RF Exposure Lab

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 737-3131 • FAX (760) 737-9131 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

HM Electronics, Inc. 14110 Stowe Drive Poway, CA 92064 Dates of Test: Test Report Number: S

May 23, 2011 SAR.20110506 Revision B

FCC ID:	BYMC61
IC Certificate:	1860A-C61
Model(s):	COM6100
Test Sample:	Engineering Unit same as Production
Serial No.:	F13N0046
Equipment Type:	Wireless Body Worn Transceiver
Classification:	Portable Transmitter Next to Body
TX Frequency Range:	2401 – 2482 MHz
Frequency Tolerance:	± 25 ppm
Maximum RF Output:	2450 Mhz – 18.1 dBm Peak Conducted
Signal Modulation:	GFSK
Antenna Type (Length):	Internal (HM Electronics, Inc., P/N Inv F PCB)
Battery:	Std. (HM Electronics, Inc, P/N 104G036) Battery Pack
Application Type:	Certification
FCC Rule Parts:	Part 15C, Sec. 15.247
Industry Canada:	RSS-102, Safety Code 6
Maximum SAR Value:	0.250 W/kg
Separation Distance:	0 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	3
SAR Definition [5]	3
2. SAR Measurement Setup	
Robotic System	4
System Hardware	
System Description	
E-Field Probe ALS-E-020	
3. Robot Specifications	
4. Probe and Dipole Calibration	
5. Phantom & Simulating Tissue Specifications	
SAM Phantom	
Brain & Muscle Simulating Mixture Characterization	
Device Holder	
6. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	
7. Measurement Uncertainty	
8. System Validation	
Tissue Verification	
Test System Verification	
9. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
SAR Data Summary – 2450 MHz Body	
10. Test Equipment List	
11. Conclusion	-
12. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	.87

1. Introduction

This measurement report shows compliance of the HM Electronics, Inc. Model COM6100 Wireless Body Worn Transceiver FCC ID: BYMC61 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 1860A-C61 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (*dW*) absorbed by (dissipated in) an incremental mass (*dm*) contained in a volume element (*dV*) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4[™] 2.66 GHz PC with Windows XP Pro[™], and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

RF Exposure Lab

FCC ID: BYMC61

The Aprel E-Field probe is evaluated to establish the diode compression point.

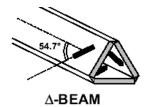
A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

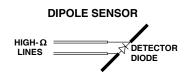
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:


$$f_{3}(x, y, z) = A \frac{a^{2}}{\frac{a^{2}}{4} + {x'}^{2} + {y'}^{2}} \left(e^{-\frac{2z}{a}} + \frac{a^{2}}{2(a+2z)^{2}} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe ALS-E-020

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is ± 0.05 mm and the precision of the APREL bottom detection device is ± 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface ± 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location to be at 2.0 mm above the phantom surface. Therefore, the phantom surface ± 0.1 mm for each SAR location for frequencies below 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices ≥ 3 GHz and ≤ 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: Repeatability: No. of axis: ThermoCRS, Robot Model: Robocomm 3 0.05 mm 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Clock Speed: Operating System: Pentium 4™ 2.66 GHz Windows XP Pro™

Data Converter

Features: Software: Signal Amplifier, End Effector, DAC ALSAS 10-U Software

E-Field Probe

Model: Serial Number: Construction: Frequency: ALS-E-020 RFE-217 Triangular Core Touch Detection System 10MHz to 6GHz

Phantom

Phantom:

Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a glycol based chemical and saline solution. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters.

			Simulating Tissue
Ingredients		2450 MHz Body	
Mixing Percentage			
Wa	iter	73.20	
Su	gar	0.00	
Salt			0.04
HEC			0.00
Bacte	ricide	0.00	
DGBE			26.70
Dielectric Constant Target		52.70	
Conductivity (S	5/m)	Target	1.95

Table 5.1 Typical Composition of Ingredients for Tissue

Device Holder

In combination with the SAM phantom, the scissor jack mounting device with 6 inches of Styrofoam enables the ability to mount the device under test to the uni-phantom. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications.

RF Exposure Lab

6. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

Table 6.1 Human Exposure Limits

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i 1 (10-g)	Standard Uncertainty (1-g) %	Standard Uncertai nty (10- g) %	Vi
Measurement System								
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	∞
Axial Isotropy	3.7	rectangular	√3	0.7	0.7	1.5	1.5	∞
Hemispherical Isotropy	10.9	rectangular	√3	0.7	0.7	4.4	4.4	∞
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	∞
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	∞
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	∞
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0	∞
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner Mech. Restriction	0.4	rectangular	√3	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7	∞
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1	8
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0	7
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0	2
Drift of Output Power	4.2	rectangular	√3	1	1	2.4	2.4	∞
Phantom and Setup								
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0	∞
Liquid Conductivity(target)	5.0	rectangular	√3	0.7	0.5	2.0	1.4	∞
Liquid Conductivity(meas.)	0.5	normal	1	0.7	0.5	0.4	0.3	5
Liquid Permittivity(target)	5.0	rectangular	√3	0.6	0.5	1.7	1.4	∞
Liquid Permittivity(meas.)	1.0	normal	1	0.6	0.5	0.6	0.5	5
Combined Uncertainty		RSS	1			9.6	9.4	>500
Combined Uncertainty (coverage factor=2)		Normal(k=2)				19.1	18.8	>500

8. System Validation

Tissue Verification

2450 MHz B		MHz Body	
Date(s)		May	23, 2011
Liquid Temperature (°C)	20.0	Target	Measured
Dielectric Constant: ε	52.70	52.51	
Conductivity: σ	1.95	1.98	

Table 8.1 Measured Tissue Parameters

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 8.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)
23-May-201	1 2450 MHz	51.50	51.30	Body	- 0.39

See Appendix A for data plots.

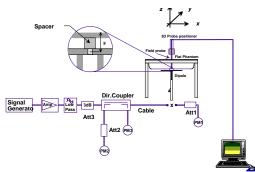


Figure 8.1 Dipole Validation Test Setup

9. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The device is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated.

The unit was required to be disassembled to measure the conducted power. To insure that the integrity of the device was not compromised, the power measurements were conducted at the completion of all testing.

The device was tested on the back, front and side which was closest to the user.

