MEASUREMENT AND TECHNICAL REPORT

HM ELECTRONICS 6675 Mesa Ridge Road San Diego, CA 92121-2937

DATE: 05 December 2000

This Report Concerns: Original Grant: X	Class II Change:						
Equipment Type: COM400CC, Model K23724							
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)?	Yes: No: X Defer until:						
Company Name agrees to notify the Commission by: of the intended date of announcement of the product so the	N/A that the grant can be issued on that date.						
Transition Rules Request per 15.37? Yes:	*No:						
(*) FCC Part 2, Paragraphs 2.1053, 2.1049, 2.1051; an	d Part 90, Paragraph 90.217						
Report Prepared by: TÜ 100 San Pho Fax	V PRODUCT SERVICE 40 Mesa Rim Road 1 Diego, CA 92121-2912 one: 858 546 3999 :: 858 546 0364						

TABLE OF CONTENTS

		Pages
1	GENERAL INFORMATION	3
1.1	Product Description	3
1.2	Related Submittal Grant	4
1.3	Tested System Details	4
1.4	Test Methodology	5
1.5	Test Facility	5
1.6	Part 2 Requirements	6
2	SYSTEM TEST CONFIGURATION	7
	2.1 Justification	7
	2.2 EUT Exercise Software	7
	2.3 Special Accessories	7
	2.4 Equipment Modifications	7
	2.5 Configuration of Tested System	7
3	RADIATED EMISSION DATA	8
	3.1 Field Strength Calculation	13
4	CONDUCTED EMISSION DATA	14
5	Signature Page	49

1 GENERAL INFORMATION

1.1 Product Description

1.1 Product Description									
	Components of EUT								
Description	Model Number	Seria	I Number	FCC ID Number					
Collar Communicator	K23724			BYMCOM400CC					
COM400CC									
OPERATING MODE(S):	Norm	al							
I/O CABLES									
Headset connector, analog, (1), No shielding; 5-pi	in custom connector; a	audio port termin	ation; appx. 1' cable;					
removable									
	I	POWER CORDS							
N/A, battery operated									
	PC	WER INTERFACE							
FREQUENCY/AC/DC VOLTA	AGE: Batter	ry, DC							
INTERFACING AND/OR SIMULATORS PERIPHERAL EQUIPMENT:									
DESCRIPTION	MODEL #	SERIAL #		FCC ID					
Headset	HS11		None						

Report No. 0411-08 (FCC ID: BYM400CC)

1 **GENERAL INFORMATION (continued)**

1.2 Related Submittal/Grant

None

1.3 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Purpose of Test:		To demonstrate compliance with the ANSI C63.4 setup.
Test Performed:	x	 Conducted Emissions, FCC Part 2, Paragraphs 2.1049, 2.1051, & Part 90, Paragraph 90.217
		2. Radiated Emissions, EN55022: 1992 Class B limit, 30 - 1,000 MHz, 10 meters
	х	 Radiated Emission per FCC Part 2, Paragraph 2.1053 Engineering evaluations

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 619 546 3999 Fax: 619 546 0364

The Test Site Data and performance comply with ANSI 63.4 and are registered with the FCC, 7435 Oakland Mills Rd, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

1.6 Part 2 Requirements

Frequency Range: Transmit: 468.4875 to 469.8875 MHz Receive: 457.5125 to 467.6125 MHz

Maximum Power Rating: 50 mW

DC Voltages applied to dc currents into the final radio frequency amplifying device for normal operation over the power range: Final gain stage on the transmit strip is Q5. Q5 collector is 5 Vdc Q5 collector I is 20 mA Values at 50 mW power rating. 50 mW is the only setting that is used. Q5 base is 3.5 Vdc Q5 base I is 1 mA

Description of all circuitry and devices provdied for determining and stabilizing frequency: Transmit frequency is determined by phase locked loop on the 1st mixer (IC2) IC on the transceiver board. See writeup on transceiver board theory of operation.

Description of circuits or devices employed for suppression of spurious radiation, for limiting modulation, and for limiting power:

Modulation is limited by the AK2345 tone chip IC6 on the transceiver board. The IC has an internal limiter circuit. Power is limited by the supply voltage. Spurious signals are suppressed by saw filter (FL3) and by out filter (L7, L8, L9, C32, C33, C37, C38, C39).

