TYCO SAFETY PRODUCTS SENSORMATIC ELECTRONICS, LLC. EMC TEST REPORT

Model: IDX-8000-NA IDX-4000-NA IDX-2000-NA

FCC ID: BVCIDX8000NA IC: 3506A-IDX8000NA

Intentional Radiator

FCC and IC 47 CFR, Part 15, Subpart B, and Subpart C Industry Canada ICES-003e, RSS GENi3, RSS-210i8

William D. Oweley

EMC Engineer

6600 Congress Ave. Boca Raton, FL. 33487 USA

Revision Level	Reason	Date
Rev. A	Initial	May 7, 2012
Rev. B	Class 2 Permissive Change, o/p filter	Aug. 20, 2013
Rev. C	Class 2 Permissive Change, i/p filter, pg 26, 28	June 25, 2014

Table of contents

1	Sur	nmary Of Results	3
2	Ger	neral Information	5
	2.1	.1 List of Power Supplies evaluated for worst case:	5
	2.1	2 List of antennas that can be used with the EUT:	6
2	.2	Test Facility:	6
3	Tes	t Set-Up Block Diagram	7
3.	.1	List Of Ports	7
3.	.2	Ancillary Equipment Used During Testing	7
3.	.3	RF Exposure Compliance Requirements per 15.247 (b) (5)	8
3.	.4	Input Voltage Variation, 15.31(e)	9
3.	.5	Temperature Variation, 15.215(c).	.10
3.	.6	AC Conducted Emissions, 15.207 And 15.107, Class B	.11
3.	.7	Frequency Hopping Requirement, 15.247	.14
3.	.8	Carrier Frequency Separation, 15.247 (a)(1)	.15
3.	.9	Number Of Hopping Channels, 15.247 (a)(1)(i)	.16
3.	.10	Time Of Occupancy (Dwell Time), 15.247 (a)(1)(i)	.17
3.	.11	20 dB Bandwidth, 15.247 (a)(1)	.18
3.	.12	Peak Power Output, 15.247 (b)	.19
3.	.13	Band-Edge Compliance Of Rf Conducted Emissions, 15.247 (c)	.20
3.	.14	Spurious RF Conducted Emissions, 15.247 (d)	.21
3.	.15	Spurious Radiated Emissions, 15.247 (d), 15.205, 15.209	.24
4	Tes	t Equipment List	.30
5	AN	TENNA FACTORS	.31

_ ~~	0		
FCC 47 CFR			
Part 15. Subpart C	Test Requirement	Test Limit	Comments
Subpart C.			The product contains no
			user accessible controls
			that increase
	User Accessible		transmission power
15,15 (b)	Controls	Cannot change output power above limit.	above permitted levels.
			AC Mains Input was
			varied from 102 to 138
			VAC. Input power to
	Vary Input AC Mains	Does not increase the output power above	antenna was measured.
15.31 (e)	Power	the limit.	Complies.
	AC Mains Conducted		Digital emissions
	Emissions		determined by turning
	Requirements	See Table 15.107. Unintentional digital	transmitter off.
15.107	[Digital Device]	emissions subject to Class B limits.	Complies [Verification].
			Digital emissions
	Radiated Emissions		determined by turning
15 100	Requirements	See Table 15.109. Unintentional digital	transmitter off.
15.109		emissions subject to Class B fimits.	The radio to enterno
			connectors are MCX to
	Antenna Connector		RP TNC connectors
15 203	Requirements	Permanently attached or unique coupling	Complies
15.205	AC Mains Conducted	Termanentry attached of unique coupling.	Conducted emissions on
	Emissions		AC side of DC supply.
15.207 (a) (b)	Requirements.	General Limits.	Complies.
		Must comply with limits specified in 15.209	The radiated emissions
15.205 (a) (b)	Radiated Emission	(a). No intentional emissions in the	in the comply with the
15.209 (a) (c)	Requirements	restricted bands of 15.205	general emission limits.
	^		The carrier frequencies
		Separated by minimum of 25 kHz or 20 dB	of the hopping channel
	Carrier Frequency	BW of the hopping channel, whichever is	are separated by 500
15.247 (a) (1)	Separation	greater.	kHz. Complies.
			The EUT has 50
		If 20 dB BW is less than 250 kHz, then shall	hopping channels and
15.247 (a) (1)	Number of Hopping	use at least 50 hopping channels, using	complies with the
(1)	Frequencies.	frequencies in a pseudo random list.	requirement.
15 0 47 () (1)	Dwell Time –		
15.247(a)(1)	Number of Hopping	< 0.4 and within a 20 accord pariod	the requirement
(1) (1) (2)	Frequencies > 25	< 0.4 sec within a 20 second period	The FUT complies with
(3)	Output Power 902- 028 MH $_{7}$ Ty	Maximum 1 w $-$ frequency hopping with 50 \pm shappeds	the requirement
(3)	720 WILL IX	Jot channels If directional gain of transmitting antenna	
		greater than 6 dBi, the peak output power of	Permanently attached
		the device shall be reduced below the stated	attenuators on each
	Maximum Antenna	values by the amount in dB exceeding 6	antenna ensure
15.247 (b) (4)	Gain	dBi.	compliance to 6 dBi.
		Must ensure that RF MPE to the public falls	See RF Exposure
15.247 (b) (5)	RF Exposure	within Commission Guidelines	Section.

