

Report No. 256262-4

Test Report

Product	Portable UPCS Transceiver with BT Transceiver			
Name and address of the applicant	HM Electronics, Inc. 14110 Stowe Drive, Poway, CA 92064 USA			
Name and address of the manufacturer	Same as above			
Model	BP1G9			
Rating	3.7 V DC			
Trademark	Clear-Com, An HME Company			
Serial number	/			
Additional information	DECT 6.0, Bluetooth 2.1 +EDR			
Tested according to	FCC Part 15, subpart D Isochronous UPCS Device, 1920 – 1930 MHz Industry Canada RSS 213, Issue 2 2 GHz License-exempt Personal Communications Service Devices (LE-PCS)			
Order number	256262			
Tested in period	2014.04.28 to 2014.05.05 and 2014.05.15			
Issue date	2014.05.15			
Name and address of the testing laboratory	Keine FCC No: 994405 IC OATS: 2040D-1 Instituttveien 6 Kjeller, Norway TEL: (+47) 22 96 03 30 FAX: (+47) 22 96 05 50			
	Fraction What Market Prepared by [Frode Sveinsen] Approved by [G.Suhanthakumar] ced except in full without the written approval of Nemko. Opinions and interpretations not part of the current accreditation. This report was originally distributed electronically information contact Nemko.			

Template version: B

CONTENTS

1		. 3
1.1	Tested Item	. 3
1.2	Description of Tested Device	. 3
1.3	Exposure Evaluation	. 3
1.4	Test Environment	
1.5	Test Engineer(s)	. 4
1.6	Test Equipment	. 4
1.7	Other Comments	. 4
•		_
2		
2.1	General	
2.2	Test Summary	. 6
3	TEST RESULTS	.7
3.1	Power Line Conducted Emissions	
3.2	Coordination with fixed microwave	
3.3	Digital Modulation Techniques	
3.4	Labeling Requirements	
3.5	Antenna Requirement.	
3.6	Channel Frequencies	
3.7	Automatic Discontinuation of Transmission	
3.8	Peak Power Output	
3.9	Emission Bandwidth B	
3.10	Power Spectral Density	
3.11	In-Band Unwanted Emissions, Conducted	
3.12	Out-of-band Emissions, Conducted	
3.13	Carrier Frequency Stability	
3.14	Frame Repetition Stability	
3.15	Frame Period and Jitter	
3.16	Monitoring Threshold, Least Interfered Channel	32
3.17	Threshold Monitoring Bandwidth	34
3.18	Reaction Time and Monitoring Interval	35
3.19	Time and Spectrum Window Access Procedure	37
3.20	Acknowledgements and Transmission Duration	38
3.21	Dual Access Criteria Check	10
3.22	Alternative Monitoring Interval	13
	TEST SETUPS	
4 4.1	Frequency Measurements	
4.1 4.2		
4.2 4.3	Timing Measurements	
	Conducted Emission Test	+4 1 1
4.4 4.5	Power Line Conducted Emissions Test	+4 1 E
4.0	พบาแบบแบ าธรร	G
5	TEST EQUIPMENT USED	16

1 INFORMATION

1.1 Tested Item

Name :	Clear-Com, An HME Company
Model name :	BP1G9
FCC ID :	BYMBP1G9
Industry Canada ID :	1860A-BP1G9
Serial number :	/
Hardware identity and/or version:	3
Software identity and/or version :	/
Tested to IC Radio Standard (RSS) :	RSS-213 Issue 2, RSS-GEN Issue 3
Test Site IC Reg. Number :	IC 2040D-1
Frequency Range :	1921.536 – 1928.448 MHz
Number of Channels :	5 RF Channels, 5x12 = 60 TDMA Duplex Channels
Type of Modulation :	Digital (Gaussian Frequency Shift Keying)
Conducted Output Power :	93 mW (Burst Power)
Antenna Connector :	None
Number of Antennas :	2
Antenna Diversity Supported :	Yes
Power Supply :	Secondary Battery (3.7V Li-Ion)

1.2 Description of Tested Device

The EUT is a DECT Portable Part and is an initiating device as described in ANSI C63.17 and is designed to operate together with a DECT Fixed Part (i.e. a base station), which is the responding device.

The EUT also has a built in BT Transceiver, but this report covers only the UPCS part.

1.3 Exposure Evaluation

The EUT is a portable device and is designed to be worn in a belt clip when used. A test reports with the measured SAR values for body worn configuration is submitted with the application.

1.4 Test Environment

Temperature:	20.5 – 22.7 °C
Relative humidity:	31 – 43 %
Normal test voltage:	3.7 V DC

The values are the limit registered during the test period.

1.5 Test Engineer(s)

Frode Sveinsen

1.6 Test Equipment

See list of test equipment in clause 6.

1.7 Other Comments

The Monitoring and Time and Spectrum Window Access tests were performed with Test Set-Up 6 (Ref. clause 5). A clock signal from the companion device was used to synchronize the Pulse Pattern Generator and the Spectrum Analyzer to the start of the DECT time window. The EUT was limited by administrative commands to operate on only two frequency carriers. For the tests where the EUT was required to operate on only one frequency carrier, one carrier was blocked by applying a CW interfering signal from RF Generator 3. The Pulse Pattern Generator was used to apply time synchronized interference to time windows where this was required.

This EUT supports Least Interfered Channel procedure (LIC), the Monitoring and Time and Spectrum Window Access tests were conducted as specified for EUTs that support LIC procedure.

All tests except Power-Line Conducted Emissions were performed in conducted mode with a temporary antenna connector.

This EUT has been designed to fulfil the latest revision of FCC 15D and does not implement Upper Threshold, Monitoring tests have therefore been performed according to ANSI C63.17-2013.

2 TEST REPORT SUMMARY

2.1 General

All measurements are traceable to national standards.

The tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC CFR47 Part 15D for Isochronous UPCS Devices and Industry Canada RSS-213 Issue 2 / RSS-GEN Issue 3.

All tests were conducted is accordance with ANSI C63.4-2009 and ANSI C63.17-2013. Antenna Gain tests were made in a 3m fully-anechoic chamber.

A description of the test facility is on file with the FCC and Industry Canada.

New Submission

Production Unit

Pre-production Unit

Class II Permissive Change

PUT Equipment Code

Family Listing

THIS TEST REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

Nemko Group authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Group.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Group accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

2.2 Test Summary

Name of test	FCC CFR 47 Paragraph #	IC RSS-213 Paragraph #	Verdict
Power Line Conducted Emission	15.107(a) 15.207(a)	6.3 RSS-GEN 7.2.2	Complies
Coordination with fixed microwave	15.307(b)	N/A	Complies
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	3 RSS-GEN 5.2	Complies
Antenna Requirement	15.317, 15.203	RSS-GEN 7.1.2	Complies
Channel Frequencies	15.303	1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Emission Bandwidth	15.323(a)	6.4	Complies
In-band emissions	15.323(d)	6.7.2	Complies
Out-of-band emissions	15.323(d)	6.7.1	Complies
Output Power and Antenna Gain	15.319(c)(e), 15.31(e)	6.5 and 4.1(e)	Complies
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered channel	15.323(c)(2);(5); (9)	4.3.4(b)	Complies
Monitoring of intended transmit window and maximum reaction time	15.323(c)(1)	4.3.4(b)	Complies
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4(b)	Complies
Reaction time and monitoring interval	15.323(c)(1);(5); (7)	4.3.4(b)	Complies
Access criteria test interval	15.323(c)(4);(6)	4.3.4(b)	N/A ¹
Access Criteria functional test	15.323(c)(4);(6)	4.3.4(b)	N/A ¹
Acknowledgements	15.323(c)(4)	4.3.4(b)	Complies
Transmission duration	15.323(c)(3)	4.3.4(b)	Complies ¹
Dual access criteria	15.323(c)(10)	4.3.4(b)	Complies ¹
Alterative monitoring interval	15.323(c)(10);(11)	4.3.4(b)	N/A ²
Spurious Emissions (Radiated)	15.319(g) 15.109(a) 15.209(a)	4.3.3 RSS-GEN 7.2.3	N/A ³

¹ Only applies for equipment that transmits unacknowledged control and signaling information

² The client declares that the tested equipment does not implement this provision

