

Nemko Test Rep	ort:	2014_248302_	FCC_15247		
		HM Electronics 14110 Stowe D Poway, CA 920 USA	rive		
Equipment Unde	er Test:	1402			
FCC Identifier:		BYM1402			
IC Identifier:		1860A-1402			
In Accordance V	Vith:	FCC Part 15, S Industry Cana Frequency Hop	da RSS-210,	Issue 8	
Tested By:		Nemko USA, Inc. 2210 Faraday Ave. Ste 150 Carlsbad, CA 92008 USA			
TESTED BY:	David Light, Wirele	ess Engineer	DATE:	31 January 2014	
APPROVED BY:	Bruce Ketterling, F	7 Reviewer	DATE:	28 March 2014	

Total Number of Pages: 38

PROJECT NO.: 2014_248302_FCC_15247

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3		
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5		
SECTION 3.	CHANNEL SEPARATION	6		
SECTION 4.	TIME OF OCCUPANCY	11		
SECTION 5.	PEAK POWER OUTPUT	16		
SECTION 6.	SPURIOUS EMISSIONS (CONDUCTED)	20		
SECTION 7.	SPURIOUS EMISSIONS (RADIATED)	25		
SECTION 8.	TEST EQUIPMENT LIST	27		
ANNEX A - TEST DETAILS 28				
ANNEX B - TEST DIAGRAMS 36				

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

PROJECT NO.: 2014 248302 FCC 15247 EQUIPMENT: 1402

Section 1. **Summary of Test Results**

Manufacturer: HM Electronics, Inc.

Model No.: 1402

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and Industry Canada RSS-210, Issue 8 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC and Industry Canada.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a) / RSS-Gen 7.2.4	NA
Channel Separation	15.247(a)(1) / RSS-210 A8.1(b)	Complies
Time of Occupancy	15.247(a)(1) / RSS-210 A8.1(d)	Complies
20 dB Occupied Bandwidth	15.247(a)(1) / RSS-210 A8.1(a)	Complies
Peak Power Output	15.247(b) / RSS-210 A8.4(2)	Complies
Spurious Emissions (Conducted)	15.247(d) / RSS-210 A8.5	Complies
Spurious Emissions (Radiated)	15.247(d) / RSS-Gen 7.2.2	Complies

Footnotes:

The EUT is powered by a 3.7 V lithium battery.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 2. Equipment Under Test (E.U.T.)

Frequency Band: 902 – 928 MHz

2400 – 2483.5 MHz 5725 – 5850 MHz

Operating Frequency Range: 2401.9 to 2481.4 MHz

Number of Channels: 47

General Equipment Information

Channel Spacing: 1.72 MHz

User Frequency Adjustment: Software controlled

Description of EUT

The 1402 is a 2.4 GHz FHSS wireless headset transceiver designed to operate with a base station transceiver.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 3. Channel Separation

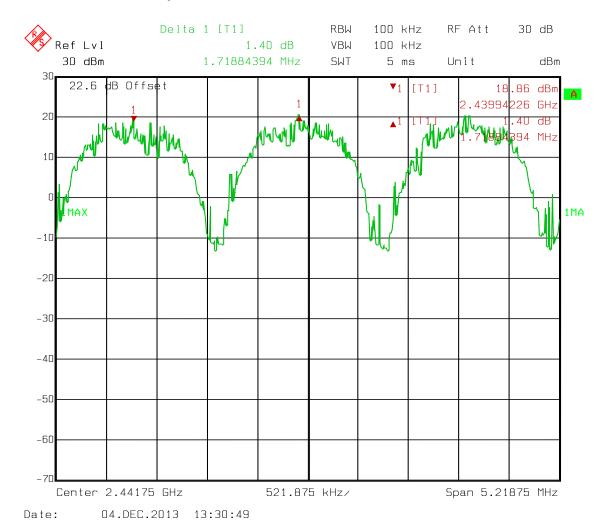
NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

TESTED BY: David Light DATE: 04 December 2013

Test Results: Complies.

