

Nemko Test Report:	2015_276998_FCC_15247
Applicant:	HM Electronics, Inc. 14110 Stowe Drive Poway, CA 92064 USA
Equipment Under Test: (E.U.T.)	XCVR2G4A
FCC Identifier:	BYMXCVR2G4A
IC Identifier:	1860A-XCVR2G4A
In Accordance With:	FCC Part 15, Subpart C, 15.247 and Industry Canada RSS-210, Issue 8 Frequency Hopping Transmitters
Tested By:	Nemko USA, Inc. 2210 Faraday Ave. Ste 150 Carlsbad, CA 92008 USA
TESTED BY: David Light,	DATE: 10 February 2015 Wireless Engineer
APPROVED BY: Tom Tidwell	DATE: 11 February 2015

Total Number of Pages: 40

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3			
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5			
SECTION 3.	CHANNEL SEPARATION	6			
SECTION 4.	TIME OF OCCUPANCY	12			
SECTION 5.	PEAK POWER OUTPUT	16			
SECTION 6.	SPURIOUS EMISSIONS (CONDUCTED)	20			
SECTION 7.	SPURIOUS EMISSIONS (RADIATED)	25			
SECTION 8.	POWERLINE CONDUCTED EMISSIONS	27			
SECTION 9.	TEST EQUIPMENT LIST	29			
ANNEX A - TES	ANNEX A - TEST DETAILS				
ANNEX B - TES	ST DIAGRAMS	38			

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 1. Summary of Test Results

Manufacturer: HM Electronics, Inc.

Model No.: XCVR2G4A

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and Industry Canada RSS-210, Issue 8 for Frequency Hopping Spread Spectrum devices. Tests were conducted is accordance with ANSI C63.10: 2013 and FCC Public Notice DA 00-705. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC and Industry Canada.

\boxtimes	New Submission	\boxtimes	Production Unit
	Class II Permissive Change		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a) / RSS-Gen 7.2.4	Complies
Channel Separation	15.247(a)(1) / RSS-210 A8.1(b)	Complies
Time of Occupancy	15.247(a)(1) / RSS-210 A8.1(d)	Complies
20 dB Occupied Bandwidth	15.247(a)(1) / RSS-210 A8.1(a)	Complies
Peak Power Output	15.247(b) / RSS-210 A8.4(2)	Complies
Spurious Emissions (Conducted)	15.247(d) / RSS-210 A8.5	Complies
Spurious Emissions (Radiated)	15.247(d) / RSS-Gen 7.2.2	Complies

Footnotes:

The EUT is powered by a 3.7 V lithium battery.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information Frequency Band: □ 902 – 928 MHz □ 2400 – 2483.5 MHz □ 5725 – 5850 MHz Operating Frequency Range: 2403.648 to 2479.968 MHz Number of Channels: 47 Channel Spacing: 1.73 MHz User Frequency Adjustment: Software controlled

Description of EUT

The XCVR2G4A is a 2.4 GHz FHSS wireless transceiver module.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 3. Channel Separation

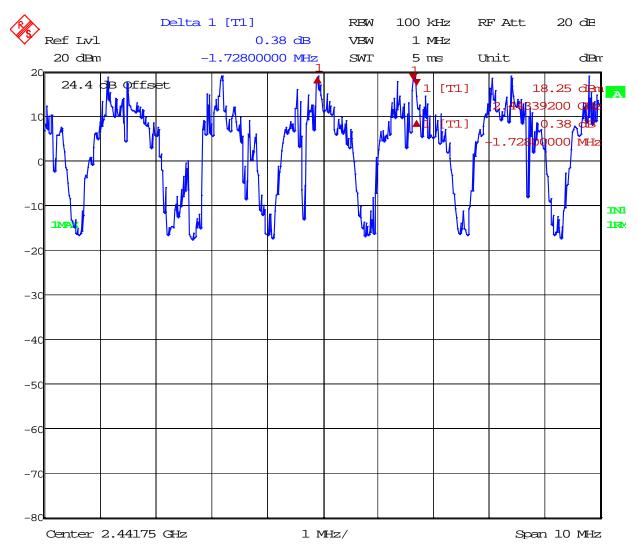
NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

TESTED BY: David Light DATE: 22 January 2015

Test Results: Complies.