³ Not required if the Conducted Out-of-Band Emissions test is Passed

3 TEST RESULTS

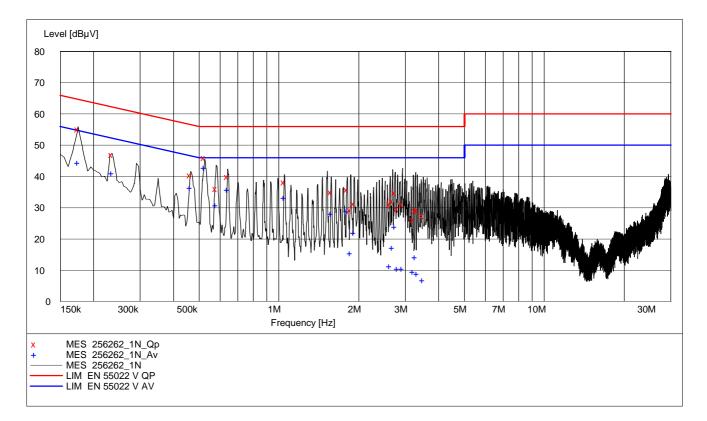
3.1 **Power Line Conducted Emissions**

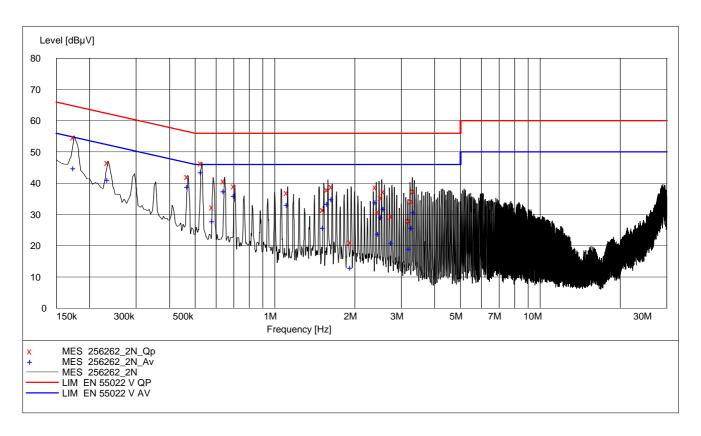
Para. No.: 15.207 (a)

Test Performed By: Tore Løvlien		Date of Test: 15-May-2014		
Measurement procedure:	ANSI C63.4-2009 using 50 μl	H/50 ohms LISN.		
Test Results:	N/A			
Measurement Data:	See attached graph, (Peak detector).			
For this test the EUT was con measured.	nected to an USB HUB, and emi	ssions from the USB HUB were then		
USB HUB: D-Link Model: DUB-H4, S/N: BQ31486000932, HW Ver: B5				
AC Adaptor: D-Link Model: JTA0302E-E, S/N: LF4R00081012211				

Highest measured value (L1 and N):

Active Connection, Charging, 120V 60Hz, USB Hub:


Frequency	Level	Af	Limit	Margin	Det	Position	Verdict
[MHz]	[dBuV]	[dB]	[dBuV]	[dB]			[Pass/Fail]
0.175000	55.20	10.10	64.70	9.50	QP	L1	Pass
0.235000	47.00	10.10	62.30	15.30	QP	L1	Pass
0.465000	40.50	10.20	56.60	16.10	QP	L1	Pass
0.525000	46.00	10.20	56.00	10.00	QP	L1	Pass
0.580000	36.10	10.20	56.00	19.90	QP	L1	Pass
0.640000	40.00	10.20	56.00	16.00	QP	L1	Pass
1.050000	38.20	10.20	56.00	17.80	QP	L1	Pass
1.575000	35.00	10.30	56.00	21.00	QP	L1	Pass
1.810000	35.90	10.20	56.00	20.10	QP	L1	Pass
1.865000	29.30	10.20	56.00	26.70	QP	L1	Pass
1.925000	31.40	10.20	56.00	24.60	QP	L1	Pass
2.625000	31.10	10.30	56.00	24.90	QP	L1	Pass
2.685000	32.10	10.30	56.00	23.90	QP	L1	Pass
2.745000	34.90	10.30	56.00	21.10	QP	L1	Pass
2.800000	29.70	10.30	56.00	26.30	QP	L1	Pass
2.920000	31.10	10.30	56.00	24.90	QP	L1	Pass
3.210000	26.20	10.30	56.00	29.80	QP	L1	Pass
3.270000	29.20	10.30	56.00	26.80	QP	L1	Pass
3.325000	29.30	10.30	56.00	26.70	QP	L1	Pass
3.500000	27.50	10.30	56.00	28.50	QP	L1	Pass
0.175000	44.50	10.10	54.70	10.20	AV	L1	Pass
0.235000	41.20	10.10	52.30	11.10	AV	L1	Pass
0.465000	36.50	10.20	46.60	10.10	AV	L1	Pass
0.525000	42.90	10.20	46.00	3.10	AV	L1	Pass
0.580000	30.90	10.20	46.00	15.10	AV	L1	Pass
0.640000	35.90	10.20	46.00	10.10	AV	L1	Pass
1.050000	33.30	10.20	46.00	12.70	AV	L1	Pass
1.575000	28.10	10.30	46.00	17.90	AV	L1	Pass
1.810000	28.90	10.20	46.00	17.10	AV	L1	Pass
1.865000	15.50	10.20	46.00	30.50	AV	L1	Pass
1.925000	22.00	10.20	46.00	24.00	AV	L1	Pass
2.625000	11.30	10.30	46.00	34.70	AV	L1	Pass
2.685000	17.20	10.30	46.00	28.80	AV	L1	Pass
2.745000	24.10	10.30	46.00	21.90	AV	L1	Pass
2.800000	10.50	10.30	46.00	35.50	AV	L1	Pass
2.920000	10.50	10.30	46.00	35.50	AV	L1	Pass
3.210000	9.60	10.30	46.00	36.40	AV	L1	Pass
3.270000	14.20	10.30	46.00	31.80	AV	L1	Pass
3.325000	9.00	10.30	46.00	37.00	AV	L1	Pass
3.500000	6.90	10.30	46.00	39.10	AV	L1	Pass


Standby, 120V 60Hz, USB Hub:

Frequency	Level	Af	Limit	Margin	Det	Position	Verdict
[MHz]	[dBuV]	[dB]	[dBuV]	[dB]			[Pass/Fail]
0.175000	54.70	10.10	64.70	10.00	QP	L1	Pass
0.235000	46.60	10.10	62.30	15.70	QP	L1	Pass
0.470000	42.20	10.20	56.50	14.30	QP	L1	Pass
0.530000	46.50	10.20	56.00	9.50	QP	L1	Pass
0.585000	32.40	10.20	56.00	23.60	QP	N	Pass
0.645000	40.70	10.20	56.00	15.30	QP	L1	Pass
0.705000	39.10	10.20	56.00	16.90	QP	L1	Pass
1.115000	37.00	10.20	56.00	19.00	QP	L1	Pass
1.525000	31.60	10.20	56.00	24.40	QP	N	Pass
1.585000	38.00	10.30	56.00	18.00	QP	L1	Pass
1.645000	39.00	10.30	56.00	17.00	QP	L1	Pass
1.935000	21.20	10.20	56.00	34.80	QP	Ν	Pass
2.410000	38.70	10.30	56.00	17.30	QP	L1	Pass
2.465000	31.00	10.30	56.00	25.00	QP	L1	Pass
2.525000	35.50	10.30	56.00	20.50	QP	L1	Pass
2.585000	37.30	10.30	56.00	18.70	QP	L1	Pass
2.760000	29.50	10.30	56.00	26.50	QP	L1	Pass
3.230000	28.00	10.30	56.00	28.00	QP	L1	Pass
3.290000	34.30	10.30	56.00	21.70	QP	L1	Pass
3.350000	37.40	10.30	56.00	18.60	QP	L1	Pass
0.175000	44.80	10.10	54.70	9.90	AV	L1	Pass
0.235000	41.10	10.10	52.30	11.20	AV	L1	Pass
0.470000	39.00	10.20	46.50	7.50	AV	L1	Pass
0.530000	43.50	10.20	46.00	2.50	AV	L1	Pass
0.585000	27.90	10.20	46.00	18.10	AV	Ν	Pass
0.645000	37.40	10.20	46.00	8.60	AV	L1	Pass
0.705000	36.10	10.20	46.00	9.90	AV	L1	Pass
1.115000	33.20	10.20	46.00	12.80	AV	L1	Pass
1.525000	25.90	10.20	46.00	20.10	AV	Ν	Pass
1.585000	33.50	10.30	46.00	12.50	AV	L1	Pass
1.645000	35.00	10.30	46.00	11.00	AV	L1	Pass
1.935000	13.00	10.20	46.00	33.00	AV	Ν	Pass
2.410000	33.90	10.30	46.00	12.10	AV	L1	Pass
2.465000	23.90	10.30	46.00	22.10	AV	L1	Pass
2.525000	29.20	10.30	46.00	16.80	AV	L1	Pass
2.585000	31.90	10.30	46.00	14.10	AV	L1	Pass
2.760000	21.00	10.30	46.00	25.00	AV	L1	Pass
3.230000	19.10	10.30	46.00	26.90	AV	L1	Pass
3.290000	25.90	10.30	46.00	20.10	AV	L1	Pass
3.350000	30.70	10.30	46.00	15.30	AV	L1	Pass

Active Connection, 120V 60Hz, USB Hub

Standby, 120V 60Hz, USB Hub

3.2 Coordination with fixed microwave

The affidavit from UTAM, Inc	. is included in the documentation supplied by the applicant:
⊠ Yes	□ No

Requirement, FCC 15.307 (b):

Each application for certification of equipment operating under the provisions of this Subpart must be accompanied by an affidavit from UTAM, Inc. certifying that the applicant is a participating member of UTAM, Inc. In the event a grantee fails to fulfill the obligations attendant to participation in UTAM, Inc., the Commission may invoke administrative sanctions as necessary to preclude continued marketing and installation of devices covered by the grant of certification, including but not limited to revoking certification.

