

CERTIFICATION TEST REPORT

Report Number:	2010 10159599 COM FCC 15.247
Project Number:	63825-1
Nex Number:	159599
Applicant:	HME 14110 Stowe Dr. Poway, CA 92064
Equipment Under Test (EUT):	Belt-Pac Communicator
Model:	COM6K
FCC ID:	BYMCOM6K
IC:	1860A-COM6K
In Accordance With:	FCC Part 15 Subpart C, 15.247 IC RSS-210 Issue 7 June 2007 IC RSS-Gen Issue 2 June 2007
Tested By:	Nemko USA Inc. 11696 Sorrento Valley Road, Suite F San Diego, CA 92121
Authorized By:	Alan Laudani, EMC/RF Test Engineer
Date:	November 5, 2010
Total Number of Pages:	54

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section1: Summary of Test Results

General

All measurements are traceable to national standards

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15; Subpart C and IC RSS-210. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC and IC.

The assessment summary is as follows:

Apparatus Assessed:	Belt-Pac Communicator
Model:	СОМ6К
Specification:	FCC Part 15 Subpart C, 15.247 IC RSS-210 Issue 7 June 2007
Date Received in Laboratory:	October 28, 2010
Compliance Status:	Complies
Exclusions:	None
Non-compliances:	None

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

1.1 Report Release History

REVISION	DATE	COMMENTS		
-	November 5, 2010	Prepared By:	Ferdinand Custodio	
-	November 5, 2010	Initial Release:	Alan Laudani	

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025.

Nemko USA Inc. authorizes the applicant to reproduce this report provided the company's employees reproduce it in its entirety and for use only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

TESTED BY:

Ferdinand Custodio, EMC Test Engineer

Date: November 5, 2010

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

TABLE OF CONTENTS

Section	1: Summary of Test Results	2
1.1	Report Release History	3
Section 2.1 2.2 2.3 2.4	2: Equipment Under Test Product Identification Samples Submitted for Assessment Theory of Operation Technical Specifications of the EUT	5 5 6
Section 3.1 3.2 3.3 3.4	3: Test Conditions Specifications Deviations From Laboratory Test Procedures Test Environment Test Equipment	7 7 7
4.1 4.2 4.3 4.4 4.5	4: Observations Modifications Performed During Assessment Record Of Technical Judgements EUT Parameters Affecting Compliance Test Deleted Additional Observations 5: Results Summary	9 9 9 9 9
5.1	Test Results	
Section Section Section Section Section Section Section	ix A: Test Results115.247(a)(1) – Carrier Frequency Separation115.247(a)(1)(iii) – Number of Hopping Frequencies115.247(a)(1)(iii) – Time of Occupancy (Dwell Time)115.215(c) – 20 dB Bandwidth215.247(b)(1) – Peak Output Power215.247(d) – Band-edge Compliance of RF Conducted Emissions215.247(d) – Spurious RF Conducted Emissions315.247(d) – Spurious Rediated Emissions3SS-Gen) – Receiver Spurious Emission Limits4	1 3 8 1 5 6 1 8
	ix B: Section 15.247(d) – Spurious RF Conducted Emissions Test Results id and High Channels)4	
•	ix C: Block Diagram of Test Setups5	

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 2: Equipment Under Test

2.1 Product Identification

The Equipment Under Test was indentified as follows:

HME COM6K Belt-Pac Communicator

2.2 Samples Submitted for Assessment

The following sample of the apparatus has been submitted for type assessment:

Sample No.	Description	Serial No.
159599-2	Belt-Pac Communicator	F42M0018

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

2.3 Theory of Operation

The COM6K is a Belt-Pac Communicator. Its function is to work as transceiver in communication with a base station, a fully certified transceiver. The EUT was exercised by linking with the base station. Its microphone via a connected headset modulates the RF output by digital means. Conducted RF measurements were made on the test antenna service port. A temporary communication connection on the EUT was provided by the client during assessment in order to control radio parameters. The EUT is powered by a battery which is charged externally (removed from the EUT) by a charger not covered in this certification.

2.4 Technical Specifications of the EUT

Manufacturer:	HME
Operating Frequency:	2401.920 MHz to 2481.408 MHz in the 2400-2483.5 MHz Band
Number of Operating Frequencies:	47
Rated Power:	64.6 mW
Modulation:	FHSS
Reference Designator:	1M21Q7W
Antenna Connector:	Internal/Integral (0dBi gain)
Power Source:	3.7VDC Li-ion custom removable battery

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 3: Test Conditions

3.1 Specifications

The apparatus was assessed against the following specifications:

FCC Part 15 Subpart C, 15.247

Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5850 MHz and 24.0-24.25 GHz bands.

IC RSS-210 Issue 7 June 2007

Low-power Licence-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment. Annex 8 - Frequency Hopping and Digital Modulation Systems Operating in the Bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

IC RSS-Gen Issue 2 June 2007

General Requirements and Information for the Certification of Radiocommunication Equipment

3.2 Deviations From Laboratory Test Procedures

No deviations from Laboratory Test Procedure

3.3 Test Environment

All tests were performed under the following environmental conditions:

Temperature range	:	17-23 ⁰ C
Humidity range	:	39-48 %
Pressure range	:	96 - 105 kPa
Power supply range	:	3.3 to 4.255VDC

 \bigcirc

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

3.4 Test Equipment

Nemko ID	Device	Manufacturer	Model	Serial Number	Cal Date	Cal Due Date
	DC Power Supply	Hewlett Packard	E3611A	N/A	Verified by A	sset #E1009
E1009	Multimeter, Logging	Fluke Corp	287	11610042	12/18/2009	12/18/2010
114	Antenna, Bicon	EMCO	3104	2997	3/5/2010	3/5/2012
110	Antenna, LPA	EMCO	3146	1382	1/10/2009	2/10/2011
877	Antenna, DRG Horn, .7- 18GHz	AH Systems	SAS-571	688	8/16/2010	8/16/2011
911	Spectrum Analyzer	Agilent	E4440A	US41421266	10/26/2010	10/26/2011
898	EMI Receiver & filter set	HP	8546A	3625A00348	6/22/2010	6/22/2011
899	Filter Section	HP	85460A	3448A00288	6/22/2010	6/22/2011
946	Peak Power Sensor	Hewlett Packard	84815A 0.05- 18GHz (-40 to 20dBm)	3318A01726	9/28/2010	9/28/2011
947	Peak Power Analyzer	Hewlett Packard	8991A	3621A00906	9/28/2010	9/28/2011

Registration of the OATS are on file with the Federal Communications Commission, under Registration Number 90579, the VCCI under registration number R-3027, and are also registered with Industry Canada under Site Numbers 2040B-1 and 2040B-2.

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 4: Observations

4.1 Modifications Performed During Assessment

No modifications were performed during assessment.

4.2 Record Of Technical Judgements

No technical judgements were made during the assessment.

4.3 EUT Parameters Affecting Compliance

The user of the apparatus could not alter parameters that would affect compliance.

4.4 Test Deleted

No Tests were deleted from this assessment.

4.5 Additional Observations

There were no additional observations made during this assessment.

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 5: Results Summary

This section contains the following:

FCC Part 15 Subpart C: IC RSS-210 Issue 7 June 2007 Annex 8 IC RSS-Gen Issue 2 June 2007

The column headed "Required" indicates whether the associated clauses were invoked for the apparatus under test. The following abbreviations are used:

N No: not applicable / not relevant

Y Yes: Mandatory i.e. the apparatus shall conform to these tests.

N/T Not Tested, mandatory but not assessed. (See section 4.4 Test deleted) The results contained in this section are representative of the operation of the apparatus

as originally submitted.

Part 15C	RSS	Test Description	Required	Result
15.207 (a)	RSS-Gen 7.2.2	Conducted Emission Limit	N*	
15.247(a)(1)	•	Carrier Frequency Separation	Y	Pass
15.247(a)(1)(iii)		Number of Hopping Frequencies	Y	Pass
15.247(a)(1)(iii)		Time of Occupancy (Dwell Time)	Y	Pass
15.215(c)	RSS-Gen 4.6.1	20 dB Bandwidth	Y	Pass
15.247(b)(1)	RSS-Gen 4.8 & 4.9	Peak Output Power	Y	Pass
15.247(d)		Band-edge Compliance of RF Conducted Emissions	Y	Pass
15.247 (d)		Spurious RF Conducted Emissions	Y	Pass
15.247 (d)		Spurious Radiated Emissions	Y	Pass
	RSS-Gen 7.2.3	Receiver Spurious Emissions	Y	Pass

5.1 Test Results

*EUT only employs battery power for operation.

