

SAR Compliance Test Report

Date of Report Number of pages:	25/09/2023 31	Client's Contact person:	Peter Söderberg		
		Responsible Test engineer:	Jesper Varis		
Testing laboratory:	Verkotan Oy Elektroniikkatie 17 90590 Oulu Finland	Client:	Ascom (Sweden) AB Grimbodalen 2 P.O. Box 8783 40276 Gothenburg Sweden		
Tested device	Narrowband Alarm Transceiver				
Related reports:	-				
·····					
Testing has been carried out in accordance with:	 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices FCC published RF exposure KDB procedures IEC/IEEE 62209-1528, 2020 Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices 				
	RSS-102, Issue 5, 2015 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)				
Documentation:	The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory				
Test Results:	The EUT complies with the requirements in respect of all parameters subject to the test.				
	The test results relate only to devices specified in this document				
Date and signatures:		25.09.2023			
		Laboratory Manage	er		

Miia Nurkkala

TABLE OF CONTENTS

1.	SUMMARY OF SAR TEST REPORT	3
	1.1 TEST DETAILS	3
	1.2 MAXIMUM RESULTS	
	1.2.1 Standalone SAR	4
	1.2.2 Maximum Drift	4
	1.2.3 Measurement Uncertainty	4
2.	DESCRIPTION OF THE DEVICE UNDER TEST (DUT)	5
ź	2.1 SUPPORTED FREQUENCY BANDS AND OPERATIONAL MODES	5
3.	OUTPUT POWER	6
3	3.1 MAXIMUM SPECIFIED CONDUCTED OUTPUT POWER	6
3	3.2 TESTED CONDUCTED POWER	6
٨		7
7.		
4	4.1 TEST EQUIPMENT LIST	8
	4.1.1 Isotropic E-field Probe Type EX3DV4	
4	4.2 PHANTOMS	9
-		
-	4.4 STSTEM VALIDATION STATUS	9 9
	4.5.1 Tissue Simulant Verification	
5.	TEST PROCEDURE	11
l	5.1 DEVICE HOLDER	
ļ	5.2 TEST POSITIONS	12
	5.2.1 Body-worn Configuration, 0mm/5mm separation distance	12
ļ	5.3 SCAN PROCEDURES	12
ļ	5.4 SAR AVERAGING METHODS	12
6.	MEASUREMENT UNCERTAINTY	13
7.	TEST RESULTS	14
-	7.1 SAR RESULTS FOR BODY EXPOSURE CONDITION WITH 0MM/5MM SEPARATION	14
-	7.2 IEC 62209-2 AMD1:2019	14
AP	PENDIX A: PHOTOS OF THE DUT	15
AP	PENDIX B: SYSTEM CHECK SCAN	20
AP	PENDIX C: MEASUREMENT SCANS	22
AP	PENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORTS	24
AP	PENDIX E: RELEVANT PAGES FROM DIPOLE CALIBRATION REPORTS	28

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Equipment under Test (DUT):

Product:	Narrowband Alarm Transceiver
Manufacturer:	Ascom Ab
Model:	a72 Protector
Serial Number:	DUT1: 32, DUT3: 34, Conducted sample: 35
FCC ID Number:	BXZCHAT2
ISED ID Number:	3724B-CHAT2
DUT Number:	DUT1: 21043, DUT3: 21042, Conducted sample: 21036
Battery Type used in testing:	Li-lon Battery
State of the Sample:	Production sample

Testing information:

Testing performed:	19.09.2023 – 20.09.2023	
Notes:	-	
Document history:		
Document ID:	FCC_ISED SAR report_a72 Protector ID6321_22092023.docx	
Temperature °C	22±2 / Controlled	
Humidity RH%	30±20 / Controlled	
Measurement performed by:	Jesper Varis	
FCC Test Firm Designation Number:	FI0005	
ISED Company Number:	22218	

1.2 Maximum Results

The maximum reported* SAR values for Body-worn for transmitting systems are shown in a table below. The device conforms to the requirements of the standards when the maximum reported SAR value is less than or equal to the limit. The SAR limit specified in FCC 47 CFR part 2 (2.1093) and Health Canada's RF exposure guideline, Safety Code 6 for Head/Body SAR_{1g} is 1.6 W/kg.