Conducted Transmit Power Measurements					
Freq	Modulation	Antenna	Power		
2401.920	GFSK	Ant 0	18.1		
2441.664	GFSK	Ant 0	18.1		
2481.408	GFSK	Ant 0	17.9		
2401.920	GFSK	Ant 1	18.0		
2441.664	GFSK	Ant 1	18.0		
2481.408	GFSK	Ant 1	17.7		

SAR Data Summary – 2450 MHz Body

MEASUREMENT RESULTS							
Side	Antenna	Frequency		Modulation	End Power		SAR
U.U.U	,u	MHz	Ch.		(dBm)	Battery	(W/kg)
		2401.920	0	GFSK	18.1	Standard	0.213
	Ant 0	2441.664	23	GFSK	18.1	Standard	0.211
Front		2481.408	46	GFSK	17.9	Standard	0.233
FIOII		2401.920	0	GFSK	18.0	Standard	0.250
	Ant 1	2441.664	23	GFSK	18.0	Standard	0.248
		2481.408	46	GFSK	17.7	Standard	0.205
		2401.920	0	GFSK	18.1	Standard	0.133
	Ant 0	2441.664	23	GFSK	18.1	Standard	0.111
Back		2481.408	46	GFSK	17.9	Standard	0.129
Dack		2401.920	0	GFSK	18.0	Standard	0.148
	Ant 1	2441.664	23	GFSK	18.0	Standard	0.142
		2481.408	46	GFSK	17.7	Standard	0.152
		2401.920	0	GFSK	18.1	Standard	0.118
End	Ant 0	2441.664	23	GFSK	18.1	Standard	0.135
		2481.408	46	GFSK	17.9	Standard	0.131
	Side Ant 1	2401.920	0	GFSK	18.0	Standard	0.122
Side		2441.664	23	GFSK	18.0	Standard	0.126
		2481.408	46	GFSK	17.7	Standard	0.134

Muscle 1.6 W/kg (mW/g) averaged over 1 gram

- 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement
- Phantom Configuration SAR Configuration
- 3. Test Signal Call Mode
- 4. Test Configuration
- 5. Tissue Depth 15.1 cm

Jay M. Moulton Vice President

- Left Head

Uniphantom

Right Head

Base Station Simulator

 \square Without Belt Clip \square N/A

 \boxtimes Body Head Test Code With Belt Clip

10. Test Equipment List

Table 10.1 Equipment Specifications				
Туре	Calibration Due Date	Serial Number		
ThermoCRS Robot	N/A	RAF0338198		
ThermoCRS Controller	N/A	RCF0338224		
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405		
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N		
Aprel E-Field Probe ALS-E020	09/22/2011	RFE-215		
Aprel E-Field Probe ALS-E030	07/14/2011	E030-001		
Aprel Dummy Probe	N/A	023		
Aprel Left Phantom	N/A	RFE-267		
Aprel Right Phantom	N/A	RFE-268		
Aprel UniPhantom	N/A	RFE-273		
Aprel Validation Dipole ALS-D-450-S-2 Head	01/12/2012	RFE-362		
Aprel Validation Dipole ALS-D-450-S-2 Body	01/19/2012	RFE-362		
Aprel Validation Dipole ALS-D-750-S-2 Head	01/14/2012	177-00501		
Aprel Validation Dipole ALS-D-750-S-2 Body	11/15/2011	177-00501		
Aprel Validation Dipole ALS-D-835-S-2 Head	01/14/2012	180-00561		
Aprel Validation Dipole ALS-D-835-S-2 Body	11/16/2011	180-00561		
Aprel Validation Dipole ALS-D-900-S-2 Head	01/12/2012	RFE-275		
Aprel Validation Dipole ALS-D-900-S-2 Body	11/19/2011	RFE-275		
Aprel Validation Dipole ALS-D-300-S-2 Head	01/15/2012	210-00713		
Aprel Validation Dipole ALS-D-1900-S-2 Head	11/16/2011	210-00713		
Aprel Validation Dipole ALS-D-1900-0-2 Body	01/12/2012	RFE-278		
Aprel Validation Dipole ALS-D-2450-S-2 Read	11/18/2011	RFE-278		
Aprel Validation Dipole RFE-D-2600-S-2 Body	01/18/2012	RFE-121		
Aprel Validation Dipole RFE-D-2000-S-2 Body	01/12/2012	235-00801		
	02/09/2012	235-00801		
Aprel Validation Dipole RFE-D-BB-S-2 Body				
Agilent (HP) 437B Power Meter	03/30/2012	3125U08837		
Agilent (HP) 8481B Power Sensor Agilent N1911A Power Meter	03/30/2012	3318A05384 GB45100254		
	03/30/2012			
Agilent N1922A Power Sensor	03/30/2012	MY45240464		
Advantest R3261A Spectrum Analyzer	03/30/2012	31720068		
Agilent (HP) 8350B Signal Generator	03/31/2012	2749A10226		
Agilent (HP) 83525A RF Plug-In	03/31/2012	2647A01172		
Agilent (HP) 8753C Vector Network Analyzer	03/30/2012	3135A01724		
Agilent (HP) 85047A S-Parameter Test Set	03/31/2012	2904A00595		
Agilent (HP) 8960 Base Station Sim.	03/25/2012	MY48360364		
R&S CMW500 Wideband Radio Comm. Box	08/14/2011	101383		
Aprel Dielectric Probe Assembly	N/A	0011		
Head Equivalent Matter (450 MHz)	N/A	N/A		
Head Equivalent Matter (835/900 MHz)	N/A	N/A		
Head Equivalent Matter (1900 MHz)	N/A	N/A		
Head Equivalent Matter (2450 MHz)	N/A	N/A		
Body Equivalent Matter (450 MHz)	N/A	N/A		
Body Equivalent Matter (750 MHz)	N/A	N/A		
Body Equivalent Matter (835/900 MHz)	N/A	N/A		
Body Equivalent Matter (1900 MHz)	N/A	N/A		
Body Equivalent Matter (2450 MHz)	N/A	N/A		
Body Equivalent Matter (2600 MHz)	N/A	N/A		
Body Equivalent Matter (5200 MHz)	N/A	N/A		
Body Equivalent Matter (5800 MHz)	N/A	N/A		

11. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

12. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.

[5] IEEE Standard 1528 – 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.

[6] Industry Canada, RSS – 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), November 2005.

[7] Industry Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 1999.