3.3 Digital Modulation Techniques

The EUT uses Multi Carrier / Time Division Multiple Access / Time Division Duplex and Digital GFSK modulation. For further details see the operational description provided by the applicant.

Requirement, FCC 15.319(b):

All transmissions must use only digital modulation techniques.

3.4 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirements FCC 15.19

The FCC Identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is too small:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

3.5 Antenna Requirement

Does the EUT have detachable antenna(s)?

🗌 Yes 🛛 🖾 No

🗌 No

Yes

If detachable, is the antenna connector(s) non-standard?

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirement: FCC 15.203, 15.204, 15.317.

3.6 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.303

Within 1920 -1930 MHz band for isochronous devices.

3.7 Automatic Discontinuation of Transmission

Does the EUT transmit Control and Signaling Information?		NO
TYPE OF EUT :		NDING DEVICE

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	С	Pass
2	Switch Off EUT	С	Pass
3	Hook-On by EUT	С	Pass
4	Power Removed from Companion Device	A	Pass
5	Switch Off Companion Device	N/A	Pass
6	Hook-On by Companion Device	N/A	Pass

A - Connection breakdown, Cease of all transmissions

B - Connection breakdown, EUT transmits control and signaling information

C - Connection breakdown, Companion Device transmits control and signaling information

N/A - Not Applicable (Companion Device does not have On/Off switch and cannot perform Hook-On)

Requirements, FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

3.8 Peak Power Output

Test Method:

ANSI C63.17, clause 6.1.2.

Test Results: Complies

Measurement Data:

Maximum Conducted Output Power

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Antenna Gain (dBi)	Maximum Radiated Output Power (dBm)
4	1921.536	19.7	2.4*	22.1
2	1924.992	19.5	2.4*	21.9
0	1928.448	19.5	2.4*	21.9

*Antenna gain value is declared by the manufacturer.

Limit:

Conducted: 100 μW x SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):20.8 dBm (120 mW)RSS-213, Issue 2:20.4 dBm (110 mW)

The antenna gain is below 3 dBi, no reduction in transmit power is necessary.

Requirements, FCC 15.319(c)(e), RSS-213, Issue 2

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Conducted Peak Output Power

MultiView 88	Spectrum	× Spectrun	n 2 🛛 🗴	Spectrum 3	X Spe	ctrum 4	X			
Ref Level 30 Att TRG:RFP(8GHz	25 dB 🖷 SWT	et 10.30 dB ● RB 1 ms VB	₩ 3 MHz ₩ 10 MHz							
1 Time Domain										●1Pk Max
N	41								M1	[1] 19.66 dBm 1.000 μs
20 dBm								-		
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
-40 dBm								wywk	hunterhal	all-approximation
-50 dBm										
-60 dBm	1							s2		
CF 1.921536 C				1001	pts					100.0 µs/
2 Marker Tabl										
Type Ref		X-Value		Y-Value	Func				nction Result	
M1	1	1.0 µs	1	9.66 dBm	TD Pow RM	15		1	9.02 dBm	
	J						Measuring	🛙		28.04.2014 11:32:24

Lower Channel

	Spectrum					
Ref Level 30 Att TRG:RFP(8GHz	25 dB 🖷 SWT	et 10.30 dB • RBW 3 1 ms VBW 10				
1 Time Domair	n Power					●1Pk Max
						M1[1] 19.49 dBn 20.000 µ
20 dBm	M1					
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
20 000						
-30 dBm						
-40 dBm					week.	Alexandration of the shares and the second
-40 0811						
-50 dBm						
-50 uBm						
60 ID						
-60 dBm					S2	
S	1					
CF 1.928448 0			1001	pts		100.0 µs/
2 Marker Tabl					-	
Type Ref	F Trc	X-Value 20.0 μs	Y-Value 19.49 dBm	TD Pow RMS	- Fu	Inction Result 9.39 dBm
1417	T	-viv h3	19,49 uDm			00.01.0011
	П				Measuring	11:16:35

Upper Channel

MultiView 😁 Spectru	m 🛛 🗙 Spectr	um 2 🛛 🛛 Spec	trum 3 🛛 🛛 🗙		
Ref Level 30.00 dBm Off ● Att 25 dB ● SW TRG:RFP(8GHz) 25 dB ■ SW	fset 10.30 dB • RBW 3 VT 1 ms VBW 10				
1 Time Domain Power					●1Pk Max
					M1[1] 19.52 dBm
					1.000 µs
20 dBm					
10 dBm					
10 dBm					
0 dBm					
-10 dBm					
-10 dbm					
-20 dBm					
-30 dBm					
40 depharman				they we have ab	when boy and boy on the house
-40 dBm				· · · · · · · · · · · · · · · · · · ·	An according to the part of a second se
-50 dBm					
-60 dBm				S2	
S1					
CF 1.924992 GHz		1001	nts		100.0 µs/
2 Marker Table		1001	. pta		100.0 µs/
Type Ref Trc	X-Value	Y-Value	Function	Eunctio	on Result
M1 1	1.0 µs	19.52 dBm	TD Pow RMS	19.1	3 dBm
	•			Measuring	28.04.2014
				Medsuring	12:10:18

Middle Channel

3.9 Emission Bandwidth *B*

Test Method:

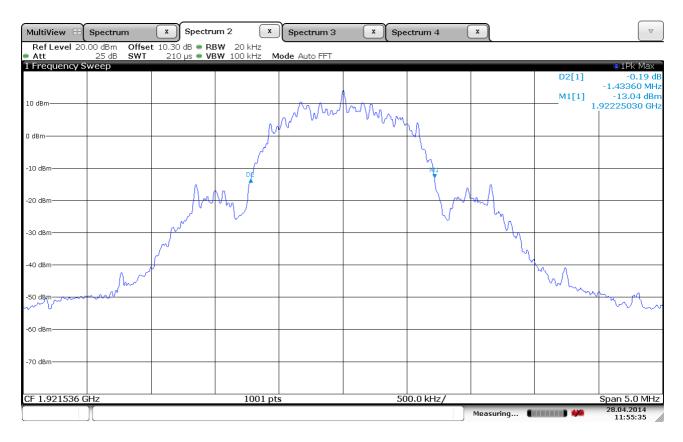
ANSI C63.17, clause 6.1.3.

Test Results: Complies

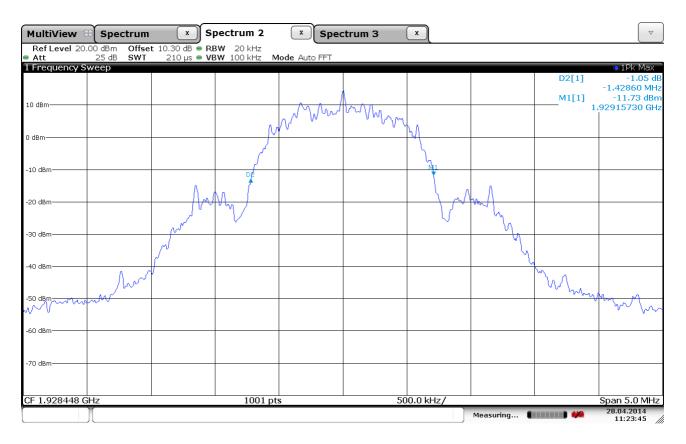
Measurement Data:

Channel No.	Frequency (MHz)	26 dB Bandwidth <i>B</i> (kHz)
4	1921.536	1433.6
0	1928.448	1428.6

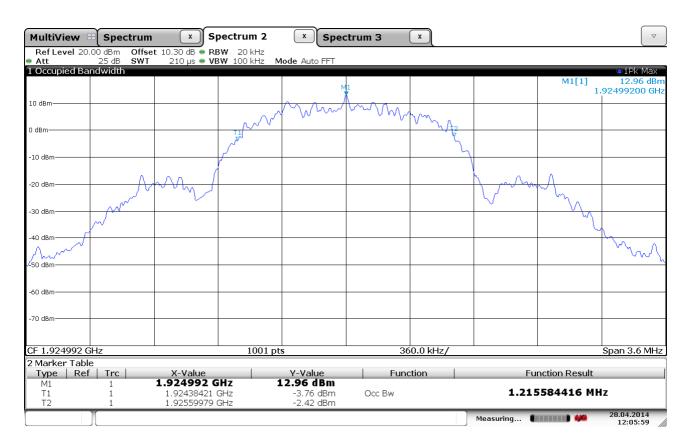
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)
2	1924.992	1215.6


Requirements, FCC 15.323(a)

The 26 dB Bandwidth *B* shall be larger than 50 kHz and less than 2.5 MHz.