Report No. 0411-08 (FCC ID: BYM400CC)

2. SYSTEM TEST CONFIGURATION

2.1 Justification

The COM400CC, Model K23724 was initially tested for FCC emission in the following configuration:

See Block Diagram.

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Modification

None

2.5 Configuration of Tested System

See Block Diagram.

3 RADIATED EMISSION DATA/EQUIPMENT

The following data lists the significant emission frequencies, measured levels, correction factor (which includes cable and antenna corrections), the corrected reading, and the limit.

See following page(s).

Radiated Electromagnetic Emissions

9

Test Report #:	S0411 Run 02	Test Area:	Site 1 3 meters	Temperature:	25	°C	
Test Method:	Spurious Emissions 2.145	- 3 Test Date:	25-Oct-2000	Relative Humidity:	45	~ %	
EUT Model #:	COM400CC	EUT Power:	Internal Battery	Air Pressure:	100.0	kPa	
EUT Serial #:	K23724 w/HS5-LT	-		Page: 1 of 2		-	
Manufacturer:	HM Electronics			Level Key			
EUT Description:	Intercom System			Pk – Peak	Nb Na	arrow Band	
Notes: Transmit Mode				Qp – QuasiPeak	Bb – Bro	oad Band	
·				Av - Average			

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 90.210(c)	N/A
Low Channel						
468.49	77.1 Qp	6.0 / 17.6 / 0.0	100.7	V / 1,0 / 0.0	N/A	N/A
936.98	36.6 Qp	9.0 / 23.5 / 0.0	69.1	V / 1.0 / 0.0	-13.2	N/A
936.98	43.1 Qp	9.0 / 23.5 / 0.0	75.6	H / 1.0 / 0.0	-6.7	N/A
468.49	76.2 Qp	6.0 / 17.6 / 0.0	99.8	H/1.0/0.0	N/A	N/A
Mid Channel		<u> </u>				
469.14	77.6 Qp	6.0 / 17.7 / 0.0	101.3	H / 1.0 / 0.0	N/A	N/A
469.14	75.8 Qp	6.0 / 17.7 / 0.0	99.5	V / 1.0 / 0.0	N/A	N/A
938.28	40.3 Qp	9.0 / 23.4 / 0.0	72.7	V / 1.0 / 0.0	-9.6	N/A
938.28	45.2 Qp	9.0 / 23.4 / 0.0	77.6	H / 1.0 / 0.0	-4.7	N/A
High Channe	I					
469.89	77.8 Qp	6.0 / 17.7 / 0.0	101.5	H/1.0/0.0	N/A	N/A
469.89	75.5 Qp	6.0 / 17.7 / 0.0	99.2	V / 1.0 / 0.0	N/A	N/A
939.78	37.8 Qp	9.0 / 23.3 / 0.0	70.1	V / 1.0 / 0.0	-12.2	N/A
939.78	45.6 Qp	9.0 / 23.3 / 0.0	77.9	H / 1.0 / 0.0	-4.4	N/A