FCC ID: BYMC61

Appendix A – System Validation Plots and Data

*******	*****	*****	****	* * * * * * * * * * * * *			
Test Result for UIM Dielectric Parameter							
Mon 23/May/2011 06:04:26							
Freq Frequ	lency(GHz)						
FCC eH	FCC Bulleti	n 65 Supplem	ent C (June	e 2001) Limits for Head Epsilon			
FCC_sH	FCC Bulleti	n 65 Supplem	ent C (June	2001) Limits for Head Sigma			
FCC_eB	FCC Limits	for Body Eps	ilon				
FCC_sB	FCC Limits	for Body Sig	ma				
Test_e	Epsilon of	MIU					
Test_s	Sigma of UI						
********	******	*****	****	* * * * * * * * * * * * *			
Freq	FCC_eB	FCC_sB	Test_e	Test_s			
2.4200	52.74	1.92	52.58	1.92			
2.4300	52.73	1.93	52.56	1.95			
2.4400			52.53				
2.4500		1.95	52.51	1.98			
2.4600	52.69	1.96	52.50	1.99			
2.4700	52.67	1.98	52.47	2.00			
2.4800	52.66	1.99	52.45	2.01			

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 06:13:22 AM End Time : 23-May-2011 06:26:16 AM Scanning Time : 774 secs Product Data Device Name : Validation Serial No. : 2450 Type : Dipole Model : ALS-D-2450-S-2 Frequency : 2450.00 MHz Product Data Max. Transmit Pwr : 0.1 W Drift Time: 0 min (s)Length: 51.5 mmWidth: 3.6 mmDepth: 30.4 mmAntenna Type: InternalOrientation: Touch Power Drift-Start : 6.390 W/kg Power Drift-Finish: 6.601 W/kg Power Drift (%) : 3.301 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

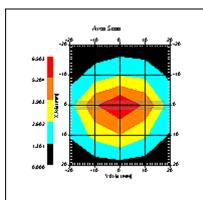
 Humidity
 : 45.00 RH%

 Epsilon
 : 52.51 F/m

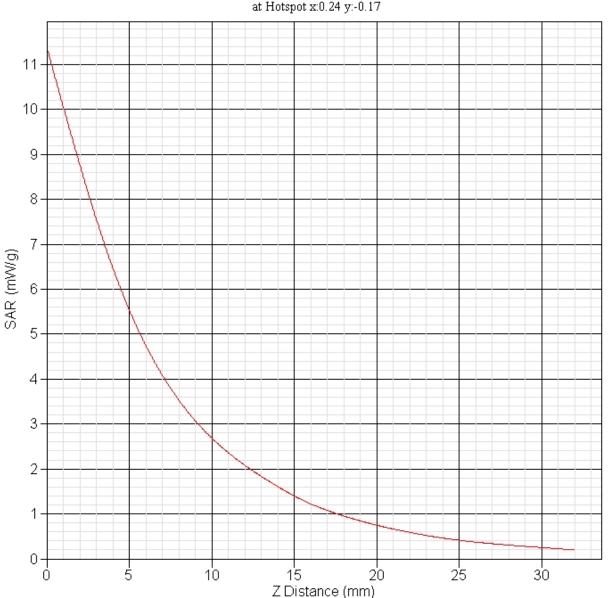
 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 1 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset


© 2011 RF Exposure Lab, LLC Page 19 of 88 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

FCC ID: BYMC61


Measurement Data	
Crest Factor	: 1
Scan Type	: Complete
Tissue Temp.	: 20.00 °C
Ambient Temp.	: 23.00 °C
Set-up Date	: 23-May-2011
Set-up Time	: 7:40:13 AM
Area Scan	: 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan	: 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data	
DUT Position	: Touch

DUT Position	:	Τοι	ıch
Separation	:	10	mm
Channel	:	Mic	ł

1 gra	m SAF	valı ک	le	:	5.130	W/kg
10 gr	am SA	AR val	Lue	:	2.336	W/kg
Area	Scan	Peak	SAR	:	6.503	W/kg
Zoom	Scan	Peak	SAR	:	11.390) W/kg

SAR-Z Axis at Hotspot x:0.24 y:-0.17

Appendix B – SAR Test Data Plots

Note: In all data sheets in Appendix B, the frequency noted in the 'Product Data' section is the frequency band which the device was transmitting. This frequency does not refer to the actual frequency and channel of the test. The channel is listed in the 'Other Data' section of the data sheet as Low, Mid or High. The actual test frequency is listed in Section 10 in each of the data summary sheets.

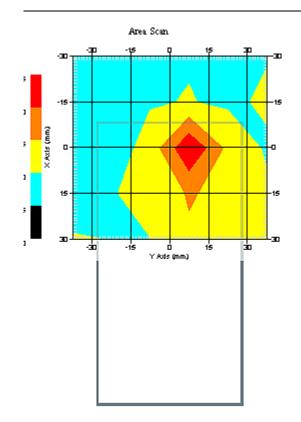
By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 07:43:00 AM End Time : 23-May-2011 08:00:19 AM Scanning Time : 1039 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 0 Orientation : Front Power Drift-Start : 0.168 W/kg Power Drift-Finish: 0.161 W/kg Power Drift (%) : -4.207 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m


 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

FCC ID: BYMC61

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Front : 0 mm : Low

1 gram SAR value : 0.213 W/kg 10 gram SAR value : 0.145 W/kg Area Scan Peak SAR : 0.248 W/kg Zoom Scan Peak SAR : 0.370 W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 08:39:00 AM End Time : 23-May-2011 08:56:32 AM Scanning Time : 1052 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 0 Orientation : Front Power Drift-Start : 0.160 W/kg Power Drift-Finish: 0.157 W/kg Power Drift (%) : -1.810 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

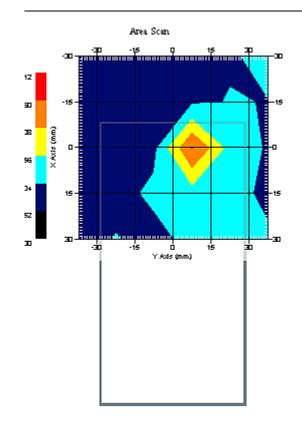
 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m


Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Manager Date

FCC ID: BYMC61

Measurement Data		
Crest Factor	:	20
Scan Type	:	Complete
Tissue Temp.	:	20.00 °C
Ambient Temp.	:	23.00 °C
Set-up Date	:	23-May-2011
Set-up Time	:	7:01:15 AM
Area Scan	:	5x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan	:	5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data		
DUT Position	:	Front
Separation	:	0 mm
Channel	:	Mid