1.2.1 Standalone SAR

Highest Reported* SAR10g(W/kg) in Extremity Exposure Condition, Omm separation distance	Highest Reported* SARıg(W/kg) in Body- Worn Exposure Condition, Omm/5mm separation distance	Result
UHF Transmitter (420 – 475 MHz)	0.057	PASS

* Reported SAR Values are scaled to upper limit of power tuning tolerance.

1.2.2 Maximum Drift

Maximum Drift During Measurements	0.42dB*
*Larger than 5% drifts included to scaling factors	

1.2.3 Measurement Uncertainty

SAR 1g: 0.3 – 3 GHz:

Expanded Uncertainty (k=2) 95 %	±22.1 %

2. DESCRIPTION OF THE DEVICE UNDER TEST (DUT)

The DUT is a narrowband alarm transceiver for alarms and messages which supports frequency range of 420 MHz – 475 MHz.

According to manufacturer, the maximum transmission time is 6 seconds of the 6-minute time averaging period thus the maximum operational duty cycle is 6s/360s = 1.67%. Testing was done by using 100% duty cycle thus the measured SAR results were scaled to the maximum operational duty cycle. Manufacturer duty cycle statement can be found from appendix F.

Device Category	Portable
Exposure Environment	General population uncontrolled

2.1 Supported Frequency Bands and Operational Modes

TX Frequency bands	Modes of Operation	Transmitter Frequency Range [MHz]
	UHF Transmitter	420 - 475

3. OUTPUT POWER

3.1 Maximum specified conducted output power

From the customer, including tune-up tolerances;

UHF Transmitter	Max Output Power [dBm]	
420 MHz – 475 MHz	27	

3.2 Tested conducted power

Measured conducted output power at transmitting antenna connector;

UHF Transmitter	Max Output Power [dBm]
420 MHz	27.19*
433.8 MHz	27.51*
447.5 MHz	27.44*
461.3 MHz	26.94
475 MHz	26.08

*Conducted power above maximum specified due to TX control software

4. TEST EQUIPMENT

Dasy52 near field scanning system, manufactured by SPEAG was used for SAR testing. The test system consists of high precision robotics system (Staubli), robot controller, computer, near-field probe, probe alignment sensor, and a phantom containing the tissue equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location of maximum electromagnetic field.

Figure 1 Schematic Laboratory Picture

4.1 Test Equipment List

Main used test system components are listed below. For full equipment list and calibration intervals, please contact the testing laboratory.

Test Equipment	Model	Serial Number	Calibration Date	Interval [years]
DASY5 Software	52.8.8.1258	-	NA	NA
Amplifier, 0.5-1000MHz	TVA-R5-13A+	2202002	NA	NA
DAE4, converter	DAE4	705	04/2023	1
Inline Peak Power Sensor	MA24105A	2102058	11/2022	1
Isotropic DOS probe	EX3DV4	3852	10/2022	1
Power Sensor	NRP-Z11	100265	12/2022	1
System validation dipole	SID450	37/16 DIP 0G450-434	02/2022	3
Vector Signal Generator	MG3710E	6262028676	09/2021	1

Dipole calibration period supporting data:

		Measured on 09/2023			Ca	librated	
Dipole and serial number	Frequency (MHz)	Return Ioss (dB)	Impe	edance [Ω]	Return loss [dB]	Impeda	ince [Ω]
37/16 DIP 0G450-434	450	-37.88	48.9	-0.6	-31.8	51.2	2.3

4.1.1 Isotropic E-field Probe Type EX3DV4

Summatrical decign with triangular care
Synmetrical design with thangular core
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration certificate in Appendix D
10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6 GHz)
± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
10 μW/g to > 100 mW/g, Linearity: ± 0.2 dB
Overall length: 330 mm Tip length: 10 mm Body diameter: 12 mm
General dosimetry up to 6 GHz Compliance tests of mobile phones
Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

Eli Phantom:

The phantom used in SAR tests was an ELI phantom, manufactured by SPEAG. ELI phantom is used for compliance testing of handheld and body-mounted wireless devices in the frequency range of 4 MHz to 10 GHz. The phantom conforms to the requirements of IEC/IEEE 62209-1528 and FCC published RF Exposure KDB Procedures.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEC/IEEE 62209-1528 and FCC published RF Exposure KDB Procedures. The dielectric parameters of the used tissue simulants were within $\pm 10\%$ of the recommended values at frequencies under 3GHz and $\pm 5\%$ at frequencies above 3GHz. A liquid compensation algorithm was used in DASY5 with which measured peak average SAR values were corrected for the deviation of used liquid. Depth of the tissue simulant was at least 15.0 cm from the inner surface of the flat phantom.

