	42.8	54.0	11.2	Vertical				
20920.0	30.5	12.40	42.9	54.0	11.1	Horizontal				
26150.0	29.2	13.10	42.3	54.0	11.7	Vertical				
26150.0	29.3	13.30	42.6	54.0	11.4	Horizontal				

Remarks:

No additional spurious emissions found between lowest internal used/generated frequency and 30 MHz * Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement	(9kHz-30MHz): 2.0dB
uncertainty	(30MHz -1GHz): 4.9dB

(1GHz -26GHz): 4.02dB

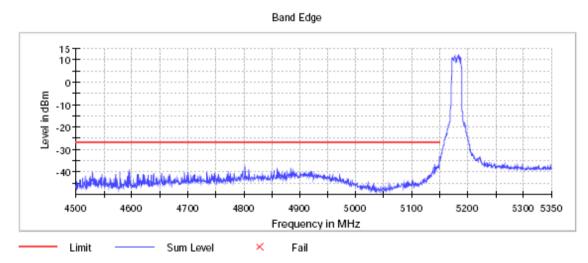
Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.


Date : 2022-04-26 No. : HMD22040017 Page 20 of 52

Undesirable emission:

Result: (Lowest)-802.11a 5180MHz,Undesirable emission of Band-edge Compliance

Measurements

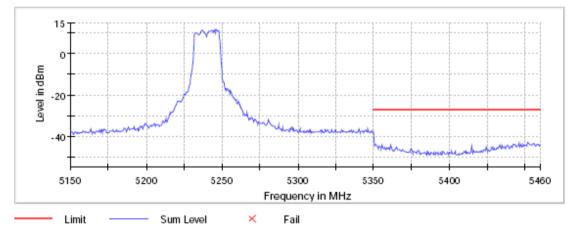
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5140.250000	-36.5	9.5	-27.0	PASS
5147.250000	-37.0	10.0	-27.0	PASS
5148.250000	-37.4	10.4	-27.0	PASS
5149.750000	-37.4	10.4	-27.0	PASS
4802.750000	-37.5	10.4	-27.0	PASS
5149.250000	-37.5	10.5	-27.0	PASS
5146.750000	-37.6	10.6	-27.0	PASS
5144.750000	-37.8	10.8	-27.0	PASS
5143.250000	-37.9	10.9	-27.0	PASS
5145.750000	-37.9	10.9	-27.0	PASS
5145.250000	-37.9	10.9	-27.0	PASS
5142.750000	-38.0	11.0	-27.0	PASS
5148.750000	-38.2	11.2	-27.0	PASS
5139.250000	-38.2	11.2	-27.0	PASS
5147.750000	-38.3	11.3	-27.0	PASS

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.


Date : 2022-04-26 No. : HMD22040017

Result: (High)-802.11a 5240MHz,Undesirable emission of Band-edge Compliance

Measurements

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5451.750000	-43.3	16.3	-27.0	PASS
5445.750000	-43.6	16.6	-27.0	PASS
5455.250000	-43.7	16.7	-27.0	PASS
5455.750000	-43.8	16.8	-27.0	PASS
5452.250000	-43.8	16.8	-27.0	PASS
5456.250000	-44.0	17.0	-27.0	PASS
5446.250000	-44.0	17.0	-27.0	PASS
5447.250000	-44.2	17.2	-27.0	PASS
5350.250000	-44.2	17.2	-27.0	PASS
5453.250000	-44.2	17.2	-27.0	PASS
5454.750000	-44.2	17.2	-27.0	PASS
5460.000000	-44.2	17.2	-27.0	PASS
5459.750000	-44.2	17.2	-27.0	PASS
5458.750000	-44.3	17.3	-27.0	PASS
5442.250000	-44.3	17.3	-27.0	PASS

Band Edge

The Hong Kong Standards and Testing Centre Limited

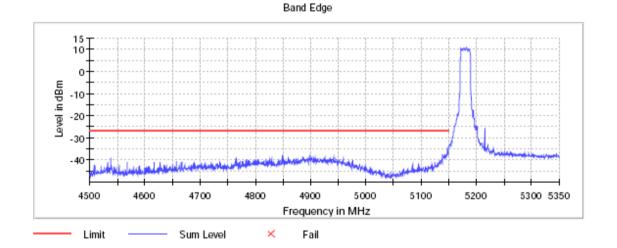
10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 21 of 52



Date : 2022-04-26 No. : HMD22040017 Page 22 of 52

Result: (Lowest)-802.11n20 5180MHz,Undesirable emission of Band-edge Compliance

Measurements

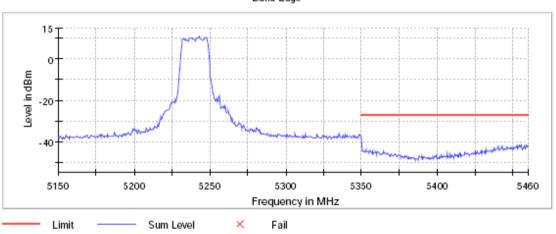
Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5148.250000	-36.3	9.1	-27.0	PASS
5148.750000	-37.3	10.3	-27.0	PASS
5147.750000	-37.5	10.4	-27.0	PASS
5149.750000	-37.5	10.4	-27.0	PASS
5146.750000	-37.5	10.5	-27.0	PASS
5145.750000	-37.5	10.5	-27.0	PASS
5147.250000	-37.6	10.6	-27.0	PASS
4848.250000	-37.9	10.9	-27.0	PASS
5149.250000	-37.9	10.9	-27.0	PASS
5142.750000	-38.0	11.0	-27.0	PASS
5145.250000	-38.0	11.0	-27.0	PASS
5139.250000	-38.1	11.1	-27.0	PASS
5143.250000	-38.2	11.2	-27.0	PASS
5144.750000	-38.3	11.3	-27.0	PASS
5146.250000	-38.6	11.6	-27.0	PASS