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

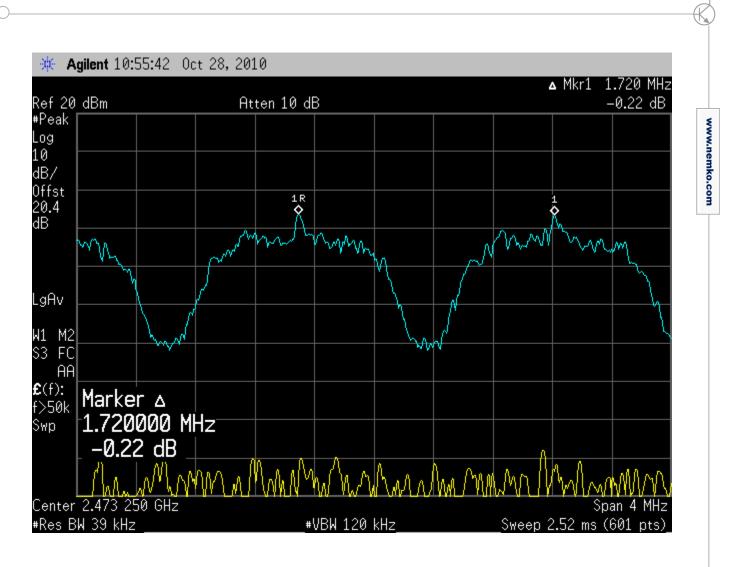
Appendix A: Test Results

Section 15.247(a)(1) – Carrier Frequency Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Conditions:

Sample Number:	COM6K	Temperature:	23°C
Date:	October 28, 2010	Humidity:	39%
Modification State:	Between Channel 41 and 42	Tester:	FSCustodio
		Laboratory:	Nemko


Test Results:

See attached plots.

Additional Observations:

- Hopping function enabled.
- SA offset is 20.43dB (20dB attenuator + cable)
- Span is 4 MHz
- RBW is 1% of 4 MHz (limited to 39kHz by spectrum analyzer)
- VBW is 3X RBW
- Sweep is auto
- Detector is Peak
- Trace is Max Hold
- Marker-delta function is used between the peaks of the adjacent channels.
- Observed Carrier Frequency Separation is 1.72MHz.
- 20dB Bandwidth as per Part 15.215 (c) is 1.21 MHz.
- Observed Carrier Frequency Separation > 20dB Bandwidth = Complies

FCC ID: BYMCOM6K IC: 1860A-COM6K

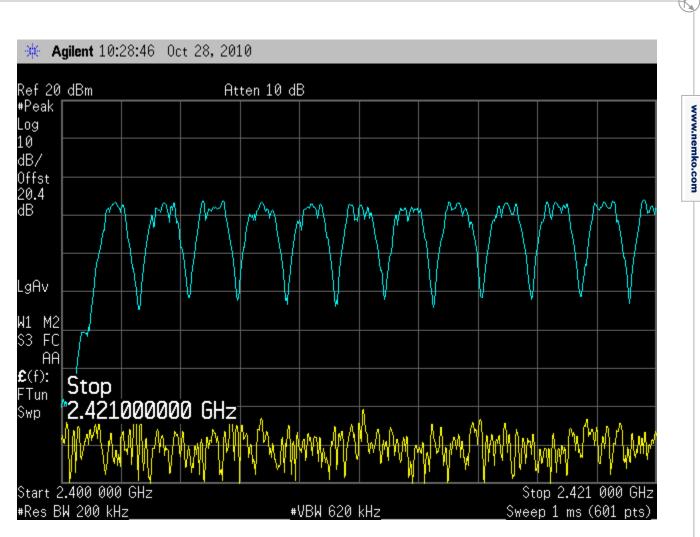
Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 15.247(a)(1)(iii) – Number of Hopping Frequencies

(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

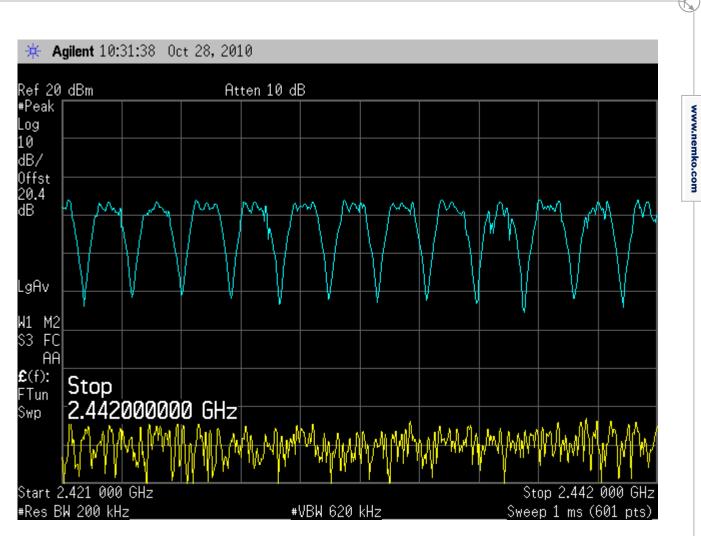
Test Conditions:

Sample Number:	COM6K	Temperature:	23°C
Date:	October 28, 2010	Humidity:	39%
Modification State:	Channel 0 to 46	Tester:	FSCustodio
		Laboratory:	Nemko

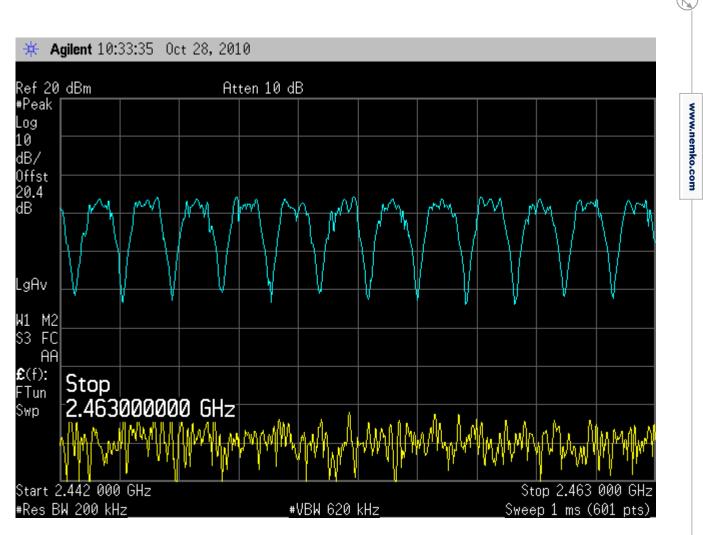

Test Results:

See attached plots.

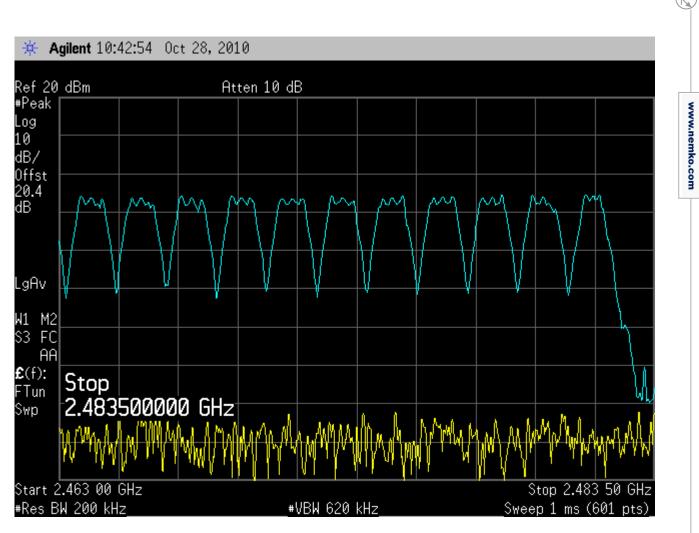
Additional Observations:


- Hopping function enabled.
- Span is frequency band of operation, divided into four plots for better resolution.
- RBW is 1% of the span (limited to 200kHz by spectrum analyzer)
- VBW is 3X RBW
- Sweep is auto
- Detector is Peak
- Trace is Max Hold
- Observed Number of Hopping Frequencies is 47.
 - = Plot#1 + Plot#2 + Plot#3 + Plot#4
 - = 12 + 12 + 12 + 11
 - = 47 channels