Requirements, RSS-213 Issue 2, clause 6.4

The 99% Bandwidth shall be larger than 50 kHz and less than 2.5 MHz.



Emission Bandwidth *B*, Upper Channel

99% Bandwidth, Middle Channel

3.10 Power Spectral Density

Test Method:

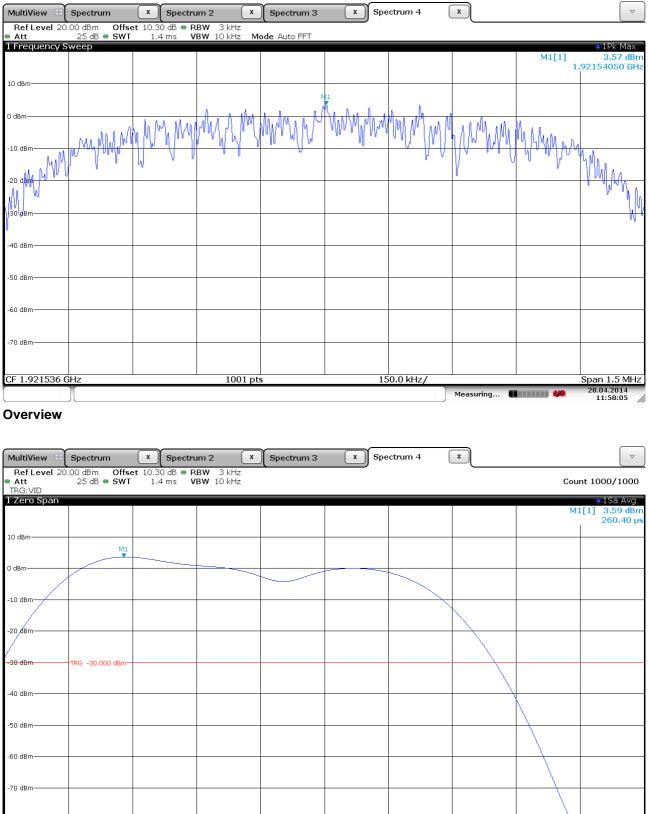
ANSI C63.17, clause 6.1.5.

Test Results: Complies

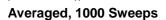
Measurement Data:

Channel No.	Frequency (MHz)	Power Spectral Density (dBm)
4	1921.536	3.6
0	1928.448	3.9

Averaged over 1000 sweeps.


Requirements, FCC 15.319(d)

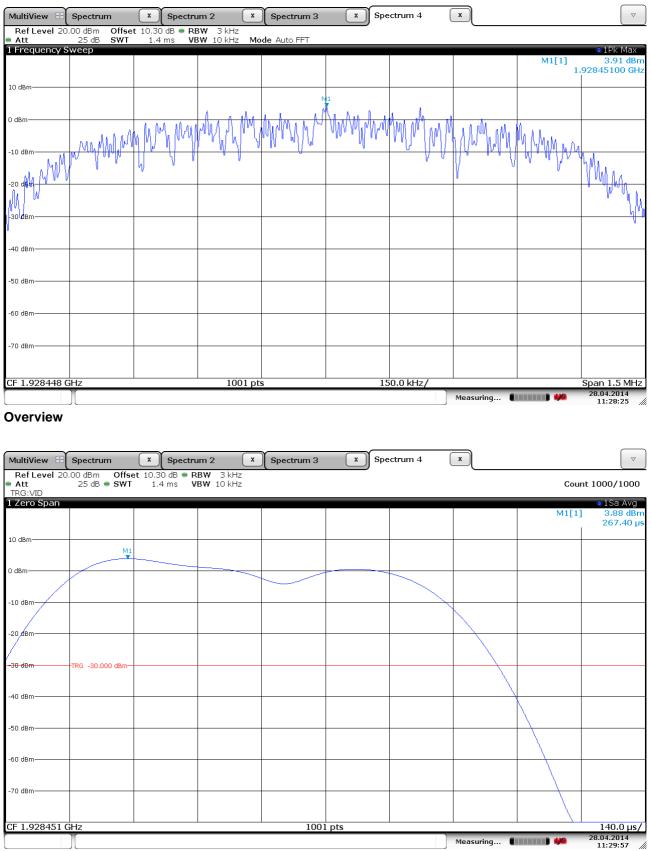
The Power Spectral Density shall be less than 3 mW (4.77 dBm) when averaged over at least 100 sweeps.



Power Spectral Density

Lower Channel:

1001 pts


CF 1.9215405 GHz

140.0 μs/ 28.04.2014 11:58:55

Measuring... 🚺 🗰 🗰

Upper Channel:

Averaged, 1000 Sweeps

3.11 In-Band Unwanted Emissions, Conducted

Test Method:

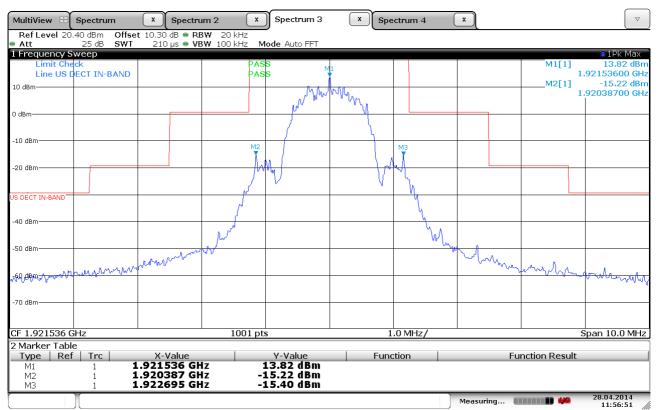
ANSI C63.17, clause 6.1.6.1.

Test Results: Complies

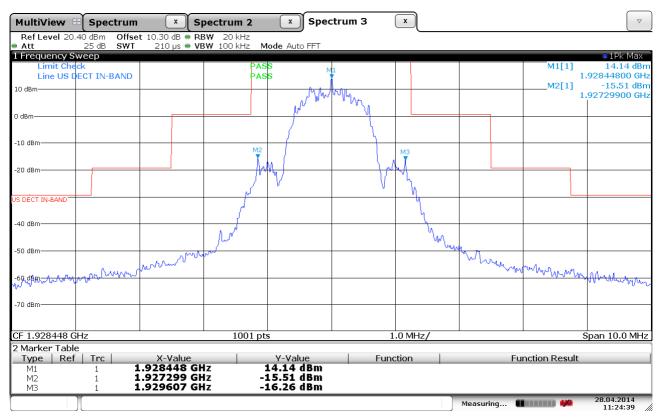
Measurement Data:

See plots.

