Page 1 of 1

Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98

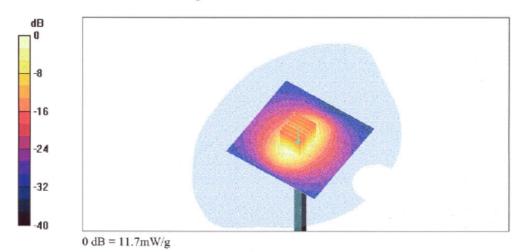
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m

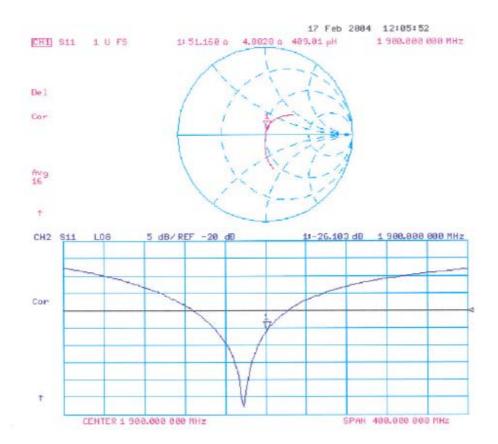
Power Drift = 0.002 dB

Manimum and an a SCAD = 11.0

Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g

Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.7 mW/g

Page 1 of 1

Date/Time: 02/09/04 15:58:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz;

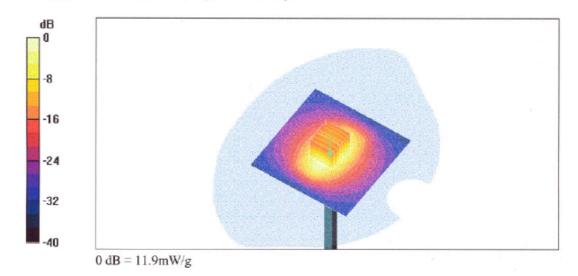
Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

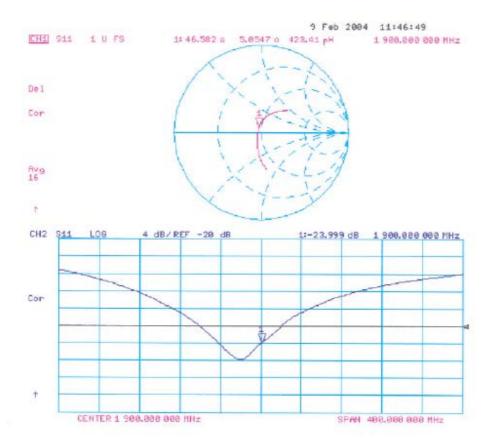
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dB

Maximum value of SAR (measured) = 11.9 mW/g Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

bject(s)	ET3DV6 - SN:	1788	
Calibration procedure(s)	QA CAL-01 v2 Calibration pro	t ocedure for dosimetric E-field prob	es
Calibration date:	August 29, 20	03	
Condition of the calibrated item	In Tolerance (according to the specific calibration	n document)
This calibration statement document 17025 international standard.	ts traceability of M&TE	used in the calibration procedures and conformity of	f the procedures with the ISO/IEC
All calibrations have been conducted	d in the closed laborato	ry facility: environment temperature 22 +/- 2 degrees	s Celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
1.75	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
RF generator HP 8684C Power sensor E4412A	US3642U01700 MY41495277	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250)	In house check: Aug-05 Apr-04
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	US3642U01700 MY41495277 MY41092180	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	In house check: Aug-05 Apr-04 Sep-03
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	US3642U01700 MY41495277 MY41092180 GB41293874	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250)	In house check: Aug-05 Apr-04 Sep-03 Apr-04
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	US3642U01700 MY41495277 MY41092180	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	In house check: Aug-05 Apr-04 Sep-03
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	US3642U01700 MY41495277 MY41092180 GB41293874 US37390585	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Celibrator Type 702	US3642U01700 MY41495277 MY41092160 GB41293874 US37390585 SN: 6295803	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702 Calibrated by: Approved by:	US3842U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702 Calibrated by:	US3842U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name	4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360) Function Techniciss	In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