Tested by: Jim Owen Printed Signature

Radiated Electromagnetic Emissions

Test Report #:	S0411 Run 01	Test Area:	Site 3 Roof	Temperature:	25	°C
Test Method:	Spurious Emissions 2.10	53 Test Date:	11-Oct-2088	Relative Humidity:	45	%
EUT Model #:	COM400CC	EUT Power:	Internal Battery	Air Pressure:	100.0	kPa
EUT Serial #:	K23724 w/HS5-LT			Page: 1 of 3		-
Manufacturer:	HM Electronics			Leve	el Key	
EUT Description:	Intercom System			Pk – Peak	Nb – Na	rrow Band
Notes: Transmit Mode				Qp – QuasiPeak	Bb Broad Band	
·			· · · · · ·	Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 90.210	N/A
High Band		· · · · · · · · · · · · · · · · · · ·				
1879.50	68.2 Pk	4.2 / 28.3 / 39.8	60.8	H / 1.0 / 202.0	-21.4	N/A
1879.50	67.3 Av	4.2 / 28.3 / 39.8	59.9	H / 1.0 / 202.0	-22.3	N/A
2349.40	70.4 Pk	4.8 / 30.1 / 39.6	65.6	H / 1.2 / 142.0	-16.6	N/A
2349.40	70.2 Av	4.8 / 30.1 / 39.6	65.4	H / 1.2 / 142.0	-16.8	N/A
2819.30	71.8 Pk	5.5 / 31.3 / 39.5	69.1	H / 1.2 / 142.0	-13.1	N/A
2819.30	71.8 Av	5.5 / 31.3 / 39.5	69.1	H / 1.2 / 142.0	-13.1	N/A
3289.20	57.0 Pk	6.3 / 32.3 / 39.4	56.2	H / 1.2 / 142.0	-26.0	N/A
1409.66	62.6 Pk	3.6 / 26.4 / 40.4	52.2	H / 2.0 / 193.0	-30.0	N/A
1409.66	59.0 Pk	3.6 / 26.4 / 40.4	48.6	V / 1.5 / 95.0	-33.6	N/A
1879.50	65.9 Pk	4.2 / 28.3 / 39.8	58.5	V / 1.5 / 278.0	-23.7	N/A
2349.40	63.6 Pk	4.8 / 30.1 / 39.6	58.8	V / 1.5 / 313.0	-23.4	N/A
2819.30	72.7 Pk	5.5 / 31.3 / 39.5	70.0	V / 1.5 / 191.0	-12.2	N/A
3289.20	58.2 Pk	6.3 / 32.3 / 39.4	57.4	V / 1.5 / 172.0	-24.8	N/A
Mid Band						· · · · · · · · · · · · · · · · · · ·
1407.40	58.6 Pk	3.6 / 26.4 / 40.4	48.2	V / 1.2 / 219.0	-34.0	N/A
1876.50	66.0 Pk	4.2 / 28.3 / 39.8	58.6	V / 1.2 / 180.0	-23.6	N/A
2345.60	65.7 Pk	4.8 / 30.0 / 39.6	60.9	V / 1.2 / 180.0	-21.3	N/A
2345.60	64.6 Av	4.8 / 30.0 / 39.6	59.8	V / 1.2 / 180.0	-22.4	N/A
2814.80	70.1 Pk	5.5 / 31.3 / 39.5	67.4	V / 1.1 / 293.0	-14.8	N/A
2814.80	70.1 Av	5.5 / 31.3 / 39.5	67.4	V / 1.1 / 293.0	-14.8	N/A
3289.20	57.4 Pk	6.3 / 32.3 / 39.4	56.6	V / 2.0 / 158.0	-25.6	N/A
1876.60	68.0 Pk	4.2 / 28.3 / 39.8	60.6	H / 1.5 / 275.0	-21.6	N/A
1876.60	67.1 Av	4.2 / 28.3 / 39.8	59.7	H / 1.5 / 275.0	-22.5	N/A
2345.70	68.7 Pk	4.8 / 30.0 / 39.6	63.9	H / 1.2 / 303.0	-18.3	N/A
2345.70	67.9 Av	4.8 / 30.0 / 39.6	63.1	H / 1.2 / 303.0	-19.1	N/A
2814.80	70.9 Pk	5.5 / 31.3 / 39.5	68.2	H / 1.2 / 303.0	-14.0	N/A
2814.80	70.6 Av	5.5 / 31.3 / 39.5	67.9	H / 1.2 / 303.0	-14.3	N/A
3284.00	56.1 Pk	6.3 / 32.3 / 39.4	55.3	H/1.2/13.0	-26.9	N/A

Tested by:

