THRU Lab & Engineering.

RM1105,11FL, ACE TECHNO TOWER 197-22,GURO-DONG GURO-GU, SEOUL KOREA 81221095059F81221095056 email thrukang@kornet.net

Test Report

Product Name: 49.82-49.90 MHz Wireless R/C Toy - RX

FCC ID: BY333104-49V

Applicant: SCIENTIFIC TOYS, LTD.

13/F., CHAI WAN INDUSTRIAL CENTRE
20 LEE CHUNG STREET
CHAI WAN, HONG KONG

Date Receipt: 07/05/2004

Date Tested: 07/06/2004

APPLICANT: SCIENTIFIC TOYS, LTD.

THRU Lab & Engineering. RM1105,11FL, ACE TECHNO TOWER

RM1105,11FL, ACE TECHNO TOWER 197-22,GURO-DONG GURO-GU, SEOUL KOREA T81221095059F81221095056 email thrukang@kornet.net

TABLE OF CONTENTS LIST

APPLICANT: SCIENTIFIC TOYS, LTD.

FCC ID: BY333104-49V

TEST REPORT CONTAINING:

PAGE	1TEST	EQUIPMENT	LIST			
PAGE	2TEST	PROCEDURES	5			
PAGE	3RADIA	ATION INTER	RFERENCE	TEST	DATA	

EXHIBITS CONTAINING:

EXHIBIT	1BLOCK DIAGRAM
EXHIBIT	2SCHEMATIC
EXHIBIT	3 INSTRUCTION MANUAL
EXHIBIT	4SAMPLE OF FCC ID LABEL
EXHIBIT	5LOCATION OF FCC ID LABEL
EXHIBIT	6 EXTERNAL PHOTO - FRONT SIDE
EXHIBIT	7EXTERNAL PHOTO - BACK SIDE
EXHIBIT	8INTERNAL PHOTO - COMPONENT SIDE
EXHIBIT	9INTERNAL PHOTO - COPPER SIDE
EXHIBIT	10CIRCUIT DESCRIPTION
EXHIBIT	11TEST SET UP PHOTO

APPLICANT: SCIENTIFIC TOYS, LTD.

THRU Lab & Engineering. RM1105,11FL, ACE TECHNO TOWER

197-22, GURO-DONG GURO-GU, SEOUL KOREA T81221095059F81221095056 email thrukang@kornet.net

APPLICANT: SCIENTIFIC TOYS, LTD. **FCC ID:** BY333104-49V

TEST EQUIPMENT LIST

DEVICE	MODEL	MFGR	SERNO	DUE.CAL	
EMI Test Receiver	ESVS 10	Rohde & Schwarz	830489/001	2005.04.07.	
Spectrum Analyzer	8566B	Hewlett Packard	2311A02394	2005.04.07.	
Spectrum Display	85662A	Hewlett Packard	2542A12429	2005.04.07.	
Quasi-Peak Adapter	85650A	Hewlett Packard	2521A00887	2005.04.07.	
RF Preselector	85685A	Hewlett Packard	2648A00504	2005.04.07.	
Pre-Amplifier	8449B	Hewlett Packard	3008A00375	2005.04.07.	
Pre-Amplifier	8447F	Hewlett Packard	3113A05367	2005.04.07.	
Spectrum Monitor	EZM	Rohde & Schwarz	862304/007	2005.04.07.	
Bico-Antenna	94455-1	Eaton	977	2005.03.17.	
Log-Periodic Antenna	3146	EMCO	2051	2005.03.17.	
Dipole Antenna	TDA25/1/2	Electro Metrics	176/200/200	2005.03.17.	
Horn Antenna	SAS-571	A.H Systems	414	2005.03.17.	
Spectrum Analyzer	R3261C	Advantest	71720189	2005.04.07.	
LISN	KNW-242	Kyoritsu	8-923-2	2004.07.17.	
LISN	8012-50-R- 24	Solar	8379121	2004.07.17.	
Loop Ant	6507	EMCO	1435	2004.10.06.	
Signal Generator	SMS	Rohde & Schwarz	872165/100	2005.04.07.	
Modulation Analyzer	8901B	Hewlett Packard	3438A05094	2005.04.07.	
Frequency Counter	CMC251	Tektronic	CMC-251TW52489	2005.04.07.	