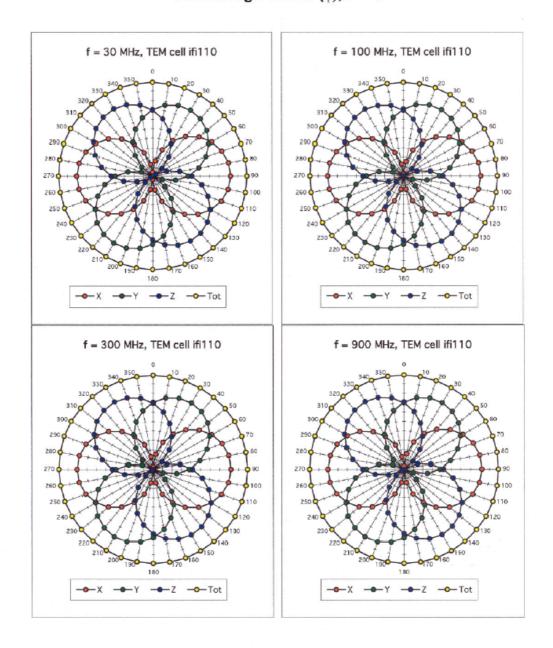
SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

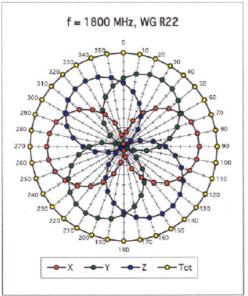
ET3DV6 SN:1788 August 29, 2003

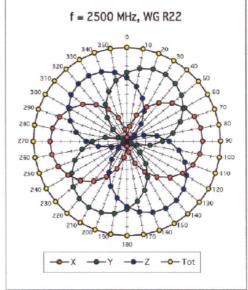

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free S	Space		Diode Co	mpressio	n	
NormX	1.68 μ\	V/(V/m) ²		DCP X	95	mν
NormY		V/(V/m) ²		DCP Y	95	mV
NormZ		V/(V/m) ²		DCP Z	95	mν
Sensitivity in Tissue S	Simulating I	iquid				
Head 900		ε _τ = 41.5 ± 5%	σ=	0.97 ± 5%	mho/m	
Valid for f=800-1000 MHz wit	h Head Tissue Sir	mulating Liquid accordin	ng to EN 50361	, P1528-200	(
ConvF X	6.6 ±	9.5% (k=2)		Boundary eff	fect:	
ConvF Y	6.6 ±	9.5% (k=2)		Alpha	0.34	
ConvF Z	6.6 ±	9.5% (k=2)		Depth	2.48	
Head 1800	MHz	ε_r = 40.0 ± 5%	σ=	1.40 ± 5%	mho/m	
Valid for f=1710-1910 MHz w	ith Head Tissue S	Simulating Liquid accord	ling to EN 5036	61, P1528-200	X	
ConvF X	5.3 ±	9.5% (k=2)		Boundary eff	fect:	
ConvF Y	5.3 ±	9.5% (k=2)		Alpha	0.43	
ConvF Z	5.3 ±	9.5% (k=2)		Depth	2.80	
Boundary Effect						
Head 900	MHz Ty	ypical SAR gradient: 5	5 % per mm			
Probe Tip to Bo	oundary			1 mm	2 mm	
	Without Correcti	ion Algorithm		8.7	5.0	
SAR _{be} [%]	With Correction	Algorithm		0.3	0.5	
Head 1800	MHz Tv	ypical SAR gradient: 1	10 % per mm			
		,,	,			
Probe Tip to Bo	oundary			1 mm	2 mm	
	Without Correcti	ion Algorithm		12.8	8.9	
SAR _{be} [%]	With Correction	Algorithm		0.3	0.1	
Sensor Offset						
Probe Tip to Se	ensor Center		2.7		mm	
Optical Surface	Detection		1.6 ± 0.2		mm	