1 Summary Of Results

These results are deemed satisfactory evidence of compliance with Industry Canada Interference-Causing Equipment Standard ICES-003 and Radio Standards RSS Gen and RSS-210.

2 General Information

This amended report is to document the results of changes to the filter circuit on the RF output.

This report is part of a Class 2 Permissive Change for Certification of a RFID reader operating in the 902-928 MHz bands under the rules provided for frequency-hopping transmitters found in 47 CFR 15.247. The digital portion of the radio was evaluated according to the DoC procedures. The product covered by this report is the Sensormatic IDX-x000-NA Reader. (The x can be any number to represent other models with fewer output ports.)

The EUT is a RFID radio transceiver with 33 dBm maximum output power and 2 to 8 ports that are used one at a time.

The EUT can accommodate up to 8 transmit antennas on 8 electrically identical transmit ports. However, only one port, and therefore one antenna, can be active at a time. Under no circumstances can more than one transmitter port be on at a time.

Both conducted and radiated emissions testing were performed according to the procedures in ANSI C63.4-2003, as required by 47 CFR Part 15 Subpart A Section 15.31(a)(3), 15.107, 15.109, 15.207, 15.209.

15.247 requirements were measured per FCC document DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems", released March 30, 2000.

Accessory Equipment used to terminate ports and communicate are all FCC DoC products. This includes ITE power supplies, PC's, network switches.

2.1.1 List of Power Supplies evaluated for worst case:

Any LPS rated independently approved power supply such as, Sensormatic p/n 5606-0091-01 GlobTek, Inc. PN: TR9KI170760BKN-(RVB) Model: GT-41083-4042-T2 Input: 100-240Vac, 50/60Hz, 1.0A Output: 24Vdc, 1.7A

Any independently rated LPS Power over Ethernet supply such as, PoE Injector Power Supply, Phihong PSA16U-480(POE), PowerDsine 7001G

2.1.2 List of antennas that can be used with the EUT:

IDA-3100 Quad patch IDA-1000 Pad IDA-2100 Panel IDA-2400 panel Symbol AN480-CR66100WR 6 Dbi antenna IDSM-1000 IDKM-1000 and IDKM-1010

All antennas were evaluated to determine worst case emissions

All ports were evaluated for worst case emissions

EUT was tested with modulation and without modulation for worst case

Radiated evaluations were performed in a pre-screen environment and the worst case was tested on the OATS. Multiple orientations of antenna and radio were evaluated to determine worst case.

Maximum conducted transmit power was measured at the antenna port.

2.2 Test Facility:

Measurements were performed at Tyco Safety Products / Sensormatic Electronics, LLC. The shielded room conducted emissions measurement facility is located at Sensormatic Electronics LLC. Headquarters at 6600 Congress Avenue, Boca Raton, Florida, 33487. The radiated emissions Open Area Test Site is also located at 6600 Congress Avenue, Boca Raton, Florida 33487. These sites have been found acceptable by and are on file with the FCC per FCC Registration Number 616407.

Industry Canada registration number: 3506A-1 for the test site.