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2022-04-26 No. : HMD22040017 Page 23 of 52

Result: (High)-802.11n20 5240MHz, Undesirable emission of Band-edge Compliance

Measurements							
Frequency	Level	Margin	Limit	Result			
(MHz)	(dBm)	(dB)	(dBm)				
5458.750000	-42.0	15.0	-27.0	PASS			
5460.000000	-42.0	15.0	-27.0	PASS			
5459.750000	-42.0	15.0	-27.0	PASS			
5454.250000	-42.1	15.1	-27.0	PASS			
5455.250000	-42.1	15.1	-27.0	PASS			
5455.750000	-42.5	15.5	-27.0	PASS			
5440.250000	-42.5	15.5	-27.0	PASS			
5453.250000	-42.5	15.5	-27.0	PASS			
5452.250000	-42.5	15.5	-27.0	PASS			
5457.250000	-42.6	15.6	-27.0	PASS			
5442.750000	-42.6	15.6	-27.0	PASS			
5454.750000	-42.7	15.7	-27.0	PASS			
5457.750000	-42.9	15.9	-27.0	PASS			
5445.750000	-42.9	15.9	-27.0	PASS			
5459.250000	-43.0	16.0	-27.0	PASS			

Measurements

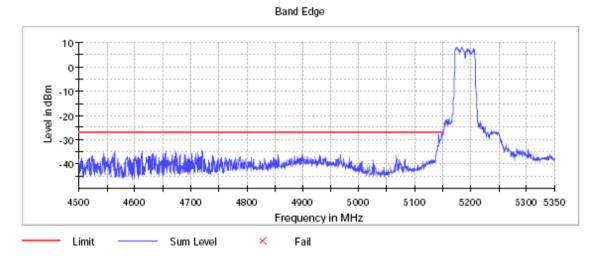
Band Edge

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2022-04-26 No. : HMD22040017 Page 24 of 52

Result: (Lowest)-802.11n40 5190MHz,Undesirable emission of Band-edge Compliance

Measurements

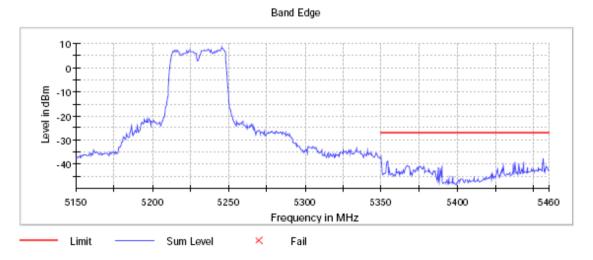
Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
5149.250000	-27.4	0.4	-27.0	PASS
5142.750000	-27.8	0.8	-27.0	PASS
5149.750000	-27.9	0.9	-27.0	PASS
5147.750000	-28.1	1.1	-27.0	PASS
5148.750000	-28.6	1.6	-27.0	PASS
5148.250000	-29.0	2.0	-27.0	PASS
5147.250000	-29.9	2.9	-27.0	PASS
5146.250000	-31.1	3.1	-27.0	PASS
5145.250000	-31.1	3.1	-27.0	PASS
5146.750000	-30.4	3.4	-27.0	PASS
5145.750000	-30.4	3.4	-27.0	PASS
5144.750000	-30.7	3.7	-27.0	PASS
5143.750000	-30.9	3.9	-27.0	PASS
5143.250000	-31.1	4.1	-27.0	PASS
5144.250000	-31.7	4.7	-27.0	PASS

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



Date : 2022-04-26 No. : HMD22040017 Page 25 of 52

Result: (High)-802.11n40 5230MHz, Undesirable emission of Band-edge Compliance

Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
5456.250000	-37.9	10.9	-27.0	PASS
5354.250000	-38.9	11.9	-27.0	PASS
5353.750000	-39.1	12.1	-27.0	PASS
5443.250000	-39.2	12.2	-27.0	PASS
5437.750000	-39.4	12.4	-27.0	PASS
5436.750000	-39.9	12.9	-27.0	PASS
5440.250000	-40.0	13.0	-27.0	PASS
5430.250000	-40.5	13.5	-27.0	PASS
5366.750000	-40.7	13.7	-27.0	PASS
5367.250000	-40.6	13.7	-27.0	PASS
5389.750000	-40.8	13.8	-27.0	PASS
5375.750000	-41.0	14.0	-27.0	PASS
5377.750000	-41.0	14.0	-27.0	PASS
5366.250000	-41.1	14.1	-27.0	PASS
5367.750000	-41.2	14.2	-27.0	PASS

The Hong Kong Standards and Testing Centre Limited

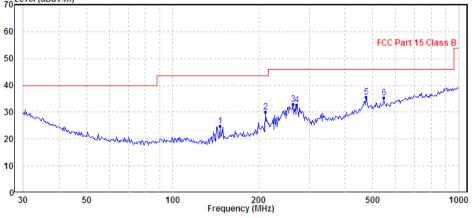
10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017 Page 26 of 52

Limits for Radiated Emissions FCC 47 CFR 15.247]:


Frequency Range	Quasi-Peak Limits
[MHz]	$[\mu V/m]$
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Results of WIFI TX mode: Pass

Please refer to the following table for result details (The data is the worst cases) Horizontal