FCC ID: BYMCOM6K IC: 1860A-COM6K


Plot #1: Number of Hopping Frequencies is 12

FCC ID: BYMCOM6K IC: 1860A-COM6K


Plot #2: Number of Hopping Frequencies is 12

FCC ID: BYMCOM6K IC: 1860A-COM6K

Plot #3: Number of Hopping Frequencies is 12

FCC ID: BYMCOM6K IC: 1860A-COM6K

Plot #4: Number of Hopping Frequencies is 11

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

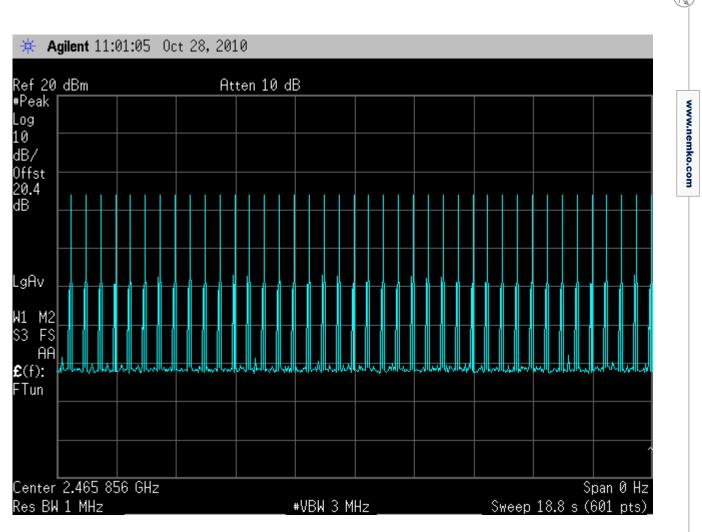
Section 15.247(a)(1)(iii) – Time of Occupancy (Dwell Time)

(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Conditions:

Sample Number:	COM6K	Temperature:	23°C
Date:	October 28, 2010	Humidity:	39%
Modification State:	Channel 37	Tester:	FSCustodio
		Laboratory:	Nemko

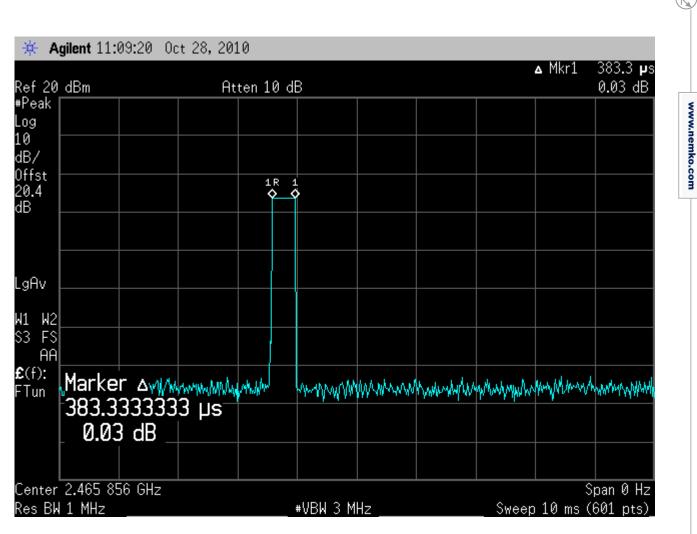
Test Results:


See attached plots.

Additional Observations:

- Hopping function enabled.
- Span is Zero span
- RBW is 1 MHz
- VBW is 3X RBW
- Sweep is 0.4 seconds multiplied by the number of hopping channels employed (0.4 x 47 = 18.8 seconds).
- Detector is Peak
- Trace is Max Hold
- Limit is 400 ms, time of occupancy is:
 - = No. of transmission per required sweep < 400 ms
 - = 0.38333 ms x 40
 - = 15.3 ms

15.3 ms < 400 ms, EUT Complies


FCC ID: BYMCOM6K IC: 1860A-COM6K

Number of transmission per required sweep = 40

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Single transmission time = **383.33 µs**

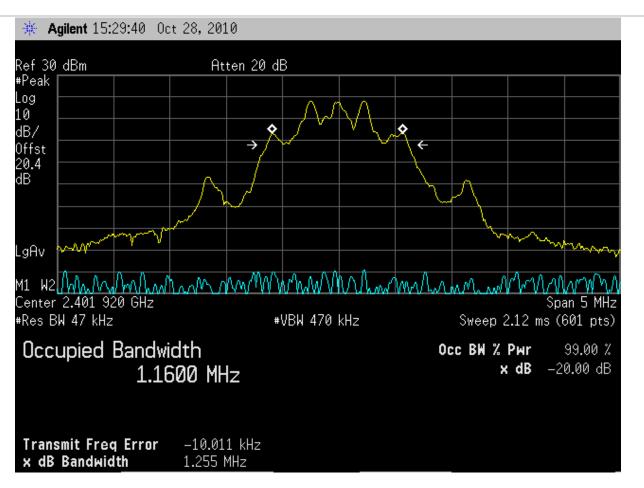
Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 15.215(c) – 20 dB Bandwidth

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

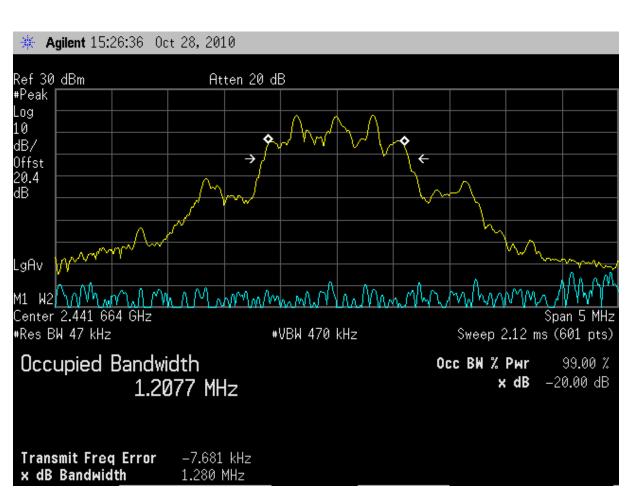
Test Conditions:

Sample Number:	COM6K	Temperature:	21
Date:	October 28, 2010	Humidity:	37
Modification State:	Low ,Mid and High Channel	Tester:	FSCustodio
		Laboratory:	Nemko

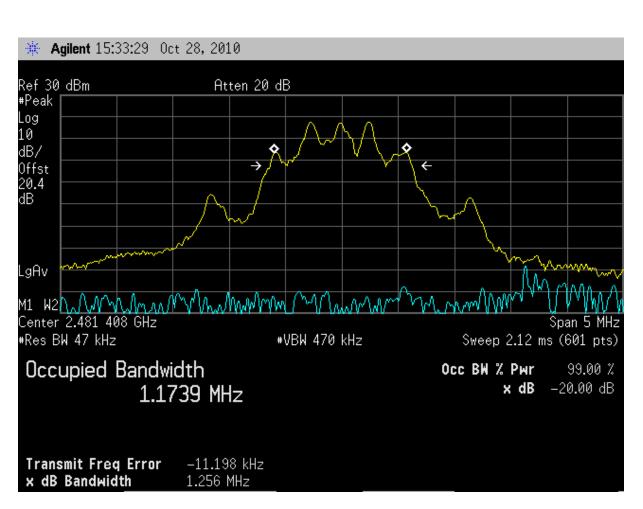

Test Results:

See attached plots.

Additional Observations:


- Hopping disabled
- Span is wide enough to capture the channel transmission
- RBW is 1% of the span
- VBW is equal or greater than 3X RBW
- Sweep is auto
- Detector is Peak
- Trace is Max Hold
- The built-in occupied bandwidth measurement feature of the spectrum analyzer was used in this test.
- Observed 20 dB BW is 1.21 MHz.
- 2401.920 MHz 0.605 MHz = 2401.315 MHz (within the frequency band)
- 2481.408 MHz + 0.605 MHz = 2482.013 MHz (within the frequency band)

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247


(Low Channel) Observed Occupied Bandwidth is 1.160 MHz

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

(Mid Channel) Observed Occupied Bandwidth is 1.2077 MHz

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

(High Channel) Observed Occupied Bandwidth is 1.1739 MHz

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 15.247(b)(1) - Peak Output Power

(1) For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Conditions:

Sample Number:	COM6K	Temperature:	21
Date:	October 28, 2010	Humidity:	37
Modification State:	Low ,Mid and High Channel	Tester:	FSCustodio
		Laboratory:	Nemko

Test Results:

Peak Power Analyzer used on this test

Additional Observations:

- This is a conducted test. A 20dB attenuator was placed between the sensor and the antenna port. Additional 0.4 dB was added for cable and connectors. Total offset used is 20.4 dB.
- Measurements were made at 3.3VDC, 3.7VDC and 4.255VDC.