Measurement Data: See 20 dB BW plot

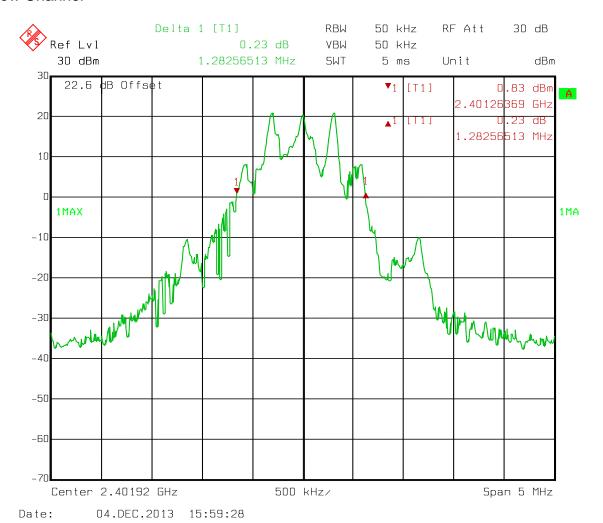
Measured 20 dB bandwidth: 1.28 MHz Channel Separation: 1.72 MHz


Equipment Used: 1036-1082-1472

Measurement Uncertainty: 1X10⁻⁷ppm

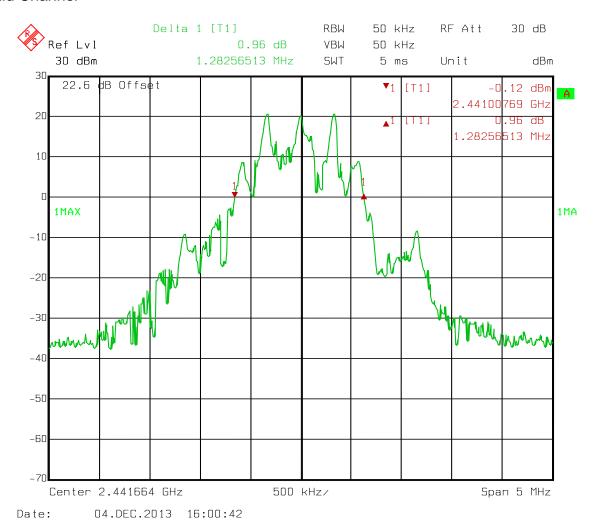
Temperature: 20 °C

Relative Humidity: 30 %


Test Data – Channel Separation

PROJECT NO.: 2014_248302_FCC_15247

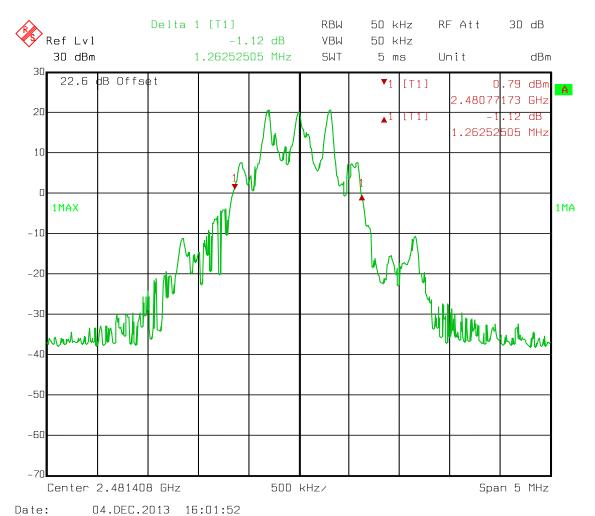
Test Data - 20 dB Bandwidth


Low Channel

PROJECT NO.: 2014_248302_FCC_15247

Test Data - 20 dB Bandwidth

Mid Channel



FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.: 2014_248302_FCC_15247

EQUIPMENT: 1402

Test Data - 20 dB Bandwidth

High Channel

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 4. Time of Occupancy

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

TESTED BY: David Light DATE: 04 December 2013

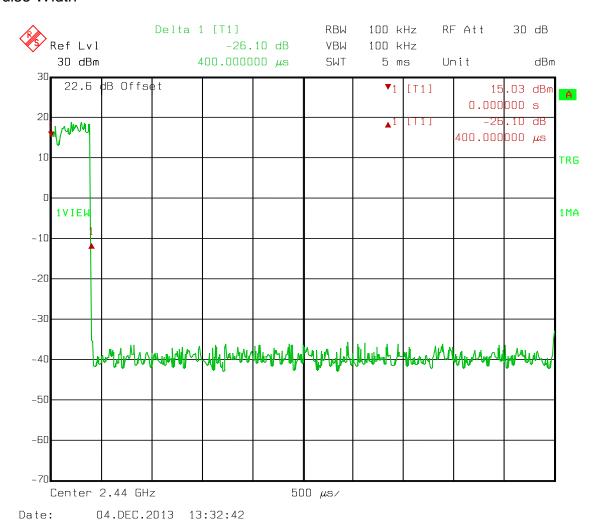
Test Results: Complies.

Measurement Data:

Maximum Dwell Time On Any Channel: 16.64 ms in 19 seconds

Equipment Used: 1036-1082-1472

Measurement Uncertainty: 1X10⁻⁷ppm

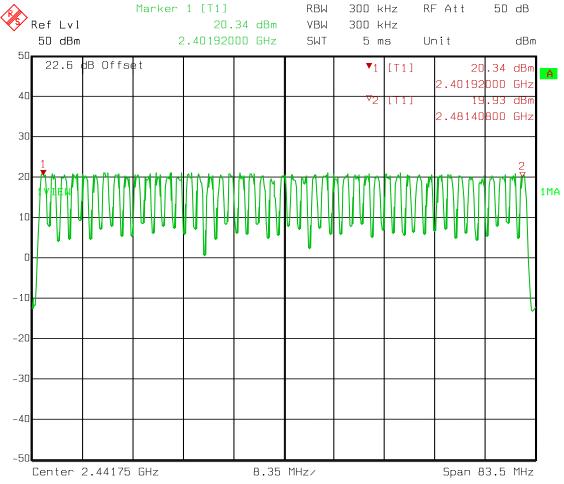

Temperature: 20 °C

Relative Humidity: 30 %

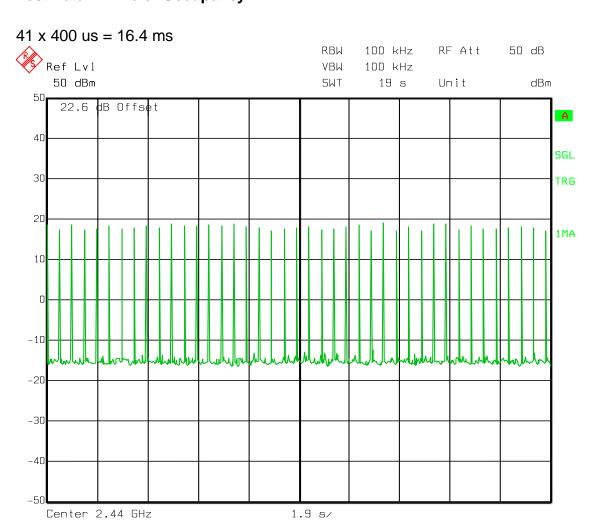
PROJECT NO.: 2014_248302_FCC_15247

Test Data - Time of Occupancy

Pulse Width

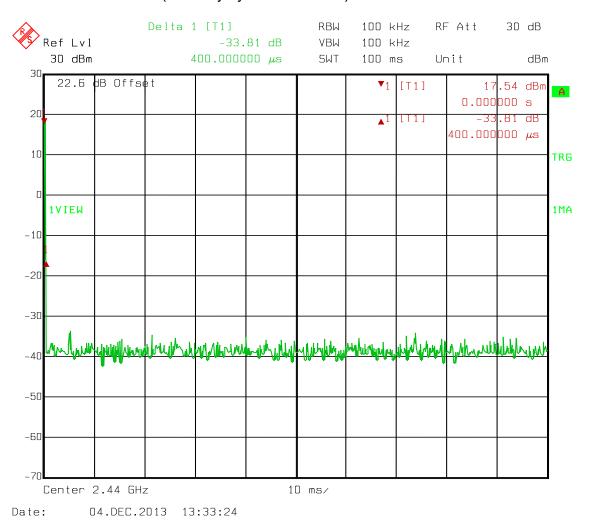

PROJECT NO.: 2014_248302_FCC_15247

FREQUEN


EQUIPMENT: 1402

Test Data – Time of Occupancy

Number of hopping channels


Test Data – Time of Occupancy

Date: 04.DEC.2013 13:49:49

Test Data – Time of Occupancy

Transmit time in 100 mS (For duty cycle calculation)

Duty Cycle = $20 \log (0.4/100) = -48 \text{ dB}$

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output PARA. NO.: 15.247 (b)