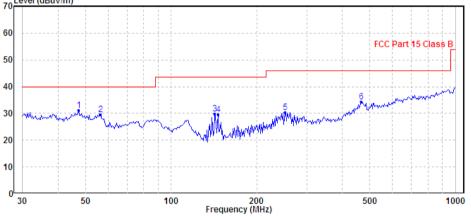
70 Level (dBuV/m)

Ambient Temperature: 25C Relative Humidity : 50%

	Freq	Level	Limit Line	Over Limit	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB		
1	146.374	24.82	43.50	-18.68	QP	Horizontal
2	210.786	29.99	43.50	-13.51	QP	Horizontal
3	263.819	33.09	46.00	-12.91	QP	Horizontal
4	271.325	32.76	46.00	-13.24	QP	Horizontal
5	475.499	35.60	46.00	-10.40	QP	Horizontal
6	547.098	35.29	46.00	-10.71	QP	Horizontal

Date : 2022-04-26 No. : HMD22040017 Page 27 of 52

Limits for Radiated Emissions FCC 47 CFR 15.247 Class B]:


Frequency Range	Quasi-Peak Limits
[MHz]	[µV/m]
0.009-0.490	2400/F (kHz)
0.490-1.705	24000/F (kHz)
1.705-30	30
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Results of WIFI TX mode: Pass

Please refer to the following table for result details (The data is the worst cases) Vertical

Ambient Temperature: 25C Relative Humidity : 50%

	Freq	Level		Over Limit	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB		
1	47.326	31.22	40.00	-8.78	QP	Vertical
2	56.395	29.51	40.00	-10.49	QP	Vertical
3	142.324	29.85	43.50	-13.65	QP	Vertical
4	146.374	29.58	43.50	-13.92	QP	Vertical
5	251.180	30.46	46.00	-15.54	QP	Vertical
6	465.599	34.23	46.00	-11.77	QP	Vertical

Remarks: Calculated measurement uncertainty (30MHz - 1GHz): 4.9dB Emissions in the vertical and horizontal polarizations have been investigated and the worst-case test results are recorded in this report.

> The Hong Kong Standards and Testing Centre Limited 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 28 of 52

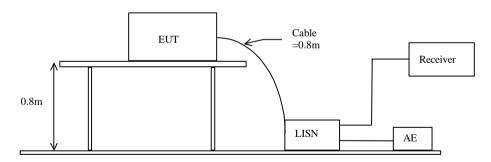
3.1.3 AC Mains Conducted Emissions (0.15MHz to 30MHz)

Test Requirement:	FCC 47CFR 15.207
Test Method:	ANSI C63.10:2013
Test Date:	2022-04-11
Mode of Operation:	WIFI TX mode
Test Voltage:	120Va.c. 60Hz

Ambient Temperature: 25°C

Relative Humidity: 51%

Atmospheric Pressure: 101 kPa


Test Method:

The test was performed in accordance with ANSI ANSI C63.10:2013, with the following: an initial measurement was performed in peak and average detection mode on the live line, any emissions recorded within 30dB of the relevant limit line were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

Receiver Setting:

Bandw. = 9 kHz, Meas. Time= 10.0 ms, Step Width = 5.0kHz Detector = MaxPeak and CISPR AV

Test Setup:

Limits for Conducted Emissions (FCC 47 CFR 15.207):

Frequency Range	Quasi-Peak Limits	Average
[MHz]	[dBµV]	[dBµV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

* Decreases with the logarithm of the frequency. Remarks:

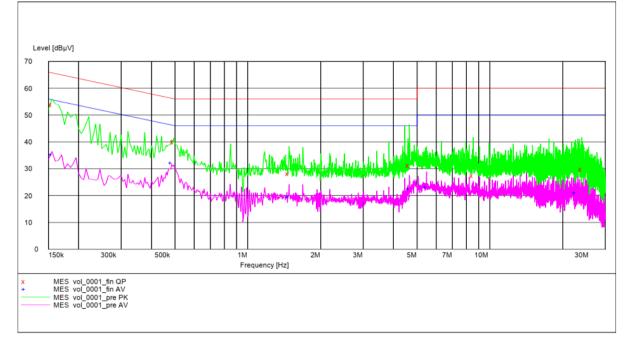
Calculated measurement uncertainty (0.15MHz - 30MHz): 3.25dB

-*- Emission(s) that is far below the corresponding limit line.

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Results of WIFI TX mode (L): PASS

Please refer to the following diagram for individual results.

		-	×	101_000		
PE	Line	Margin	Limit	Transd	Level	Frequency
		dB	dBµV	dB	dBµV	MHz
GND	L1	11.8	65.7	9.7	53.9	0.155000
GND	L1	16.0	56.1	9.7	40.1	0.495000
GND	L1	27.9	56.0	9.8	28.1	1.480000
GND	L1	24.8	56.0	9.8	31.2	4.650000
GND	L1	32.4	60.0	10.0	27.6	8.545000
GND	L1	30.1	60.0	10.6	29.9	24.050000
		V"	1 fin A	"vol 000	ESULT:	MEASUREMENT R
PE	Line	Margin	Limit	Transd	Level	Frequency
		dB	dBµV	dB	dBµV	MHz
GND	L1	20.5	55.7	9.7	35.2	0.155000
GND	L1	14.2	46.3	9.7	32.1	0.485000
GND	L1	26.4	46.0	9.8	19.6	1.480000
GND	L1	23.6	46.0	9.8	22.4	4.650000
GND	L1	26.9	50.0	9.9	23.1	5.475000
GND	L1	28.8	50.0	10.5	21.2	22.660000