Channel Range MHz	Peak Power Output dBm @ 3.3VDC	Peak Power Output 3.7VDC	Peak Power Output dBm @ 4.255VDC
2401.920	18.10	18.10	18.10
2441.664	18.04	18.04	18.04
2481.408	17.70	17.70	17.70

Peak Output Power = 18.1 dBm or 64.6 mW

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

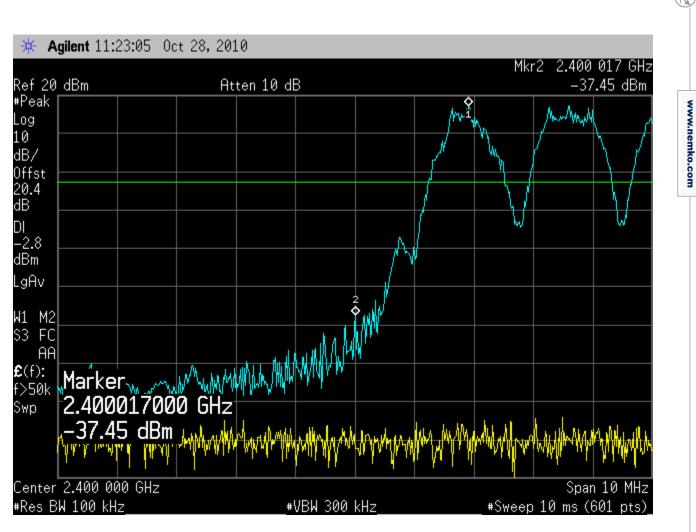
Section 15.247(d) – Band-edge Compliance of RF Conducted Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Conditions:

Sample Number:	COM6K	Temperature:	23°C
Date:	October 28, 2010	Humidity:	39%
Modification State:	Low and High Channel	Tester:	FSCustodio
		Laboratory:	Nemko

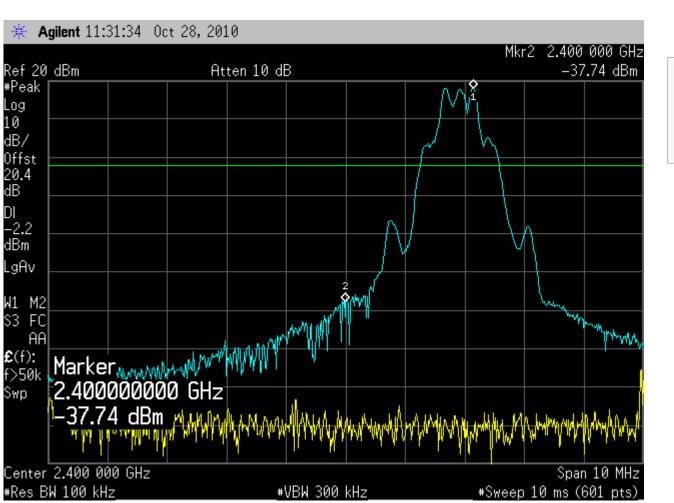
Test Results:


See attached plots.

Additional Observations:

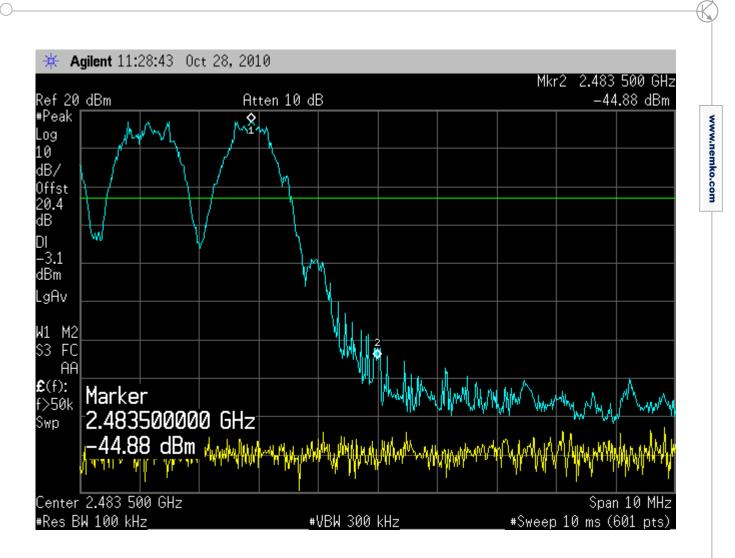
- This is a conducted test. The 20.4dB offset is from the external attenuator and cable used.
- Span is wide enough to capture the peak level of the emission operating on the channel closest to the band edges (Lower and Upper).
- RBW is 1% of the span
- VBW is 3X RBW
- Sweep is auto.
- Detector is Peak
- Trace is Max Hold
- For each investigation, the peak level reading was taken and a display line was drawn 20 dBc below this level which will be the limit for this test.
- Test repeated between Hopping and Non-Hopping mode

FCC ID: BYMCOM6K IC: 1860A-COM6K

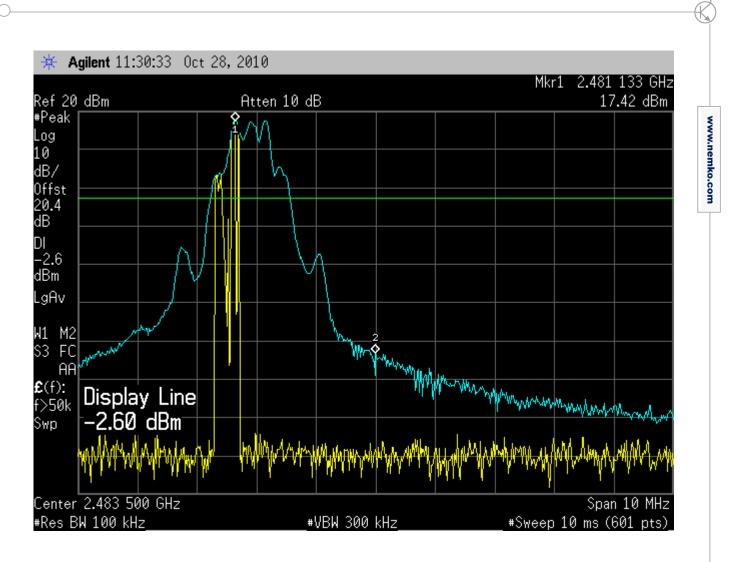

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Lower Band edge (Hopping)

FCC ID: BYMCOM6K IC: 1860A-COM6K


Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Lower Band edge (Non-Hopping)


Page 28 of 54

FCC ID: BYMCOM6K IC: 1860A-COM6K

Upper Band edge (Hopping)

FCC ID: BYMCOM6K IC: 1860A-COM6K

Upper Band edge (Non-Hopping)

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 15.247(d) – Spurious RF Conducted Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Conditions:

Sample Number:	COM6K	Temperature:	23°C
Date:	October 28, 2010	Humidity:	39%
Modification State:	Hopping + Low, Mid and High	Tester:	FSCustodio
		Laboratory:	Nemko

Test Results:

See attached plots.

Additional Observations:

- This is a conducted test. The 20.4dB offset is from the external attenuator and cable used.
- The EUT was hopping during this investigation. Test results when hopping are disabled (transmitting at specific frequency) can be found under Appendix B.
- The peak level reading was taken at the carrier frequency then a display line was drawn 20 dBc below this level which will be the limit for this test.
- VBW is 3X RBW
- Sweep is auto.
- Detector is Peak
- Trace is Max Hold
- EUT complies.

FCC ID: BYMCOM6K IC: 1860A-COM6K

0

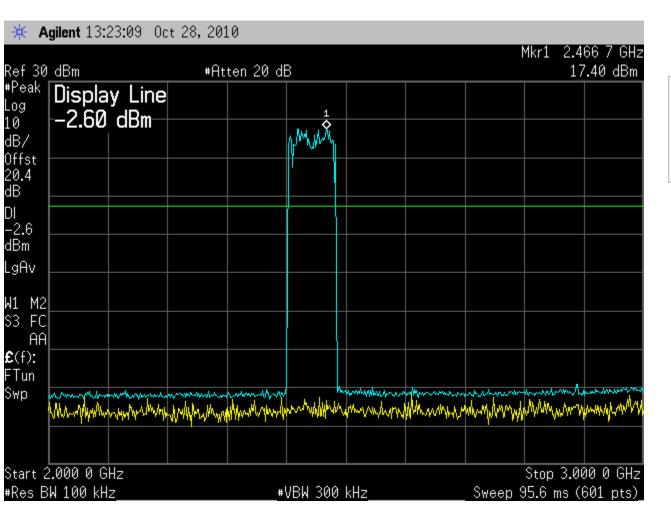
Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

f 30	dBm	#Ati	#Atten 20 dB				Mkr1 443.9 MHz –50.33 dBm		
) 37	Marker 443.900000 -50.33 dBm	MHz							
fst).4 }									
2.6 }m ∣Av									
M2 FC									
AA f): un				1					
'p	muniphy/4/Hintoniy			matheman				hannan Migrahadyddy	WHIN MAN
	80.0 MHz W 100 kHz <u> </u>		#	VBW 300	kHz		Sween 92	Stop 1.00 2.72 ms (1	00 0 GHz 601 pts)

Plots from 30 MHz to 1GHz , Display Line -2.60 dBm which is 20dB below the highest in band emission.

