

Test report

399786-5R2TRFWL

Date of issue: September 25, 2020

Applicant: HM Electronics, Inc.

Product: Wireless Battery Pack Charger

Model: AC70

FCC ID: BYM-AC70

IC: 1860A-AC70

Specifications:

- FCC 47 CFR Part 15, Subpart C §15.247
 Operation within the bands 902 928 MHz, 2400 2483.5 MHz, 5727 5850 MHz
- Industry Canada RSS-247, Issue 2
 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943 Designation Number: US5058
ISED Test Site	2040B-3

Tested by	James Cunningham, Wireless Supervisor
Reviewed by	Juan M Gonzalez, EMC & Wireless Divisions Manager
Review date	September 25, 2020
Reviewer signature	Advice

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of C	Contents	3
Section 1	Report summary	4
1.1	Applicant	4
1.2		4
1.3	Test specifications	4
1.4	Test methods	4
1.5	Exclusions	4
1.6	Statement of compliance	4
1.7	Test report revision history	4
Section 2	Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements	5
2.2	FCC Part 15.247	5
2.3	IC RSS-247, Issue 2	5
2.4	IC RSS-GEN, Issue 5	5
Section 3	Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	EUT exercise and monitoring details	7
Section 4	Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section 5	Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section 6	Measurement uncertainty	. 10
6.1	Uncertainty of measurement	10
Section 7	Test Equipment	. 11
Section 8	Testing data	. 12
8.1	FCC 15.207(a) and IC RSS-GEN, Issue 5 8.8 AC power line conducted emissions	12
8.2	FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques References	14
8.3	FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements	17
8.4	FCC Part 15.247(d) and RSS-247 5.5 Conducted band-edge spurious emissions	20
8.5	FCC 15.247(d) and RSS-247 5.5 Conducted spurious emissions	22
8.6	FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission	24
8.7	FCC 15.247(e) and RSS-247 5.2(b) Power spectral density of digital transmission system	37
8.8	RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)	40
Section 9	Block diagrams of test set-ups	. 42
9.1	Radiated emissions set-up	42

Applicant

Section 1 **Report summary**

Applicant 1.1

6	
Company name	HIM Electronics, Inc.
Address	2848 Whiptail Loop
City	Carlsbad
Province/State	CA
Postal/Zip code	92010
Country	United States

1.2 Manufacturer

Company name	HM Electronics, Inc.
Address	2848 Whiptail Loop
City	Carlsbad
Province/State	CA
Postal/Zip code	92010
Country	United States

Test specifications 1.3

FCC 47 CFR Part 15, Subpart C – §15.247	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
IC RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area
	Network (LE-LAN) Devices

1.4 Test methods

ANSI C64.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
558074 D01 DTS Measurement Guidance	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating
v03r02 (June 5, 2014)	Under §15.247

1.5 Exclusions

None

1.6 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.7 Test report revision history

Table 1.7-1: Test report revision history

Revision #	Details of changes made to test report
399786-5TRFWL	Original report issued
399786-5R1TRFWL	Updated following client comments and re-testing following hardware modification
399786-5R2TRFWL	Corrections to e.i.r.p. calculations
Notes:	

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C, general requirements

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.203	Antenna requirement	Pass
§15.203	Antenna requirement	Pass

Notes: EUT is AC powered

The antenna is located within the protective cover of EUT on PCB

2.2 FCC Part 15.247

Part	Test description	Verdict
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Pass
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400–2483.5	Not applicable
	MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz	Not applicable
	band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–	Pass
	2483.5 MHz, and 5725–5850 MHz bands	1 833
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.3 IC RSS-247, Issue 2

Part	Test description	Verdict
5.1 (1)	Bandwidth of a frequency hopping channel	Not applicable
5.1 (2)	Minimum channel spacing for frequency hopping systems	Not applicable
5.1 (3)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.1 (4)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (5)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
5.2 (1)	Minimum 6 dB bandwidth	Pass
5.2 (2)	Maximum power spectral density	Pass
5.3 (1)	Digital modulation turned off	Not applicable
5.3 (2)	Frequency hopping turned off	Not applicable
5.4 (1)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.4 (2)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (3)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
5.4 (4)	Systems employing digital modulation techniques	Pass
5.4 (5)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (6)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Out-of-band emissions	Pass

2.4 IC RSS-GEN, Issue 5

Part	Test description	Verdict
6.7	Transmitter occupied bandwidth	Pass
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus	Pass

Note: Per RSS-GEN Section 7, receiver radiated and conducted emissions are not applicable as the EUT is neither a scanning receiver nor operates as a standalone receiver.