MEASUREMENT RESULT: "vol 0001 fin OP"

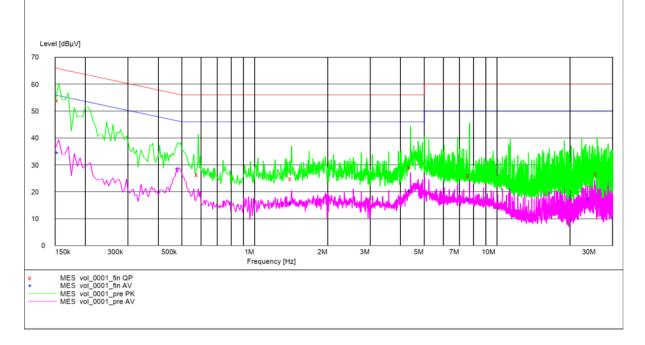
The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.


Page 29 of 52

Date : 2022-04-26 No. : HMD22040017

Results of WIFI TX mode (N): PASS

Please refer to the following diagram for individual results.

MEASUREMENT H	RESULT:	"vol_000	1_fin Q	P"		
Frequency	Level	Transd	Limit	Margin	Line	PE
MHz	dBµV	dB	dBµV	dB		
0.155000	54.1	9.7	65.7	11.6	N	GND
0.585000	26.3	9.7	56.0	29.7	N	GND
1.420000	25.0	9.8	56.0	31.0	N	GND
4.400000	29.2	9.8	56.0	26.8	N	GND
7.705000	26.0	9.9	60.0	34.0	N	GND
25.955000	26.5	10.7	60.0	33.5	N	GND
MEASUREMENT H	RESULT:	"vol_000	1_fin A	<i>V</i> ″		
MEASUREMENT B Frequency	RESULT: Level	" vol_000 Transd	1_fin A Limit	V″ Margin	Line	PE
		_	_		Line	PE
Frequency	Level	Transd	Limit	Margin	Line N	PE GND
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB		
Frequency MHz 0.155000	Level dBµV 34.7	Transd dB 9.7	Limit dBµV 55.7	Margin dB 21.0	N	GND
Frequency MHz 0.155000 0.485000	Level dBµV 34.7 28.8	Transd dB 9.7 9.7	Limit dBµV 55.7 46.3	Margin dB 21.0 17.5	N N	GND GND
Frequency MHz 0.155000 0.485000 1.420000	Level dBµV 34.7 28.8 15.7	Transd dB 9.7 9.7 9.8	Limit dBµV 55.7 46.3 46.0	Margin dB 21.0 17.5 30.3	N N N	GND GND GND

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 30 of 52

Date : 2022-04-26 No. : HMD22040017

Page 31 of 52

3.1.4 Power Spectral Density

Test Requirement:	FCC 47CFR 15.407(a)
Test Method:	ANSI C63.10:2013/ KDB 789033D02
Test Date:	2022-04-21
Mode of Operation:	WIFI TX mode

Ambient Temperature: 25°C Relative Humidity: 51% Atmospheric Pressure: 101 kPa

Test Method:

The RF output of the EUT was connected to the spectrum analyzer. Set the fundamental frequency as the center frequency of the spectral analyzer. Use RBW=1000kHz, VBW= 3000KHz, Set the span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal. . Detector = rms, Sweep time = auto couple . Measure the Power Spectral Density (PSD) and record the results in dBm.

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Test Limit:

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Date : 2022-04-26 No. : HMD22040017 Page 32 of 52

Results of WIFI TX Mode 802.11 a (Tx:5150MHz to 5250MHz): Pass (TX Unit) Maximum power spectral density

Transmitter Frequency (MHz)	Maximum Power spectral density level / 1MHz band	Maximum Power spectral density / 1MHz band limit
	(dBm)	
5150.0	0.994	11dBm
5220.0	0.309	11dBm
5240.0	1.296	11dBm

Results of WIFI TX Mode 802.11 n20 (Tx:5150MHz to 5250MHz): Pass (TX Unit) Maximum power spectral density

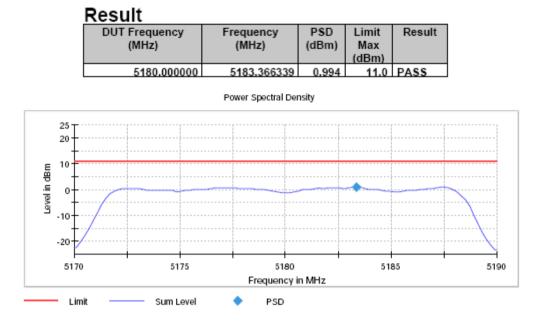
Transmitter Frequency (MHz)	Maximum Power spectral density level / 1MHz band	Maximum Power spectral density / 1MHz band limit
	(dBm)	
5150.0	0.282	11dBm
5220.0	-0.430	11dBm
5240.0	0.187	11dBm

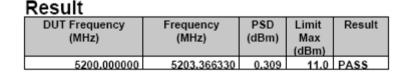
Results of WIFI TX Mode 802.11 n40 (Tx:5190MHz to 5230MHz): Pass (TX Unit) Maximum power spectral density

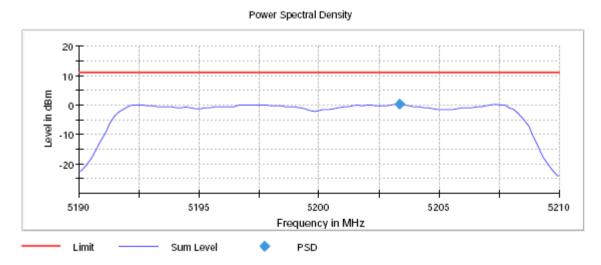
Transmitter Frequency (MHz)	Maximum Power spectral density level / 1MHz band (dBm)	Maximum Power spectral density / 1MHz band limit
5190.0	-2.652	11dBm
5230.0	-2.647	11dBm

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.