Jim Owen Printed

<u>Vum</u> Signature

Radiated Electromagnetic Emissions

μ

Test Report #:	S0411 Run 01	Test Area:	Site 3 Roof	Temperature:	25	°C
Test Method:	Spurious Emissions 2	1053 Test Date:	11-Oct-2088	Relative Humidity:	45	- %
EUT Model #:	COM400CC	EUT Power:	Internal Battery	Air Pressure:	100.0	kPa
EUT Serial #:	K23724 w/HS5-LT			Page: 2 of 3		_
Manufacturer:	HM Electronics	<u> </u>		Lev	el Key	
EUT Description:	Intercom System			Pk – Peak	Nb – Na	arrow Band
Notes: Transmit	Mode			Qp – QuasiPeak Bb – E		road Band
	·····			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 90.210	N/A
1407.40	66.3 Pk	3.6 / 26.4 / 40.4	55.9	H / 1.2 / 12.0	-26.3	N/A
Low Band	<u> </u>	• • • • • • • • • • • • • • • • • • • •				
1405.46	69.0 Pk	3.5 / 26.4 / 40.4	58.5	H / 1.5 / 13.0	-23.7	N/A
1873.95	72.9 Pk	4.1 / 28.3 / 39.8	65.5	H / 1.0 / 5.0	-16.7	N/A
1873.95	72.9 Av	4.1 / 28.3 / 39.8	65.5	H / 1.0 / 5.0	-16.7	N/A
2342.44	76.7 Pk	4.8 / 30.0 / 39.6	71.9	H / 1.0 / 5.0	-10.3	N/A
2342.44	76.7 Av	4.8 / 30.0 / 39.6	71.9	H / 1.0 / 5.0	-10.3	N/A
2810.92	78.0 Pk	5.5 / 31.3 / 39.5	75.3	H / 1.0 / 316.0	-6.9	N/A
2810.92	78.0 Av	5.5 / 31.3 / 39.5	75.3	H / 1.0 / 316.0	-6.9	N/A
3279.40	61.6 Pk	6.2 / 32.3 / 39.4	60.8	H / 1.0 / 316.0	-21.4	N/A
3279.40	60.9 Av	6.2 / 32.3 / 39.4	60.1	H/1.0/316.0	-22.1	N/A
3747.90	54.5 Pk	6.9 / 33.6 / 40.0	55.0	H / 1.0 / 316.0	-27.2	N/A
4216.40	54.5 Pk	7.2 / 34.0 / 40.6	55.2	H/1.0/316.0	-27.0	N/A
4684.90	55.1 Pk	7.3 / 34.0 / 40.6	55.9	H / 1.0 / 316.0	-26.3	N/A
1405.50	67.6 Pk	3.5 / 26.4 / 40.4	57.1	V / 1.0 / 343.0	-25.1	N/A
1873.95	68.5 Pk	4.1 / 28.3 / 39.8	61.1	V / 1.0 / 230.0	-21.1	N/A
1873.95	68.5 Av	4.1 / 28.3 / 39.8	61.1	V / 1.0 / 230.0	-21.1	N/A
2342.50	68.5 Pk	4.8 / 30.0 / 39.6	63.7	V / 1.0 / 56.0	-18.5	N/A
2810.90	71.6 Pk	5.5 / 31.3 / 39.5	68.9	V / 1.0 / 56.0	-13.3	N/A
2810.90	71.6 Av	5.5 / 31.3 / 39.5	68.9	V / 1.0 / 56.0	-13.3	N/A
3279.40	54.5 Pk	6.2 / 32.3 / 39.4	53.7	V / 1.1 / 282.0	-28.5	N/A
3747.90	54.5 Pk	6.9 / 33.6 / 40.0	55.0	V / 1.1 / 282.0	-27.2	N/A

Tested by:

Jim Owen Printed

- ------

Emissions Test Conditions: RADIATED SPURIOUS EMISSIONS

The measurements were performed at the following test location :

- Test not applicable

- Roof (Small Open Area Test Site)
- □ Canyon #1 (10- and 30-Meter Open Area Test Site), Carroll Canyon, San Diego
- □ Canyon #2 (3- and 10-Meter Open Area Test Site), Carroll Canyon, San Diego

Testing was performed at a test distance of:

- □ 1 meters
- 3 meters
- □ 10 meters

Test Equipment Used :

Model #	Manufacturer	Description	Serial #	Prop. #	Cal Date
8566B	Hewlett Packard	Spectrum Analyzer	2311A02209	407	11/01
85662B	Hewlett Packard	Spectrum Analyzer Display	2309A04682	406	11/01
LPB2520/A	Antenna Research	LPB	1169	738	05/01
ESVS30	Rhode & Schwarz	Receiver	833825/003	466	12/00