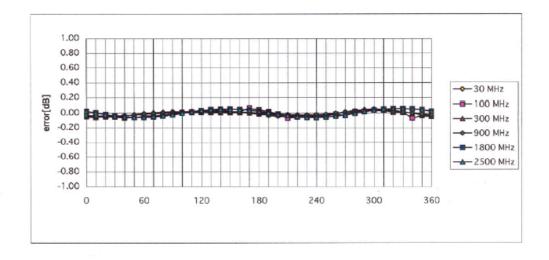
Page 2 of 10

ET3DV6 SN:1788 August 29, 2003


Receiving Pattern (ϕ), θ = 0°



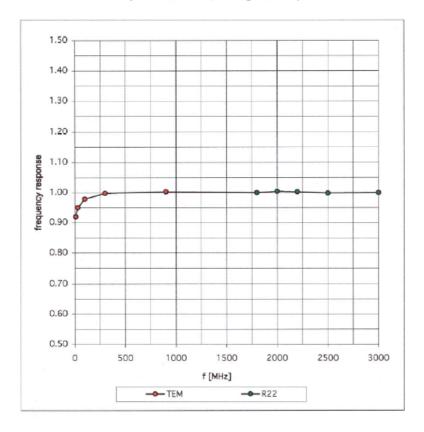
Page 3 of 10


ET3DV6 SN:1788

August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

Page 4 of 10

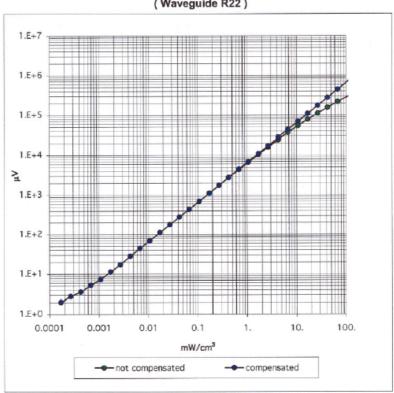


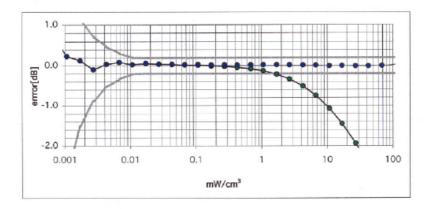
ET3DV6 SN:1788

August 29, 2003

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

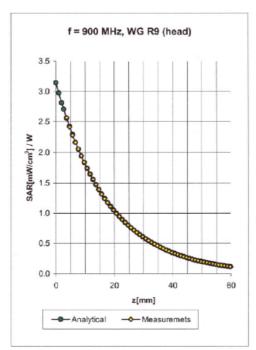

ET3DV6 SN:1788

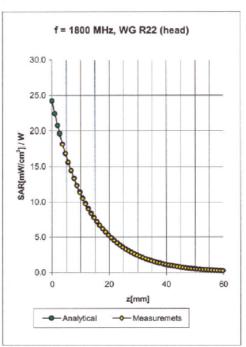

Test Report No : **O462501-1-2-01**

August 29, 2003

Dynamic Range f(SAR_{brain})

(Waveguide R22)

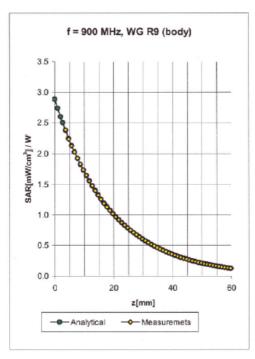

Page 6 of 10

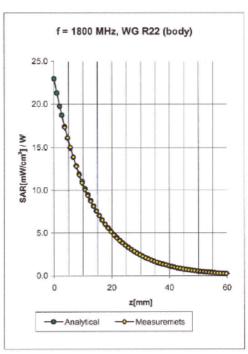


ET3DV6 SN:1788

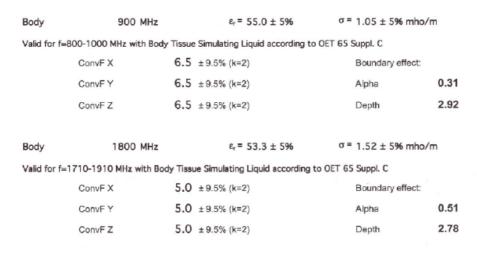
August 29, 2003

Conversion Factor Assessment

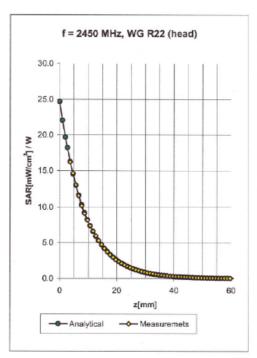

Head	900 MHz		ε_r = 41.5 ± 5%	σ=	0.97 ± 5% mho/n	1
Valid for f=80	0-1000 MHz with Head	Tissue	Simulating Liquid according to EN 5	5036	1, P1528-200X	
	ConvF X	6.6	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	6.6	± 9.5% (k=2)		Alpha	0.34
	ConvF Z	6.6	± 9.5% (k=2)		Depth	2.48
Head	1800 MHz		ϵ_r = 40.0 ± 5%	σ=	1.40 ± 5% mho/n	1
Valid for f=17	10-1910 MHz with Head	d Tissu	e Simulating Liquid according to EN	503	61, P1528-200X	
	ConvF X	5.3	± 9.5% (k=2)		Boundary effect:	
	ConvF Y	5.3	± 9.5% (k=2)		Alpha	0.43
	ConvF Z	5.3	± 9.5% (k=2)		Depth	2.80