1 gram SAR value : 0.211 W/kg 10 gram SAR value : 0.152 W/kg Area Scan Peak SAR : 0.262 W/kg Zoom Scan Peak SAR : 0.340 W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 09:35:57 AM End Time : 23-May-2011 09:53:26 AM Scanning Time : 1049 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 0 Orientation : Front Power Drift-Start : 0.164 W/kg Power Drift-Finish: 0.167 W/kg Power Drift (%) : 1.715 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

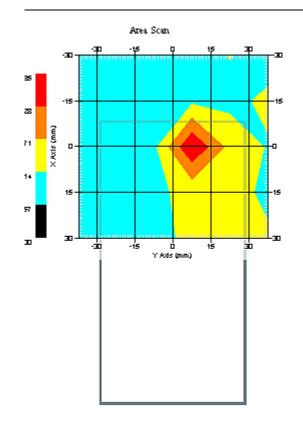
 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m


Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

© 2011 RF Exposure Lab, LLC Page 27 of 88 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

FCC ID: BYMC61

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Front : 0 mm : High

1 gram SAR value : 0.233 W/kg 10 gram SAR value : 0.153 W/kg Area Scan Peak SAR : 0.285 W/kg Zoom Scan Peak SAR : 0.320 W/kg

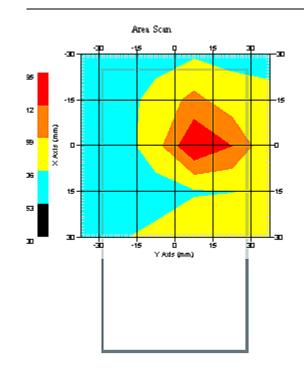
By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 12:52:49 PM End Time : 23-May-2011 01:10:52 PM Scanning Time : 1083 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Front Power Drift-Start : 0.150 W/kg Power Drift-Finish: 0.152 W/kg Power Drift (%) : 1.331 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

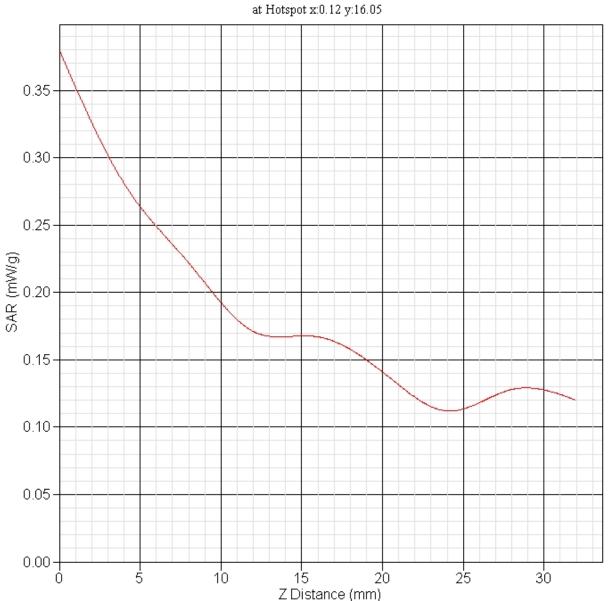
 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m


 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset


FCC ID: BYMC61

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Front : 0 mm : Low

1 gra	am SAB	۲ valu	le	:	0.250	W/kg
10 gi	cam SA	AR val	Lue	:	0.162	W/kg
Area	Scan	Peak	SAR	:	0.264	W/kg
Zoom	Scan	Peak	SAR	:	0.380	W/kg

SAR-Z Axis at Hotspot x:0.12 y:16.05

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 11:34:49 AM End Time : 23-May-2011 11:52:17 AM Scanning Time : 1048 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Front Power Drift-Start : 0.119 W/kg Power Drift-Finish: 0.123 W/kg Power Drift (%) : 3.365 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

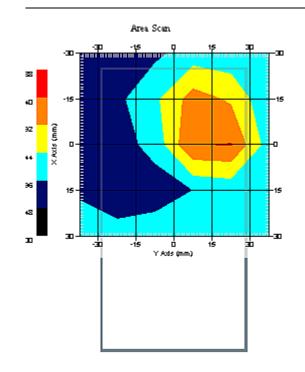
 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m


Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Manager Date

FCC ID: BYMC61

Measurement Data		
Crest Factor	:	20
Scan Type	:	Complete
Tissue Temp.	:	20.00 °C
Ambient Temp.	:	23.00 °C
Set-up Date	:	23-May-2011
Set-up Time	:	7:01:15 AM
Area Scan	:	5x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan	:	5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data		
DUT Position	:	Front
Separation	:	0 mm
Channel	:	Mid

1 gram SAR value : 0.248 W/kg 10 gram SAR value : 0.160 W/kg Area Scan Peak SAR : 0.242 W/kg Zoom Scan Peak SAR : 0.420 W/kg

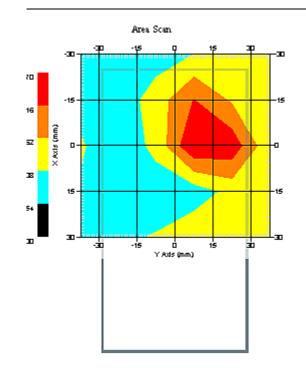
By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 10:35:43 AM End Time : 23-May-2011 10:53:56 AM Scanning Time : 1093 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Front Power Drift-Start : 0.136 W/kg Power Drift-Finish: 0.141 W/kg Power Drift (%) : 3.665 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m


 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

FCC ID: BYMC61

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Front : O mm : High

1 gra	am SAB	۲ valu	le	:	0.205	W/kg
10 gi	cam SA	AR val	Lue	:	0.144	W/kg
Area	Scan	Peak	SAR	:	0.270	W/kg
Zoom	Scan	Peak	SAR	:	0.330	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 07:24:04 AM End Time : 23-May-2011 07:41:13 AM Scanning Time : 1029 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 0 Orientation : Back Power Drift-Start : 0.123 W/kg Power Drift-Finish: 0.121 W/kg Power Drift (%) : -1.798 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

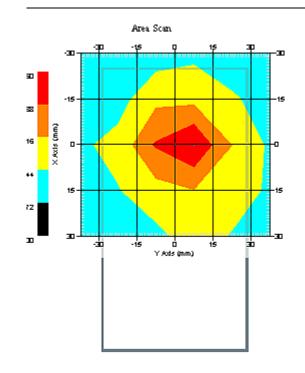
 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset


© 2011 RF Exposure Lab, LLC Page 36 of 88 This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