Measurement Data: See 20 dB BW plot

Measured 20 dB bandwidth: 1.28 MHz Channel Separation: 1.72 MHz


Equipment Used: 1036

Temperature: 20 °C

Relative Humidity: 30 %

PROJECT NO.: 2015_276998_FCC_15247


Test Data – Channel Separation

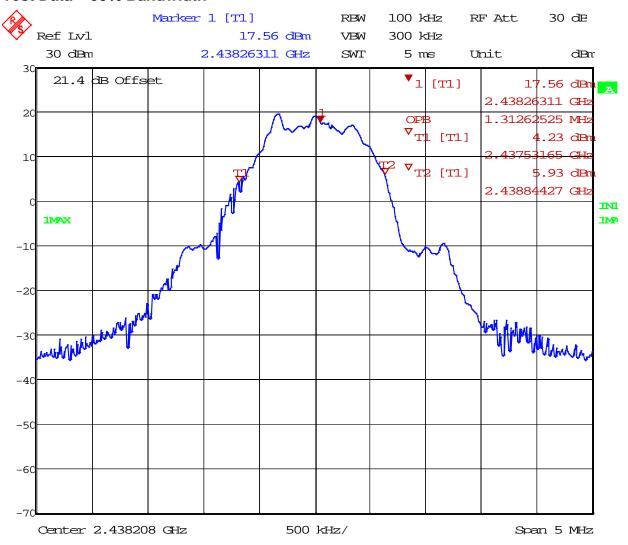
Date: 19.JAN.2015 11:02:25

Test Data - 20 dB Bandwidth

Low Channel

Test Data – 20 dB Bandwidth

Mid Channel


Test Data – 20 dB Bandwidth

High Channel

Date: 22.JAN.2015 09:27:30

Test Data - 99% Bandwidth

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 4. Time of Occupancy

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

TESTED BY: David Light DATE: 22 January 2015

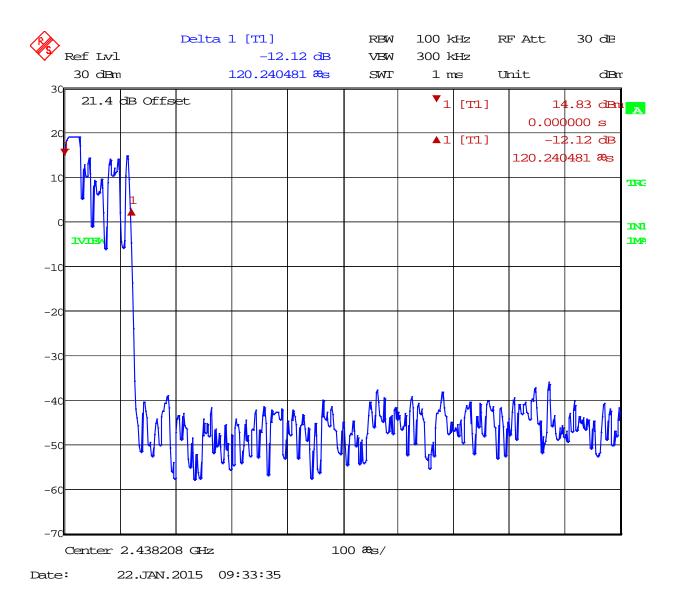
Test Results: Complies.

Measurement Data:

Maximum Dwell Time On Any Channel: 16.64 ms in 19 seconds

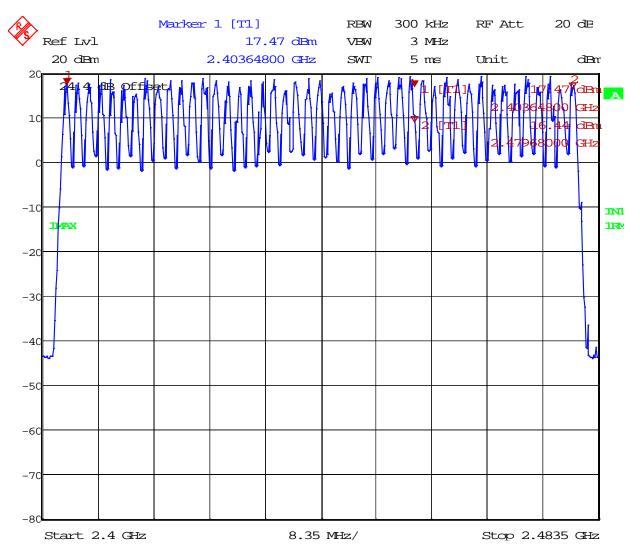
Equipment Used: 1036

Measurement Uncertainty: 0.20 ms


Temperature: 20 °C

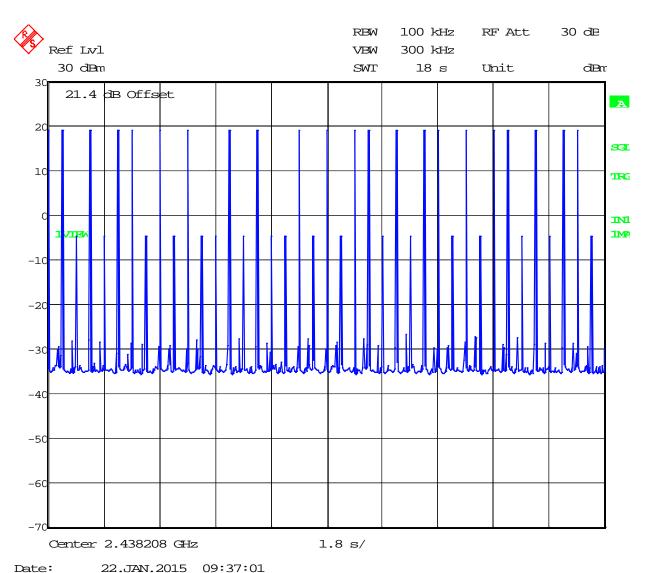
Relative Humidity: 30 %

PROJECT NO.: 2015_276998_FCC_15247


Test Data – Time of Occupancy

Hop time = $120 \mu s$

Test Data – Time of Occupancy


45 Hopping channels

Date: 19.JAN.2015 11:26:23

Test Data – Time of Occupancy

 $41 \times 862 \mu s = 35.3 ms$

22.0AN.2013 07.37.01

22 hops in 18 seconds = 2.64 msLimit = 400 ms

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output PARA. NO.: 15.247 (b)

TESTED BY: David Light DATE: 22 January 2015

Test Results: Complies.

Measurement Data: See attached plots.

Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	Antenna Type	Gain (dBi)	E.I.R.P. (dBm)	E.I.R.P. (mW)	
2401.9	17.9	61.7	Inverted F	3.0	20.9	123.0	
2441.6	19.1	81.3	Inverted F	3.0	22.1	162.2	
2481.4	19.6	91.2	Inverted F	3.0	22.1	182.0	
Maximum El	Maximum EIRP (W): 0.182						

\boxtimes	This device was tested at +/- 15% input power per 15.31(e), with no variation in
	output power.

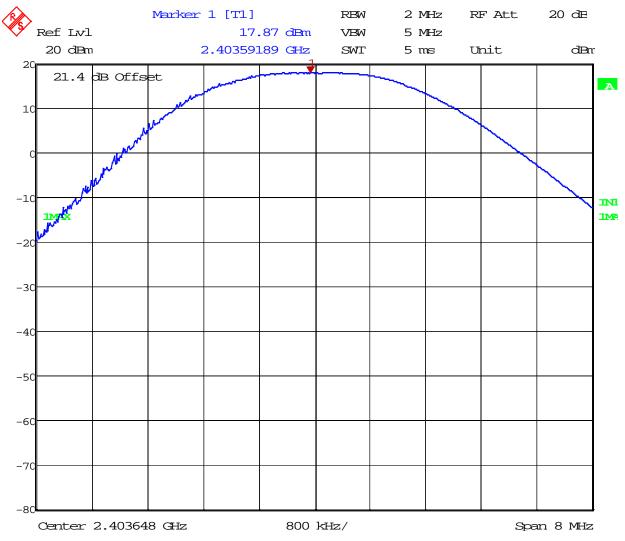
For battery powered equipment, the device was tested with a fresh battery per 15.31(e).