Remarks:

3.1 Field Strength Calculation

If a preamplifier was used during the Radiated Emission Testing, it is required that the amplifier gain must be subtracted from the Spectrum Analyzer (Meter) Reading. In addition, a correction factor for the antenna, cable used and a distance factor, if any, must be applied to the Meter Reading before a true field strength reading can be obtained. In the automatic measurement, these considerations are automatically presented as a part of the print out. In the case of manual measurements and for greater efficiency and convenience, instead of using these correlation factors for each meter reading, the specification limit was modified to reflect these correlation factors at each frequency value so that the meter readings can be compared directly to the modified specification limit. This modified specification limit is referred to as the "Corrected Meter Reading Limit" or simply the CMRL, which is the actual field strength present at the antenna. The quantity can be derived in the following manner:

Corrected Meter Reading Limit (CMRL) = SAR + AF + CL - AG - DC

Where, SAR = Spectrum Analyzer Reading

- AF = Antenna Factor
- CL = Cable Loss
- AG = Amplifier Gain (if any)
- DC = Distance Correction (if any)

Assume the following situation: A meter reading of 29.4 dBuV was obtained from a Class A computing device measured at 83 MHz. Assume an antenna factor of 9.2 dB, a cable loss of 1.4 dB and amplifier gain of 20.0 dB at 83 MHz. The final field strength would be determined as follows:

CMRL = 29.4 dBuV + 9.2dB = 1.4 dB - 20 dB/M - 0.0 dB

CMRL = 20.0 dBuV/M

This result is well below the FCC and CSA Class A limit of 29.5 dbuV/m at 83 MHz.

For the manual mode of measurement, a table of corrected meter reading limit was used to permit immediate comparison of the meter reading to determine if the measure emission amplitude exceeded the specification limit at that specific frequency.

4 CONDUCTED EMISSION DATA/EQUIPMENT

HME ELECTRONICS

See following page(s).

Emissions Test Conditions: CONDUCTED EMISSIONS, Part 2, Paragraphs 2.1049, 2.1051 and Part 90, Paragraph 90.217

The measurements were performed at the following test location :

- Test not applicable

SR-2, Shielded Room, 12' x 24' x 10', Metal Chamber

Test Equipment Used :

Model #	Manufacturer	Description	Serial #	Prop. #	Cal Date
85660B	Hewlett Packard	Spectrum Analyzer	2311A02209	407	11/01
8566B	Hewlett Packard	Spectrum Analyzer Display	2309A04682	406	11/01
HP8594E	Hewlett Packard	Spectrum Analyzer	3303A00365	430	05/01

Remarks:

Project Nr. S0411 HM Electronics COM400CC

OUTPUT POWER MEASUREMENT RESULTS

LOW 468.4875 MHz 16.57 dBm 45.394 mW

469.1375 MHz 15.49 dBm 35.400 mW

MID

HIGH 469.8875 MHz 15.58 dBm 36.141 mW

Equipment Used:

HP 8594E PN: 430

Modulation 2.5 KHZ tone 16 dB trigher than 50%

ł

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. Low Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051

NOTES: 1. Low Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. Low Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. Low Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

.

hp REF	- Ø.Ø	dBm	ATT	EN 1Ø	dB			MK	(R 2.8) -52.6	Ø7 GHz Ø dBm
10 dB/										
POS PK										
-20.0 dBm										
			F							
			/ 1							
	la alana ang	-	Millionaliza	Mundanap	M	with a first start of the	- Market and a	undurhum	manhalim	Manda Mark
START 2		-	470). ja							
	RES BU	N 100	кНz	VBW	100	kHz		SWP	900 ms	sec 20

.