3 Test Set-Up Block Diagram

3.1 List Of Ports

Cable	Signal or Power	Max Length	Туре	Load
GPIO	Signal	>3m	shielded	Alarms/Relays
RS-232	Signal	>3m	shielded	Console/Debug
RS-485 x 2	Signal	>3m	Un-shielded	EAS Device Mgmt
USB-Type B	Signal	>3m	shielded	POS/Computer
USB-Type A	Signal	>3m	shielded	Ext Storage/Scanner I/F
Ethernet Cat-5	Signal	>3m	Un-shielded	Network devices
Ethernet PoE-Cat-5	Signal and DC Power	>3m	Un-shielded	Network Connect/PoE
24 VDC	DC Power	<3m	coax	AC-DC Power Supply
RF Coax x 8	Signal	<3m	50 ohm Coax	RFID Antenna

3.2 Ancillary Equipment Used During Testing

RFID Tag or label

UHF patch antenna

Accessory Equipment Declaration of Conformity

All accessory equipment used during testing is commercially available off-the-shelf (COTS) FCC DoC or Verified devices.

Laptop Computer for USB and Ethernet communication

LDM CBC-4055 for RS-485 termination

3.3 RF Exposure Compliance Requirements per 15.247 (b) (5)

Operating Band Center Frequency = 915 MHz, Range 902-928 EUT Max Output Power = 30 dBm Antenna Gain = 6 dBi => Numeric Gain = 4 Power Density Limit for General Population is $S = f(MHz) / 1500 = 0.61 \text{ mW} / \text{cm}^2$ or 6100 W/m² (CFR 47 Part 1.1310, Table 1)

Minimum MPE safe distance (using equation below) = 7.2mm

Calculations: Power Density Pd = $(Pt*G)/(4*pi*d^2)$ Solve for d $d^2 = (Pt*G)/(4*pi*Pd)$ d = SqrRoot((Pt*G)/(4*pi*Pd)) $d = SqrRoot((1watt*4gain)/(4*pi*6100watt/m^2))$ $d = SqrRoot((1/pi*6100)m^2)$ d = SqrRoot(1/pi*6100)md = 0.0072meters = 7.2 mm

Where E = Field Strength in Volts/meter Pt= Transmit Power In Watts G = Numeric Antenna Gain d = Distance in Meters Pd = Power Density in W / square m

3.4 Input Voltage Variation, 15.31(e).

Measured using a connector adapter short cable, MCX to N. The required cable is longer and has more loss. Output power set to Maximum, 30 dBm.

Frequency	Voltage	Peak Signal Level
902.74	120	30.02
902.75	+15% (138V)	30.00
902.75	-15% (102V)	30.05
915.25	120	29.93
914.25	+15% (138V)	29.93
915.25	-15% (102V)	29.92
927.25	120	30.07
927.25	+15% (138V)	30.12
927.25	-15% (102V)	30.07

Setup:	Transmitter EUT		Spectrum Analyzer
--------	--------------------	--	----------------------

3.5 Temperature Variation, 15.215(c).

Freq	-20 C	25 C	55 C	
138 V	902.74	902.74	902.74	
120 V	902.75	902.75	902.74	
102 V	902.75	902.75	902.74	
Freq	-20 C	25 C	55 C	
138 V	916.25	914.25	914.24	
120 V	915.25	915.25	915.24	
102 V	915.25	915.25	915.25	
Freq	-20 C	25 C	55 C	
138 V	927.25	927.25	927.24	
120 V	927.25	927.25	927.25	
102 V	927.25	927.25	927.25	

3.6 AC Conducted Emissions, 15.207 And 15.107, Class B.

Port	: AC Mains
Equipment operation	: Transmitting modulated. Communicating with accessories.
AC Mains	: 120V / 60 Hz
Ambient temperature	: 23.1 °C
Relative humidity	: 53.1 % RH
Date	: 2012/02/17
Equipment list asset numbers	: 1, 37, 104, 10.

Test method is according to ANSI C63.4

FC	C 15.107 - Class B	digital device, and 1	5.207 - General lin	nits
	Frequency range	Quasi-peak (dBuV)	Average (dBuV)	

Frequency range	Quasi-peak (ubu v)	Average (ubu v)
0,15 - 0,50	66 - 56	56 - 46
0,50 - 5	56	46
5 - 30	60	50