Sample information

Section 3 Equipment under test (EUT) details

3.1 Sample information

Receipt date	June 17, 2020
Nemko sample ID number	NEx: 399786

3.2 EUT information

Product name	Wireless Battery Pack Charger
Model	AC70
Serial number	F18Z0002
Part number	N/A

3.3 Technical information

Used IC test site(s) reg. number	2040A
RSS number and issue	RSS-247 issue 2 (February 2017)
Frequency band	2400 – 2483.5 MHz
Minimum frequency (MHz)	2402
Maximum frequency (MHz)	2480
Minimum output power (dBm)	2.11 (e.i.r.p.)
Maximum output power (dBm)	2.22 (e.i.r.p.)
Measured 6 dB bandwidth	2402 MHz: 715.30 kHz
	2441 MHz: 723.30 kHz
	2480 MHz: 723.30 kHz
Type of modulation	GFSK
Emission classification	F1D
Power requirements	120 Vac / 60 Hz
Antenna information	3 dBi gain antenna on PCB

EUT exercise and monitoring details

3.4 EUT exercise and monitoring details

The AC70 is a 4-port charger for the all-in-one headset battery, BAT70. The AC70 can charge BAT70s to full capacity within 2 hours. The AC70 can extract Charger and BAT70 information through I2C and 1-wire, respectively. The information extracted is sent to the base (BS7000) wirelessly via a 2.4GHz Bluetooth Low Energy transceiver.

The EUT was controlled via test software and commanded to transmit at full power on the required frequencies. The program was provided by the customer. The device uses a PSoC 4 BLE emulation took from Cypress to set the output power and modes of operation

Table 3.4-1: EUT sub assemblies				
Description	Brand name	Model/Part number	Serial number	Rev.
Wireless battery pack charger	HME	AC70	F18Z0002	
	Table 3.4-2: EU	T interface ports		
Description				Qty.
AC power input				1
	Table 3.4-3: Sup	oport equipment		
Description	Brand name	Model/Part number	Serial number	Rev.
None				
	Table 3.4-4: Inter-	connection cables		
Cable description	From	То		Length (ft)
None				
		Temporary antenna conn	ector	

Report reference ID: 399786-5R2TRFWL

Modifications incorporated in the EUT

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

The following modifications were performed by client:

Addition of band filter:

- 1. Remove R3 and R4
- 2. Add 0 ohm 0402 to R1 and R2
- 3. Add 240G056 to FL1

The impact of this hardware modification was assessed, and the following critical measurements were repeated and reported here.

- 1. Transmitter output power and e.i.r.p. requirements
- 2. Radiated spurious emissions from 1 18 GHz
- 3. Radiated restricted band-edge measurements

Radiated spurious emissions were improved at transmitter harmonic frequencies therefore conducted spurious emissions measurements were not repeated. In addition, the inclusion of the band filter did not affect the transmitter output power therefore power spectral density measurements were not repeated.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures

Atmospheric conditions

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15-30 °C
Relative humidity	20-75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
Radiated spurious emissions	3.78
Powerline conducted emissions	1.38
All antenna port measurements	0.55
Conducted spurious emissions	1.13

Uncertainty of measurement

Section 7 Test Equipment

Table 6.1-1: Test Equipment List					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESCI 7	E1026	1 year	29 May 2020
Transient Limiter	Hewlett-Packard	11947A	684	1 year	20 Jan 2021
Two Line V-Network	Rohde & Schwarz	ENV216	E1019	1 year	12 Jul 2020
LISN	Solar	9348-50-R-24-BNC	384	1 year	8 Aug 2020
Signal and spectrum analyzer	Rohde & Schwarz	FSW	E1302	1 year	10 Jan 2021
Power sensor	ETS Lindgren	7002-006	E1061	18 months	1 Dec 2020
EMI Test Receiver	Rohde & Schwarz	ESU40	E1121	1 year	25 Nov 2020
System Controller	Sunol Sciences	SC104V	E1129	NCR	NCR
Bilog Antenna	Schaffner	CBL6111C	1480	1 year	18 Oct 2020
DRG Horn	ETS-Lindgren	3117-PA	E1160	1 year	30 Oct 2020
Pre-Amp as part of DRG Horn	ETS-Lindgren	3117-PA	Part of E1160	1 year	30 Oct 2020

Table 6.1-2: Test Software

Manufacturer of Software	Details
Rohde & Schwarz	EMC 32 V10.20.01 (AC conducted emissions)
Rohde & Schwarz	EMC 32 V10.60.15 (radiated emissions)

FCC 15.207(a) and IC RSS-GEN, Issue 5 8.8 AC power line conducted emissions

Section 8 Testing data

8.1 FCC 15.207(a) and IC RSS-GEN, Issue 5 8.8 AC power line conducted emissions

8.1.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.207(a) RSS-Gen \rightarrow §8.8

For low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequency ranges.

Table 8.1-1: Conducted emissions limit

Frequency of emission,	Condu	cted limit, dBμV
MHz	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Note: * - Decreases with the logarithm of the frequency.

8.1.2 Test summary

Verdict	Pass		
Test date	June 12, 2020	Temperature	20 °C
Test engineer	James Cunningham	Air pressure	1009 mbar
Test location	Ground plane	Relative humidity	56 %

8.1.3 Notes

Testing was performed with the BLE transmitter operating on a fixed channel at full power. Low, middle and high channels were tested with the worst case (2480 MHz) reported here.