The device was tested on three channels per 15.31(I).

This test was performed radiated.

Equipment Used: 1036

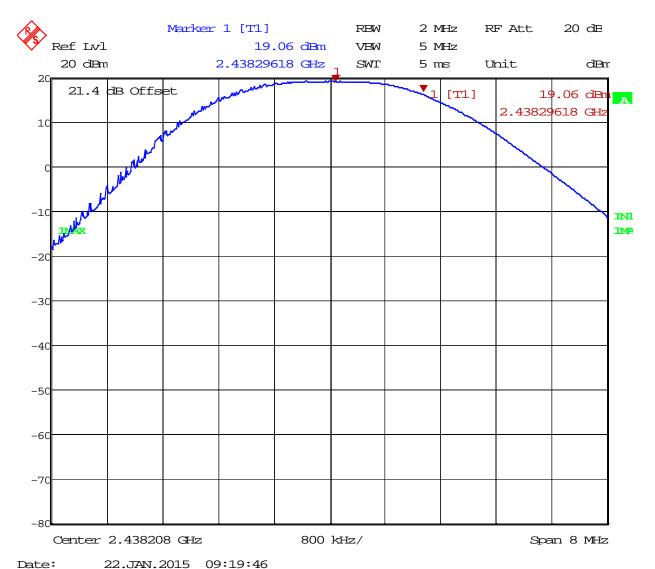
Measurement Uncertainty: 1.7 dB


Temperature: 20 °C

Relative Humidity: 30 %

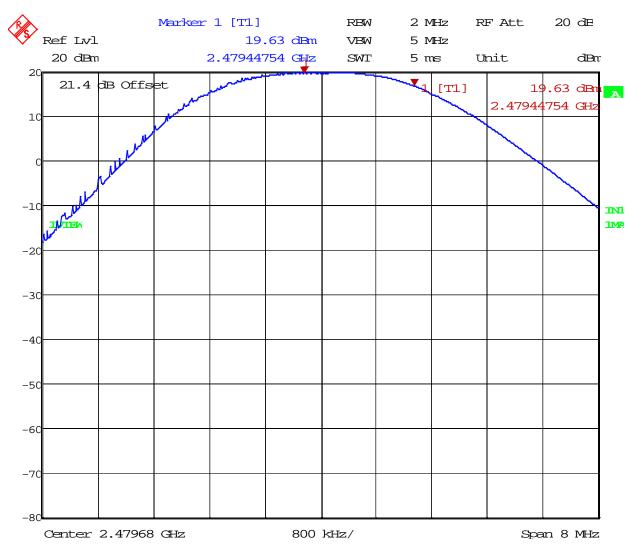
Detector Function = PEAK

PROJECT NO.: 2015_276998_FCC_15247


Test Data – Peak Power Output

Date: 22.JAN.2015 09:04:14

PROJECT NO.: 2015_276998_FCC_15247


Test Data – Peak Power Output

Page 18 of 40

PROJECT NO.: 2015_276998_FCC_15247

Test Data – Peak Power Output

Date: 22.JAN.2015 09:25:10

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 6. Spurious Emissions (Conducted)

NAME OF TEST: Spurious Emissions (Conducted) PARA. NO.: 15.247(d)

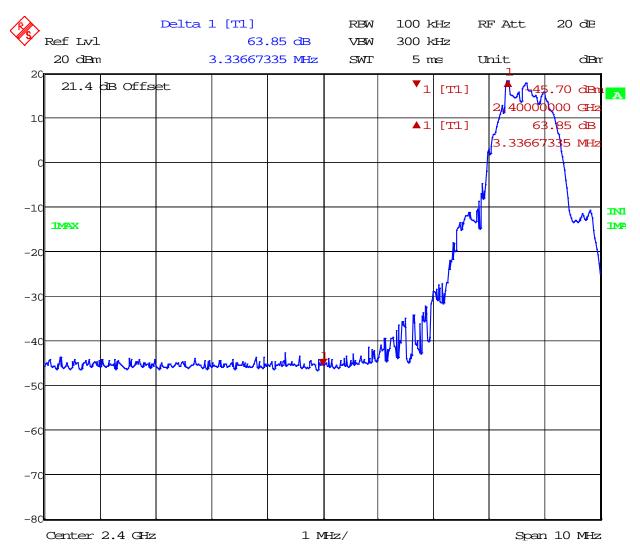
TESTED BY: David Light DATE: 22 January 2015

Test Results: Complies.