TEST: Conducted Spurious, Part 2, Para. 2.1051 1. Mid Channel NOTES: 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

,15:13:38 OCT 10, 2000 REF 2Ø.Ø dBm AT 3Ø dB PEAK LOG 1Ø dB/ DL -2Ø.Ø dBm WA SB SC FC CORR START 30.0 MHz STOP 500.0 MHz #RES BW 100 kHz #VBW 1ØØ kHz SWP 141 msec

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. Mid Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. Mid Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. Mid Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. High Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051 NOTES: 1. High Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051
NOTES: 1. High Channel
2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Conducted Spurious, Part 2, Para. 2.1051NOTES:1. High Channel2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

hp REF	Ø.Ø	dBm	ΑΤΤΙ	EN 10	dB			MK	R 2.80	J7 GHz J dBm
10 dB/										
POS PK							<u></u>			
			······							
		र								
DL -20.0										
dBm										
	-	·····	Ť							-
							an 1974 and Store on Social Sciences			
										· · · · · · · · · · · · · · · · · · ·
	almonds ally	uit when the				the set of the set			an any deriver and the	
START 2.	ØØ GH: RES BI	z N 100	kHz	VBW	N 100	kHz		ST SWP	0P 5.0 900 ms	30 GHz sec 28

TEST: Occupied Bandwidth, Part 2, Para. 2.1049 NOTE: Modulation 2.5 kHz tone, 16 dB higher than 50%.

13:42:12 OCT 10, 2000

 $REF - 2\emptyset . \emptyset dBm$ AT 10 dB

TEST: Occupied Bandwidth, Part 2, Para. 2.1049 Modulation 2.5 kHz tone, 16 dB higher than 50%.

14:14:07 OCT 10, 2000

REF -2Ø.Ø dBm AT 1Ø dB SMPL OCCUPIED BW (99.ØØ%) LOG OBW: 1.59 KHz 1Ø AFC: -Ø. 14 KHZ 12.50 kHz CSP dB/ -20.8 dBm Pwr: WA SB SC FC CORR CENTER 469.13750 MHz SPAN 37.50 kHz #RES BW 100 Hz SWP 11.3 #VBW 1 kHz sec

TEST: Occupied Bandwidth, Part 2, Para. 2.1049 Modulation 2.5 kHz tone, 16 dB higher than 50%.

14:21:07 OCT 10, 2000

REF -2Ø.Ø dBm AT 1Ø dB SMPL OCCUPIED BW (99.00%) LOG OBW: 1.69 kHz 1Ø Arc: -Ø.09 KHZ CSP dB/ -25.8 dBm 12.50 kHz Pwr: WA SB SC FC CORR CENTER 469.88750 MHz SPAN 37.50 kHz #RES BW 100 Hz #VBW 1 kHz SWP 11.3 sec

TEST: Exemption from standard emission mask plot, FCC Part 90, Paragraph 90.217 NOTES: 1. Low Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%. .16: 22: 18 DCT 1Ø, 2ØØØ MKH \triangle -5.63 kHz REF 20.0 dBm AT 3Ø dB -48.49 dB PEAK LOG 1Ø dB/ DL -20.0 dBm VA SB mmmmmmm SC FC My Muntum Man CORR CENTER 468.48750 MHz SPAN 50.00 KHz RES BW 1.0 kHz VBW 1 KHz SWP 300 msec

TEST: Exemption from standard emission mask plot, FCC Part 90, Paragraph 90.217
NOTES: 1. Low Channel
2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

TEST: Exemption from standard emission mask plot, FCC Part 90, Paragraph 90.217 NOTES: 1. Mid Channel 2. Modulation 2.5 kHz tone, 16 dB higher than 50%. 16:13:46 OCT 10. 2000 MKR \triangle -5.63 kHz REF 20.0 dBm AT 30 dB ~45.78 dB PEAK LOG 10dB/ DL -2Ø.Ø dBm VA SB MMMMMM SC FC mymum CORR CENTER 469.13750 MHz SPAN 50.00 KHz RES BW 1.Ø KHz VBW 1 kHz SWP 300 msec

TEST: Exemption from standard emission mask plot, FCC Part 90, Paragraph 90.217
NOTES: 1. High Channel
2. Modulation 2.5 kHz tone, 16 dB higher than 50%.

Emissions Test Conditions: FREQUENCY STABILITY (Tests performed by HM Electronics) DATA/EQUIPMENT

9 Nov, 00

Information regarding testing of COM400CC at HM Electronics.