Testing was performed according to ANSI C63.10 §6.2.

8.1.4 Setup details

Port under test	AC mains
EUT setup configuration	Tabletop
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	 Peak and Average (Preview measurement)
	 Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak and Average preview measurement)
	 5000 ms (Quasi-peak final measurement)
	 5000 ms (CAverage final measurement)

Section 8 Testing data

FCC 15.207(a) and IC RSS-GEN, Issue 5 8.8 AC power line conducted emissions

Figure 8.1-1: AC conducted emissions

Table 8.1-2: AC conducted emissions, 150 kHz – 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.162000	32.33		65.36	33.03	5000.0	9.000	Ν	ON	19.6
0.162000		23.92	55.36	31.44	5000.0	9.000	N	ON	19.6
0.202000		21.57	53.53	31.95	5000.0	9.000	L1	ON	19.5
0.202000	27.54		63.53	35.98	5000.0	9.000	L1	ON	19.5
0.330000		22.97	49.45	26.48	5000.0	9.000	N	ON	19.4
0.330000	29.01		59.45	30.44	5000.0	9.000	Ν	ON	19.4
0.634000	31.65		56.00	24.35	5000.0	9.000	Ν	ON	19.4
0.634000		26.57	46.00	19.43	5000.0	9.000	Ν	ON	19.4
5.770000		15.59	50.00	34.41	5000.0	9.000	L1	ON	19.3
5.770000	20.68		60.00	39.32	5000.0	9.000	L1	ON	19.3
12.622000		16.52	50.00	33.48	5000.0	9.000	Ν	ON	20.0
12.622000	21.45		60.00	38.55	5000.0	9.000	N	ON	20.0

Result (dBµV) = receiver/spectrum analyzer value (dBµV) + correction factor (dB) Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB) The maximum measured value observed over a period of 5 seconds was recorded.

Notes:

FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques References

8.2 FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques References

8.2.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.247(a)(2) RSS-247 \rightarrow §5.2(a)

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2.2 Test summary

Verdict	Pass		
Test date	June 11, 2020	Temperature	21 °C
Test engineer	James Cunningham	Air pressure	1006 mbar
Test location	Wireless bench	Relative humidity	45 %

8.2.3 Notes

Testing was performed in BLE mode and the EUT transmitting on a fixed channel at full power.

8.2.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement method	558074 D01 DTS Measurement Guidance §8.2
	ANSI C63.10 §11.8.1 using built-in marker function of the spectrum analyzer

Receiver/spectrum analyzer settings:

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

8.2.5 Test data

Table 8.2-1: 6 dB occupied bandwidth test data

Test Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
2402	715.30	> 500	215.30
2441	723.30	> 500	223.30
2480	723.30	> 500	223.30

Testing data

FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques References

11:12:10 11.06.2020

Figure 8.2-1: 6 dB occupied bandwidth, 2402 MHz

11:10:39 11.06.2020

Figure 8.2-2: 6 dB occupied bandwidth, 2441 MHz

Testing data

FCC 15.247(a)(2) and RSS-247 5.2(1) Minimum 6 dB bandwidth for systems using digital modulation techniques References

									~
MultiView	Spect	rum							
Ref Level 10.	00 dBm	RBW	100 kHz						_
Att	20 dB 🖷 🕏	SWT 100 ms . VBW	300 kHz Mo	le Auto Sweep					
TDF "NemkoWir	reless"								
l Frequency S	weep								O1Pk Max
								M1[1]	-0.75 dBn
dB co.				M1				2	.47987210 GH
ubm			11 12	\sim					
10 dBm				-					
20 dBm			1/				-		
			1						
30 dBm			-						
40 dBm				-		-	-		
50 dBm									
60 dBm									
70 dBm									
80 dBm									
F 2.48 GHz			1001 p	te	4	00.0 kHz/			Spap 4.0 MH
Marker Tabl	e		1001 p			0010 K127			opur no mn
Type Ref	Trc	X-Value		Y-Value		Function		Function R	esult
M1	1	2.4798721 G	Hz	-0.75 dBm	ndB			6.) dB
T1	1	2.4795125 (3Hz	-6.74 dBm	ndB down	BW		723.30	KHZ
12	1	2.4802358 (3HZ	-6.75 dBm	Q Factor			34	28.7
							Aborted		40 11.06.2020 10:53:07

10:53:07 11.06.2020

Figure 8.2-3: 6 dB occupied bandwidth, 2480 MHz

FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

8.3 FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

8.3.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.247(b)(2) / (3)

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
 - (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one-Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this Section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this Section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this Section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 \rightarrow §5.4(d)

(d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

8.3.2 Test summary

Verdict	Pass		
Test date	August 12, 2020	Temperature	21 °C
Test engineer	James Cunningham	Air pressure	1004 mbar
Test location	Wireless bench	Relative humidity	63 %

8.3.3 Notes

Testing was performed in BLE mode and the EUT transmitting on a fixed channel at full power.