Date : 2022-04-26 No. : HMD22040017


Page 33 of 52

WiFi mode 802.11 a CH 36 (5180.0 MHz)

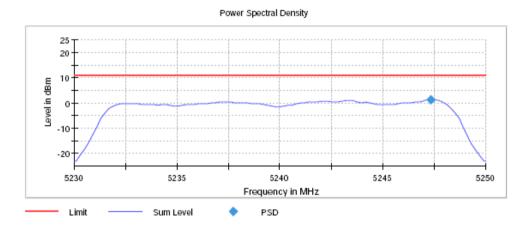
CH 40 (5200.0 MHz)

The Hong Kong Standards and Testing Centre Limited

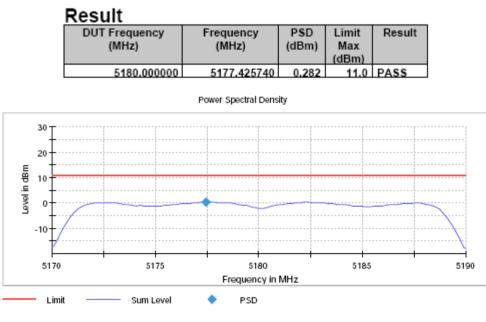
10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



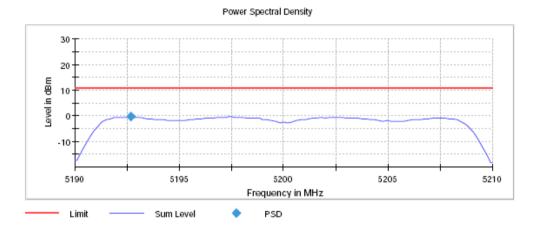
Date : 2022-04-26 No. : HMD22040017


Page 34 of 52

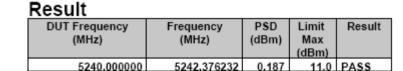
CH 48 (5240.0 MHz)

Result				
DUT Frequency	Frequency	PSD	Limit	Result
(MHz)	(MHz)	(dBm)	Max	
			(dBm)	
5240.000000	5247.326737	1.296	11.0	PASS

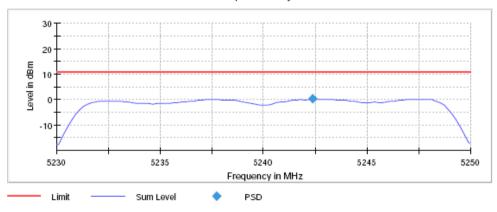
WiFi mode 802.11 n20 CH 36 (5180.0 MHz)



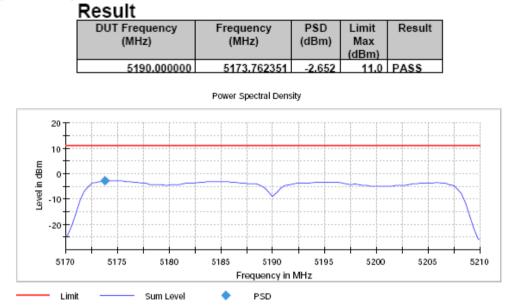
Date : 2022-04-26 No. : HMD22040017


Page 35 of 52

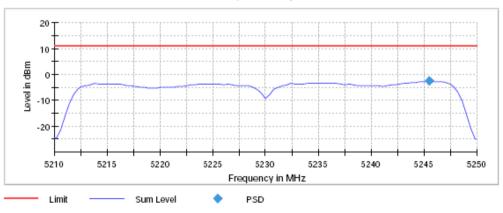
CH 40 (5200.0 MHz)


Res	sult				
DU	JT Frequency	Frequency	PSD	Limit	Result
	(MHz)	(MHz)	(dBm)	Max	
				(dBm)	
	5200.000000	5192.673251	-0.430	11.0	PASS

CH 48 (5240.0 MHz)


Power Spectral Density

Date : 2022-04-26 No. : HMD22040017 Page 36 of 52


WiFi mode 802.11 n40 CH 38 (5190.0 MHz)

CH 46 (5230.0 MHz)

Power Spectral Density

Date : 2022-04-26 No. : HMD22040017

Page 37 of 52

3.1.5 26 dB Bandwidth and 99%Occupied Bandwidth Measurement

Test Requirement:	FCC 47CFR 15.407(a) / KDB 789033D02
Test Method:	ANSI C63.10:2013
Test Date:	2022-04-22
Mode of Operation:	WIFI TX mode

Ambient Temperature: 25°C Relative Humidity: 51% Atmospheric Pressure: 101 kPa

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Spectrum Analyzer Setting:

RBW = 1% to 5% of the OBW VBW $\ge 3*RBW$, Sweep = Auto couple Detector = Peak, Trace = Max. hold

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Date : 2022-04-26 No. : HMD22040017