Measurement Data: See attached plots.

Equipment Used: 1036

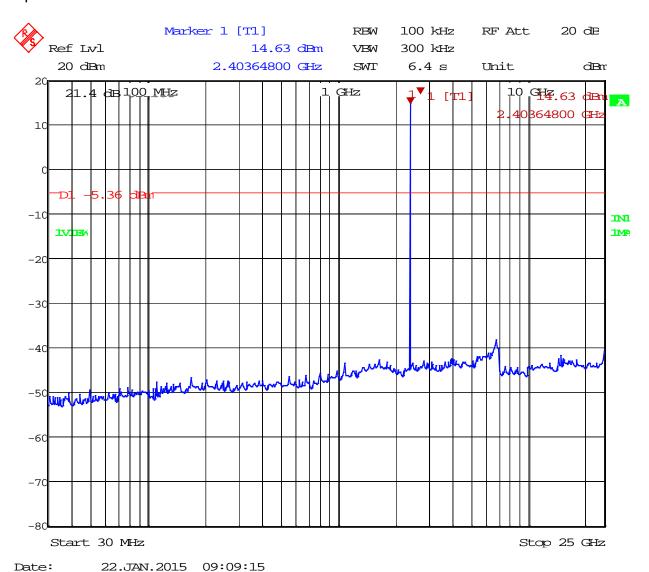
Measurement Uncertainty: +/-1.7 dB


Temperature: 20 °C

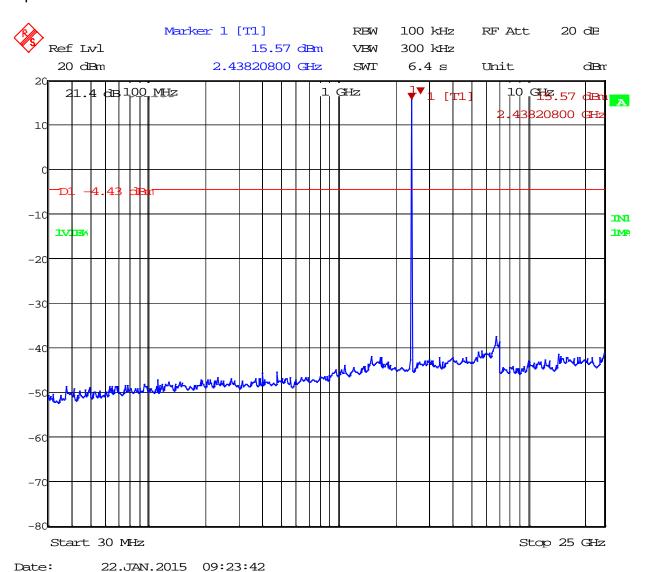
Relative Humidity: 30 %

PROJECT NO.: 2015_276998_FCC_15247

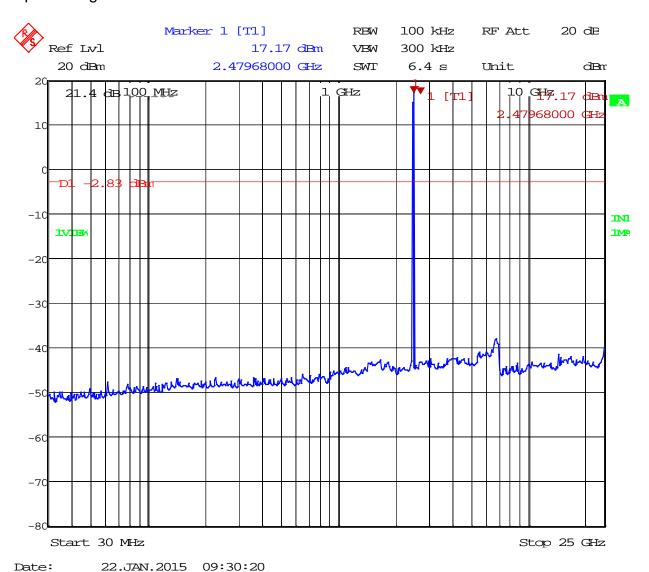
Test Data – Spurious Emissions at Antenna Terminals