The following tests on the COM400CC were performed on the dates noted:

- 1. Frequency Stability vs. Temperature 12 October 2000 and 13 Oct 2000
- 2. Audio Frequency Response 13 October
- 3. Modulation Limiting 13 October 2000

The tests were performed by: Eligio Rollo, Technician, HME Engineering Dept. The tests were supervised by: Seth Schlam, Engineer, HME Engineering Services Dept.

Equipment used for these tests, and calibration data for the equipment is as follows:

 Temperature Chamber: Environtronics Model ST1, S/N 079010030
 Performance Verification: July 2000 by HM Electronics next due: July 2001

 Note: Temperature Monitoring verified by Fluke Digital Multimeter with Thermocouple Module.

- Fluke Multimeter: Fluke model D800, S/N 3085032
 Calibration Date: 4/21/2000
 next due: 4/21/2001
 Calibration by: Excalibur Engineering
 3198-C Airport Loop Drive
 Costa Mesa Ca. 92626
- 3. Fluke Thermocouple Converter: Fluke model 80TK, S/N AA00091737 Calibration Date: August 3, 2000 next due: August 3, 2002 Calibration by: Excalibur Engineering
- 4. Hewlett Packard RF Communications Test Set: Model HP8920A, S/N 3141A00596 Calibration Date: November 18, 1998 next due: November 18, 2000 Calibration by: Certified Metrology Services Inc. 1425 Russ Blvd. San Diego, Ca. 92101

The above information is true and correct.

Seth Schlam. eth Schlam

HM Electronics Engineering Services

13 October 2000

COM400CC Frequency Stability vs. Temperature Test Data Requirement: 47 CFR 2.1055 Test Method: EIA – TIA – 603 (93) para 2.2.2

The COM400CC was temperature soaked at -30 degrees C overnight prior to taking the first test reading. For each step in temperature, the unit was temp soaked for $\frac{1}{2}$ hour prior to taking the test reading. The readings were taken while the unit remained in the environmental chamber. Data is shown in table 1 below. A graph of the data is shown in Figure 1.

Temp (Deg. C)	ACF (MHz)	MCF (MHz)	PPM error	Time
- 30	469.1375	469.1324011	10.86	12:00 PM
- 20	469.1375	469.135488	4.28	12:30 PM
- 10	469.1375	469.137076	.90	1:00 PM
0	469.1375	469.137981	1.02	1:30 PM
+ 10	469.1375	469.138022	1.11	2:00 PM
+ 20	469.1375	469.138022	1.11	2:30 PM
+ 30	469.1375	469.137729	.48	3:00 PM
+ 40	469.1375	469.137412	.18	3:30 PM
+ 50	469.1375	469.137251	.53	4:00 PM
+ 60	469.1375	469.136354	2.44	8:00 AM

ACF = Assigned Center Frequency MCF = Measured Center Frequency PPM = Parts Per Million Table 1.

40

COM400CC Audio Frequency Response Requirement: 47 CFR 2.1047 (a) Test Method: EIA-TIA-603 (93) para. 2.2.6

Note: Due to subaudible tones used for control (CTCSS continuous tone controlled squelch system) the COM400CC has a low end frequency of 300 Hz for audio. The high end is approximately 3000 Hz. The data readings below were taken from 3000 to 5000 Hz audio input, as shown in table 2 below. This data is graphed in Figure 2, against the 6 dB per Octave line.

Frequency (Hz)	FM Deviation	Audio Freq
	(Hz)	Response
		(dB
300	120	-9.54
400	160	-7.04
500	197	-5.23
600	230	-3.89
700	260	-2.82
800	295	-1.72
900	327	-0.83
1000 * Ref Lvl	360	0.0
1100	395	+0.80
1200	430	+1.54
1300	465	+2.22
1400	500	+2.85
1500	535	+3.44
1600	571	+4.00
1700	607	+4.53
1800	644	+5.05
1900	678	+5.49
2000	713	+5.93
2100	749	+6.36
2200	781	+6.72
2300	812	+7.06
2400	842	+7.38
2500	870	+7.66
2600	895	+7.91
2700	917	+8.12
2800	934	+8.28

Table 2.