Manager Date

FCC ID: BYMC61

Measurement Data		
Crest Factor	:	20
Scan Type	:	Complete
Tissue Temp.	:	20.00 °C
Ambient Temp.	:	23.00 °C
Set-up Date	:	23-May-2011
Set-up Time	:	7:01:15 AM
Area Scan	:	5x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan	:	5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data		
DUT Position	:	Back
Separation	:	0 mm
Channel	:	Low

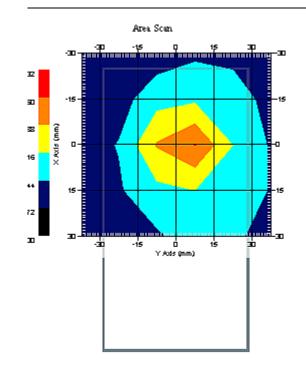
1 gram SAR value : 0.133 W/kg 10 gram SAR value : 0.102 W/kg Area Scan Peak SAR : 0.158 W/kg Zoom Scan Peak SAR : 0.030 W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 08:58:09 AM End Time : 23-May-2011 09:15:19 AM Scanning Time : 1030 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 0 Orientation : Back Power Drift-Start : 0.088 W/kg Power Drift-Finish: 0.090 W/kg Power Drift (%) : 2.275 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Back : 0 mm : Mid

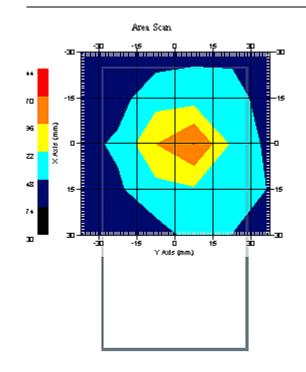
1 gra	am SAB	۲ valu	le	:	0.111	W/kg
10 gi	cam SA	AR val	Lue	:	0.101	W/kg
Area	Scan	Peak	SAR	:	0.152	W/kg
Zoom	Scan	Peak	SAR	:	0.230	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 09:17:03 AM End Time : 23-May-2011 09:34:26 AM Scanning Time : 1043 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 0 Orientation : Back Power Drift-Start : 0.097 W/kg Power Drift-Finish: 0.099 W/kg Power Drift (%) : 2.063 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Back : 0 mm : High

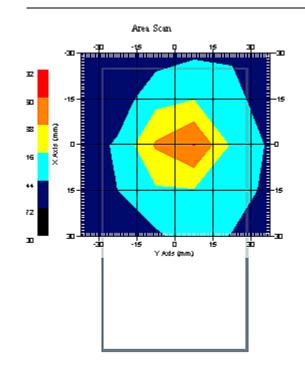
1 gra	am SAI	۲ valu	le	:	0.129	W/kg
10 gi	cam SA	AR val	Lue	:	0.105	W/kg
Area	Scan	Peak	SAR	:	0.151	W/kg
Zoom	Scan	Peak	SAR	:	0.220	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 12:14:54 PM End Time : 23-May-2011 12:31:51 PM Scanning Time : 1017 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Back Power Drift-Start : 0.077 W/kg Power Drift-Finish: 0.080 W/kg Power Drift (%) : 3.891 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Back : 0 mm : Low

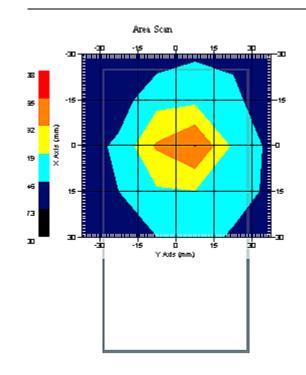
1 gra	am SAI	۲ valu	le	:	0.148	W/kg
10 gi	cam SA	AR val	Lue	:	0.121	W/kg
Area	Scan	Peak	SAR	:	0.147	W/kg
Zoom	Scan	Peak	SAR	:	0.140	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 11:15:31 AM End Time : 23-May-2011 11:32:55 AM Scanning Time : 1044 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Back Power Drift-Start : 0.118 W/kg Power Drift-Finish: 0.120 W/kg Power Drift (%) : 1.695 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Back : 0 mm : Mid

1 gra	am SAB	R valu	le	:	0.142	W/kg
10 gi	cam SA	AR val	Lue	:	0.116	W/kg
Area	Scan	Peak	SAR	:	0.168	W/kg
Zoom	Scan	Peak	SAR	:	0.140	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 10:55:25 AM End Time : 23-May-2011 11:12:54 AM Scanning Time : 1049 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Back Power Drift-Start : 0.122 W/kg Power Drift-Finish: 0.124 W/kg Power Drift (%) : 1.631 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

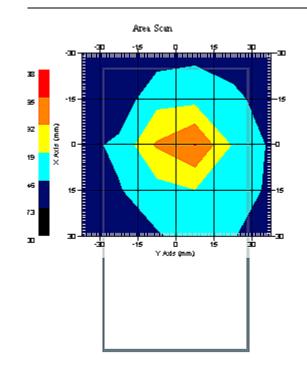
 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m


Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

FCC ID: BYMC61

Measurement Data		
Crest Factor	:	20
Scan Type	:	Complete
Tissue Temp.	:	20.00 °C
Ambient Temp.	:	23.00 °C
Set-up Date	:	23-May-2011
Set-up Time	:	7:01:15 AM
Area Scan	:	5x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan	:	5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data		
DUT Position	:	Back
Separation	:	0 mm
Channel	:	High

1 gram SAR value : 0.152 W/kg 10 gram SAR value : 0.120 W/kg Area Scan Peak SAR : 0.185 W/kg Zoom Scan Peak SAR : 0.140 W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 08:02:04 AM End Time : 23-May-2011 08:18:54 AM Scanning Time : 1010 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 25 mm Width : 58 mm Depth : 110 mm Antenna Type : Internal - Ant 0 Orientation : End Power Drift-Start : 0.094 W/kg Power Drift-Finish: 0.097 W/kg Power Drift (%) : 3.194 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

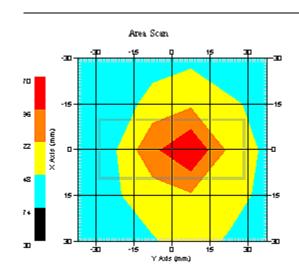
 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m