Lower Band Edge

Date: 22.JAN.2015 09:07:14


Test Data – Spurious Emissions at Antenna Terminals

Spurs - Low Channel


Test Data – Spurious Emissions at Antenna Terminals

Spurs - Mid Channel

Test Data – Spurious Emissions at Antenna Terminals

Spurs - High Channel

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)	PARA. NO.: 15.247(d)
TESTED BY: David Light	DATE: 21 January 2015

Test Results: Complies. The worst case emission was 40.2 dBµV/m

at 4959.36 MHz. This is 13.8 dB below the

specification limit of 54 dBµV/m.

Measurement Data: See attached table.

Duty Cycle Calculation:

Duty Cycle correction factor(dB) = 20 log (rf_{ON} in ms/100ms)

Notes:

For handheld devices, the EUT was tested on three orthogonal axis'

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33

The device was tested on three channels per 15.31(I).

All emissions within 20 dB of the specification limit are reported per 15.31(o).

Equipment Used: E1029-911-901-752-1763

Measurement Uncertainty: +/-3.6 dB

Temperature: 21 °C

Relative Humidity: 28 %

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Test Data - Radiated Emissions

Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass	
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail	
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment
											TX Highest Channel
											2479.68 MHz
2483.500	Н	0.0	24.3	23.7	5.6	0.0	53.6	74.0	-20.4	Pass	
2483.500	Н	-20.0	24.3	23.7	5.6	0.0	33.6	54.0	-20.4	Pass	
4959.360	Н	0.0	41.0	33.2	10.6	28.0	56.8	74.0	-17.2	Pass	
4959.360	Н	-20.0	41.0	33.2	10.6	28.0	36.8	54.0	-17.2	Pass	
7439.040	Н	0.0	40.1	36.6	9.7	28.5	57.9	74.0	-16.1	Pass	
7439.040	Н	-20.0	40.1	36.6	9.7	28.5	37.9	54.0	-16.1	Pass	
2483.500	V	0.0	23.1	23.7	5.6	0.0	52.4	74.0	-21.6	Pass	
2483.500	V	-20.0	23.1	23.7	5.6	0.0	32.4	54.0	-21.6	Pass	
4959.360	V	0.0	44.4	33.2	10.6	28.0	60.2	74.0	-13.8	Pass	
4959.360	V	-20.0	44.4	33.2	10.6	28.0	40.2	54.0	-13.8	Pass	
7439.040	V	0.0	40.7	36.6	9.7	28.5	58.5	74.0	-15.5	Pass	
7439.040	V	-20.0	40.7	36.6	9.7	28.5	38.5	54.0	-15.5	Pass	
9918.720	V	0.0	35.1	38.2	11.3	27.9	56.7	74.0	-17.3	Pass	
9918.72	V	-20.0	35.1	38.2	11.3	27.9	36.7	54.0	-17.3	Pass	
											Mid Channel
											2438.208 MHz
4876.416	Н	0.0	40.4	33.2	10.6	28.0	56.2	74.0	-17.8	Pass	
4876.416	Н	-20.0	40.4	33.2	10.6	28.0	36.2	54.0	-17.8	Pass	

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 8. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: William Dey DATE: 20 January 2015

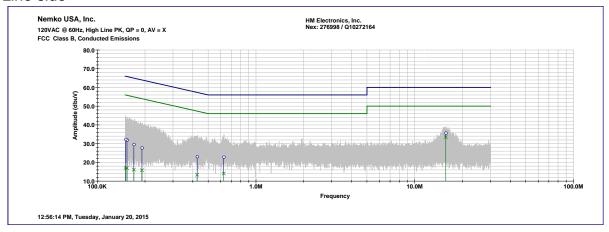
Test Results: Complies. The worst case emission was 33.6 dBµV at

730.6 kHz. This is 12.4 dB below the quasi-peak

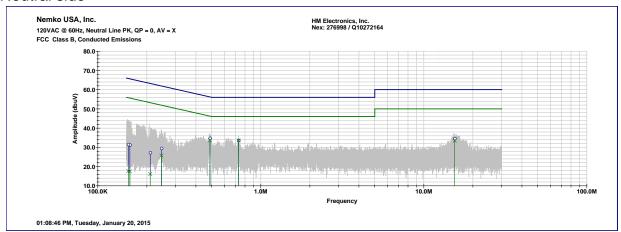
specification limit of 46 dBµV.