TESTED BY: David Light DATE: 4 Dec. 2013

Test Results: Complies.

Measurement Data: See attached plots.

Frequency (MHz)	Peak Power (dBm)	Peak Power (W)	Antenna Type	Gain (dBi)	E.I.R.P. (dBm)	E.I.R.P. (W)
2401.9	20.9	0.123	Inverted F	-6.0	14.9	0.031
2441.6	20.8	0.120	Inverted F	-6.0	14.8	0.030
2481.4	20.9	0.123	Inverted F	-6.0	14.9	0.031
Maximum EIRP (W): 0.031						

 Frequency (MHz)
 *Avg. Power (dBm)
 Avg Power (W)

 2401.9
 17.5
 0.123

 2441.6
 17.4
 0.120

 2481.4
 17.4
 0.123

\boxtimes	This device was tested at +/- 15% input power per 15.31(e), with no variation in
	output power.

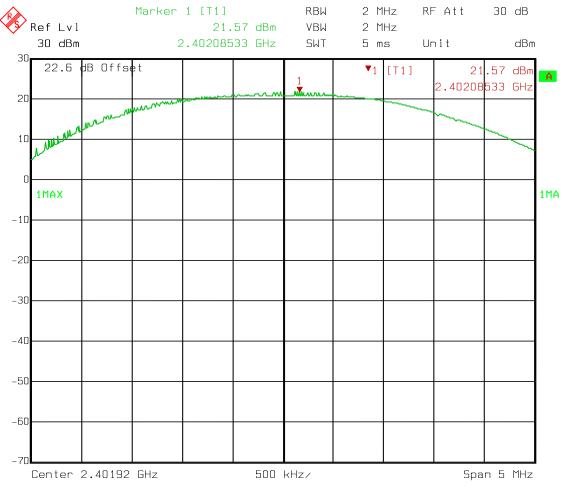
For battery powered equipment, the device was tested with a fresh battery per 15.31(e).

The device was tested on three channels per 15.31(I).

This test was performed radiated.