Requirements, FCC 15.323(d):


 $B < f \le 2B$:at least 30 dB below max. permitted peak power $2B < f \le 3B$:at least 50 dB below max. permitted peak power $3B < f \le$ UPCS Band Edge : at least 60 dB below max. permitted peak power

MultiView 8	Spectrum	× SI	pectrum 2	× Spee	trum 3	×			
Ref Level 20.4	40 dBm Offse 25 dB SWT	t 10.30 dB • RE	3W 20 kHz 3W 100 kHz M	Ando Auto EET					
1 Frequency Sw		210 µs 🛡 VI	STY TOOKIZ IN	Node Autorni					●1Pk Max
Limit Chec			PAS	SS .				M3[1]	-15.52 dBm
Line US DE	ECT IN-BAND		PAS	s "					92615100 GHz
10 dBm				An A	a fil			M1[1]	14.08 dBm
				MAN	when			1.	92499200 GHz
0 dBm				U"	- V				
					\				
-10 dBm				- (
			M2		{.	M3			
-20 dBm			h	₩, }	$ \rangle \wedge$	₩			
				V	I V	7			
US DECT IN-BAND			<u> </u>			<u>"</u> ң			
						4			
-40 dBm						<u> </u>			
			pur			M			
-50 dBm		almo.	ward .			Ulina	14.0		
		mm					1 marchine	non	
-50 dBm	mound marken	·					www.www.	" " Marth	When the outow
200 J 4									- ~ ~ .
-70 dBm									
-70 UBIII									
CF 1.924992 G	Ηz		1001 pt	S	1	.0 MHz/	1	5	pan 10.0 MHz
2 Marker Table									
Type Ref		X-Value		Y-Value	Fund	tion	Fu	nction Result	
M1		924992 GI		14.08 dBm					
M2 M3		923844 GH 926151 GH		15.29 dBm 15.52 dBm					
CIM									28.04.2014
							Measuring 🔳		12:04:04


Middle Channel

In-Band Unwanted Emissions, Conducted

Lower Channel

Upper Channel

3.12 Out-of-band Emissions, Conducted

Test Method:

ANSI C63.17, clause 6.1.6.2.

Test Results: Complies

Measurement Data:

See plots.

Requirements, FCC 15.323(d):

$f \le 1.25$ MHz outside UPCS band :	≤ -9.5dBm
1.25 MHz $\leq f \leq 2.5$ MHz outside UPCS band :	≤ -29.5 dBm
$f \ge 2.5$ MHz outside UPCS band :	≤ -39.5 dBm

Out-of-Band Emissions, Conducted

Lower Channel:

MultiView 😂 Spect	rum 3							
● Att 25 dB	Offset 10.30 dB ● R SWT 837 µs ● V	BW 20 kHz BW 100 kHz M	ode Auto FFT					●1Pk Max
1 Frequency Sweep Limit Check Line US DECT OUT-	OF-BAND	PAS PAS					M1[1]	-62.49 dBm 1.9004450 GHz
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
JS DECT OUT-OF-BAND								
-50 dBm								
-60 dBm	why why we were	www.h. Hurgand	Moundante	christipher	Mr. Winawara	water where the	untradianala	Huburrly
-70 dBm				per -				
-80 dBm								
1.87 GHz		1001 pts	6	5	.0 MHz/			1.92 GHz
						Measuring 🔳		28.04.2014 12:13:27

Out-of-Band Emissions, Conducted

Lower Channel:

Mult	tiView 🗄	B Spectrum	3							\bigtriangledown
Att		20 dB SWT	t 10.30 dB 👄 RE 12.6 ms 👄 VE		ode Auto FFT					
	quency S Limit Che	ck		PAS					M1[1]	●1Pk Max -68.66 dBm
		ECT OUT-OF-B	AND	PAS	S					1.472370 GHz
0 dBm-										
-10 dB	m									
-20 dB	m									
-30 dB										
-50 00										
US DEC	T OUT-OF-BA	ND								
-50 dB	m									
-60 dB	m									
						M1				
-70 dB	howard	walkhahaha	when when	and allow redential to have	Mound Mundal Jury dry	V V	MMMMMMM	Managhrangerthan	Multimen Myuran	man there is
									*	
-80 dB	m									
1.0 0	<u>י</u> ם			1001 pt:		0-	7.0 MHz/			1.87 GHz
1.00	3112	1		1001 pt:	5	0.		Measuring 🔳		28.04.2014 12:14:27
Mult	tiView 8	B Spectrum	3							
Ref • Att			t 10.30 dB • RE 14.5 ms • VE		ode Auto FET					
	quency S Limit Che	weep		PAS					M1[1]	●1Pk Max -66.53 dBm
		ECT OUT-OF-B	AND	PAS						946.610 MHz
0 dBm-										
-10 dB	m									
-20 dB										
I	m									
L										
-30 dB										
		ND								
	m	ND								
	m	ND								
US DEC -50 dB	т оut-оf-ва	ND								
US DEC	т оut-оf-ва	ND								
US DEC -50 dB	m m				in with low shifting belager ye	theory for the for the for		Lachard roofs at back		MI MI MANANA
US DEC -50 dB -60 dB	m m			uphulpowerply	tig out have the state of the s	there for an an and a start of the				MI
US DEC -50 dB -60 dB	т оит-ог-вл m M-&MA_U		wyelerrahtetter		internal law of the provi	hine the later to the formation of the second se	1 - Ling produce on the state		wouldwood	MI
US DEC -50 dB -60 dB	т оит-ор-ве m m m m		angedyn rwytteidyr				r ^{lla} ndpulgeradorph 9.9 MHz/		www.	м1 , мариталицит 1.0 GHz

Out-of-Band Emissions, Conducted

Upper Channel:

MultiView	88 Spectrum	3							
Ref Level 1 Att	0.00 dBm Offse	t 10.30 dB • RE 1.05 ms • VE		ade Auto FET					
1 Frequency	Sweep	1.03 ms 🔍 VE							●1Pk Max
Limit Ch Line US	ieck DECT OUT-OF-B.		PAS PAS					M1[1]	-65.97 dBm 1.9388460 GHz
0 dBm									
US DECT OUT-OF-E									
05 DECT 001-0F-	MND								
-20 dBm									
-30 d e m									
-40 dBm									
1 <mark>5</mark> 0 dBm									
W biting									
"Itwo years	M1 hum My maght when								
-70 dBm	and and marker the the the the	manualities	ale the over the work of the	mound	production that may	www.houder	monther watcher	with march ware	www.www.
-80 dBm									
1.93 GHz			1001 pt	S	7	.0 MHz/			2.0 GHz
	_][]						Measuring 🔳		28.04.2014 12:20:43
			3W 20 kHz						
RefLevel 1 • Att	0.00 dBm Offse 25 dB SWT	t 10.30 dB 🖷 RE	3₩ 20 kHz 3₩ 100 kHz M	lode Auto FFT					
Ref Level 1 Att Frequency Limit Ch	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	□ 1Pk Max -62.92 dBm
Ref Level 1 Att Frequency Limit Ch Line US	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ●1Pk Max
Ref Level 1 Att Frequency Limit Ch	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att 1 Frequency Limit Cr Line US 0 dBm-	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att Frequency Limit Ch Line US	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att I Frequency Limit Cl Line US 0 dBm	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att 1 Frequency Limit Cr Line US 0 dBm-	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att 1 Frequency Limit Cł Line US 0 dBm -10 dBm -20 dBm	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att I Frequency Limit Cl Line US 0 dBm	0.00 dBm Offse 25 dB SWT Sweep	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att I Frequency Limit Ct Line US 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att 1 Frequency Limit Cł Line US 0 dBm -10 dBm -20 dBm	0.00 dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att I Frequency Limit Ct Line US 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att I Frequency Limit Cf Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-F	0.00 dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	3W 100 kHz M	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att I Frequency Limit Cf Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-F	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S				M1[1]	⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 Att 1 Frequency Limit Ch Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-F -50 dBm	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S S					▼ • 1Pk Max -62.92 dBm 2.53750 GHz
Ref Level 1 • Att 1 Frequency Limit CL Line US 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S S					⊽ ● 1Pk Max -62.92 dBm
Ref Level 1 • Att 1 Frequency Limit CL Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-F -50 dBm -60 dBm	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S S					▼ • 1Pk Max -62.92 dBm 2.53750 GHz
Ref Level 1 • Att 1 Frequency Limit CL Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-F -50 dBm -60 dBm	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S S					▼ • 1Pk Max -62.92 dBm 2.53750 GHz
Ref Level 1 Att I Frequency Limit Cf Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-E -50 dBm -60 dBm /will/william	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S S		and the state of t			▼ • 1Pk Max -62.92 dBm 2.53750 GHz
Ref Level 1 Att I Frequency Limit Cf Line US 0 dBm -10 dBm -20 dBm -30 dBm US DECT OUT-OF-E -50 dBm -60 dBm /will/william	D.OO dBm Offse 25 dB SWT Sweep leck DECT OUT-OF-B.	t 10.30 dB • RE 57.6 ms • VE	BW 100 kHz M PAS	S S minulplonautophay					▼ • 1Pk Max -62.92 dBm 2.53750 GHz

Out-of-Band Emissions, Conducted

Upper Channel:

MultiVi	iew 🙁 Spectrum 3								
	vel 10.00 dBm Offset 1								
Att 1 Freque	20 dB SWT 8	86.2 ms 🖷 VB	WW 100 KHZ MI	ode Auto FFT					●1Pk Max
	nit Check e US DECT OUT-OF-BANI	D	PAS PAS					M1[1]	-66.27 dBm 10.96000 GHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
US DECT OU	IT-OF-BAND								
-50 dBm									
-60 dBm									
								M1	Wardwork without
-70 dBm-	Mulu markaland	Museul Har Marth	minounder	un pharman	monoulowall	derfrender og and the service	alacture la habel al habel a la ha La catala da habel a la	MM	washing mary
		. anodillare in the							
-80 dBm									
6.0 GHz			1001 pts	5	60	0.0 MHz/			12.0 GHz 28.04.2014
L							Measuring 🔳		12:24:09
(
MultiVi		0 30 dB PB	W 20 kHz						
Ref Lev • Att	vel 10.00 dBm Offset 1 20 dB SWT		₩ 20 kHz ₩ 100 kHz M	ode Auto FFT					
Ref Lev Att 1 Freque Lin	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att 1 Freque Lin Lin	vel 10.00 dBm Offset 1 20 dB SWT Ency Sweep	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max
Ref Lev Att 1 Freque Lin	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att 1 Freque Lin 0 dBm	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att 1 Freque Lin Lin	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att 1 Freque Lin 0 dBm -10 dBm	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att 1 Freque Lin 0 dBm	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att I Freque Lin 0 dBm -10 dBm -20 dBm	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att 1 Freque Lin 0 dBm -10 dBm	vel 10.00 dBm Offset 1 20 dB SWT ency Sweep nit Check	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Leve Att 1 Freque Lim 0 dBm -10 dBm -20 dBm -30 dBm	vel 10.00 dBm Offset 1 20 dB SWT nrcy Sweep nit Check e US DECT OUT-OF-BAINI	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Lev Att I Freque Lin 0 dBm -10 dBm -20 dBm	vel 10.00 dBm Offset 1 20 dB SWT nrcy Sweep nit Check e US DECT OUT-OF-BAINI	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Leve Att 1 Freque Lim 0 dBm -10 dBm -20 dBm -30 dBm	vel 10.00 dBm Offset 1 20 dB SWT nrcy Sweep nit Check e US DECT OUT-OF-BAINI	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Leve Att 1 Freque Lin 0 dBm -10 dBm -20 dBm -30 dBm	vel 10.00 dBm Offset 1 20 dB SWT nrcy Sweep nit Check e US DECT OUT-OF-BAINI	128 ms 🖷 VB	W 100 kHz M	S				M1[1]	●1Pk Max -64.86 dBm
Ref Leve Att 1 Freque Lin 0 dBm -10 dBm -20 dBm -30 dBm	vel 10.00 dBm Offset 1 20 dB SWT nrcy Sweep nit Check e US DECT OUT-OF-BAINI	128 ms 🖷 VB	W 100 kHz M	S					●1Pk Max -64.86 dBm
Ref Leve Att 1 Freque Lim 0 dBm -10 dBm -20 dBm -30 dBm US DECT OU -50 dBm	vel 10.00 dBm Offset 1 20 dB SWT Incy Sweep nit Check e US DECT OUT-OF-BAINI	D	W 100 kHz M PAS PAS	S S					• 1Pk Max -64.86 dBm 19.02900 GHz
Ref Leve Att 1 Freque Lim 0 dBm -10 dBm -20 dBm -30 dBm US DECT OU -50 dBm	Vel 10.00 dBm Offset 1 20 dB SWT Incy Sweep nit Check e US DECT OUT-OF-BAINI	D	W 100 kHz M PAS PAS	S S	millouthunder	Murula Harlanda Jacoba Jacoba	Mak day a the standard of		• 1Pk Max -64.86 dBm 19.02900 GHz
Ref Leve Att 1 Freque Lim 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Vel 10.00 dBm Offset 1 20 dB SWT Incy Sweep nit Check e US DECT OUT-OF-BAINI	D	W 100 kHz M PAS PAS	S S	niferound	Murtul Land Land M	Nd. dogen (Un Albedde L. J. Ar		• 1Pk Max -64.86 dBm 19.02900 GHz
Ref Leve Att 1 Freque Lim 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Vel 10.00 dBm Offset 1 20 dB SWT Incy Sweep nit Check e US DECT OUT-OF-BAINI	D	W 100 kHz M PAS PAS	S S	midourrine solo	Murkelane Ine of	Mi dan Anna Maria		• 1Pk Max -64.86 dBm 19.02900 GHz
Ref Level Att 1 Freque Lin 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Vel 10.00 dBm Offset 1 20 dB SWT Incy Sweep nit Check e US DECT OUT-OF-BAINI	D	W 100 kHz M PAS PAS	S S	n de rester de se	Muchalla la la anti-	Nel den Johnsberger		• 1Pk Max -64.86 dBm 19.02900 GHz
Ref Level Att 1 Freque Lin 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	vel 10.00 dBm Offset 1 20 dB SWT Incy Sweep nit Check e US DECT OUT-OF-BAINI	D	W 100 kHz M PAS PAS	S S		млыць, мл. цил у 0.0 MHz/	And days of the state of the st		• 1Pk Max -64.86 dBm 19.02900 GHz

3.13 Carrier Frequency Stability

Test Method:

ANSI C63.17, clause 6.2.1.

Test Results: Complies

Measurement Data:

The Frequency Stability is measured with the CMD60. The CMD60 was logged by a computer programmed to get new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max. Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	
1924.991994	1.207	-1.211	-0.6	±10 ppm

Deviation ppm = ((Diff. - Mean Diff) / Mean Carrier Freq.) $\times 10^{6}$

Deviation (ppm) is calculated from 3000 readings.

Frequency Stability over Power Supply Voltage at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit
V _{nom}	/	0	0	
85% of V _{nom}	/	/	/	±10 ppm
115% of V _{nom}	/	/	/	

Deviation ppm = ((Mean – Measured Frequency) / Mean) $\times 10^{6}$

This test does not apply for EUT that is powered from batteries.

Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit
T = +20 °C	1925.001795	0	0	
T = -20 °C	1925.007476	5.7	3.0	±10 ppm
T = +50 °C	1924.991302	-10.5	-5.5	

Deviation ppm = $((Mean - Measured Frequency) / Mean) \times 10^{6}$

3.14 Frame Repetition Stability

Test Method:

ANSI C63.17, clause 6.2.2.

Test Results: Complies

Measurement Data:

The envelope of the RF signal from the EUT is detected with a Crystal Detector and the mean and standard deviation of the frame repetition frequency is then gated over 100 frames and measured with a Frequency Domain Analyzer. The frame repetition stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(Hz)	Stability (ppm)
1924.992	100.000	0.000001	0.038

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e), ANSI C63.17, clause 6.2.2

3.15 Frame Period and Jitter

Test Method:

ANSI C63.17, clause 6.2.3.

Test Results: Complies

Measurement Data:

Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation
(MHz)	(ms)	(μs)	of Jitter (μs)
1924.992	10.000	-0.052	-0.029

Max Jitter = (1/ (Frame period + Pk-Pk/2)) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz $3xSt.Dev.Jitter = 3x (1/(Frame Period + St.Dev) - 1/St.Dev) x 10^{6}$

Limit:

Frame Period	20 or 10 ms
Max Jitter	25 µs
3 times St.Dev of Jitter	12.5 µs

Ref. FCC 15.323(e), ANSI C63.17, clause 6.2.3

l5.45m%	
99.99998750 <u>4</u>	100.000187504
-	1.100k samples
lean 100.0000868643	4 1/Mean 10.000ms
²k−₽k 8.91յէ	Std Dev 1.2661של
Frame Repetition	Stability, Gated over 100 Frames
bp Freq A rem t acquiring data	tlk
4.922 ×	1
116 6.122	
416.6 99.997599½	100.002599

Frame Period and Jitter

3.16 Monitoring Threshold, Least Interfered Channel

Monitoring Threshold Limits:

Lower Threshold:

 $T_{L} = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

Upper Threshold:

 $T_{U} = 15 \log B - 184 + 50 - P_{EUT}$ (dBm)

B is measured Emission Bandwidth in Hz P_{EUT} is measured Transmitter Power in dBm

Calculated values:

	FCC 15.323	RSS-213, Issue 2
Lower Threshold	-81.4 dBm	-82.4 dBm
Upper Threshold	N/A	-62.4 dBm

Least Interfered Channel Procedure (LIC) may only be used by systems with more than 20 duplex system access channels. Systems with less than 20 duplex system access channels are not allowed to transmit when interferer level is above Lower Threshold.

Upper Threshold has been removed from FCC 15D but still exists in the current Industry Canada RSS-213.

The tested EUT complies with the latest version of the FCC rules and does not implement Upper Threshold.