FCC ID: BYMCOM6K IC: 1860A-COM6K

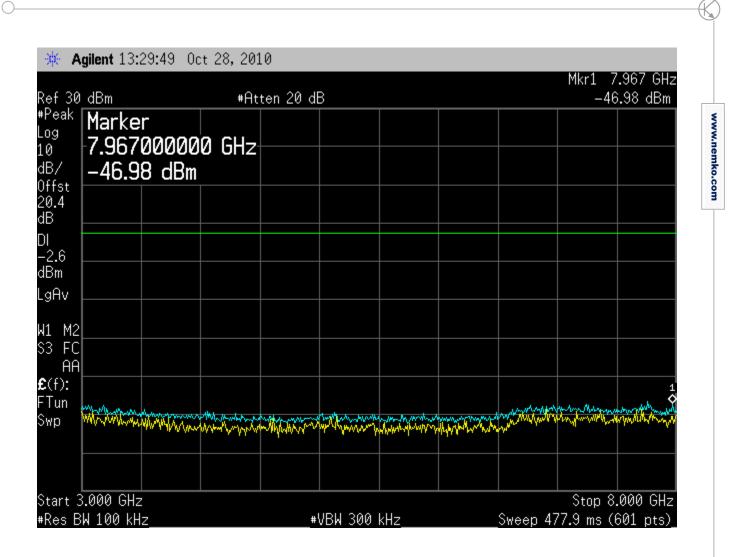
0


Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

	dBm		#Atten 20 dB					Mkr1 1.898 3 GH: -50.72 dBm		
,	Marker 1.898300 -50.72 c		GHz							
st 4										
6 n										
V UA										
M2 FC AA										
): n										1
	Mangalala	menter and	Arriver	yaliya Muu	when when	why why	W-WWWWW	ny har hy application	www.www.	her hyperspectrum
	.000 0 GHz W 100 kHz			#	VBW 300 I	kHz		Sweep S	Stop 2.0 95.6 ms (00 0 GHz 601 pts)

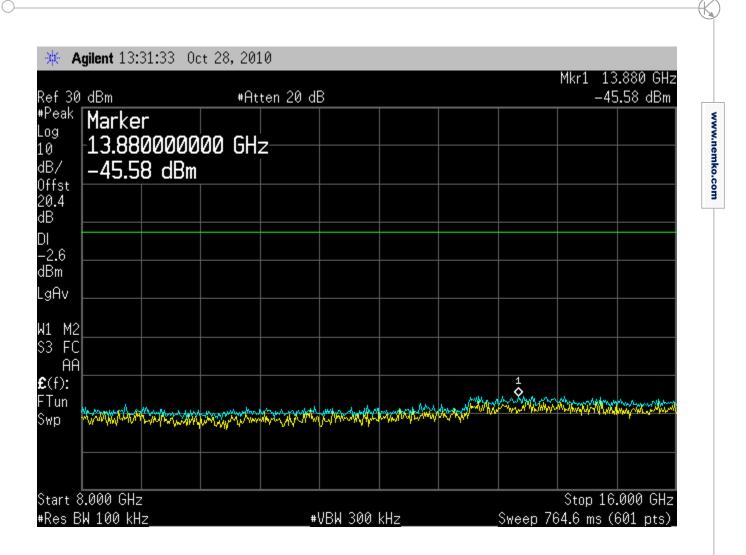
Plots from 1GHz to 2GHz, Display Line -2.60 dBm which is 20dB below the highest in band emission.

FCC ID: BYMCOM6K IC: 1860A-COM6K


Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Plots from 2GHz to 3GHz , Display Line -2.60 dBm which is 20dB below the highest in band emission.

FCC ID: BYMCOM6K IC: 1860A-COM6K


Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Plots from 3GHz to 8GHz , Display Line -2.60 dBm which is 20dB below the highest in band emission.

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Plots from 8GHz to 16GHz , Display Line -2.60 dBm which is 20dB below the highest in band emission.

FCC ID: BYMCOM6K IC: 1860A-COM6K

0

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

* Agilent 13:33:29			_			М		90 0 GHz
ef 30_dBm	#A	tten 20 d	B					.50 dBm
Peak Marker ⁰⁹ -25.590000	NAN CL	 						
^{B/} ffst -41.50 dB								
0.4 B								
2.6								
Bm gAv								
1 M2								
3 FC AA								1
:(f):	h in 1 mar an	water	munham	man were were		an and	CYCCO M	Aproaction
Tun www.www.autorogo wp	- Manapathan	will want with the	1990-ALI-4020004	In white of	March Land			
tart 16.000 0 GHz					^	<	top 26.50	ла а сн-
Res BW 100 kHz		#	VBW 300	kH-z			L.004 s (

Plots from 16GHz to 26.5GHz , Display Line -2.60 dBm which is 20dB below the highest in band emission.

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Section 15.247(d) – Spurious Radiated Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

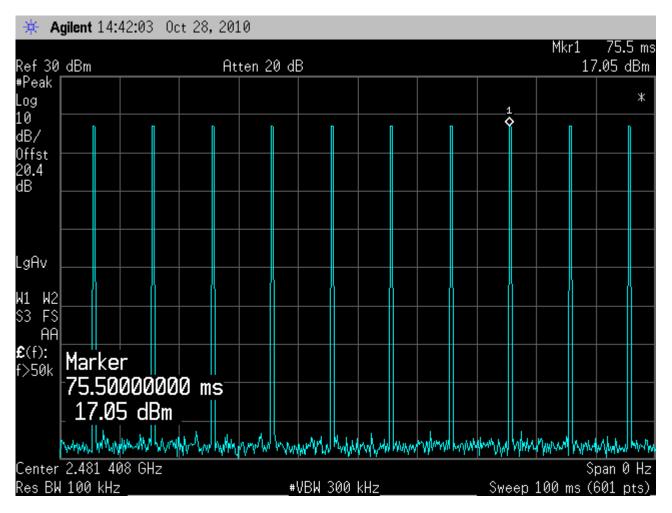
Test Conditions:

Sample Number:	COM6K	Temperature:	16°C
Date:	November 3, 2010	Humidity:	72%
Modification State:	As required (Hopping or Single)	Tester:	FSCustodio
		Laboratory:	SOATS

Test Results:

See attached plots.

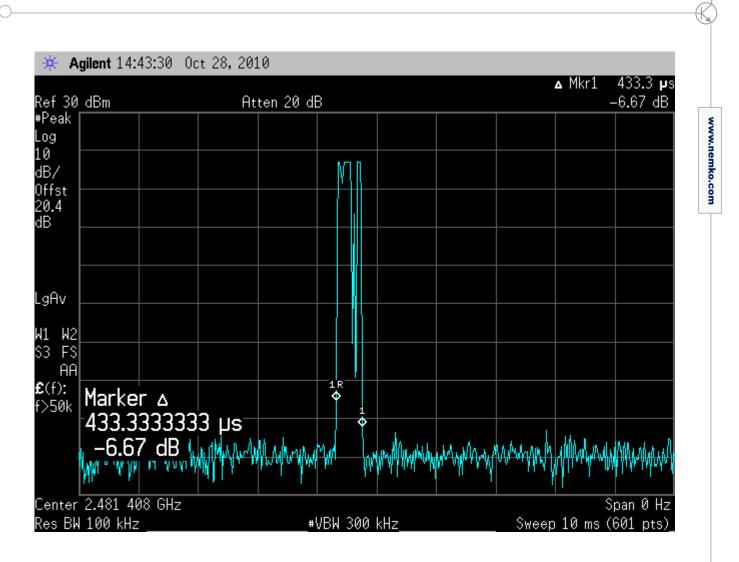
Additional Observations:


- This test was performed a using fully charged battery.
- The Spectrum was searched from 30MHz to the 10th Harmonic, 25000 MHz. There are no emissions found that do not comply to the restricted bands defined in FCC Part 15 Subpart C, 15.205 or Part 15.247(d).
- When verifying harmonics at low, mid and high channels, the EUT is set to nonhopping mode. This test mode will allow all transmissions to occur on a single channel rather than to all 47 channels aiding the measurement
- Duty Cycle Correction Factor used is -20 based from actual Duty Cycle of 4.33%.
- Only worst case band edge measurement presented (i.e. Low Channel for lower band edge and High Channel for upper band edge).
- Limit for lower band edge is base from radiated fundamental measurement of the Low Channel using 100 kHz RBW.
- No spurious detected above 1GHz..