Tissue simulant liquid Ingredients	
Deionized Water, tween, salt	

4.4 System Validation Status

Frequency [MHz]	Dipole Type / SN	Probe Type / SN	Calibrated Signal Type	DAE Unit / SN	Dielectric Constant [ɛˈ]	Conductivity σ [S/m]	Date
450	37/16 DIP 0G450-434	EX3DV4 - SN: 3852	CW	DAE 4 / 710	42.53	0.94	12/2022

4.5 System Check

Date	Tissue Type	Tissue Temp. [°C]	Frequency [MHz]	Input Power [mW]	Measured SAR1g [W/kg]	1 W Target SAR _{1g} [W/kg]	1 W Normalized SAR _{1g} [W/kg]	Deviation [%]	Plot #
19.09.2023	WB Head	22	450	250	1.2	4.67	4.8	2.78	1

4.5.1 Tissue Simulant Verification

				Target		Measured		Deviation	
Date	Tissue Type	Tissue Temp [°C]	Frequency [MHz]	Dielectric Constant [ɛ] Target	Dielectric Constant Conductivity D [ε] σ [S/m] C Target Γα Γα		Dielectric Constant [ɛ] Conductivity σ [S/m]		σ [%]
19.09.2023	WB Head	22	420.0	43.86	0.87	42.89	0.86	-2.2	-1.3
19.09.2023	WB Head	22	433.8	43.69	0.87	42.72	0.87	-2.2	-0.4
19.09.2023	WB Head	22	447.5	43.54	0.87	42.58	0.87	-2.2	0.5
19.09.2023	WB Head	22	450.0	43.5	0.87	42.55	0.88	-2.2	0.6
19.09.2023	WB Head	22	475.0	43.37	0.87	42.25	0.89	-2.6	2.1

5. TEST PROCEDURE

Testing was carried out in accordance with FCC KDB Publications 447498 D04 Interim General RF Exposure Guidance v01 and RSS-102, Issue 5.

The DUT was set to transmit at maximum power and 100% duty cycle using test software.

The device was measured on five different channels. All sides of the device were measured with the channel which gave the highest conducted output power. The rest of the channels were then measured with the position which resulted in the highest SAR for the maximum conducted channel.

Two samples with differently tuned antennas were tested: DUT1 was tuned for the frequency band 420 – 454 MHz DUT3 was tuned for the frequency band 454 – 475 MHz

According to manufacturer the maximum transmission time is 6 seconds of the 6-minute time averaging period, thus the maximum operational duty cycle is 6s/360s = 1.67%. Testing was done by using 100% duty cycle thus the measured SAR results were scaled to the maximum operational duty cycle.

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

5.2 Test Positions

5.2.1 Body-worn Configuration, 0mm/5mm separation distance

Body SAR was tested from all sides of the device. The device was placed on the top of a Rohacell and lifted towards the phantom until the distance between the phantom and the device was 5mm. The distance between the device and the phantom was kept at 5mm using a separate flat spacer that was removed before the start of the measurements.

Back side of the device contains a body-worn clip accessory so the back side was tested with 0mm separation distance, clip facing the phantom.