The attenuation of the interconnecting cable was included in the power meter software as a correction factor.

The antenna gain is 3 dBi per client declaration.

Conducted Power = Power Meter Measurement + Duty Cycle Correction Factor EIRP = Conducted Power + Declared Antenna Gain

8.3.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement method	ANSI C63.10 §11.9.2.3 AVGPM Power Meter

Section 8 Testing data

FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

8.3.5 Test data

Figure 8.3-1: Duty cycle

Duty Cycle Correction Factor calculation:

Transmitter "ON" time:	382 µs
Transmitter pulse repetition time:	628 μs
Duty cycle D ("ON" time / repetition time):	382 / 628 = 60.8 %
Duty Cycle Correction Factor:	$10 \times \log_{10}(1/D) = 10 \times \log_{10}(1/0.608) = 2.16 \text{ dB}$

Table 8.3-1: Output power							
Test Frequency (MHz)	Maximum Conducted Power (dBm)	Duty Cycle Correction Factor (dB)	Measured Conducted Power (dBm) with Duty Cycle	Conducted Limit (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)
2402	-2.94	2.16	-0.78	30.0	3.00	2.22	36.0
2441	-3.02	2.16	-0.86	30.0	3.00	2.14	36.0
2480	-3.05	2.16	-0.89	30.0	3.00	2.11	36.0

Figure 8.3-2: Output power, 2402 MHz

Testing data

FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

Figure 8.3-3: Output power, 2441 MHz

Figure 8.3-4: Output power, 2480 MHz

Section 8 Testing data

FCC Part 15.247(d) and RSS-247 5.5 Conducted band-edge spurious emissions

8.4 FCC Part 15.247(d) and RSS-247 5.5 Conducted band-edge spurious emissions

8.4.1 Definition and limits

 $\textbf{Title 47} \rightarrow \textbf{Chapter I} \rightarrow \textbf{Subchapter A} \rightarrow \textbf{Part 15} \rightarrow \textbf{Subpart C} \rightarrow \$15.247(d)$

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

$\text{RSS-247} \rightarrow \S5.5$

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.4.2 Test summary

Verdict	Pass		
Test date	June 11, 2020 (Conducted)	Temperature	21 °C (June 11)
Test engineer	James Cunningham	Air pressure	1006 mbar (June 11)
Test location	Wireless bench (Conducted)	Relative humidity	45 % (June 11)

8.4.3 Notes

The EUT was configured to transmit continuously on the lowest, middle and highest channels.

The spectrum was search from 30 MHz to 26 GHz (above the 10th harmonic of the highest transmit frequency of 2480 MHz).

For conducted measurements, the loss of the connected cable and attenuator was input into the spectrum analyzer as a transducer factor.

8.4.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement details	Conducted band edge measurement performed as per C63.10 §6.10.4
	Conducted spurious emissions measurement performed as per C63.10 §11.11

Spectrum analyzer settings for conducted spurious emissions:

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

Section 8 Testing data

8.4.5 Test data

13:28:36 11.06.2020

Figure 8.4-1: Band edge measurement, 2402 MHz

Figure 8.4-2: Band edge measurement, 2480 MHz

FCC 15.247(d) and RSS-247 5.5 Conducted spurious emissions

8.5 FCC 15.247(d) and RSS-247 5.5 Conducted spurious emissions

8.5.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.247(d)

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 \rightarrow §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.5.2 Test summary

Verdict	Pass		
Test date	June 11, 2020 (Conducted)	Temperature	21 °C (June 11)
Test engineer	James Cunningham	Air pressure	1006 mbar (June 11)
Test location	Wireless bench (Conducted)	Relative humidity	45 % (June 11)

8.5.3 Notes

In each measurement, the limit was derived by subtracting 20 dB from the power spectral density measurements in Section 8.7

8.5.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement details	Conducted spurious emissions measurement performed as per C63.10 §11.11.3

Spectrum analyzer settings for conducted spurious emissions:

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

Section 8 Testing data

FCC 15.247(d) and RSS-247 5.5 Conducted spurious emissions

\$

•

8.5.5 Test data

13:11:59 11.06.2020

Figure 8.5-1: Conducted spurious emissions, 2402 MHz

13:22:19 11.06.2020

Figure 8.5-3: Conducted spurious emissions, 2480 MHz

Note: For conducted emissions plots above, peaks within 2400-2483.5MHz are transmitter fundamentals signals and are not evaluated against the relevant limits.