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Sample Computation (base from above 1GHz data):

Correction factor @ 4803.8MHz	= 12.196
	= Antenna factor + Cable loss – Preamp
	gain
	= 33.196 + 10.8 – 31.8
Corrected reading	= Max. reading + Correction factor
	= 47.8 + 12.196
	= 59.9 dBµV/m


Duty Cycle Factor Computation:



10 transmissions per 100 ms

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Duty Cycle	= (0.48333 ms) x 10 = 4.33 ms/100 ms
DOOF	= 4.33%
DCCF	= 20 log (0.04833) = -27.26; limited to -20

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Below 1GHz measurements:

NEMKO USA, Inc	Ner	nk	San Diego Headquarters: 11696 Sorrento Valley Rd. San Diego, CA 92121 Tel: (858) 755-5525 Fax: (858) 452-1810				/alley Rd. \ 92121 5-5525	
		Radia	ated Emiss	sions Da	ita			
Job # : NEX #:	63825-1 159599	Date Time Stafl	e: 9:30AM	<u>)</u>	Page	1	of	1
Client Name : EUT Name : EUT Model # : EUT Serial # : EUT Config. :	HME Communicator (B COM6K F42M0018 Hopping	EUT Voltage : Battery EUT Frequency :						
Specification : Loop Ant. #: Bicon Ant.#:	CFR47 Part 15, S NA 114_3m	ubpart B, Cla Temp. (°(Humidity (%	C): 17	-	Distance	e > 1000		<u>3 m</u>
Log Ant.#: DRG Ant. # Cable LF#: Cable HF#: Preamp LF#: Preamp HF#		Spec Analyze alyzer Display	r #: 898/899 / #: N/A r #: 898/899 r #: N/A	 			Quasi-F Average	Video Bandwidth -
Meas. Meter Freq. Reading (MHz) Vertical	Meter Det. Reading Horizontal	EUT An Side Heig F/L/R/B m	ht Reading	Corrected Reading (dBµV/m)	Spec. limit (dBµV/m)	CR/SL Diff. (dB)	Pass Fail	Comment
217.7 6.6 228.2 6.4 259.2 7.2 362.9 10.0 414.4 6.5 445.9 6.2	6.6 Q 11.7 Q 6.7 Q 11.9 Q 6.5 Q 7.2 Q	1.0 1.0 1.0 R 1.0 R 1.0 1.0	0 11.7 0 7.2 8 11.9 0 6.5	19.9 24.7 21.3 29.5 25.2 26.2	46.0 46.0 46.0 46.0 46.0 46.0 46.0	-26.1 -21.3 -24.7 -16.5 -20.8 -19.8	Pass Pass Pass Pass Pass Pass	

FCC ID: BYMCOM6K IC: 1860A-COM6K

 \bigcirc

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Nemko USA, Inc.							San Diego Headquarters: 11696 Sorrento Valley Rd. San Diego, CA 92121 Tel: (858) 755-5525 Fax: (858) 452-1810				
				R	adiate	d Emiss	ions Da	ta			
Job # : NEX #:		63825-1 159599				11/3/2010 2:30PM ESC	-	Page	1	of	1
Client N EUT Na	me :	HME Communic	cator (B	elt Pac)			-	EUT Vol EUT Fre	•	:	Battery
EUT Mo EUT Se EUT Co	rial # :	F42M0018	DM6K 2M0018 w, Mid and High Channels			Phase:				X 3 m	
Specific Loop An Bicon A Log Ant DRG An Cable L Cable H Preamp Preamp	nt. #: .nt.#: .#: ht. # F#: IF#: LF#:	CFR47 Pa NA NA 877 NA 40ft_blue NA 317	S	Tem Humid Spec Ana alyzer Di Peak De	np. (°C) : lity (%) : alyzer #: isplay #:	33 13 835 N/A 835 N/A	- - - - -				RBW: <u>1 MHz</u> Video Bandwidth 3 MHz e = Peak- DCCF
Meas. Freq. (MHz)	Meter Reading Vertical	Meter Reading Horizontal	Det.	EUT Side F/L/R/B	Ant. Height m	Max. Reading (dBµV)	Corrected Reading (dBµV/m)	Spec. limit (dBµV/m)	CR/SL Diff. (dB)	Pass Fail	Comment
	70.0	74.5	Р	BR	1.0	78.2	115.1				@100kHz RBW
2441.7	78.2			DIX			115.1				0.00
2441.7 2400.0 2400.0	30.2 10.2	30.2 10.2	P A		1.0 1.0	30.16 10.16	67.0 47.0	95.1 75.1	-28.0 -28.0	Pass Pass	@100kHz RBW @100kHz RBW
2400.0	30.2	30.2			1.0		67.0				@100kHz RBW
2400.0 2400.0	30.2 10.2	30.2 10.2	A		1.0 1.0	10.16	67.0 47.0	75.1	-28.0	Pass	@100kHz RBW
2400.0 2400.0 2483.5 2483.5 4803.8	30.2 10.2 50.8 30.8 47.8	30.2 10.2 55.0 35.0 47.0	A P A P		1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8	67.0 47.0 58.7 38.7 59.9	75.1 74.0 54.0 74.0	-28.0 -15.3 -15.3 -14.0	Pass Pass Pass Pass	@100kHz RBW @100kHz RBW Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 4803.8	30.2 10.2 50.8 30.8 47.8 27.8	30.2 10.2 55.0 35.0 47.0 27.0	A P A P A		1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8	67.0 47.0 58.7 38.7 59.9 39.9	75.1 74.0 54.0 74.0 54.0	-28.0 -15.3 -15.3 -14.0 -14.0	Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW Noise Floor Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8	30.2 10.2 50.8 30.8 47.8 27.8	30.2 10.2 55.0 35.0 47.0	A P A P		1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8	67.0 47.0 58.7 38.7 59.9	75.1 74.0 54.0 74.0	-28.0 -15.3 -15.3 -14.0	Pass Pass Pass Pass	@100kHz RBW @100kHz RBW Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 4803.8 7205.8 7205.8 7205.8	30.2 10.2 50.8 30.8 47.8 27.8 45.4 25.4 46.6	30.2 10.2 55.0 35.0 47.0 27.0 45.7 25.7 46.4	A P A P A P		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8 45.7 25.7 46.6	67.0 47.0 58.7 38.7 59.9 39.9 65.2	75.1 74.0 54.0 74.0 54.0 74.0	-28.0 -15.3 -15.3 -14.0 -14.0 -8.8	Pass Pass Pass Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW Moise Floor Noise Floor Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 4803.8 7205.8 7205.8 7205.8 4883.3 4883.3	30.2 10.2 50.8 30.8 47.8 27.8 45.4 25.4 46.6 26.6	30.2 10.2 55.0 35.0 47.0 27.0 45.7 25.7 46.4 26.4	A P A P A P A P A		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8 45.7 25.7 46.6 26.6	67.0 47.0 58.7 38.7 59.9 39.9 65.2 45.2 58.7 38.7	75.1 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-28.0 -15.3 -15.3 -14.0 -14.0 -8.8 -8.8 -8.8 -15.2 -15.2	Pass Pass Pass Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW @100kHz RBW Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 4803.8 7205.8 7205.8 7205.8 4883.3	30.2 10.2 50.8 30.8 47.8 27.8 45.4 25.4 46.6 26.6	30.2 10.2 55.0 35.0 47.0 27.0 45.7 25.7 46.4	A P A P A P A P		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8 45.7 25.7 46.6	67.0 47.0 58.7 38.7 59.9 39.9 65.2 45.2 58.7	75.1 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-28.0 -15.3 -15.3 -14.0 -14.0 -8.8 -8.8 -8.8 -15.2	Pass Pass Pass Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 4803.8 7205.8 7205.8 7205.8 4883.3 4883.3 7325.0 7325.0	30.2 10.2 50.8 30.8 47.8 27.8 45.4 25.4 46.6 26.6 45.0 25.0	30.2 10.2 55.0 35.0 47.0 27.0 45.7 25.7 46.4 26.4 45.2 25.2	P A A P A A P A A P A		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8 45.7 25.7 46.6 26.6 45.2 25.2	67.0 47.0 58.7 38.7 59.9 39.9 65.2 45.2 45.2 58.7 38.7 64.9 44.9	75.1 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-28.0 -15.3 -15.3 -14.0 -14.0 -8.8 -8.8 -15.2 -15.2 -9.1 -9.1	Pass Pass Pass Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW @100kHz RBW Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 7205.8 7205.8 7205.8 4883.3 4883.3 7325.0	30.2 10.2 50.8 30.8 47.8 27.8 45.4 25.4 46.6 26.6 45.0 25.0 47.1	30.2 10.2 55.0 35.0 47.0 27.0 45.7 25.7 46.4 26.4 45.2	P A P A P A A P A A P		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8 45.7 25.7 46.6 26.6 45.2	67.0 47.0 58.7 38.7 59.9 39.9 65.2 45.2 45.2 58.7 38.7 64.9	75.1 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-28.0 -15.3 -15.3 -14.0 -14.0 -8.8 -8.8 -15.2 -15.2 -9.1	Pass Pass Pass Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW @100kHz RBW Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor
2400.0 2400.0 2483.5 2483.5 4803.8 4803.8 7205.8 7205.8 7205.8 4883.3 7325.0 7325.0 7325.0	30.2 10.2 50.8 30.8 47.8 45.4 25.4 46.6 26.6 45.0 25.0 47.1 27.1 45.3	30.2 10.2 55.0 35.0 47.0 27.0 45.7 25.7 46.4 26.4 45.2 25.2 47.3	P A P A P A P A P A P A		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.16 55.0 35.0 47.8 27.8 45.7 25.7 46.6 26.6 45.2 25.2 47.3	67.0 47.0 58.7 38.7 59.9 39.9 65.2 45.2 58.7 38.7 64.9 44.9 59.6	75.1 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-28.0 -15.3 -15.3 -14.0 -14.0 -8.8 -8.8 -15.2 -15.2 -9.1 -9.1 -9.1 -14.4	Pass Pass Pass Pass Pass Pass Pass Pass	@100kHz RBW @100kHz RBW @100kHz RBW Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor Noise Floor