APPLICANT: SCIENTIFIC TOYS, LTD.

THRU Lab & Engineering.

RM1105,11FL, ACE TECHNO TOWER 197-22,GURO-DONG GURO-GU, SEOUL KOREA T81221095059F81221095056 email thrukang@kornet.net

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of ThruLab & Engineering.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHZ with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHZ and the video bandwidth was 300KHZ. The ambient temperature of the UUT was $25\,^{\circ}\text{C}$ with a humidity of 58%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The unit under test was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

ANSI STANDARD C63.4-1992 12.1.1.1 SUPERREGENERATIVE RECEIVER: A signal Generator was set to the unit under test operating frequency. An un-Modulated continuous wave (CW) signal was radiated at the super regenerative receiver operating frequency to cohere the characteristic broadband emissions from the receiver.

The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSIC63.4-1992 with the EUT 40 cm from the vertical ground wall.

Not Applicable, battery operated.

APPLICANT: SCIENTIFIC TOYS, LTD.

THRU Lab & Engineering.

RM1105,11FL, ACE TECHNO TOWER 197-22,GURO-DONG GURO-GU, SEOUL KOREA T81221095059F81221095056 email thrukang@kornet.net

APPLICANT: SCIENTIFIC TOYS, LTD.

FCC ID: BY333104-49V

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.109

REQUIREMENTS: 30 to 88 MHz: 40.0 dBuV/M @ 3 METERS

88 to 216 MHz: 43.5 dBuV/M 216 to 960 MHz: 46.0 dBuV/M ABOVE 960 MHz: 54.0 dBuV/M

TEST RESULTS: A search was made of the spectrum from 30 to 1000MHz and the measurements indicate that the unit DOES meet the FCC requirements.

TEST DATA:

THO	IESI DAIR.							
No	Emission Frequency (MHz)	Meter Reading dBuV	Ant. Polaritry	Correction Factor dB	Cable Loss dB	Field Strength (dBuv/m)	Margin (dBuv)	Limit (dBuv/m)
1	44.90	5.7	H	11.9	0.9	18.5	-21.5	40.0
2	62.25	5.4	Н	7.0	1.1	13.5	-26.5	40.0
3	87.50	3.8	V	9.8	1.5	15.1	-24.9	40.0
4	95.40	3.0	V	10.9	1.6	15.4	-28.1	43.5
5	109.35	4.4	V	11.0	1.7	17.1	-26.4	43.5
6	112.05	5.0	V	11.0	1.7	17.7	-25.8	43.5
7	154.20	3.6	V	16.9	2.1	22.6	-20.9	43.5
8	224.65	3.1	V	10.8	2.8	16.7	-29.3	46.0
9	296.35	4.6	V	16.8	3.4	24.7	-21.3	46.0
10	299.55	4.8	V	16.3	3.4	24.4	-21.6	46.0
11	339.90	5.6	V	15.7	3.7	25.1	-20.9	46.0
12	592.26	3.1	V	18.8	5.5	27.4	-18.6	46.0

SAMPLE CALCULATION: FSdBuV/m = MR (dBuV) + ACFdB.

TEST PROCEDURE: ANSI STANDARD C63.4-1992 using a Hewlett Packard Model 8566B spectrum analyzer, a Hewlett Packard Model 85685A Preselector, a Hewlett Packard Model 85650A Quasi-Peak adapter, and an appropriate antenna — see the test equipment list. The bandwidth of spectrum analyzer was 100 kHz with an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported.

PERFORMED BY: K.M Choi DATE:07/06/04

APPLICANT: SCIENTIFIC TOYS, LTD.