MultiView 🔭 Spectrum Ref Level 10.00 dBm RBW 100 kHz Att 20 dB SWT 260 ms VBW 300 kHz Mode Auto Sv 2.6 GHz/ 100.0 kHz 26.0 GHz 32000 pts 2.43962 GHz 4.87955 GHz 7.31867 GHz -2.18 dBm -40.92 dBm -40.16 dBm

13:19:39 11.06.2020

Figure 8.5-2: Conducted spurious emissions, 2440 MHz

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

8.6 FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

8.6.1 Definition and limits

$\textbf{Title 47} \rightarrow \textbf{Chapter I} \rightarrow \textbf{Subchapter A} \rightarrow \textbf{Part 15} \rightarrow \textbf{Subpart C} \rightarrow \$15.247(d)$

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

$\text{RSS-247} \rightarrow \S5.5$

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency,	Field streng	gth of emissions	Measurement distance, m		
MHz	μV/m	dBµV/m			
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300		
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30		
1.705-30.0	30	29.5	30		
30–88	100	40.0	3		
88–216	150	43.5	3		
216–960	200	46.0	3		
above 960	500	54.0	3		

Table 8.6-1: FCC §15.209- Radiated emission limits

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Table 8.6-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz	
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15	
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75	
4.125-4.128	25.5-25.67	1300–1427	8.025-8.5	
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2	
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5	
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7	
6.26775-6.26825	108–121.94	1718.8-1722.2	13.25–13.4	
6.31175-6.31225	123–138	2200–2300	14.47–14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35–16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4	
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0	
12.29-12.293	167.72-173.2	3332–3339	31.2–31.8	
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

Section 8 Testing data

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

8.6.2 Test summary

Verdict	Pass		
Test date	June 10, 2020	Temperature	22 °C (June 10)
	August 12, 2020	remperature	22 °C (August 12)
Test engineer	James Cunningham	Air prossuro	1005 mbar (June 10)
		All pressure	1004 mbar (August 12)
Test location	3m semi-anechoic chamber (Radiated)	Relative humidity	29 % (June 10)
		Relative numbers	63 % (August 12)

8.6.3 Notes

The EUT was configured to transmit continuously on the lowest, middle and highest channels.

The spectrum was search from 30 MHz to 26 GHz (above the 10th harmonic of the highest transmit frequency of 2480 MHz).

Radiated measurements were performed at a 3 m measurement distance.

8.6.4 Setup details

EUT setup configuration	Tabletop
Test facility	3m semi anechoic chamber
Measurement details	Radiated spurious emissions measurement performed as per C63.10 §11.12

Receiver settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (preview measurements)
	Quasi-Peak (final measurements)
Trace mode	Max Hold
Measurement time	5 s (final measurements)

Receiver settings for radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Average and peak (final measurements)
Trace mode	Max Hold
Measurement time	5 s (final measurements)

Section 8 Testing data

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

8.6.5 Test data

Full Spectrum

Frequency (MHz)	Peak (dBμV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
2389.709000		26.96	53.90	26.94	5000.0	1000.000	104.0	Н	0.0	-10.4
2389.709000	57.54		73.90	16.36	5000.0	1000.000	104.0	н	0.0	-10.4
2390.000000		26.96	53.90	26.94	5000.0	1000.000	105.0	Н	0.0	-10.4
2390.000000	57.76		73.90	16.14	5000.0	1000.000	105.0	Н	0.0	-10.4

Table 8.6-2: Radiated emissions, restricted band edge, low

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB) Limits converted to dB μ V/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-2: Radiated emissions, restricted band edge, high

Table 8.6-3: Radiated emissions	restricted band edge, high
---------------------------------	----------------------------

Frequency (MHz)	Peak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
2483.500000		27.14	53.90	26.76	5000.0	1000.000	100.0	Н	107.0	-10.0
2483.500000	58.68		73.90	15.22	5000.0	1000.000	100.0	Н	107.0	-10.0
2483.517333		30.96	53.90	22.94	5000.0	1000.000	100.0	Н	0.0	-10.0
2483.517333	70.00		73.90	3.90	5000.0	1000.000	100.0	Н	0.0	-10.0

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBµV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

Testing data

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Full Spectrum

Figure 8.6-3: Radiated emissions, 2402 MHz, 30 – 1000 MHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.625331	21.38	40.00	18.62	3000.0	120.000	135.0	Н	242.0	25.5
42.887776	15.74	40.00	24.26	3000.0	120.000	138.0	Н	160.0	19.4
319.438878	19.82	46.00	26.18	3000.0	120.000	142.0	V	246.0	22.2
474.949499	24.47	46.00	21.53	3000.0	120.000	150.0	V	310.0	26.2
659.481443	27.85	46.00	18.15	3000.0	120.000	107.0	V	121.0	29.2
958.479840	33.62	46.00	12.38	3000.0	120.000	116.0	V	41.0	34.1

Table 8.6-4: Radiated emissions, 2	2402 MHz, 30 – 1000 MHz
------------------------------------	-------------------------

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-4: Radiated emissions, 2402 MHz, 1 - 18 GHz

able 8.6-5: Radiate	d emissions,	2402 MHz,	1 - 18 GHz
---------------------	--------------	-----------	------------