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

7.2.3 (RSS-Gen) – Receiver Spurious Emission Limits

Spurious emissions shall comply with the limits of Table 1 (see Section 6).Spurious Frequency
(MHz)Field Strength
(microvolt/m at 3 metres)30-8810088-216150216-960200Above 960500

Test Conditions:

Sample Number:	COM6K	Temperature:	17°C
Date:	November 3, 2010	Humidity:	48%
Modification State:	Receive Mode	Tester:	FSCustodio
		Laboratory:	SOATS

Test Results:

See attached plot.

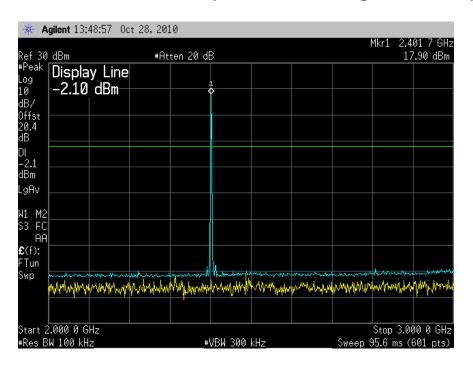
Additional Observations:

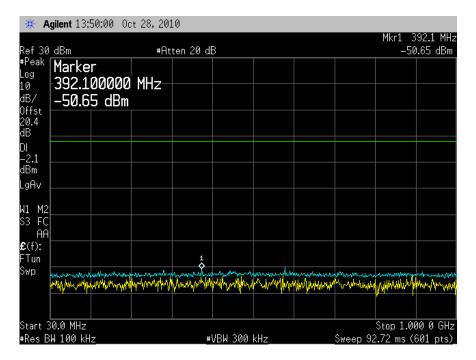
- This test was performed a using fully charged battery.
- The Spectrum was searched from 30MHz to 8GHz.
- No spurious detected above 1GHz..

FCC ID: BYMCOM6K IC: 1860A-COM6K

 \bigcirc

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

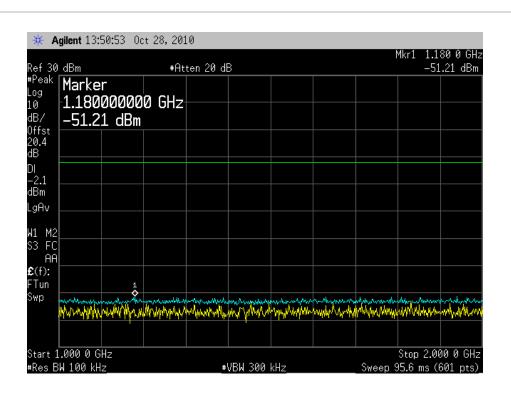

Nemko USA, Inc.							San Diego Headquarters: 11696 Sorrento Valley Rd. San Diego, CA 92121 Tel: (858) 755-5525 Fax: (858) 452-1810				
				R	adiate	d Emiss	ions Da	ta			
Job # : NEX #:		63825-1 159599			Time :	11/3/2010 9:30AM FSC	-	Page	1	of	1
Client Na EUT Nan EUT Moo EUT Seri EUT Con	ne : del # : ial # :	HME Communio COM6K F42M0018 Receive M	3	elt Pac)			- - - -	EUT Vol EUT Fre Phase: NOATS SOATS Distance	quency e < 1000) MHz:	Battery X 3 m
Specifica Loop Ant Bicon Art Log Ant DRG Ant Cable LF Cable HF Preamp I Preamp I	t. #: ht.#: #: t. # f#: F#: LF#:	CFR47 Pa NA 114_3m 110_3m 877 SOATS SOATS NA NA	S Ana	Tem Humid Spec Ana alyzer Di Peak De	p. (°C) : ity (%) : alyzer #: splay #:	17 48 898/899 N/A 898/899 N/A	- - - - -	Distance	2 7 1000	Peak Quasi-F Averag	Video Bandwidth -
Meas. Freq. (MHz)	Meter Reading Vertical	Meter Reading Horizontal	Det.	EUT Side F/L/R/B	Ant. Height m	Max. Reading (dBµV)	Corrected Reading (dBµV/m)	Spec. limit (dBµV/m)	CR/SL Diff. (dB)	Pass Fail	Comment
259.1 362.9 373.2 404.4 445.5 871.2	6.3 9.7 7.3 7.0 6.3 11.4	6.2 11.4 11.8 7.4 6.4 11.5		BL FR F	1.0 2.5 1.8 2.1 1.0 1.0	6.3 11.4 11.8 7.4 6.4 11.5	20.4 29.0 29.6 26.3 25.4 39.0	46.0 46.0 46.0 46.0 46.0 46.0	-25.6 -17.0 -16.4 -19.7 -20.6 -7.0	Pass Pass Pass Pass Pass Pass	Ambient Noise Ambient Noise

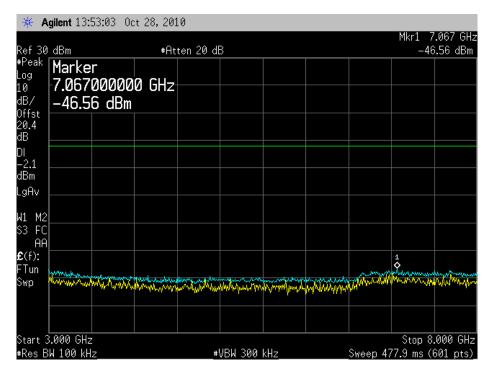

www.nemko.com

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Appendix B: Section 15.247(d) – Spurious RF Conducted Emissions Test Results (Low, Mid and High Channels)