Photos of the test positions are presented in appendix A

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy52 are all based on the modified Quadratic Shepard's method (Robert J. Renka," Multivariate Interpolation of Large Sets of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148). The interpolation scheme combines a least-square fitted function method with a

weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighboring points by a leastsquare method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

	DASY5 According (Frequency	Uncerta g to IEC/IE band: 300	EE 6220 MHz - 3	Budg 9-1528 GHz ra	et ange)				
		Uncert.	Prob.	Div.	(C)	(C)	Std. Unc.	Std. Unc.	
Symbol	Error Description	value	Dist.		1g	10g	(1g)	(10g)	
Measuren	Measurement System Errors								
CF	Probe Calibration	±12.0%	N	√2	1	1	±6.0%	±6.0%	
CFdrift	Probe Calibration Drift	±1.7%	R	√3	1	1	±1.0%	±1.0%	
LIN	Probe Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	
BBS	Broadband Signal	±3.0%	R	√3	1	1	±1.7%	±1.7%	
ISO	Probe Isotropy	±7.6%	R	3	1	1	±4.4%	±4.4%	
DAE	Data Acquisition	±0.3%	N	1	1	1	±0.3%	±0.3%	
AMB	RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%	
∆sys	Probe Positioning	±3.9%	N	1	0.14	0.14	±0.5%	±0.5%	
DAT	Data Processing	±1.2%	N	1	1	1	±1.2%	±1.2%	
Phantom	and Device Errors	-		-	-		-	-	
LIQ(σ)	Conductivity (meas.)DAK	±2.5%	N	√1	0.78	0.71	±2.0%	±1.8%	
LIQ(T₀)	Conductivity (temp.) ^{BB}	±3.3%	R	√3	0.78	0.71	±1.5%	±1.4%	
EPS	Phantom Permittivity	±14.0%	R	3	0	0	±0%	±0%	
DIS	Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%	
Dxyz	Device Positioning (±0.5mm)	±1.0%	N	1	1	1	±1.0%	±1.0%	
н	Device Holder	±3.6%	N	√1	1	1	±3.6%	±3.6%	
MOD	DUT Modulation ^m	±2.4%	R	√3	1	1	±1.4%	±1.4%	
TAS	Time-average SAR	±2.6%	R	3	1	1	±1.5%	±1.5%	
RFdrift	DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%	
VAL	Val Antenna Unc.val	±0.0%	N	1	1	1	±0%	±0%	
RFin	Unc. Input Power ^{val}	±0.0%	N	1	1	1	±0%	±0%	
Correctio	n to the SAR results								
C(ε, σ)	Deviation to Target	±1.9%	N	√1	1	0.84	±1.9%	±1.6%	
C(R)	SAR scaling ^p	±0%	R	3	1	1	±0%	±0%	
u(∆SAR)	Combined Uncertainty						±11.0%	±10.9%	
U	Expanded Uncertainty						±22.1%	±21.9%	

7. TEST RESULTS

7.1 SAR Results for Body Exposure Condition with 0mm/5mm separation

Frequency [MHz]	Maximum Power [dBm]	Conducted Power [dBm]	Test position	Measured SAR _{1g} [W/kg]	Power Drift* [dB]	Scaling Factor	Maximum Operation Duty Cycle	Reported SAR _{1g} [W/kg]	Plot #
433.8	27	27.51*	Front 5mm	3.12	-0.17	1.00	1.67%	0.052	
433.8	27	27.51*	Back w clip	1.37	-0.17	1.00	1.67%	0.023	
433.8	27	27.51*	Left 5mm	0.44	-0.24	1.06	1.67%	0.008	
433.8	27	27.51*	Right 5mm	0.53	-0.13	1.00	1.67%	0.009	
433.8	27	27.51*	Top 5mm	0.85	-0.01	1.00	1.67%	0.014	
433.8	27	27.51*	Bottom 5mm	0.103	-0.29	1.07	1.67%	0.002	
420	27	27.19*	Front 5mm	2.24	-0.21	1.00	1.67%	0.037	
447.5	27	27.44*	Front 5mm	2.36	-0.42	1.10	1.67%	0.043	
461.3	27	26.94	Front 5mm	2.75	-0.21	1.01	1.67%	0.047	
475	27	26.08	Front 5mm	0.44	-0.22	1.30	1.67%	0.010	
Repeat 433.8	27	27.51*	Front 5mm	3.19	-0.29	1.07	1.67%	0.057	2
Repeat 433.8	27	27.51*	Front 5mm	3.06	-0.17	1.00	1.67%	0.051	
Repeat 433.8	27	27.51*	Front 5mm	3.16	-0.2	1.00	1.67%	0.053	

*Larger than 5% drifts included to scaling factors **Conducted power above maximum specified due to TX control software

7.2 IEC 62209-2 AMD1:2019

According to IEC 62209-2 AMD1:2019, the zoom scan complies if the peak spatial-average SAR is below 0.1 W/kg, or if the following criteria is met:

1. The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak is larger than the horizontal grid step.

2. Ratio of SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the x-y location of the measured maximum is at least 30%.