		Reading		Limit	
Freq (MHz)		dbUv	Line	Class B	Margin
0.10	QP	54.84	L1	64.04	9.20
0.19	Avg	36.59	L1	54.04	17.45
0.10	QP	53.36	L2	64.04	10.68
0.19	Avg	35.03	L2	54.04	19.01
0.525	QP	36.59	L1	56.00	19.41
	Avg	29.19	L1	46.00	16.81
0.525	Qp	38.78	L2	56.00	17.22
0.323	Avg	29.17	L2	46.00	16.83
0.154	Qp	50.41	L1	66.00	15.59
0.134	Avg	23.23	L1	56.00	32.77
0.215	Qp	37.8	L2	59.97	22.17
0.313	Avg	23.53	L2	49.97	26.44

GlobTek power supply

Phihong PoE power injector

AA

Start 150 kHz

Res BW 9 kHz

VBW 30 kHz

Stop 30 MHz

Sweep 881.3 ms (1515 pts)

3.7 Frequency Hopping Requirement, 15.247

Section 15.247 (a)

The EUT contains a transmitter that modulates a carrier with data, changes carrier frequency in a pseudo-random pattern with a dwell time, channel separation, and hop count that meets the requirements of 15.247.

In addition, the receiver tracks the transmitter's pseudo-random hopping sequence and demodulates the signal.

The order of channels in the hop sequence is pseudo random list.

Frequency-hopping proceeds in order through the list.

Equal Hopping Frequency Use [Section 15.247 (g)]

Each Frequency is specified only once in the list and the list is completed before looping back to the beginning.

System Receiver Input Bandwidth

The received signal is demodulated by a balanced mixer. The output of this mixer is filter by a fixed 5Mhz low pass 5th order anti-aliasing filter. The output of the anti-aliasing filter is sampled by the ADC – where the samples are passed to the DSP for selective filtering. Depending on the protocol used, the signal is further digitally filtered (by the DSP) as required by the tag protocol.

System Receiver Hopping Capability

Each RF radio module carrier starts from a Synthesizer with an 8 MHz input clock. The synthesizer output (carrier) is passed through a preliminary RF chain of filters and pre-amplifiers. Through a power splitter, the Carrier is sent into two directions—one for the transmit path and the other for the receive path. Through the transmit path, the carrier is further filtered and amplified before passing through an isolator before passing through a 4 port switch—where the signal can be multiplexed onto one of four external antenna ports. The portion of the transmitter split off into the receive path is used to demodulate the received signal from the selected output port—thereby assuring that the demodulation reference is exactly equal to the transmit carrier frequency. The carrier may hop to one of 50 different frequencies and the receive path will always be in synchronization with it.

Section 15.247 (h)

Since the device is programmed to follow a set hopping sequence, regardless of potential interference and it is not programmed to scan the channels for interference, it does not have the ability to coordinate with other FHSS systems in an effort to avoid the simultaneous occupancy of individual frequencies.

3.8 Carrier Frequency Separation, 15.247 (a)(1)

Carrier separation = 500.0 kHz

Setup used for the following tests.

3.9 Number Of Hopping Channels, 15.247 (a)(1)(i)

🔆 Ag	ilent	10:11:18	May 7,	2012					F	₹ T	Span
Ref 40 Peak Log	dBm		Atten 4	I5 dB	Ext PG	-6.34 d	В				Span 30.0000000 MHz
10 dB/		/www.	WWW	ww	n www	mm	ΛΥΥΥΥΥ	MMM	www	$\left\{ -\right\}$	Span Zoom
											Full Span
	$\left \right $									+	Zero Span
M1 S2 S3 FC AA										~	Last Span
											Zone
Center #Res E	r 915 N 3W 300	IHz) kHz		#V	/BW 1 N	MHz	Sı	weep 4	Span 3 ms (401	0 MHz pts)	

The number of hopping channels = 50

3.10 Time Of Occupancy (Dwell Time), 15.247 (a)(1)(i)

Limit = 400 ms.

3.11 20 dB Bandwidth, 15.247 (a)(1)

3.12 Peak Power Output, 15.247 (b)

On the transmitter ports, the maximum output power is set at 30 dBm.

The worst case peak conducted power is reported here and is measured at 29.96 dBm.

A 3 dB attenuator was used to prevent damage to the spectrum analyzer front end and the loss with short connecting cable was measured at 3.24 dB. This factor was added into the spectrum analyzer.

The EUT complies with the limit.

The intended use for the EUT is detection of nearby tags. Therefore, maximum output of 30 dBm is not needed at the antennas. Cable loss provides acceptable performance for detecting tags. Thus there is no need to define cable parameters to meet the limit.