Frequency (Hz)	FM Deviation	Audio Freq
	(Hz)	Response
		(dB)
2900	950	+8.42
3000	960	+8.51
3100	970	+8.60
3200	970	+8.60
3300	970	+8.60
3400	960	+8.51
3500	946	+8.39
3600	928	+8.22
3700	908	+8.03
3800	881	+7.77
3900	851	+7.47
4000	818	+7.12
4100	782	+6.73
4200	742	+6.28
4300	701	+5.78
4400	661	+5.27
4500	619	+4.70
4600	577	+4.09
4700	535	+3.44
4800	494	+2.74
4900	455	+2.03
5000	418	+1.29

 Table 2. Audio
 Frquency Response for COM400CC (continued)

.

Requirement: CFR 2.1047(a)

COM 400CC

Test Method EIA-TIA-603 AUDIO FREQUENCY RESPONSE 300 TO 5000 HZ para. 2.2.6

COM400CC Modulation Limiting Requirement: 47 CFR 2.1047 (b) Test Method: EIA – TIA – 603 (93) para. 2.2.3

Test data for the Modulation Limiting test is shown in table 3 for Positive Peak Detection and in table 4 for Negative Peak Detection. Figures 3 and 4 show the graphs of the data.

Audio Freq	Max. FM	Audio Freq	Max. FM
(Hz)	Deviation (Hz)	(Hz)	Deviation (Hz)
300	1780	2700	3340
400	2480	2800	3430
500	2980	2900	3340
600	3290	3000	3400
700	3520	3100	3340
800	3660	3200	3280
900	3720	3300	3280
1000	3720	3400	3080
1100	3680	3500	3130
1200	3630	3600	3000
1300	3580	3700	2770
1400	3560	3800	2650
1500	3540	3900	2610
1600	3500	4000	2370
1700	3460	4100	2200
1800	3420	4200	2130
1900	3390	4300	2070
2000	3370	4400	1980
2100	3230	4500	1760
2200	3280	4600	1570
2300	3300	4700	1550
2400	3300	4800	1560
2500	3300	4900	1560
2600	3410	5000	1240

 Table 3
 Max FM Deviation (+ Peak Detector) vs. Audio Input Frequency

45

Audio Freq	Max. FM	Audio Freq	Max. FM
(Hz)	Deviation (Hz)	(Hz)	Deviation (Hz)
300	1730	2700	3420
400	2440	2800	3390
500	2890	2900	3460
600	3200	3000	3360
700	3410	3100	3400
800	3560	3200	3330
900	3630	3300	3320
1000	3660	3400	3310
1100	3640	3500	3140
1200	3610	3600	3140
1300	3570	3700	3060
1400	3510	3800	3060
1500	3460	3900	2730
1600	3420	4000	2720
1700	3370	4100	2700
1800	3340	4200	2640
1900	3330	4300	2300
2000	3300	4400	2360
2100	3330	4500	2180
2200	3330	4600	2060
2300	3370	4700	2060
2400	3390	4800	1780
2500	3420	4900	1820
2600	3500	5000	1770

Table 4 Max FM Deviation (- Peak Detector) vs. Audio Input Frequency

.

Requirement 47CFR 2.1047(b) Test Method EIA-TIA-603(93) PARA, 2.2.3

DEVIATION (HZ)

MAXIMUM

COM 4ØØCC

MODULATION LIMITING

Figure 3

REQUIREMENT 47CFR 2.1047(b)

TEST METHOD EIA-TIA-603(93)

PARA. 2.2.3

Figure 4

5 SUMMARY:

All tests according to FCC Part 2, Paragraphs 2.1053, 2.1049, 2.1051; and Part 90, Paragraph 90.217* were

- Performed
- I Not Performed

The Equipment Under Test

■ - Fulfills the FCC Part 2, Paragraphs 2.1053, 2.1049, 2.1051; and Part 90, Paragraph 90.217* requirements.

- TÜV PRODUCT SERVICE, INC. -

Responsible Engineer:

Jem Owen

Jim Owen (EMC Engineer)

(*) 2.1055 tests performed by HM Electronics. See Attestation Statement.