 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset


: Low

Manager Date

Channel

FCC ID: BYMC61

Measurement Data	
Crest Factor	20
Scan Type	Complete
Tissue Temp.	20.00 °C
Ambient Temp.	23.00 °C
Set-up Date	23-May-2011
Set-up Time	7:01:15 AM
Area Scan	5x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan	5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data	
DUT Position	End
Separation	0 mm

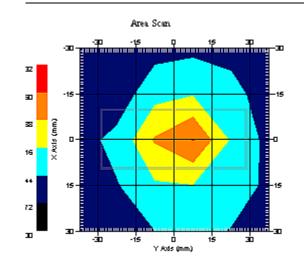
1 gram SAR value : 0.118 W/kg 10 gram SAR value : 0.108 W/kg Area Scan Peak SAR : 0.150 W/kg Zoom Scan Peak SAR : 0.150 W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 08:20:28 AM End Time : 23-May-2011 08:37:16 AM Scanning Time : 1008 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 25 mm Width : 58 mm Depth : 110 mm Antenna Type : Internal - Ant 0 Orientation : End Power Drift-Start : 0.086 W/kg Power Drift-Finish: 0.086 W/kg Power Drift (%) : 0.283 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: End : 0 mm : Mid

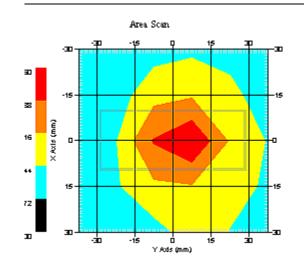
1 gra	am SAB	R valu	ıe	:	0.135	W/kg
10 gi	cam SA	AR val	Lue	:	0.116	W/kg
Area	Scan	Peak	SAR	:	0.162	W/kg
Zoom	Scan	Peak	SAR	:	0.200	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 09:57:02 AM End Time : 23-May-2011 10:13:50 AM Scanning Time : 1008 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 25 mm Width : 58 mm Depth : 110 mm Antenna Type : Internal - Ant 0 Orientation : End Power Drift-Start : 0.078 W/kg Power Drift-Finish: 0.078 W/kg Power Drift (%) : 0.581 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: End : 0 mm : High

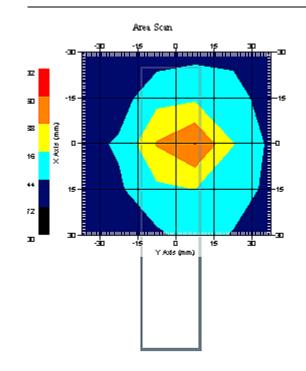
1 gram SAR value : 0.131 W/kg 10 gram SAR value : 0.116 W/kg Area Scan Peak SAR : 0.141 W/kg Zoom Scan Peak SAR : 0.240 W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 12:34:19 PM End Time : 23-May-2011 12:51:10 PM Scanning Time : 1011 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 25 mm Depth : 58 mm Antenna Type : Internal - Ant 1 Orientation : Side Power Drift-Start : 0.091 W/kg Power Drift-Finish: 0.090 W/kg Power Drift (%) : -1.099 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Side : 0 mm : Low

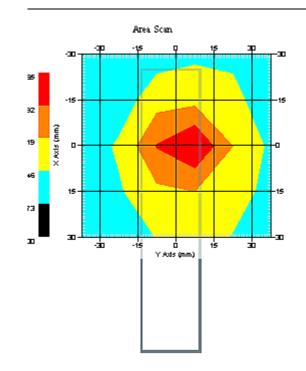
1 gra	am SAF	۲ valu	le	:	0.122	W/kg
10 gi	cam SA	AR val	Lue	:	0.111	W/kg
Area	Scan	Peak	SAR	:	0.154	W/kg
Zoom	Scan	Peak	SAR	:	0.140	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 11:55:54 AM End Time : 23-May-2011 12:12:45 PM Scanning Time : 1011 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 58 mm Depth : 25 mm Antenna Type : Internal - Ant 1 Orientation : Side Power Drift-Start : 0.100 W/kg Power Drift-Finish: 0.103 W/kg Power Drift (%) : 2.802 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Side : 0 mm : Mid

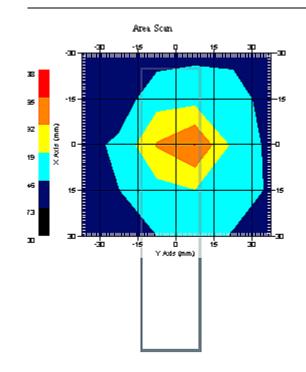
1 gra	am SAF	۲ valu	le	:	0.126	W/kg
10 gi	cam SA	AR val	Lue	:	0.101	W/kg
Area	Scan	Peak	SAR	:	0.155	W/kg
Zoom	Scan	Peak	SAR	:	0.160	W/kg

By Operator : Jay Measurement Date : 23-May-2011 Starting Time : 23-May-2011 10:16:39 AM End Time : 23-May-2011 10:33:57 AM Scanning Time : 1038 secs Product Data Device Name : HM Electronics Serial No. : F13N0046 · GFSK Product Data Mode : GFSK Model : COM6100 Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 110 mm Width : 25 mm Depth : 58 mm Antenna Type : Internal - Ant 1 Orientation : Side Power Drift-Start : 0.091 W/kg Power Drift-Finish: 0.088 W/kg Power Drift (%) : -3.794 Phantom DataName: APREL-UniType: Uni-PhantomSize (mm): 280 x 280 x 200Serial No.: System DefaultLocation: CenterDescription: Uni-Phantom Tissue Data Type : BODY Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date : 23-May-2011 : 20.00 °C Temperature : 20.00 °C

 Ambient Temp.
 : 23.00 °C

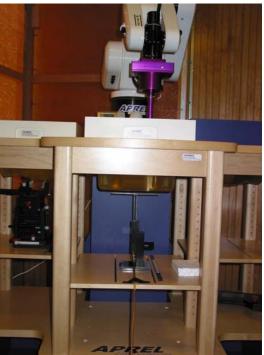
 Humidity
 : 46.00 RH%

 Epsilon
 : 52.51 F/m


 Sigma
 : 1.98 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data Name : Probe 215 - RFEL Model : E020 Type : E-Field Triangle Serial No. : 215 Last Calib. Date : 22-Sep-2010 Frequency : 2450.00 MHz Duty Cycle Factor: 20 Conversion Factor: 4.5 Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV : 1.56 mm Offset


Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Set-up Date Set-up Time Area Scan Zoom Scan	: 20 : Complete : 20.00 °C : 23.00 °C : 23-May-2011 : 7:01:15 AM : 5x6x1 : Measurement x=15mm, y=15mm, z=4mm : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm
Other Data DUT Position Separation Channel	: Side : 0 mm : High