Page 38 of 52

26 dB Bandwidth and 99%Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5180.0	19.19	16.516

enter Fred	q 5.18000000) GHz Cente	1 a (5180MHz) r Freq: 5.180000000 GHz Free Run Avg Hol	d-> 10/10	Radio Std	None
			n: 28 dB	u> 10/10	Radio Dev	ice: BTS
0 dB/div	Ref 17.00 dBr	n				
og 						
.00				~~		
3.0			V	-₩		
3.0	<u> </u>					
3.0 3.0 4170-0-14-0- 47	and have the second and the second			New Market	under Marchard	where have been
3.0						
3.0	<u> </u>			_		
3.0						
enter 5.18 Res BW 20		#	VBW 1 MHz			n 40 MH: 1.267 m:
Occupie	ed Bandwidt	:h	Total Power	15.	9 dBm	
	10	6.516 MHz				
Transmit	Freq Error	-11.522 kHz	OBW Power	9	9.00 %	
x dB Bar	dwidth	19.19 MHz	x dB	26	.00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 39 of 52

26 dB Bandwidth and 99%Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5200.0	19.19	16.516

enter Free	q 5.20000000	GHz Center Trig: F	1 a (5200MHz) Freq: 5.200000000 GHz ree Run Avg Hol	d:>10/10	Radio Sto	
0 dB/div	Ref 17.00 dBn	an ouncow	28 08		Radio De	vice: B15
.og 7.00						
3.00			we prove and an and the second	<u> </u>	_	
13.0			V	-\\	_	
3.0		/				
3.0 3.0 ₩₩₩₩₩₩₩	mer that the second state of the second state				^ч имиртри	hand when the state of the stat
3.0						-
3.0						
3.0						
enter 5.2 (Res BW 2)		#	VBW 1 MHz	11		n 40 MHz 1.267 ms
Occupie	ed Bandwidt	h	Total Power	15.	.8 dBm	
	16	6.516 MHz				
Transmit	Freq Error	-15.622 kHz	OBW Power		9.00 %	
x dB Bar	dwidth	19.19 MHz	x dB	-26	6.00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 40 of 52

26 dB Bandwidth and 99% Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5240.0	19.19	16.516

Center Fre	q 5.24000(>10/10	Radio Std Radio Dev	
10 dB/div	Ref 17.00	dBm							
_ og									
3.00			m.			-			
13.0		/			Ý		1		
23.0									
33.0		M. M.					^V Wmu		
43.0 43.0 43.0 44	yadabashaharatiyatiyaha							and the second	mark yalkang
53.0	_								
63.0									
73.0									
Center 5.24 #Res BW 2				#VI	BW 1 MH	2			n 40 MHz 1.267 ms
Occupi	ed Bandv	vidth			Total Po	ower	16.3	3 dBm	
		16.5	516 MH	Ιz					
Transmi	it Freq Erro	or	-2.2221	Hz	OBW P	ower	99	9.00 %	
v dB Ba	ndwidth		19.19 №	IU→	x dB		26	00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 41 of 52

26 dB Bandwidth and 99%Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5180.0	20.20	17.617

RBW 220.0	0 kHz	#IF	Gain:Low	Center F	20 (5180 req: 5.18000 e Run 8 dB		>10/10	Radio Ste Radio De	d: None vice: BTS
0 d <u>B/div</u>	Ref 17.00	dBm							
- og 7.00									
3.00			and the second		and the second sec	The second s			
13.0		/		-1	Ψ				
23.0							<u>\</u>		
33.0		w ^w					- have		
43.0								Therefold and the	mand
53.0									
53.0									
73.0									
Center 5.18 Res BW 22				#VI	BW 1 MH	z			an 40 MH: eep 1 me
Occupie	ed Bandw	vidth			Total P	ower	15.	6 dBm	
		17.6	617 MH	Ηz					
Transmit	Freq Erro	r	1.722 k	Hz	OBW Power		9	9.00 %	
x dB Ban	dwidth		20.20 N	IH7	x dB		-26	.00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 42 of 52

26 dB Bandwidth and 99%Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5200.0	20.22	17.617

Center Fr	eq 5.20000000	GHz Cente Trig: F	n20 (5200MHz) r Freq: 5.20000000 GHz ree Run Avg Ho n: 28 dB		Radio Std Radio Dev	
I0 dB/div	Ref 17.00 dBm	ı				
-og 7.00						
3.00				~~~~		
13.0						
23.0		/				
33.0	ha burn			- Why	ul1	
3.0	warman have have the				Monoglahana	here and a marked
3.0						
3.0						
3.0						
enter 5.3 Res BW		#	VBW 1 MHz			n 40 MH ep 1 m
Occup	ied Bandwidt	h	Total Power	15.	6 dBm	
	17	.617 MHz				
Transm	nit Freq Error	4.522 kHz	OBW Power		9.00 %	
v dB B	andwidth	20.22 MHz	x dB	-26	.00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 43 of 52

26 dB Bandwidth and 99%Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5240.0	20.22	17.617

Center Fre	q 5.24000		8i Hz FGain:Low →				d:> 10/10	Radio Ste Radio De	d: None vice: BTS
10 dB/div	Ref 17.0	0 dBm							
_ og 7.00									
3.00			and an and	0000000-00-00-00-00-00-00-00-00-00-00-0	and the second		~~~~		
13.0					Υ.		1		
23.0							<u> </u>		
33.0		A A A A A A A A A A A A A A A A A A A					- Vhu		
13.0	and the second second	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Japanese harris	he was welled
3.0									
3.0									
/3.0									
enter 5.24									an 40 MHz
Res BW 2	20 kHz			#VE	BW 1 MH	Z		Sw	eep 1 ms
Occupie	ed Band	width			Total Po	ower	16.	1 dBm	
		17.0	617 MH	Ηz					
Transmit	t Freq Err	or	5.022 k	Hz	OBW Power		99.00 %		
x dB Bar	ndwidth		20.22 №	1Hz	x dB		-26	.00 dB	