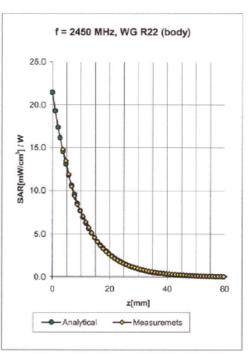

Page 7 of 10

ET3DV6 SN:1788


Conversion Factor Assessment

Test Report No : **O462501-1-2-01**


August 29, 2003



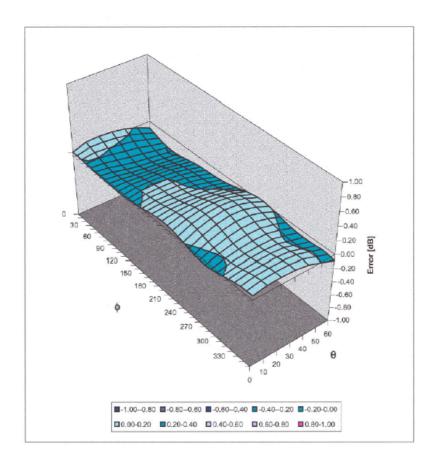
Page 8 of 10

ET3DV6 SN:1788 August 29, 2003

Conversion Factor Assessment

Head	2450 MHz		ε_r = 39.2 ± 5%	σ=	1.80 ± 5% mho/m	1	
Valid for f=2400-250	0 MHz with Head	Tissu	e Simulating Liquid according to EN	503	61, P1528-200X		
ConvF	X	4.7	± 8.9% (k=2)		Boundary effect:		
ConvF	Y	4.7	± 8.9% (k=2)		Alpha	0.99	
ConvF	Z	4.7	± 8.9% (k=2)		Depth	1.81	
Body	2450 MHz		ε_r = 52.7 ± 5%	σ=	1.95 ± 5% mho/m	1	
Valid for f=2400-250	0 MHz with Body	Tissu	ue Simulating Liquid according to OE	T 65	Suppl. C		
ConvF	X	4.5	± 8.9% (k=2)		Boundary effect:		
ConvF	Y	4.5	± 8.9% (k=2)		Alpha	1.01	
ConvF	Z .	4.5	± 8.9% (k=2)		Depth	1.74	

Page 9 of 10



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedu	re for the data acquisi	tion unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific ca	libration document)
his calibration statement docume 7025 international standard.	ents traceability of M&TE used in	the calibration procedures and	conformity of the procedures with the ISO/IE
Il calibrations have been conduc	ted in the closed laboratory facilit	ly environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
NI calibrations have been conduct		ly environment temperature 22	+i- 2 degrees Celsius and humidity < 75%.
		ly environment temperature 22 Cal Date	*i- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)		
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T	ID # 2 SN. 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T lodel Type luke Process Calibrator Type 70;	ID # 2 SN. 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T lodel Type luke Process Calibrator Type 70;	ID # 2 SN. 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T odel Type uke Process Calibrator Type 70:	E critical for calibration) ID # 2 SN. 6295803 Name Philipp Storchenegger	Cal Date 8-Sep-03	Scheduled Calibration Sep-05

DAE3 SN: 577

DATE: 21.11.2003

1. Cal Lab. Incoming Inspection & Pre Test

Modification Status	Note Status here → → → →	BC
Visual Inspection	Note anomalies	None

Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = 400 mVLow Range: 1LSB = 61nV, full range = 4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error	
Channel X + Input	2mV	1999.94	0.00	
	0.2mV	199.08	-0.46	
Channel X - Input	0.2mV	-200.24	0.12	
Channel Y + Input	2mV	1999.98	0.00	
	0.2mV	199.50	-0.25	
Channel Y - Input	0.2mV	-200.80	0.40	
Channel Z + Input	2mV	1999.98	0.00	
	0.2mV	199.11	-0.44	
Channel Z - Input	0.2mV	-201.12	0.56	

Page 2 of 4

DAE3 SN: 577

DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time: 3 sec

High/Low Range

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters:

Auto Zero Time: 3 sec. Number of measurements: Measuring time: 3 sec

100, Low Range

Input 10MΩ

mpat rowsz				
in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97