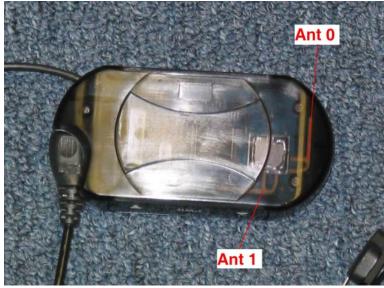
1 gra	am SAB	۲ valu	le	:	0.134	W/kg
10 gi	cam SA	AR val	Lue	:	0.114	W/kg
Area	Scan	Peak	SAR	:	0.156	W/kg
Zoom	Scan	Peak	SAR	:	0.230	W/kg

Appendix C – SAR Test Setup Photos

System Body Configuration

Front Test Position

Back Test Position



End Test Position

Side Test Position

Front of Device and Antenna Locations

Back of Device

System

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1164

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz

Manufacturer: APREL Laboratories Model No.: E-020 Serial No.: 215

Body Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: RFEL-E-020-Cal-5539

> Calibrated: 22 September 2010 Released on: 27 September 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary This calibration has been conducted in line with the SCC ISO-IEC 17025 Scope of Accreditation

Acdredited Laboratory Number 48 AN Released By: **CALIBRATION LABORATORIES** Division of APREL Lab. 17 Bentley Ave NEPEAN, ONTARIO TEL: (613) 820-4988 CANADA K2E 6T7 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 215.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

IEEE 1309 "IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 KHz to 40 GHz" 2005

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from handheld and bodymounted wireless communication devices –Human models, instrumentation and procedures Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 200MHz to 3GHz)"

Conditions

Probe 215 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \degree C + - 0.5\degree C$ Temperature of the Tissue: $21 \degree C + - 0.5\degree C$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within/this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-020
Serial Number:	215
Frequency:	2450 MHz
Sensor Offset:	1.56 mm
Sensor Length:	2.5 mm
Tip Enclosure:	Ertalyte*
Tip Diameter:	<5 mm
Tip Length:	60 mm
Total Length:	290 mm

*Resistive to recommended tissue recipes per IEEE-1528

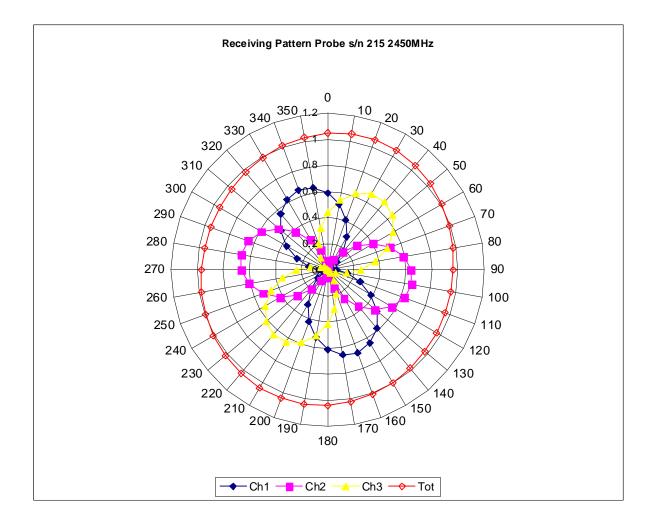
Sensitivity in Air

Channel X: Channel Y:	1.2 μV/(V/m) ² 1.2 μV/(V/m) ²
Channel Z:	$1.2 \mu V/(V/m)^2$
Diode Compression Point:	95 mV

Sensitivity in Body Tissue Measured

Frequency	:	2450 MHz	
Epsilon:	53.0 (+/-5%)	Sigma:	1.98 S/m (+/-5%)
ConvF			
Channel X:	4.5		
Channel Y:	4.5		
Channel Z:	4.5		

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

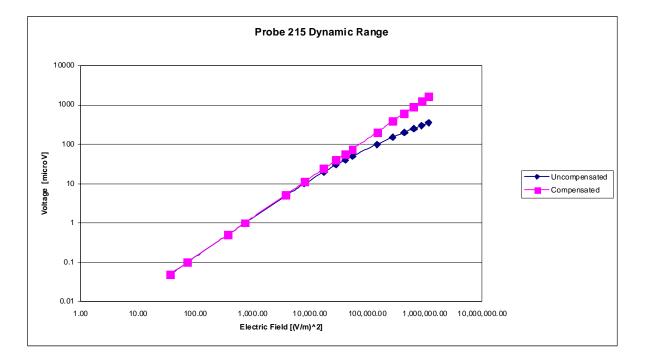

Boundary Effect:

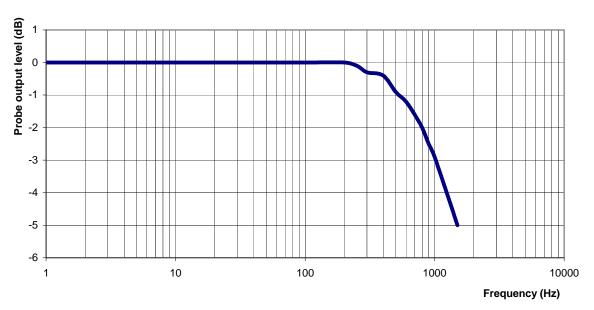
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 2450 MHz (Air)


Isotropy Error 2450 MHz (Air)


Isotropicity Tissue:

0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz	1 dB
Video Bandwidth at 1.02 KHz:	3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency:		2450 MHz		
Epsilon:	53.0 (+/-5%)	Sigma:	1.98 S/m (+/-5%)	
ConvF				
Channel X:	4.5	7%(K=2)		
Channel Y:	4.5	7%(K=2)		
Channel Z:	4.5	7%(K=2)		

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

FCC ID: BYMC61

Appendix E – Dipole Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1182 Project Number: RFEB-5552

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-2450-S-2 Frequency: 2450 MHz Serial No: RFE-278

> Customer: RFEL Body Calibration

Calibrated: 18th November 2010 Released on: 19th November 2010

	This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
-	Released By:

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole RFE-278 was a new calibration.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