Equipment Used: 1036-1082-1472

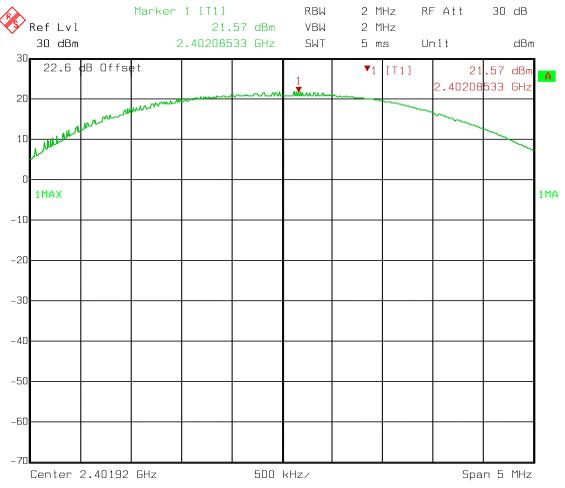
Measurement Uncertainty: 1.7 dB


Temperature: 20 °C

Relative Humidity: 30 %

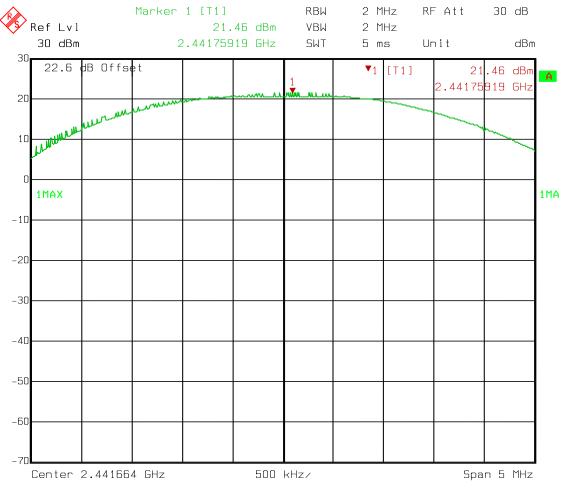
^{*}Measured with an average detector with 100% duty cycle (no frequency hopping).

PROJECT NO.: 2014_248302_FCC_15247


Test Data - Peak Power Output

Date: 04.DEC.2013 15:57:48

PROJECT NO.: 2014_248302_FCC_15247


Test Data - Peak Power Output

Date: 04.DEC.2013 15:57:48

PROJECT NO.: 2014_248302_FCC_15247

Test Data - Peak Power Output

Date: 04.DEC.2013 15:57:07

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 6. Spurious Emissions (Conducted)

NAME OF TEST: Spurious Emissions (Conducted) PARA. NO.: 15.247(d)

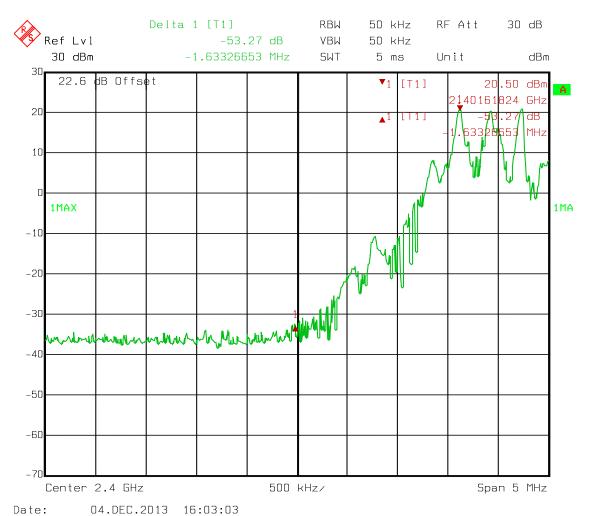
TESTED BY: David Light DATE: 04 December 2013

Test Results: Complies.

Measurement Data: See attached plots.