A 3 dB attenuator was used for testing the new output filter.

3.13 Band-Edge Compliance Of Rf Conducted Emissions, 15.247 (c)

Limit: > 20 dB below highest inband signal.

With new output filter.

Low side.. Band edge is 902 MHz; emissions are more than 20 dB below the inband signal. 🔆 Agilent 14:55:38 Aug 14, 2013 R Т Mkr1 △ 750.0 kHz Ref 35 dBm Atten 35 dB Ext PG -10.4 dB 30.75 dB Peak <u>0</u> Log 10 dB/ M M1 W2 mout nAnn an that is ላ ስለ S3 FC AA Center 902 MHz Span 3 MHz #Res BW 300 kHz **VBW 300 kHz** Sweep 5 ms (401 pts)

High side.. Band edge is 928 MHz; emissions are more than 20 dB below the inband signal.

3.14 Spurious RF Conducted Emissions, 15.247 (d)

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

The following plots shows that there are no emissions within 20 dB of the inband signal in any 100 kHz band from 30 MHz all the way to the 10th harmonic.

RF output goes to 6 dB attenuator then either a low pass or high pass filter to reduce the fundamental in order increase the dynamic range.

30 dBm output power, Below 1 GHz

30 dBm output power into external filter Spurious above 1 GHz. 2nd harmonic 76 dBm below Fundamental.

🔆 Agil	lent	15:09:26	May 4,	2012					F	х т	Marker
Ref -24	dBm		Atten	5 dB	Ext PG	i-6 dB		Mk	r1 1.81 -46.52	8 GHz dBm	
Peak Log											$\frac{1}{2} \frac{2}{3} \frac{4}{4}$
10 dB/	1				1						Marker Trace ^{Auto} 1 <u>2</u> <u>3</u>
											Readout , Frequency
											Function Off
W1 M2 S3 FC AA					and have			Annon a		340 Mil	Marker Table ^{On <u>Off</u>}
											Marker All Off
PA Start 89 #Res B	90 MHz W 120	kHz		VE	3W 300 I	kHz	Sweet	o 337.3 ı	Stop ms (401	3 GHz pts)	More 2 of 2

🔆 Agi	lent	15:13:15	May 4,	2012					F	R T	Peak Search
Dof 24	dBm		Atton	5 dB	Ext DC	6 dB		M	kr1 6.3	4 GHz	
Peak Log			Atten	5 00					-12.51		Meas Tools •
10 dB/											Next Peak
											Next Pk Right
	and a			hand	nin	minun	and a start and	Minthe-		Newmin	Next Pk Left
W1 M2 S3 FC AA											Min Search
											Pk-Pk Search
PA Start 6 #Res B	GHz W 120	kHz		VE	3W 300 I	kHz	Sweep	o <mark>639.5</mark> r	Stop 1 ns (401	0 GHz pts)	More 1 of 2

.

3.15 Spurious Radiated Emissions, 15.247 (d), 15.205, 15.209

The EUT was prescreened in the semi-anechoic chamber at Sensormatic per the guidelines in ANSI C63.4-1992. Each port was compared to determine which had the worst case emissions. In addition, each antenna type was compared in prescreens to determine the worst case antenna for measurement.

Frequency of emission (MHz)	Field strength (uV/m)	Field strength (dBuV/m) at 3 meters
30–88	100	40
88–216	150	44
216–960	200	46
Above 960	500	54

Freq	QP		Polarizatio	ant	cable		Correcte	Class	Margi
(MHz)	(dBuV)	Antenna	n	fac	fac	PA	d	В	n
163.9	13.9	Bi-con #1	Horz	12.96	2.31	0	29.17	43.50	14.33
163.9	13.28	Bi-con #1	Vert	12.82	2.31	0	28.41	43.50	15.09
64.8	12.4	Bi-con #1	Vert	9.41	1.28	0	23.09	40.00	16.91
64.8	7.9	Bi-con #1	Horz	9.10	1.28	0	18.28	40.00	21.72
200	9.1	Bi-con #1	Horz	14.86	2.67	0	26.63	43.50	16.87
200	6.4	Bi-con #1	Vert	15.21	2.67	0	24.28	43.50	19.22
1844	21.9	EMCO Horn	Horz	25.09	12.76	- 28.57	31.17	54.00	22.83

Pre-compliance scans in chamber.