Zoom scan compliance according to IEC 62209-2 AMD1:2019 is automatically verified by DASY5 software and all zoom scans in this test report do pass the criteria. The smallest horizontal distance and Ratio between measurement points M2 and M1 of the highest SAR results is available in Appendix C.

APPENDIX A: PHOTOS OF THE DUT

Size of the DUT is: 100 x 60 x 20 mm

Front side of DUT against the phantom, 5mm separation distance

Back side of the DUT with clip against the phantom, 0mm separation distance

Left side of the DUT against the phantom, 5mm separation distance

Right side of the DUT against the phantom, 5mm separation distance

Top side of the DUT against the phantom, 5mm separation distance

Bottom side of the DUT against the phantom, 5mm separation distance

APPENDIX B: SYSTEM CHECK SCAN

Plot 1

Date/Time: 19.9.23 10:27:47

Test Laboratory: Verkotan Oy

DUT: Dipole 450 MHz D450V2; Type: D450V2; Serial: D450V2 - SN:434

Communication System: UID 0, CW (0); Communication System Band: D450 (450.0 MHz); Frequency: 450 MHz; Communication System PAR: 0 dB; Medium parameters used: f = 450 MHz; σ = 0.876 S/m; ϵ_r = 42.547; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY Configuration:

- Probe: EX3DV4 SN3852; ConvF(10.2, 10.2, 10.2) @ 450 MHz; Calibrated: 27.10.22
 - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 31.0, -4.0
 - Electronics: DAE4 Sn705; Calibrated: 14.4.23
 - Phantom: SAR1_Phantom1_ELI_right; Type: QD OVA 002 AA;
 - O DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/system check/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=7.5mm Reference Value = 46.02 V/m; Power Drift = -0.29 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.791 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 51.2% Maximum value of SAR (measured) = 1.65 W/kg Configuration/system check/Area Scan (61x201x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.66 W/kg

APPENDIX C: MEASUREMENT SCANS

Plot 2

Date/Time: 20.9.23 09:40:42

Test Laboratory: Verkotan Oy

DUT: Narrowband Alarm Transceiver

Communication System: UID 0, CW (0); Communication System Band: Ascom400MHz; Frequency: 433.8 MHz; Communication System PAR: 0 dB; Medium parameters used: f = 434 MHz; σ = 0.867 S/m; ϵ_r = 42.723; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY Configuration:

- Probe: EX3DV4 SN3852; ConvF(10.2, 10.2, 10.2) @ 433.8 MHz; Calibrated: 27.10.22
 - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -4.0, 31.0
 - Electronics: DAE4 Sn705; Calibrated: 14.4.23
 - Phantom: SAR1_Phantom1_ELI_right; Type: QD OVA 002 AA;
 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/DUT1 433.8MHz Front 5mm REPEAT/Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 5.14 W/kg **Configuration/DUT1 433.8MHz Front 5mm REPEAT/Zoom Scan (7x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 44.48 V/m; Power Drift = -0.29 dB Peak SAR (extrapolated) = 7.33 W/kg **SAR(1 g) = 3.19 W/kg; SAR(10 g) = 1.68 W/kg** Smallest distance from peaks to all points 3 dB below = 10.4 mm Ratio of SAR at M2 to SAR at M1 = 43.8% Maximum value of SAR (measured) = 5.34 W/kg