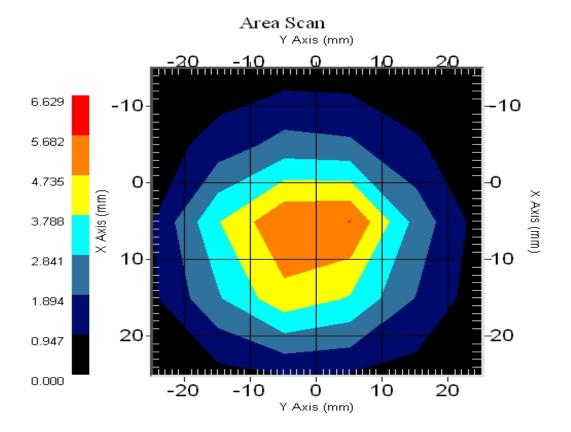
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length:	51.5 mm
Height:	30.4 mm

Electrical Specification

SWR:	1.249 U	
Return Loss:	-19.170 dB	
Impedance:	42.223 Ω	

System Validation Results @ 100mW

Frequency	1 Gram	10 Gram	Peak
2450 MHz	5.15	2.31	10.01

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole RFE-278. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 226.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole RFE-278 was a re-calibration.

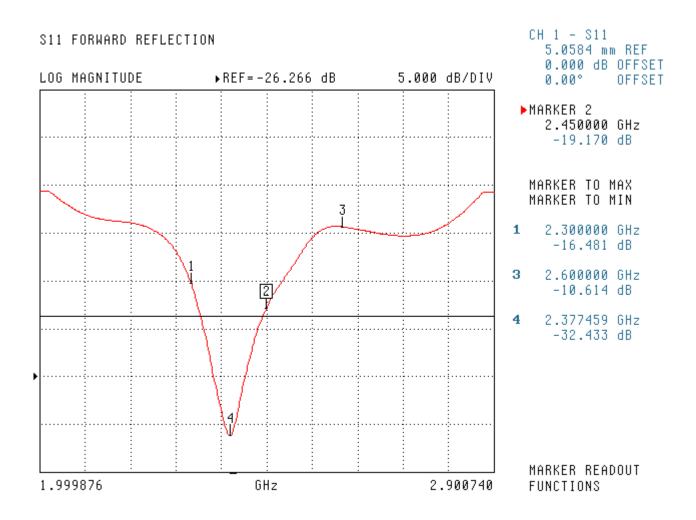
Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	20 °C +/- 0.5°C

Dipole Calibration Results

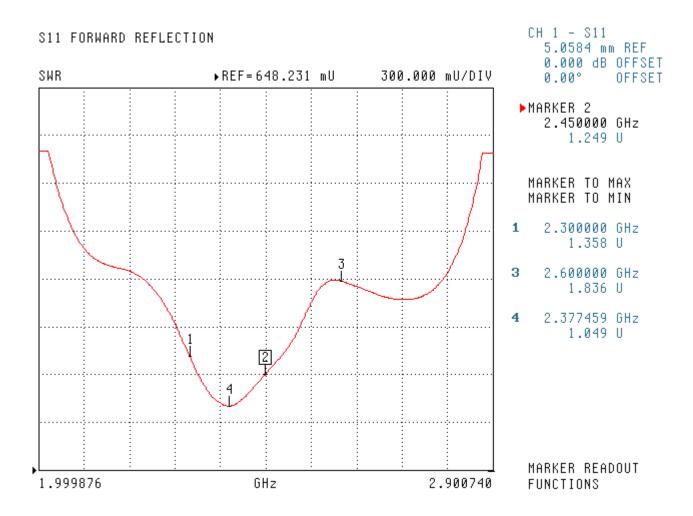
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
51.5 mm	30.4 mm	52.1 mm	31.0 mm

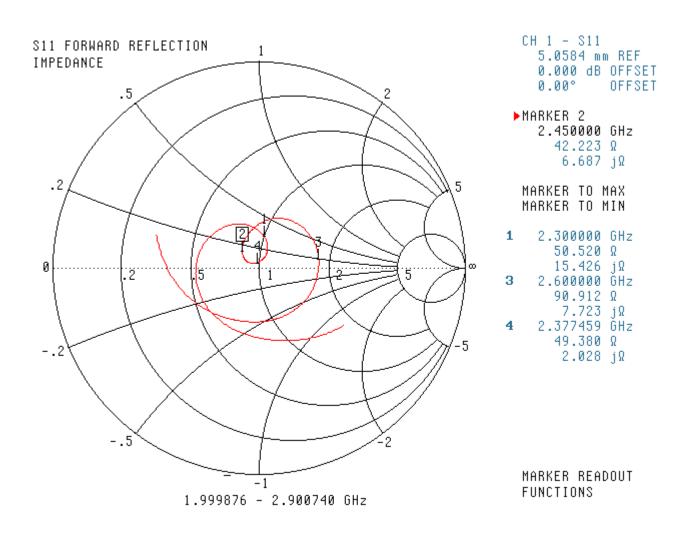
Tissue Validation


Body Tissue 2450 MHz	Measured
Dielectric constant, ε _r	52.0
Conductivity, σ [S/m]	1.92

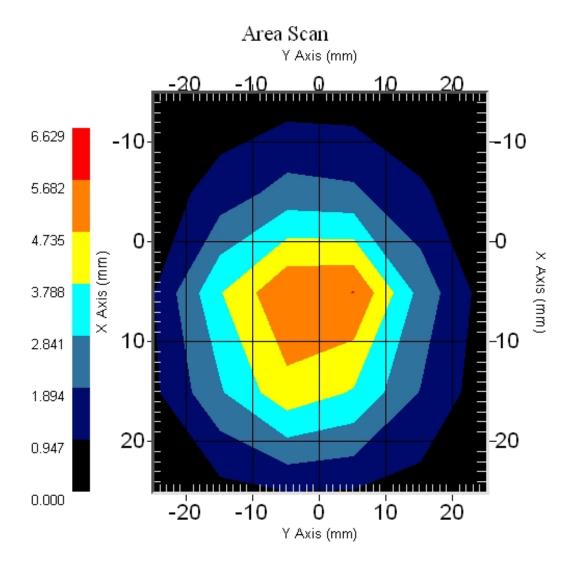
Electrical Calibration


Test	Result
S11 R/L	-19.170 dB
SWR	1.249 U
Impedance	42.223 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR


Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Results @ 100mW

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
2450 MHz	5.15	2.31	10.01

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution: Stability:

0.01 mm OK

Calibrated to: 0.0 mm < 0.1 mm Accuracy:

Calibrated By: Raven K. Feb 17/04.

CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161