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4803.751350		41.80 ⁽¹⁾	53.90	12.10						
4803.751350	43.96		73.90	29.94	5000.0	1000.000	154.0	Н	22.0	-2.6
9996.990600	45.04		73.90	28.86	5000.0	1000.000	348.0	Н	125.0	2.3
9996.990600		31.74	53.90	22.16	5000.0	1000.000	348.0	Н	125.0	2.3
11941.593400	46.63		73.90	27.27	5000.0	1000.000	186.0	V	345.0	3.4
11941.593400		32.89	53.90	21.01	5000.0	1000.000	186.0	V	345.0	3.4
13252.808500	47.49		73.90	26.41	5000.0	1000.000	400.0	V	98.0	7.4
13252.808500		34.09	53.90	19.81	5000.0	1000.000	400.0	V	98.0	7.4
14628.009900		33.52	53.90	20.38	5000.0	1000.000	287.0	V	177.0	7.5
14628.009900	46.97		73.90	26.93	5000.0	1000.000	287.0	V	177.0	7.5
17940.398450	49.96		73.90	23.94	5000.0	1000.000	168.0	Н	356.0	13.8
17940.398450		37.03	53.90	16.87	5000.0	1000.000	168.0	Н	356.0	13.8

Notes:

The marker highlights the wanted frequency of the transmitter and is not evaluated against the limits.

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBµV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

A 2.4 GHz notch filter was used to reduce the level of the wanted transmitter signal

(1) Since this emission is a harmonic of the fundamental frequency, the average value was calculated by adding the duty cycle correction

factor (from Section 8.3.5) to the measured peak value Report reference ID: 399786-5R2TRFWL

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-5: Radiated emissions, 2402 MHz, 18 - 26 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
					(ms)					
19353.329459		33.07	53.90	20.83	3000.0	1000.000	154.0	V	23.0	15.0
19353.329459	46.01		73.90	27.89	3000.0	1000.000	154.0	V	23.0	15.0
21772.745090	45.32		73.90	28.58	3000.0	1000.000	278.0	Н	286.0	16.3
21772.745090		32.76	53.90	21.14	3000.0	1000.000	278.0	Н	286.0	16.3
23233.048898	47.47		73.90	26.43	3000.0	1000.000	191.0	V	96.0	17.9
23233.048898		34.41	53.90	19.49	3000.0	1000.000	191.0	V	96.0	17.9
23511.032064	48.99		73.90	24.91	3000.0	1000.000	280.0	н	276.0	20.3
23511.032064		35.87	53.90	18.03	3000.0	1000.000	280.0	Н	276.0	20.3
24811.019238		38.19	53.90	15.71	3000.0	1000.000	402.0	V	271.0	18.5
24811.019238	51.64		73.90	22.26	3000.0	1000.000	402.0	V	271.0	18.5
25979.581964	51.99		73.90	21.91	3000.0	1000.000	308.0	V	347.0	20.5
25979.581964		39.05	53.90	14.85	3000.0	1000.000	308.0	V	347.0	20.5

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB) Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBµV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

Testing data

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Full Spectrum

Figure 8.6-6: Radiated emissions, 2440 MHz, 30 – 1000 MHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
43.708333	16.50	40.00	23.50	3000.0	120.000	194.0	V	194.0	19.0
129.932000	17.27	43.50	26.23	3000.0	120.000	402.0	V	202.0	19.4
244.770000	18.55	46.00	27.45	3000.0	120.000	354.0	V	241.0	20.0
494.751667	25.33	46.00	20.67	3000.0	120.000	118.0	V	0.0	26.5
621.229333	29.04	46.00	16.96	3000.0	120.000	402.0	V	86.0	28.8
927.745000	33.25	46.00	12.75	3000.0	120.000	410.0	Н	226.0	33.0

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-7: Radiated emissions, 2440 MHz, 1 - 18 GHz

Table 8.6-8: Radiated	emissions,	2440 MHz,	1 - 18 GHz
-----------------------	------------	-----------	------------

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4882.704300	42.81		73.90	31.09	5000.0	1000.000	233.0	V	0.0	-2.8
4882.704300		40.65 ⁽¹⁾	53.90	13.25						
11659.832900	45.18		73.90	28.72	5000.0	1000.000	358.0	V	192.0	3.0
11659.832900		31.95	53.90	21.95	5000.0	1000.000	358.0	V	192.0	3.0
13330.498250		33.59	53.90	20.31	5000.0	1000.000	410.0	Н	126.0	7.7
13330.498250	46.81		73.90	27.09	5000.0	1000.000	410.0	Н	126.0	7.7
15958.599500		35.20	53.90	18.70	5000.0	1000.000	213.0	V	347.0	9.1
15958.599500	48.09		73.90	25.81	5000.0	1000.000	213.0	V	347.0	9.1
16178.442950	49.72		73.90	24.18	5000.0	1000.000	397.0	Н	174.0	9.8
16178.442950		36.44	53.90	17.46	5000.0	1000.000	397.0	Н	174.0	9.8
17859.666150	50.00		73.90	23.90	5000.0	1000.000	167.0	Н	113.0	13.4
17859.666150		36.84	53.90	17.06	5000.0	1000.000	167.0	Н	113.0	13.4

Notes:

The marker highlights the wanted frequency of the transmitter and is not evaluated against the limits.