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(b), (c)(2) and (c)(5)

ANSI C63.17 clause 7.3.2 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}$, $f_2 \text{ at } T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 \text{ dB}$, $f_2 \text{ at } T_L + 13 \text{ dB}$	Transmission always on f_I	Pass
d) $f_1 T_L + 7 dB$, $f_2 at T_L$	Transmission always on f_2	Pass
e) $f_1 T_L$, f_2 at T_L + 7 dB	Transmission always on f_1	Pass

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.3	Observation	Verdict
b) Shall not transmit on f_I	EUT transmits on f_2	Pass
d) Shall not transmit on f_2	EUT transmits on f_I	Pass

Limits:

	FCC 15.323	RSS-213, Issue 2
Lower Threshold + 6 dB margin	-75.4 dBm	-76.4 dBm
Upper Threshold + 6 dB margin	N/A	-56.4 dBm

MultiView 😁 Spectru	m						
Ref Level 0.00 dBm Att 10 dB = SW	RBW 100 kHz T 30 s VBW 300 kHz				Delta Marker 2		SGL
1 Zero Span	1 30 3 VD11 300 KHZ			6.12 s		×	●1Pk Clrw
						עצני	[] 37.31 dB 6.1200 s
-10 dBm						M1[:	1] -52.46 dBm 750.0 ms
	D2						
-20 dBm							
-30 dBm							
-40 dBm							
-50/d8m							
-60 dBm							
-70 dBm							
-80 dBm							
when we we will be a start when the	yheroundry						
-90 dBm							
CF 1.924992 GHz		100	l pts			II	3.0 s/
					Ready 📗		29.04.2014 13:12:00

7.3.4 Selected Channel Confirmation, Connection 6.1s After Interferer Removed

3.17 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. However, if the test is not carried out the manufacturer shall declare and provide proper evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance test, at $\pm 30\%$ of B	N/A	N/A
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

Comment: This test is not applicable since the EUT uses the same receiver for monitoring and communication.

Limits, FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

3.18 Reaction Time and Monitoring Interval

Measurement Procedure

ANSI C63.17, clause 7.5

Test results:

By administrative commands and out-of-operating region interference, the EUT is restricted to operate on only carriers f_1 and f_2 .

Time-synchronized pulsed interference was then applied on carrier f_1 at pulsed levels $T_L + U_M$ and a CW signal at level T_L was applied at carrier f_2 . The level at carrier f_1 was raised 6 dB for part d) with 35 µs pulses.

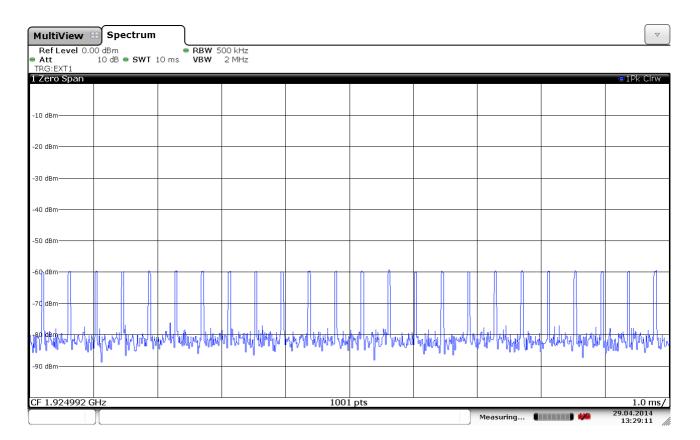
It was then checked that the EUT transmits on carrier f_2 .

The pulses are synchronized with the EUT timeslots and applied centered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 µs and 50*SQRT(1.25/ <i>B</i>)	EUT transmits on f_2	Pass
d) > largest of 35 μs and 35*SQRT(1.25/ <i>B</i>), and with interference level raised 6 dB	EUT transmits on f_2	Pass

Comment: Since *B* is larger than 1.25 MHz the test was performed with pulse lengths of 50 µs and 35 µs.

Limits, FCC 15.323(c)(1), (5) and (7)


The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.

If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

MultiView	Spectrum								
Ref Level 0.0 Att TRG:EXT1	00 dBm 10 dB ● SWT 1	• RBW 5 .0 ms VBW	00 kHz 2 MHz						
1 Zero Span									●1Pk Clrw
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm						1 1			
HAN ANN HANNA		Ma man Mu	rt (Jack) (Npp#/	hered the second state	M HANN MANY	Allowed & Montal &	m han h	V WWW WWW	May Min Mi
-90 dBm	U								
CF 1.924992 G	GHz			1001	l pts				1.0 ms/
][]				•		Measuring 🔳	•••	29.04.2014 13:29:58

50 µs Pulses

35 µs Pulses

3.19 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information.

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time-slot	N/A	N/A
b) The EUT must terminate or pause in its repetitive transmission of the control and signalling channel on the open channel to repeat the access criteria not less frequently than every 30 s	N/A	N/A

If FCC 15.323(c)(6) option, If Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to an interference-free slot when interference is introduced on the time slot in use	N/A	N/A

If FCC 15.323(c)(6) option, Only if Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not transmit unacknowledged control and signaling information.

Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgements must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which time the access criteria must be repeated.

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available

3.20 Acknowledgements and Transmission Duration

Measurement Procedure:

Acknowledgements: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgements** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgements** is performed by cutting-off the signal from the companion device by a RF switch and measuring the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

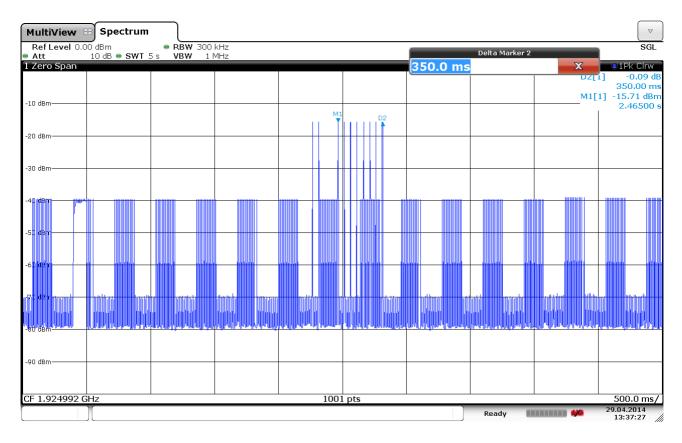
Acknowledgements

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgements	0.35 sec	Pass
c) Transmission time after loss of acknowledgements	5.0 sec	Pass

Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and frequency window	4 hours	Pass

Comment: /


Limits, FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease.

Periodic acknowledgements must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which time the access criteria must be repeated.

8.2.1a) Initial Transmission Without Acknowledgements

3.21 Dual Access Criteria Check

Measurement Procedure:

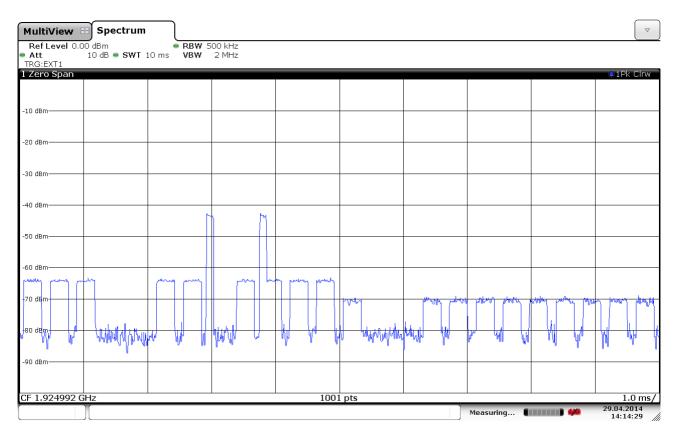
EUTs that do not implement the LIC algorithm or do not offer at least 20 duplex communications channels: ANSI C63.17, clause 8.3.1

EUTs that implement the LIC algorithm and offer at least 20 duplex communications channels: ANSI C63.17, clause 8.3.2

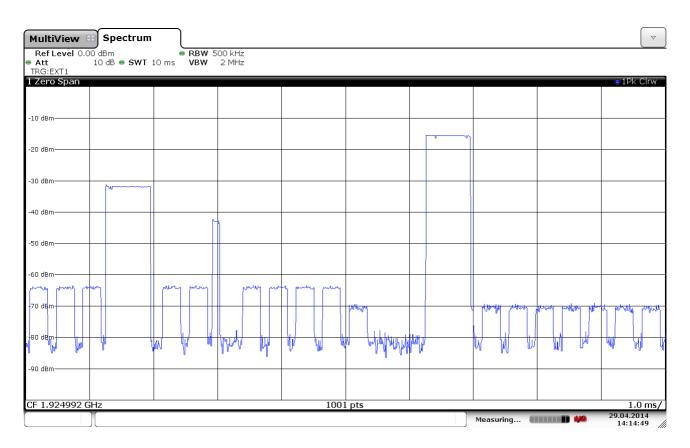
This test is required for all initiating devices that uses the access criteria in FCC 15.323(c)(10).