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORTS

	Certificate No	EX-3852_Oct22
RTIFICATE		
EX3DV4 - SN:38	52	
QA CAL-01.v9, C QA CAL-25.v7 Calibration proce	DA CAL-12.v9, QA CAL-14.v6, dure for dosimetric E-field pro	QA CAL-23.v5, bes
October 27, 2023	2	
SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x)	04-Apr-22 (No. 217-03524) 20-Oct-22 (OCP-DAK3.5-1249_Oc 20-Oct-22 (OCP-DAK12-1016_Oct 04-Apr-22 (No. 217-03527)	Apr-23 (22) Oct-23 (22) Oct-23 (22) Oct-23 (22) Apr-23
SN: 660 SN: 3013	10-Oct-22 (No. DAE4-660_Oct22) 27-Dec-21 (No. ES3-0013_Dec21)	Oct-23 Dec-22
ID SN: GB41293874 SN: MY41408087 SN: 000110210 SN: US3642001700	Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24
SN: 0541080477	31-Mar-14 (in nouse check Co1-22)	I in nouse check. Oct-24
Name Michael Weber	Function Laboratory Technician	H.Weber
Sven Köhn	Technical Manager	Sin
		0
	EX3DV4 - SN:38 OA CAL-01.v9, O OA CAL-25.v7 Calibration proce October 27, 2023 uments the traceability to n neertainties with confidence ducted in the closed labors MATE critical for calibration ducted in the closed labors MATE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 103244 SN: 104978 SN: 003102 SN: 002552 (20n) SN: 660 EN: 3013 ID SN: 00310210 SN: 003642001700 SN: US3642001700 SN: US3642001700	RTIFICATE EX3DV4 - SN:3852 QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-25.v7 Calibration procedure for dosimetric E-field protocols and the process of

EX3DV4 - SN:3852

October 27, 2022

Parameters of Probe: EX3DV4 - SN:3852

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	0.41	0.39	0.46	±10.1%
DCP (mV) B	99.8	98.2	99.9	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$B dB \sqrt{\mu V}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	147.5	±2.5%	±4.7%
		Y	0.00	0.00	1.00		138.0		
		Z	0.00	0.00	1.00		137.1		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).
 ^{III} Linearization parameter uncertainty for maximum specified field strength.
 ^{III} Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3852_Oct22

Page 3 of 9

EX3DV4 - SN:3852

October 27, 2022

Parameters of Probe: EX3DV4 - SN:3852

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	126.7*
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	mm 9
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3852_Oct22

Page 4 of 9

EX3DV4 - SN:3852

October 27, 2022

Parameters of Probe: EX3DV4 - SN:3852

Calibration Parameter Determined In Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^p	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6	55.0	0.75	15.18	15.18	15.18	0.00	1.00	±13.3%
30	55.0	0.75	13.34	13.34	13.34	0.00	1.00	±13.3%
64	54.2	0.75	11.88	11.88	11.88	0.00	1.00	±13.3%
128	52.8	0.76	11.57	11.57	11.57	0.00	1.00	±13.3%
220	49.0	0.81	10.92	10.92	10.92	0.00	1.00	±13.3%
450	43.5	0.87	10.20	10.20	10.20	0.16	1.30	±13.3%
900	41.5	0.97	8.82	8.82	8.82	0.44	0.94	±12.0%
1300	40.8	1.14	8.54	8.54	8.54	0.27	1.22	±12.0%
1450	40.5	1.20	8.63	8.63	8.63	0.39	0.80	±12.0%
1640	40.2	1.31	8.33	8.33	8.33	0.34	0.90	±12.0%
1810	40.0	1.40	7.90	7.90	7.90	0.38	0.90	±12.0%
1900	40.0	1.40	7.72	7.72	7.72	0.35	0.90	±12.0%
2450	39.2	1.80	7.48	7.48	7.48	0.41	0.90	±12.0%
3300	38.2	2.71	6.85	6.85	6.85	0.30	1.30	±13.1%
3500	37.9	2.91	6.83	6.83	6.83	0.30	1.35	±13.1%
3700	37.7	3.12	6.65	6.65	6.65	0.30	1.35	±13.1%
3900	37.5	3.32	6.38	6.38	6.38	0.40	1.60	±13.1%
4100	37.2	3.53	6.19	6.19	6.19	0.40	1.60	±13.1%
5250	35.9	4,71	4.90	4.90	4.90	0.40	1.80	±13.1%
5600	35.5	5.07	4.61	4.61	4.61	0.40	1.80	±13.11
5750	35.4	5.22	4.65	4.65	4.65	0.40	1.80	±13.19