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

A 2.4 GHz notch filter was used to reduce the level of the wanted transmitter signal

(1) Since this emission is a harmonic of the fundamental frequency, the average value was calculated by adding the duty cycle correction

factor (from Section 8.3.5) to the measured peak value

Testing data

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-8: Radiated emissions, 2440 MHz, 18 - 26 GHz

Table 8.6-9: Radiated emissions,	2440 MHz, 18 - 26 GHz
----------------------------------	-----------------------

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
					(ms)					
19319.657315		33.01	53.90	20.89	3000.0	1000.000	313.0	V	328.0	15.1
19319.657315	46.26		73.90	27.64	3000.0	1000.000	313.0	V	328.0	15.1
23280.147094		34.99	53.90	18.91	3000.0	1000.000	322.0	н	186.0	18.7
23280.147094	48.17		73.90	25.73	3000.0	1000.000	322.0	Н	186.0	18.7
23443.881764	49.30		73.90	24.60	3000.0	1000.000	402.0	V	66.0	20.0
23443.881764		35.57	53.90	18.33	3000.0	1000.000	402.0	V	66.0	20.0
24839.285371	50.34		73.90	23.56	3000.0	1000.000	387.0	V	66.0	18.6
24839.285371		37.80	53.90	16.10	3000.0	1000.000	387.0	V	66.0	18.6
25634.460521	51.20		73.90	22.70	3000.0	1000.000	110.0	н	182.0	19.3
25634.460521		37.72	53.90	16.18	3000.0	1000.000	110.0	Н	182.0	19.3
25990.991984	52.33		73.90	21.57	3000.0	1000.000	410.0	Н	282.0	20.5
25990.991984		39.30	53.90	14.60	3000.0	1000.000	410.0	Н	282.0	20.5

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Notes:

Correction factors = antenna factor ACF (dB) + cable loss (dB) Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance. Testing data

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Full Spectrum

Figure 8.6-9: Radiated emissions, 2480 MHz, 30 – 1000 MHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.252000	20.00	40.00	20.00	3000.0	120.000	347.0	V	0.0	22.4
136.359000	17.33	43.50	26.17	3000.0	120.000	256.0	Н	164.0	19.4
153.560000	17.59	43.50	25.91	3000.0	120.000	274.0	Н	86.0	18.9
390.818000	22.50	46.00	23.50	3000.0	120.000	146.0	Н	258.0	24.3
868.461333	32.48	46.00	13.52	3000.0	120.000	363.0	Н	0.0	32.5
935.277333	33.56	46.00	12.44	3000.0	120.000	368.0	Н	226.0	33.3

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-10: Radiated emissions, 2480 MHz, 1 - 18 GHz

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4959.372550		43.74 ⁽¹⁾	53.90	10.16						
4959.372550	45.90		73.90	28.00	5000.0	1000.000	301.0	Н	21.0	-3.0
9556.936900		31.78	53.90	22.12	5000.0	1000.000	366.0	V	228.0	2.1
9556.936900	44.77		73.90	29.13	5000.0	1000.000	366.0	V	228.0	2.1
12382.192550	47.42		73.90	26.48	5000.0	1000.000	174.0	V	186.0	4.8
12382.192550		33.87	53.90	20.03	5000.0	1000.000	174.0	V	186.0	4.8
13350.496250	46.70		73.90	27.20	5000.0	1000.000	169.0	н	35.0	7.6
13350.496250		33.35	53.90	20.55	5000.0	1000.000	169.0	Н	35.0	7.6
16429.812350	48.34		73.90	25.56	5000.0	1000.000	297.0	н	22.0	10.0
16429.812350		35.34	53.90	18.56	5000.0	1000.000	297.0	Н	22.0	10.0
17709.425600	50.35		73.90	23.55	5000.0	1000.000	364.0	н	255.0	12.7
17709.425600		37.24	53.90	16.66	5000.0	1000.000	364.0	Н	255.0	12.7

Table 8.6-11: Radiated emissions, 2	2480 MHz, 1 - 18 G	Hz
-------------------------------------	--------------------	----

Notes:

The marker highlights the wanted frequency of the transmitter and is not evaluated against the limits.