CL 2 PC #1

CL 2 PC #1

Above 1 GHz the only detectable emission is the 2nd harmonic.

with new output filter and high pass filter. Conducted.

CL2PC #2 Radiated

🔆 Ag	gilent <mark>0</mark> 9	:30:16 M	ay 27, 201	4				RT		
Ref 66.	99 dBµV		А	tten 5 dB					Mkr1 1. 48.6	830 GHz 7 dBμV
Peak Log										
10 dB/					\$					
	an mark	mann	~~~~~	mm-	Sama		~~~~~	wholen		
DI 54.0 dBµ∨										
M1 S2 S3 FC A AA										
Start 1 Res BV	GHz V 1 MHz				VBW 3 M	Hz		Sweep 5	Sto 5.242 ms (4	op 3 GHz 01 pts)

4 Test Equipment List

Asset	Description	Manufacturer	Model	Serial #	Last Cal	DueDate
5	Double-Ridge Waveguide Horn	EMCO	3115	3006	31-Mar-14	30-Mar-16
6	Biconical Antenna	Electro Metrics	etrics 3110B		18-May-14	18-May-16
7	Biconical Antenna	ETS	3110B	3380	31-Aug-12	30-Aug-14
8	Log Periodic Antenna	EMCO	3146	3909	31-Aug-12	30-Aug-14
9	Log Periodic Antenna	EMCO	3146	4731	18-May-14	18-May-16
11	Line Imp Stable Network	EMCO	3816/2NM	1018	08-Feb-14	07-Feb-16
13	Directional Coupler	Werlatone	C3910	6706	13-Jan-14	12-Jan-16
14	RF Power Meter	Boonton	4231-30	53701	21-Mar-14	21-Mar-16
16	Directional Coupler	Werlatone	C5673	11481	13-Jan-14	12-Jan-16
29	Log Periodic Antenna	EMCO	3146	3576	29-Apr-10	28-Apr-15
37	Line Imp Stable Network	EMCO	3816/2NM	1064	08-Feb-14	07-Feb-16
39	Biconical Antenna	EMCO	3104C	4334	03-Apr-14	02-Apr-16
104	Spectrum Analyzer	Agilent	E7405A	MYY49510099	28-Jul-13	27-Jul-14
105	Spectrum Analyzer	Agilent	E7405A	MYY49510320	08-Jun-13	07-Jun-14
154	Horn Antenna	ETS Lindgren	3115	00135941	11-Apr-14	10-Apr-16
155	Horn Antenna	ETS Lindgren	3116B	00122502	03-Feb-14	03-Feb-16
156	Loop Antenna	ETS Lindgren	6512	00123860	22-Nov-12	22-Nov-14
175	EMI Power Sensor	Boonton Electronics	51011-EMC	35804	21-Mar-14	21-Mar-15

5 **ANTENNA FACTORS.**

Customer Name: Tyco Safety Products - Sensormatic Antenna Manufacturer: Electro-Metrics Antenna Model: ALP-70 Loop Antenna Serial No.: 163 Temperature (Deg C): 21.0 Humidity (%): 50.0 Measurement Distance in Meters = 1.0NOTES: ACF valid to 10 meters per NIST methods. Freq E-field H-field (MHz) ACF (dB) ACF (dB) 0.01 75.6 24.1 0.02 71.6 20.2 0.03 68.3 16.9 0.04 65.5 14.0 63.6 12.2 0.05 0.06 61.1 9.7 0.07 59.6 8.2 0.08 58.5 7.0 57.8 0.09 6.4 0.10 56.8 5.4 0.20 51.8 0.4 0.30 48.5 -3.0 -5.1 0.40 46.3 0.50 45.0 -6.5 0.60 43.6 -7.8 0.70 42.8 -8.6 0.80 41.6 -9.8 0.90 41.1 -10.3 1.00 40.5 -11.0 2.00 38.2 -13.3 3.00 37.2 -14.3 37.0 4.00 -14.4 5.00 36.7 -14.8 6.00 37.6 -13.8 7.00 37.7 -13.8 8.00 37.7 -13.7 9.00 37.6 -13.9 10.00 37.6 -13.8 -14.0 15.00 37.4 20.00 37.2 -14.2 36.2 25.00 -15.2