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 44 of 52

26 dB Bandwidth and 99%Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth
[MHz]	[MHz]	[MHz]
5190.0	42.22	36.436

BW 1.000	00 MHz		#IFGain:Low	Center F			> 10/10	Radio Sto Radio De	
0 dB/div	Ref 17.0	0 dBm							
og 7.00									
3.00			-	M. B. Markow	power	mann	ana na		
3.0			-	<u> </u>	ļ/				
3.0				· ۱	-+r				
3.0 mm	ale Barthorner thomas a	AP.					- 4	langural-herrory	www.
3.0									
3.0									
3.0									
3.0									
enter 5.1 Res BW 4				#VI	BW 1 MH	z			un 75 MH eep 1 m
Occupi	ed Band	width	1		Total Po	ower	17.	3 dBm	
		36	.436 MI	Ηz					
Transmi	it Freq Err	or	35.225	kHz	OBW Power		9	9.00 %	
x dB Bandwidth 42.22		/Hz	z xdB		-26.00 dB				

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 45 of 52

26 dB Bandwidth and 99% Occupied Bandwidth Measurement:

Center Frequency	26dB Bandwidth	99% Bandwidth		
[MHz]	[MHz]	[MHz]		
5230.0	43.22	36.436		

enter Fre	q 5.23000(- 10/10	Radio Sto Radio De	1: None vice: BTS
0 dB/div	Ref 17.00	dBm							
.og 7.00									
3.00			man man rand	- MARINA MAR	mun	man	man		
3.0			Ň		/	ÿ	_\		
3.0				``	r				
3.0 ~~~~~	Vorestand March	ир».					· · ·	Weleynau, Mara	4 longapage
3.0									
3.0									
3.0									
3.0									
enter 5.2 Res BW 4				#VE	SW 1 MH	z			an 75 MH eep 1 m
Occupi	ed Bandv	vidth			Total Po	ower	17.	8 dBm	
		36.4	136 MH	Ηz					
Transmit Freq Error 39.222		39.222 k	Hz	OBW Power		9	9.00 %		
x dB Bandwidth 43.		43.22 №	1Hz	x dB		-26.00 dB			

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017

Page 46 of 52

3.1.6 Antenna Requirement

Ambient Temperature: 25°C

Relative Humidity: 51%

Atmospheric Pressure: 101 kPa

Test Requirements: § 15.203

Test Specification:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Results:

This is monopole antenna. There is no external antenna, the antenna gain = 3.5dBi. User is unable to remove or changed the Antenna.

Date : 2022-04-26 No. : HMD22040017

Page 47 of 52

Appendix A

List of Measurement Equipment

	Radiated Emission									
EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL				
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A				
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A				
EM218	ANECHOIC CHAMBER	ETS-LINDGREN	FACT-3		2019/04/16	2024/04/16				
EM356	ANTENNA POSITIONING TOWER	ETS-LINDGREN	2171B	00150346	N/A	N/A				
EM336	PRECISION CONICAL DIPOLE	SEIBERSDORF LABORATORIES	PCD 3100	6236/M	2020/05/30	2022/05/30				
EM229	EMI TEST RECEIVER	R&S	ESIB40	100248	2020/05/13	2022/05/13				
EM299	BROADBAND HORN ANTENNA	ETS-LINDGREN	3115	00114120	2020/11/24	2022/11/24				
EM300	PYRAMIDAL STANDARD GAIN HORN ANTENNA	ETS-LINDGREN	3160-09	00130130	2020/11/25	2022/11/25				
EM301	PYRAMIDAL STANDARD GAIN HORN ANTENNA	ETS-LINDGREN	3160-10	00130988	2020/11/25	2022/11/25				
EM353	LOOP ANTENNA	ETS_LINDGREN	6502	00206533	2020/06/10	2022/06/10				
EM355	Biconilog Antenna	ETS-Lindgren	3143B	00094856	2020/06/17	2022/06/17				
EM200	DUAL CHANNEL POWER METER	R & S	NRVD	100592	2019/10/11	2022/10/11				
EM012	PRE-AMPLIFIER	HP	HP8448B	3008A00262	2019/11/08	2022/11/08				

Line Conducted

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL				
EM119	LISN	R & S	ESH3-Z5	0831.5518.52	2020/06/30	2022/06/30				
EM145	EMI TEST RECEIVER	R & S	ESIB7	100072	2020/05/13	2022/05/13				
EM233	PULSE LIMITER	ROHDE & SCHWARZ	ESH3-Z2	100314	2021/01/18	2023/01/18				
EM154	SHIELDING ROOM	SIEMENS MATSUSHITA COMPONENTS	N/A	803-740-057- 99A	2022/02/02	2027/02/02				
N/A	MEASUREMENT AND EVALUATION SOFTWARE	ROHDE & SCHWARZ	BSIB-K1	V1.20	N/A	N/A				