^C Prequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at althration thequency and the uncertainty for the indexted thequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessed at 5 MHz. The uncertainty is the assessements at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 5 MHz is 4-9 MHz, Aloo is 304 Et trequency validity can be extended to ±100 MHz.
* A tequencies below 3 0 Hz, the validity of tissue parameters (*x* and *x*) or be released to ±10% if liquid compensation formula is applied to measured SAR values. At trequencies below 3 0 Hz, the validity of tissue parameters (*x* and *x*) is restricted to ±10%. The uncertainty is the RSS of the ConvF uncertainty for indicated trequencies below 3 0 Hz, the validity of tissue parameters (*x* and *x*) are trequencies below 3 0 Hz, the validity of tissue parameters (*x* and *x*) is restricted to ±10%. The uncertainty is the RSS of the ConvF uncertainty for indicated trequencies above parameters (*x* and *x*) is restricted to ±10%. He validity is the RSS of the ConvF uncertainty for indicated trequencies above a 0.4 Link.

Indicated server issue parameters. ^G Apha/Depth are determined during calibration. SIFEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than a 1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3852_Oct22

Page 5 of 9

APPENDIX E: RELEVANT PAGES FROM DIPOLE CALIBRATION REPORTS

Page: 1/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 53.5.22 BES A

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (5,')		Conductivity (o) S/m		
	required	measured	required	measured	
300	45.3 ±10 %		0.87 ±10 %		
450	43.5 ±10 %	42.8	0.87 ±10 %	0.91	
750	41.9±10%		0.89 ±10 %		
835	41.5 ±10 %		0.90 ±10 %		
900	41.5 ±10 %		0.97 ±10 %		
1450	40.5 ±10 %		1.20 ±10 %		
1500	40.4 ±10 %		1.23 ±10 %		
1640	40.2 ±10 %		1.31 ±10 %		
1750	40.1 ±10 %		1.37 ±10 %		
1800	40.0 ±10 %		1.40 ±10 %		
1900	40.0 ±10 %		1.40 ±10 %		
1950	40.0 ±10 %		1.40 ±10 %		
2000	40.0 ±10 %		1.40 ±10 %		
2100	39.8 ±10 %		1.49 ±10 %		
2300	39.5 ±10 %		1.67 ±10 %		
2450	39.2 ±10 %		1.80 ±10 %		
2600	39.0 ±10 %		1.96 ±10 %		
3000	38.5 ±10 %		2.40 ±10 %		
3300	38.2 ±10 %		2.71 ±10 %		
3500	37.9 ±10 %		2.91 ±10 %		
3700	37.7 ±10 %		3.12 ±10 %		
3900	37.5±10%		3.32 ±10 %		
4200	37.1 ±10 %		3.63 ±10 %		
4600	36.7 ±10 %		4.04 ±10 %		
4900	36.3 ±10 %		4.35 ±10 %		

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/11

Template_ACR_DDD.N.YY_MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.53.5.22 BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 42.8 sigma : 0.91
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)		
	required	measured	required	measured	
300	2.85		1.94		
450	4.58	4.67 (0.47)	3.06	3.08 (0.31)	
750	8.49		5.55		
835	9.56		6.22		
900	10.9		6.99		
1450	29		16		
1500	30.5		16.8		
1640	34.2		18.4		
1750	36.4		19.3		
1800	38.4		20.1		
1900	39.7		20.5		
1950	40.5		20.9		
2000	41.1		21.1		
2100	43.6		21.9		
2300	48.7		23.3		
2450	52.4		24		
2600	55.3		24.6		
3000	63.8		25.7		
3300			-		
3500	67.1		25		
3700	67.4		24.2		
3900			-		
4200			-		
4600	-		-		
4900			-		

Page: 9/11

Template_ACR.DDD.N.YYMYGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in fail or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.

APPENDIX F: DUTY CYCLE STATEMENT

To whom it concerns

Duty cycle statement for CHAT2

Time-averaging period is a time period is here not to exceed 6 minutes for mobile and portable RF sources and here the used time in that period is not more than 6 sec, so the duty cycle will be < 6 sec/6 min

For Ascom Sweden AB

Gothenburg 19/9-2023

an

Peter Söderberg Ascom Sweden AB