Equipment Used: 1036-1082-1472

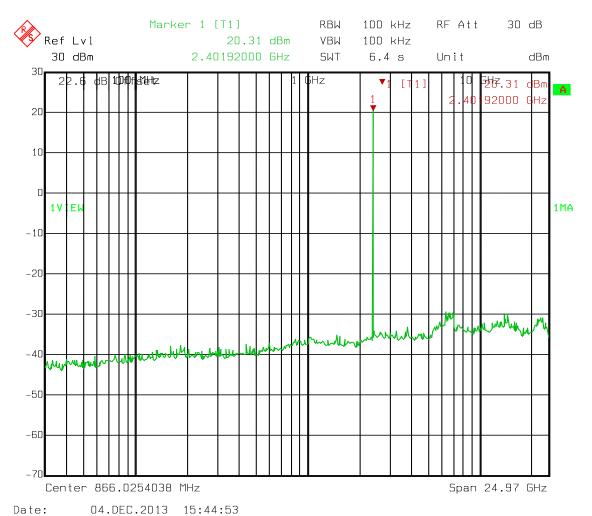
Measurement Uncertainty: 1X10⁻⁷ppm


Temperature: 20 °C

Relative Humidity: 30 %

PROJECT NO.: 2014_248302_FCC_15247

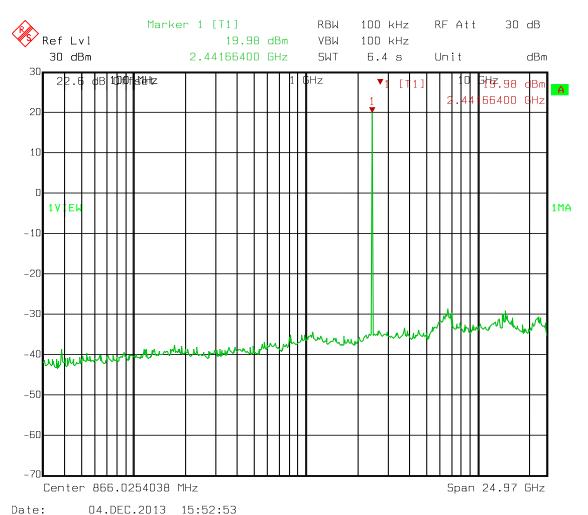
Test Data – Spurious Emissions at Antenna Terminals


Lower Band Edge

PROJECT NO.: 2014_248302_FCC_15247

Test Data – Spurious Emissions at Antenna Terminals

Spurs - Low Channel

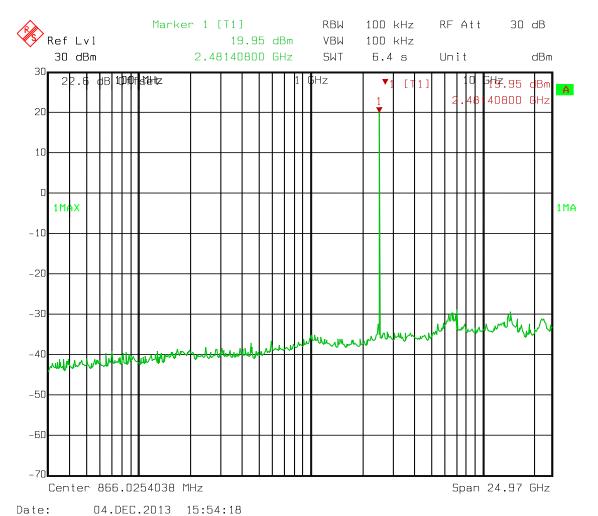


FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.: 2014_248302_FCC_15247

EQUIPMENT: 1402

Test Data – Spurious Emissions at Antenna Terminals

Spurs - Mid Channel



FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.: 2014_248302_FCC_15247

EQUIPMENT: 1402

Test Data – Spurious Emissions at Antenna Terminals

Spurs - High Channel

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)

PARA. NO.: 15.247(d)

TESTED BY: David Light

DATE: 09 December 2013

Test Results: Complies. The worst case emission was 51.3 dBµV/m

at 2483.5 MHz. This is 2.7 dB below the specification

limit of 54 dB μ V/m.

Measurement Data: See attached table.

Duty Cycle Calculation:

Duty Cycle correction factor(dB) = 20 log (rfon in ms/100ms)

Notes:

For handheld devices, the EUT was tested on three orthogonal axis'

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33

The device was tested on three channels per 15.31(I).

No emissions were detected within 20 dB of the specification limit therefore none are reported per 15.31(o). Band edge data is presented below.