Test Results:

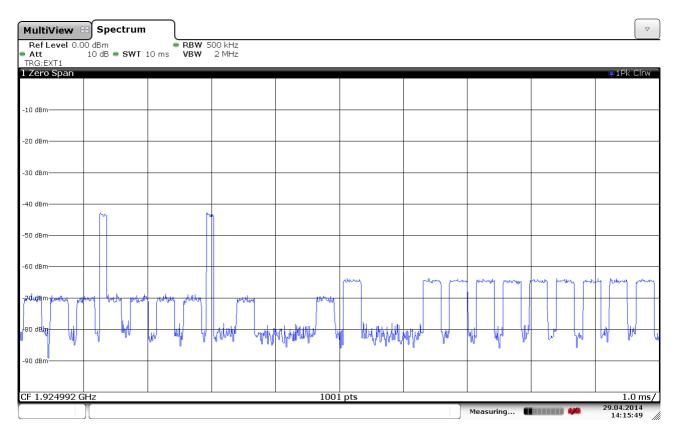
EUTs that Implements the LIC Algorithm and offer at least 20 duplex communications channels:


Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
b) EUT is restricted to a single carrier f_i for TDMA systems. The Test is Pass if EUT can transmit	EUT can transmit	Pass
c) d) Transmission on interference-free receive time/spectrum window	EUT transmits on free receive slot	Pass
e) f) Transmission on interference-free transmit time/spectrum window	EUT transmits on free transmit slot	Pass

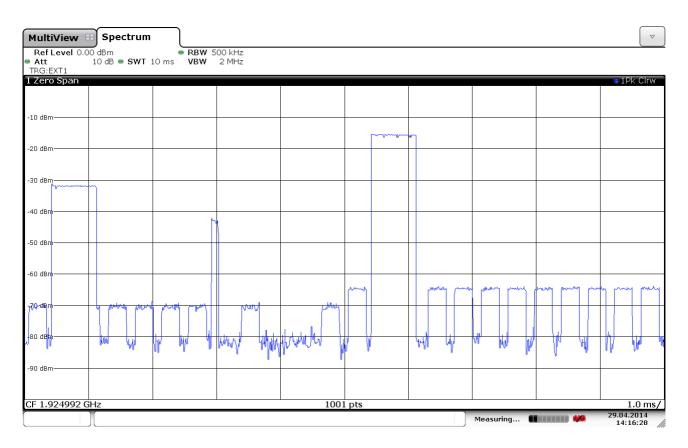
Comment: See plots.


Limits, FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.



8.3.2c) EUT Transmits on Interference Free RECEIVE Slot, BEFORE



8.3.2c) EUT Transmits on Interference Free RECEIVE Slot, AFTER

8.3.2e) EUT Transmits on Interference Free TRANSMIT Slot, BEFORE

8.3.2e) EUT Transmits on Interference Free TRANSMIT Slot, AFTER

3.22 Alternative Monitoring Interval

Test procedure described in ANSI C63.17 clause 8.4.

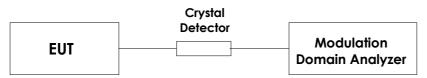
This test is required if the EUT implements the provisions of FCC 15.323(c)(11).

Test result:

Not Tested. The tested EUT does not implement this provision. See manufacturers' declaration.

4 Test Setups

4.1 Frequency Measurements

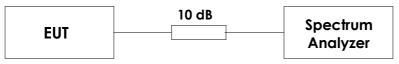


Test equipment included: 5, 9, 28

Test Set-up 1

This setup is used for measuring Carrier frequency stability at normal and extreme temperatures.

4.2 Timing Measurements

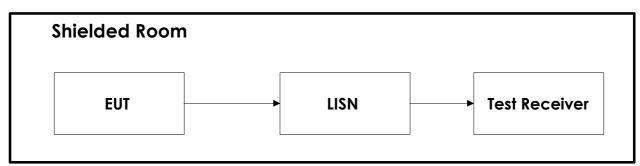


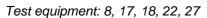
Test equipment included: 5, 7, 9, 28

Test Set-up 2

This setup is used for measuring Frame repetition stability, Frame period and Jitter.

4.3 Conducted Emission Test

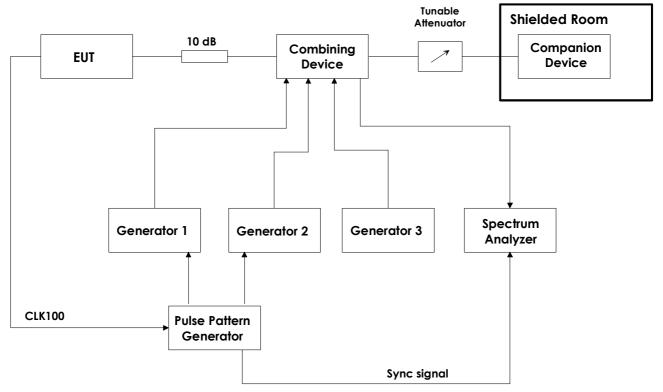



Test equipment included: 1, 2, 9, 26

Test Set-up 3

This setup is used for all conducted emission tests.

4.4 Power Line Conducted Emissions Test



Test Set-Up 5

4.5 Monitoring Tests

Test equipment: 1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25, 26

Test Set-Up 6

This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generators to the EUT is measured with a power meter before the testing is started.

The CLK100 is used to synchronize the Pulse-/ Pattern generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the CLK100 signal will come form the Companion Device.

The sync signal to the Spectrum Analyzer is the CLK100 signal that is regenerated in the Pulse-/ Pattern Generator, this is used to synchronize the Spectrum Analyzer to the DECT frame when in zero span. The Pulse-/ Pattern Generator is used for tests that require time synchronized pulses or blocking of specific time slots.

5 Test Equipment Used

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Testhouse.

No.	Model number	Description	Manufacturer	Ref. no.	Cal. date	Cal. Due
1	FSW26	Spectrum Analyzer	Rohde & Schwarz	LR 1640	2013.08.30	2014.08.30
2	SME03	Signal generator	Rohde & Schwarz	LR 1238	2013.03.19	2015.03.19
3	SMIQ03B	Signal generator	Rohde & Schwarz	LR 1516	2012.11.02	2014.11.02
4	SMHU52	Signal generator	Rohde & Schwarz	LR 1240	2012.06.19	2014.06.19
5	53310A	Modulation Domain Analyzer	Hewlett Packard	LR 1483	2013.08.14	2015.08.14
6	81104A	Pulse-/ Pattern Generator	Agilent	LR 1502	2013.03.19	2015.03.19
7	8470B	Crystal Detector	Hewlett Packard	LR 1207	N/A	
8	ESHS10	Measuring Receiver	Rohde & Schwarz	N- 3528	2012.06.28	2014.06.28
9	4768-10	Attenuator	Narda	LR1356	Cal b4 use	
10	745-69	Step Attenuator	Narda	LR 1442	N/A	
11	WE 1506A	Power Splitter	Weinchel	LR 244	Cal b4 use	
12	WE 1506A	Power Splitter	Weinchel	LR 245	Cal b4 use	
13	H-9	Hybrid	Anzac	LR 86	Cal b4 use	
14	H-9	Hybrid	Anzac	LR 257	Cal b4 use	
15	S212DS	RF Switch	Narda	LR 1244	N/A	
16	3115	Double Ridged Horn Antenna	EMCO	LR 1226	N/A	
17	ESH3-Z5	Two Line V-Network	Rohde & Schwarz	LR 1076	Cal b4 use	
18	80S	Signal Generator	Powertron	LT 502	Cal b4 use	
22	Model 87 V	Multimeter	Fluke	LR 1600	2012.09.05	2014.09.05
23	87H35-1	Circulator	Racal-MESL	s.no.: 140	N/A	
24	87H35-1	Circulator	Racal-MESL	s.no.: 141	N/A	
25	87H35-1	Circulator	Racal-MESL	s.no.: 142	N/A	
26	U2000A	Average Power Sensor	Rohde & Schwarz	LR 1523	2013.10.23	2014.10.23
27	ESH3-Z2	Pulse Limiter	Rohde & Schwarz	LR 1074	Cal b4 use	
28	CMD60	DECT Tester	Rohde & Schwarz	LR 1335	2012.11.01	2014.11.01