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

A 2.4 GHz notch filter was used to reduce the level of the wanted transmitter signal

(1) Since this emission is a harmonic of the fundamental frequency, the average value was calculated by adding the duty cycle correction

factor (from Section 8.3.5) to the measured peak value Report reference ID: 399786-5R2TRFWL

FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

Figure 8.6-11: Radiated emissions, 2480 MHz, 18 - 26 GHz

Frequency (MHz)	QuasiPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
					(ms)					
19311.629259		33.17	53.90	20.73	3000.0	1000.000	381.0	V	300.0	15.1
19311.629259	46.51		73.90	27.39	3000.0	1000.000	381.0	V	300.0	15.1
23227.650902	47.29		73.90	26.61	3000.0	1000.000	238.0	V	270.0	17.8
23227.650902		34.53	53.90	19.37	3000.0	1000.000	238.0	V	270.0	17.8
23570.938277	49.71		73.90	24.19	3000.0	1000.000	370.0	Н	0.0	20.7
23570.938277		36.69	53.90	17.21	3000.0	1000.000	370.0	Н	0.0	20.7
24774.559118	51.17		73.90	22.73	3000.0	1000.000	277.0	V	316.0	18.4
24774.559118		38.40	53.90	15.50	3000.0	1000.000	277.0	V	316.0	18.4
25103.232465		37.01	53.90	16.89	3000.0	1000.000	279.0	н	168.0	18.9
25103.232465	50.23		73.90	23.67	3000.0	1000.000	279.0	Н	168.0	18.9
25997.185972	52.37		73.90	21.53	3000.0	1000.000	199.0	н	52.0	20.6
25997,185972		39.51	53.90	14.39	3000.0	1000.000	199.0	Н	52.0	20.6

Table 8.6-12: Radiated emissions, 2480 MHz, 18 - 26 GHz

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB) Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBµV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

FCC 15.247(e) and RSS-247 5.2(b) Power spectral density of digital transmission system

8.7 FCC 15.247(e) and RSS-247 5.2(b) Power spectral density of digital transmission system

8.7.1 References

 $\text{Title 47} \rightarrow \text{Chapter I} \rightarrow \text{Subchapter A} \rightarrow \text{Part 15} \rightarrow \text{Subpart C} \rightarrow \$15.247(e) \ / \ \text{ANSI C63.10: 2013}$

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this Section. The same method of determining the conducted output power shall be used to determine the power spectral density.

RSS-247 \rightarrow §5.2(b)

(a) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Section 5.4(4), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

8.7.2 Test summary

Verdict	Pass		
Test date	June 11, 2020	Temperature	21 °C
Test engineer	James Cunningham	Air pressure	1006 mbar
Test location	Wireless bench	Relative humidity	45 %

8.7.3 Notes

Testing was performed in BLE mode and the EUT transmitting on a fixed channel at full power.

The EUT antenna port was connected to the spectrum analyzer via low loss cable and a suitable attenuator. The loss of this assembly was corrected for via a transducer factor in the spectrum analyzer.

The duty cycle correction factor of 2.2 dB (refer to section 8.3.5) is included as a reference level offset in the spectrum analyzer.

8.7.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement details	Measurement performed as per C63.10 §11.10.3 (Method AVGPSD-1)

Receiver/spectrum analyzer settings:

Resolution bandwidth	3 kHz
Video bandwidth	10 kHz (≥ 3 x RBW)
Frequency span	1.5 x DTS bandwidth
Detector mode	RMS
Trace mode	Averaging
Averaging sweeps	100

8.7.5 Test data

Transmitter Frequency (MHz)	Measured Level (dBm/3 kHz)	Limit (dBm/3 kHz)
2402	-20.48	8.00
2441	-20.68	8.00
2480	-21.33	8.00

Testing data

FCC 15.247(e) and RSS-247 5.2(b) Power spectral density of digital transmission system

11:48:40 11.06.2020

Figure 8.7-1: Power spectral density of digital transmission system, 2402 MHz

11:50:42 11.06.2020

Figure 8.7-2: Power spectral density of digital transmission system, 2441 MHz

Section 8

Testing data

FCC 15.247(e) and RSS-247 5.2(b) Power spectral density of digital transmission system

11:52:14 11.06.2020

Figure 8.7-3: Power spectral density of digital transmission system, 2480 MHz

RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)

8.8 RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)

8.8.1 References

RSS-Gen \rightarrow §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

8.8.2 Test summary

Verdict	Pass		
Test date	June 11, 2020	Temperature	21 °C
Test engineer	James Cunningham	Air pressure	1006 mbar
Test location	Wireless bench	Relative humidity	45 %

8.8.3 Notes

Testing was performed in BLE mode and the EUT transmitting on a fixed channel at full power.

8.8.4 Setup details

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement details	Measurement performed as per C63.10 §6.9.3 using the built-in function of the spectrum analyzer

Receiver/spectrum analyzer settings:

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

8.8.5 Test data

Figure 8.8-1: 99% bandwidth, 2402 MHz

Section 8

Testing data

RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)

11:09:49 11.06.2020

Figure 8.8-2: 99% bandwidth, 2441 MHz

10:57:33 11.06.2020

Figure 8.8-3: 99% bandwidth, 2480 MHz

Radiated emissions set-up

Section 9 Block diagrams of test set-ups

9.1 Radiated emissions set-up

Figure 9.1-2 1 GHz - 26 GHz Setup

Thank you for choosing