Remarks:-

CM Corrective Maintenance

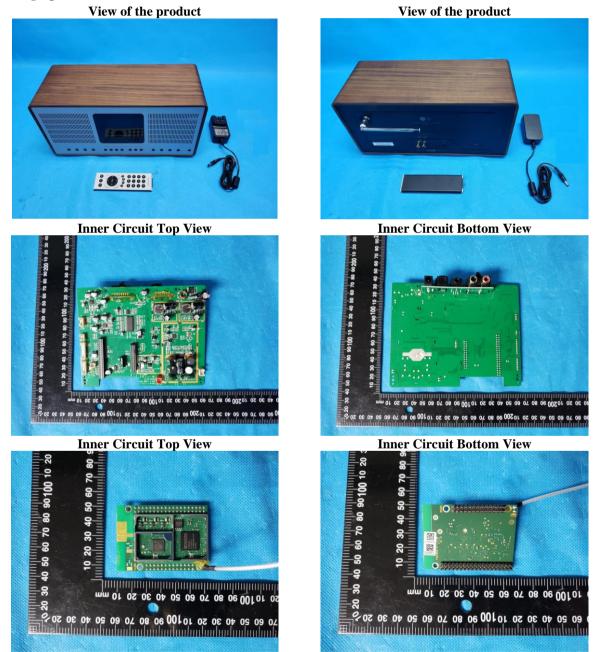
N/A Not Applicable

TBD To Be Determined

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong

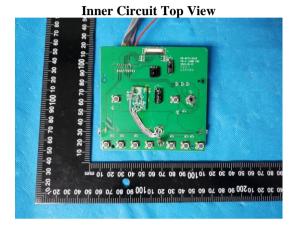
Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group


This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

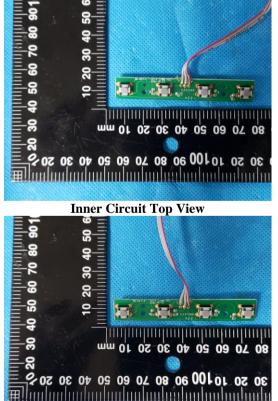
Date : 2022-04-26 No. : HMD22040017 Page 48 of 52

Appendix **B**

Photographs of EUT



The Hong Kong Standards and Testing Centre Limited 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.



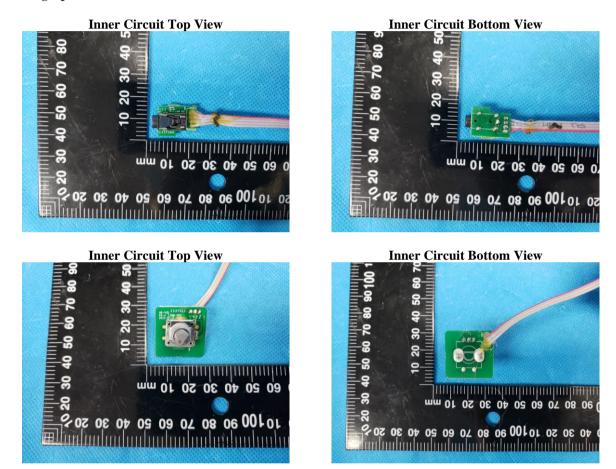
Date : 2022-04-26 No. : HMD22040017 Page 49 of 52

Photographs of EUT


Inner Circuit Top View

Inner Circuit Bottom View

Inner Circuit Bottom View



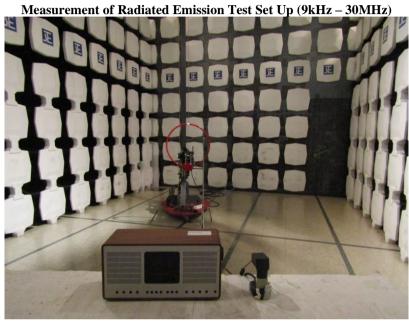
The Hong Kong Standards and Testing Centre Limited 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017 Page 50 of 52

Photographs of EUT

The Hong Kong Standards and Testing Centre Limited

10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong


Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group

This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited.

Date : 2022-04-26 No. : HMD22040017 Page 51 of 52

Photographs of EUT

Measurement of Radiated Emission Test Set Up (30MHz to 1000MHz)

The Hong Kong Standards and Testing Centre Limited 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Date : 2022-04-26 No. : HMD22040017

Photographs of EUT

<image>

Measurement of Conducted Emission Test Set Up

***** End of Test Report *****

The Hong Kong Standards and Testing Centre Limited 10 Dai Wang Street, Taipo Industrial Estate, Tai Po, N.T., Hong Kong Tel: +852 2666 1888 Fax: +852 2664 4353 Email: hkstc@stc.group Website: www.stc.group This report shall not be reproduced unless with prior written approval from The Hong Kong Standards and Testing Centre Limited. For Conditions of Issuance of this test report, please refer to "Conditions of Issuance of Test Reports" section or Website.

Page 52 of 52

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by The Hong Kong Standards & Testing Centre Limited (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The Company provides its services on the basis that such terms and conditions constitute express agreement between the Company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by the Company as a result of this application for testing service (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to his customer, supplier or other persons directly concerned. Subject to clause 3, the Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall be at liberty to disclose the testing-related documents and/or files anytime to any third-party accreditation and/or recognition bodies for audit or other related purposes. No liabilities whatsoever shall attach to the Company's act of disclosure.
- 4. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 5. The results in Report apply only to the sample as received and do not apply to the bulk, unless the sampling has been carried out by the Company and is stated as such in the Report.
- 6. When a statement of conformity to a specification or standard is provided, the ILAC-G8 Guidance document (and/or IEC Guide 115 in the electrotechnical sector) will be adopted as a decision rule for the determination of conformity unless it is inherent in the requested specification or standard, or otherwise specified in the Report.
- 7. In the event of the improper use the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 8. Sample submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 9. The Company will not be liable for or accept responsibility for any loss or damage howsoever arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 10. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 11. Subject to the variable length of retention time for test data and report stored hereinto as to otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of this test report for a period of three years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after the retention period. Under no circumstances shall we be liable for damages of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.
- 12. Issuance records of the Report are available on the internet at www.stc.group. Further enquiry of validity or verification of the Reports should be addressed to the Company.