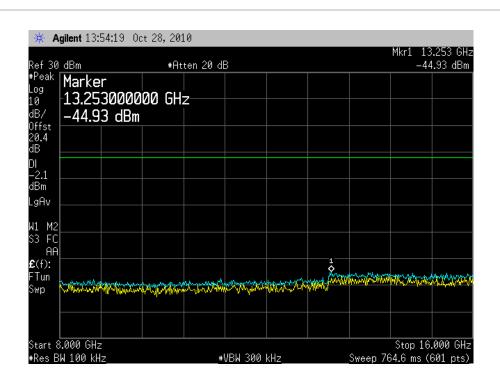


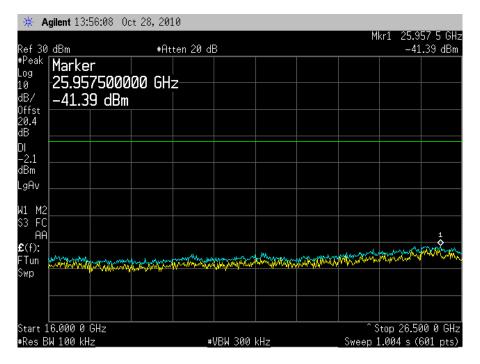

LOW Channel

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

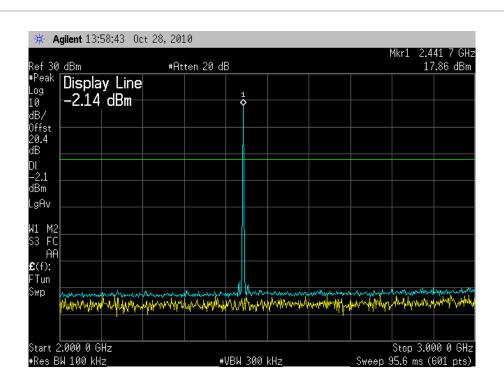



LOW Channel

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

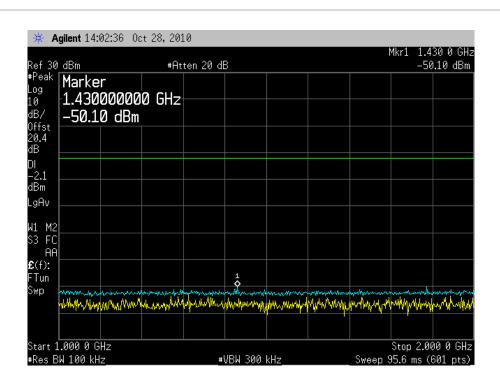


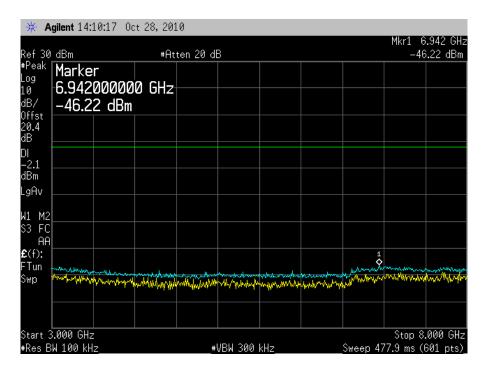
LOW Channel

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247



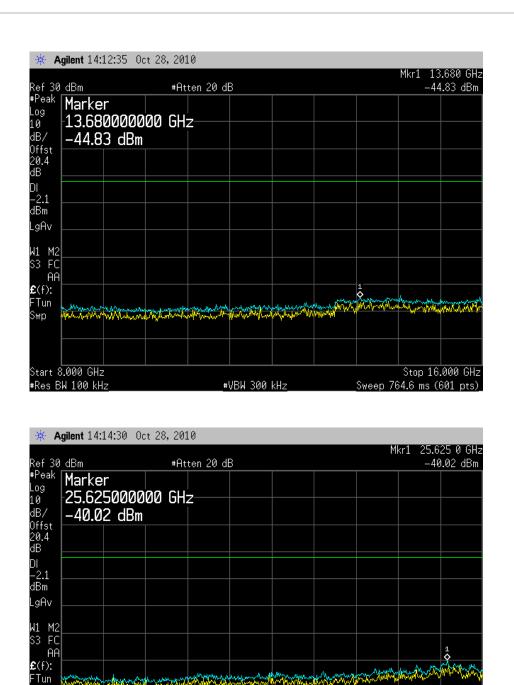

🔆 Agilent 13:59:53 Oc	t 28, 2010	0						
D.(20 dDm	*0++		>					34.2 MHz
Ref 30 dBm #Peak Morkor	#Htte	en 20 dE	>				- 36).66 dBm
10 434.200000	MHz							
^{dB/} –50.66 dBm								
Offst								
20.4 dB								
DI								
-2.1								
dBm								
LgAv								
W1 M2 S3 FC								
AA								
£ (f):								
FTun			1					
SWP monormonal Million	manna	how have no	Acres 16 Acres	www.	mmmm	monthing	time when the	and a survey was
manyanalantahan	hliphydraetharyd	program April	MANAMAN	mental and	manyruhawy	WWWWWW	MANAMAN	n thing the state of the state
Start 30.0 MHz							Stop 1.00	00 0 GHz
#Res BW 100 kHz		#\	/BW 300	kHz		Sweep 92	2.72 ms (8	501 pts)_

MID Channel

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

MID Channel


FCC ID: BYMCOM6K IC: 1860A-COM6K

бwр

Start 16.000 0 GHz

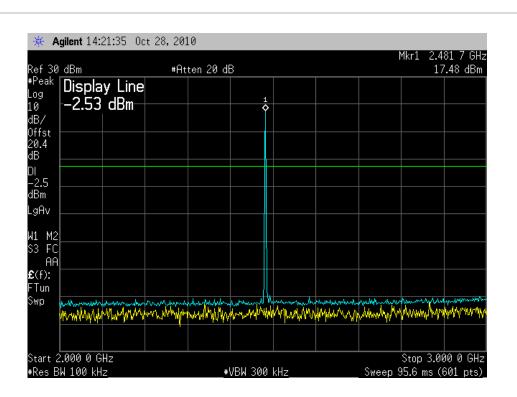
#Res BW 100 kHz

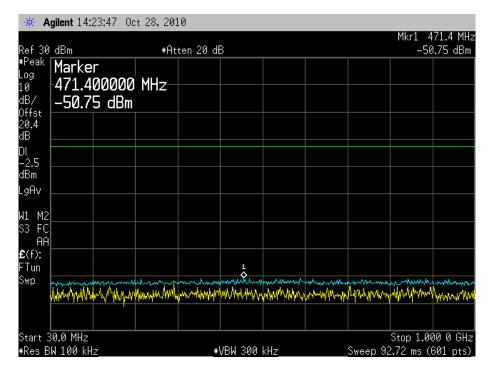
Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

www.nemko.com

MID Channel

#VBW 300 kHz

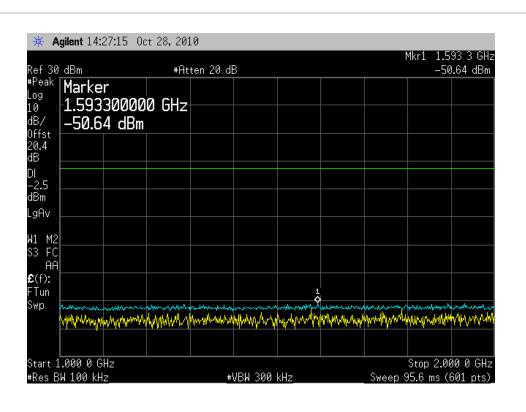

Stop 26.500 0 GHz

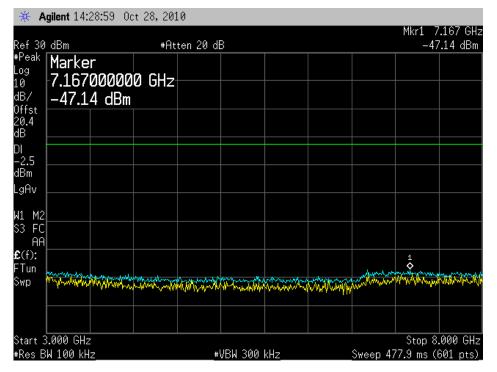

Sweep 1.004 s (601 pts)

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

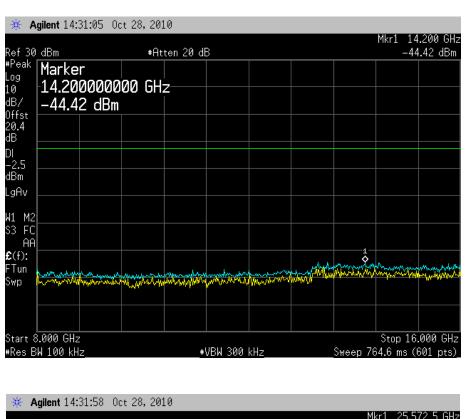



HIGH Channel

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

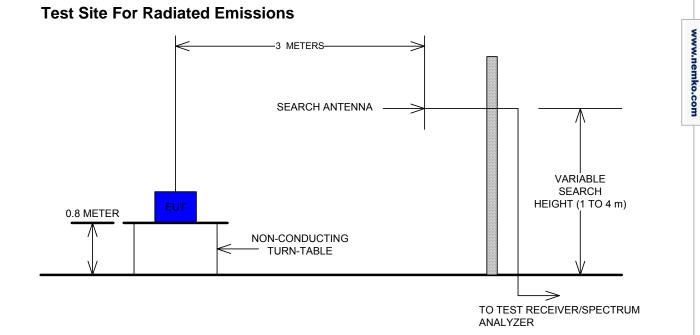


HIGH Channel

www.nemko.com

FCC ID: BYMCOM6K IC: 1860A-COM6K

Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247



Aglient 14:51:56 U	UT 20, 2010			
			Μ	kr1 25.572 5 GHz
Ref 30 dBm	#Atten 20 d	IB		-40.82 dBm
*Peak Log 10 25.5725000 dB/ 0ffst -40.82 dBm				
dB				
DI				
dBm LgAv				
W1 M2				
S3 FC AA				
£(f): FTun WWW.work.			township was the second	and a construction of the
Swp				
Start 16.000 0 GHz		^		top 26.500 0 GHz
#Res BW 100 kHz	ŧ	ŧVBW 300 kHz	Sweep :	1.004 s (601 pts)_

HIGH Channel

FCC ID: BYMCOM6K IC: 1860A-COM6K Report Number: 2010 10159599 COM FCC 15.247 Specification: FCC Part 15 Subpart C, 15.247

Appendix C: Block Diagram of Test Setups

Page 54 of 54