Equipment Used: 1763-752-1016-827-1036

Measurement Uncertainty: +/-3.6 dB

Temperature: 21 °C

Relative Humidity: 28 %

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Test Data - Radiated Emissions

Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass	
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail	
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment
											TX Highest Channel
2483.500	Η	0.0	33.2	28.7	9.4	0.0	71.3	74.0	-2.7	Pass	
2483.500	Ι	-20.0	33.2	28.7	9.4	0.0	51.3	54.0	-2.7	Pass	
2483.500	V	0.0	32.5	28.7	9.4	0.0	70.6	74.0	-3.4	Pass	
2483.500	V	-20.0	32.4	28.7	9.4	0.0	50.5	54.0	-3.5	Pass	

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Section 8. Test Equipment List

Asset	Description	Manufacturer	Model	Cal Date	Due Date
1036	Spectrum Analyzer	Rohde & Schwartz	FSEK30	14-Jul-2014	15-Jul-2016
1082	Cable	Astrolab	NA	Verify before use	NA
1472	Attenuator	Mini-Circuits	DB20	Verify before use	NA
1763	Antenna, Bilog	Schaffner	CBL 6111D	6-Mar-2013	7-Mar-2014
752	Antenna, DRWG	EMCO	3115	2-Jan-2013	3-Jan-2014
1016	Preamplifier	Hewlett Packard	8449A	19-Aug-2013	20-Aug-2014
827	Preamplifier	Com-Power	PA-103	13-Jul-2013	14-Jul-2014

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

ANNEX A - TEST DETAILS

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

RSS-210 A8.1(b)

Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

RSS-210 A8.1(d)

Minimum Standard:

Frequency Band	20 dB	No. of	Average Time of Occupancy
(MHz)	Bandwidth	Hopping	
		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
			=<0.4 sec. in 0.4 seconds
2400 – 2483.5		75	multiplied by the number of
			hopping channels employed.
5725 - 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(1)

RSS-210 A8.1(a)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

NAME OF TEST: Peak Power Output PARA. NO.: 15.247(b)

RSS-210 A8.4(2)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 -	75	1 watt
2483.5		
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402

PROJECT NO.: 2014_248302_FCC_15247

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

RSS-210 A8.5

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the

restricted bands of 15.205 shall not exceed the following field

strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(d)

RSS-Gen 7.2.2

Minimum Standard: Emissions falling in the restricted bands shall not

exceed the following field strength limits:

Frequency	Field Strength	Field Strength
(MHz)	(μV/m @ 3m)	(dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

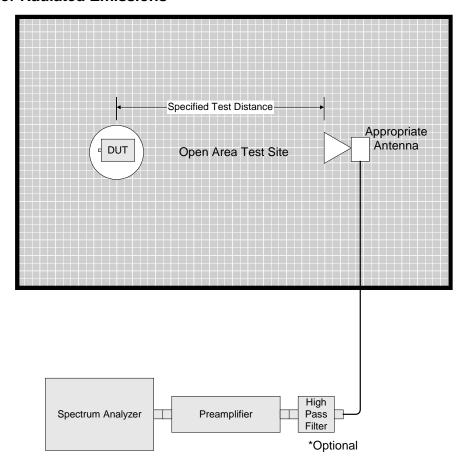
THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

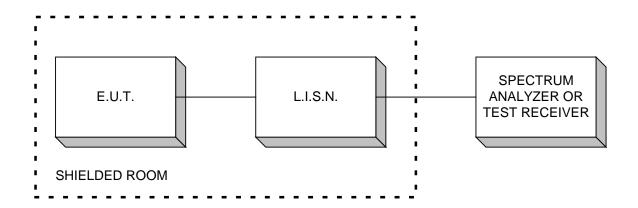
Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C and Industry Canada RSS-210 Issue 8

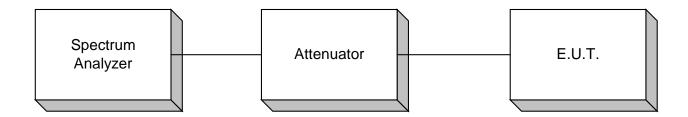

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

ANNEX B - TEST DIAGRAMS


FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.: 2014_248302_FCC_15247

Test Site For Radiated Emissions



EQUIPMENT: 1402 PROJECT NO.: 2014_248302_FCC_15247

Conducted Emissions

Measurements at Antenna Terminals