Test Data: Refer to attached plots

Equipment Used: E1019-E1026-805


Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C


Relative Humidity: 35 %

Test Data – Powerline Conducted Emissions

Line side

Neutral side

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Section 9. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Last Cal	Next Cal
752	Antenna, DRWG	EMCO	3115	19-Feb-2014	19-Feb-2015
902	pre amp	Sonoma	310 N	08-Aug-2014	08-Aug-2015
911	Spectrum Analyzer	Agilent	E4440A	21-Jan-2014	21-Jan-2015
E1029	Preamplifier (20MHz to 18GHz)	A.H. Systems, Inc.	PAM-0118	12-Aug-2014	12-Aug-2015
1036	Spectrum Analyzer	Rohde & Schwartz	FSEK30	15-Jul-2013	15-Jul-2015
1763	Antenna, Bilog	Schaffner	CBL 6111D	13-May-2014	13-May-2015
805	LISN	Solar	9348-50-R- 24-BNC	27-Aug-2014	27-Aug-2015
E1019	Two Line V- Network	Rohde & Schwarz	ENV216	07-May-2014	07-May-2015
E1026	EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESCI 7	14-Aug-2014	14-Aug-2015

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

ANNEX A - TEST DETAILS

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015 276998 FCC 15247

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

RSS-210 A8.1(b)

Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

RSS-210 A8.1(d)

Minimum Standard:

Frequency Band	20 dB	No. of	Average Time of Occupancy
(MHz)	Bandwidth	Hopping	
		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
			=<0.4 sec. in 0.4 seconds
2400 – 2483.5		75	multiplied by the number of
			hopping channels employed.
5725 – 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(1)

RSS-210 A8.1(a)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

NAME OF TEST: Peak Power Output PARA. NO.: 15.247(b)

RSS-210 A8.4(2)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 –	75	1 watt
2483.5		
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

RSS-210 A8.5

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following

field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(d)

RSS-Gen 7.2.2

Minimum Standard: Emissions falling in the restricted bands shall not

exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

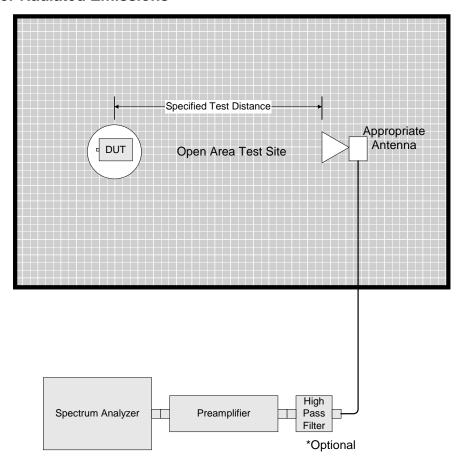
THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

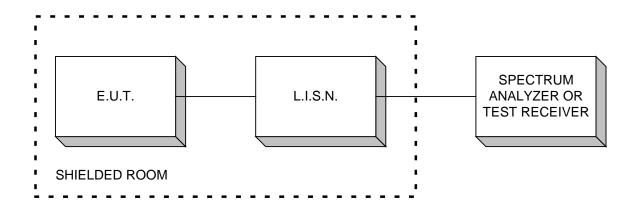
Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

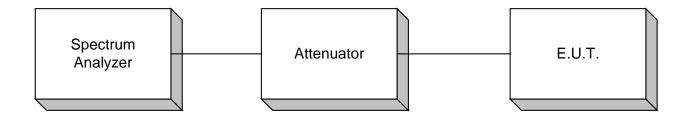

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

ANNEX B - TEST DIAGRAMS


EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Test Site For Radiated Emissions



EQUIPMENT: XCVR2G4A PROJECT NO.: 2015_276998_FCC_15247

Conducted Emissions

Measurements at Antenna Terminals