30.00

37.4

-14.1

Customer Name: Tyco Safety Products - Sensormatic Antenna Manufacturer: EMCO Antenna Model: 3104C Biconical Antenna Serial No.: 9009-4334 Temperature (Deg C). 3 Humidity (%). 65 Measurement Distance in Meters = 3 Antenna Polarization = VERT / HORZ

	Vert	Horz				
Freq	ACE	ACF				
(MHz)	(dB)	(dB)				
20.0	(uD) 17.7	20.6				
20.0	17.7	20.0				
21.0	17.4	20.0				
22.0	10.4	18.0				
23.0	16.1	18.1				
24.0	15.3	16.9				
25.0	14.9	16.4				
26.0	14.2	15.5				
27.0	13.6	15.0				
28.0	13.0	14.3				
29.0	12.3	13.7				
30.0	11.9	13.3				
31.0	11.3	12.7				
32.0	11.0	12.4				
33.0	10.5	11.9				
34.0	10.3	11.7				
35.0	9.0	11.7				
26.0	9.9	11.3				
30.0	9.8	11.5				
37.0	9.6	11.0				
38.0	9.6	11.0				
39.0	9.5	10.8				
40.0	9.5	10.7				
40.0	9.5	10.7				
41.0	9.6	10.7				
42.0	9.7	10.7				
43.0	9.9	10.6				
44.0	10.0	10.6				
45.0	10.2	10.7				
46.0	10.4	10.7				
47.0	10.5	10.7				
48.0	10.5	10.7				
19.0	11.0	10.7				
50.0	11.0	10.0				
51.0	11.2	10.0				
52.0	11.4	10.8				
52.0	11.6	10.8				
53.0	11.9	10.9				
54.0	12.0	10.9				
55.0	12.1	11.0				
56.0	11.9	10.9				
57.0	11.9	11.0				
58.0	11.4	10.9				
59.0	11.2	10.9				
60.0	10.8	10.8				
61.0	10.5	10.8				
62.0	10.0	10.5				
63.0	07	10.5				
0.00	7.1	10.4				

IORZ		
64.0	9.2	10.1
65.0	8.9	9.9
66.0	8.5	9.5
67.0	8.2	9.3
68.0	7.8	8.9
69.0	7.6	8.6
70.0	7.3	8.2
71.0	7.2	7.9
72.0	7.0	7.5
73.0	7.0	7.3
74.0	6.8	7.0
75.0	6.8	6.8
75.0	6.8	6.8
76.0	6.7	6.5
77.0	6.7	6.4
78.0	6.6	6.3
79.0	6.7	6.3
80.0	6.7	6.3
81.0	6.9	6.3
82.0	7.2	6.4
83.0	7.4	6.5
84.0	7.6	6.7
85.0	7.9	6.8
86.0	8.2	7.1
87.0	8.3	7.2
88.0	8.7	7.6
89.0	8.8	7.7
90.0	9.1	8.0
91.0	9.2	8.1
92.0	9.5	8.5
93.0	9.5	8.6
94.0	9.8	8.9
95.0	9.9	9.0
96.0	10.2	9.4
97.0	10.6	9.9
98.0	11.4	11.2
99.0	11.7	12.0
100.0	11.7	11.7
101.0	11.4	11.3
102.0	11.6	11.4
103.0	11.5	11.2
104.0	11.8	11.5
105.0	11.9	11.5
106.0	12.1	11.8
107.0	12.2	11.8
108.0	12.5	12.1
109.0	12.6	12.2
110.0	12.9	12.6

13.1	12.7
13.5	13.2
13.8	13.5
14.3	14.2
14.8	14.9
15.6	15.7
16.3	15.8
16.3	15.3
15.6	14.5
15.0	14.1
14.3	13.6
14.1	13.5
13.8	13.3
13.6	13.3
13.4	13.2
13.4	13.3
13.2	13.1
13.1	13.2
12.9	13.0
13.0	13.2
12.8	13.0
12.8	13.2
12.7	13.0
12.8	13.1
12.7	13.0
12.8	13.0
12.8	13.0
12.8	13.1
12.8	13.0
12.8	13.0
12.8	13.0
12.9	13.1
13.0	13.1
13.0	13.2
13.2	13.3
13.3	13.4
13.5	13.6
13.7	13.8
14.0	14.1
14.2	14.2
14.4	14.3
14.3	14.2
14.5	14.1
14.5	13.9
14.6	13.9
14.7	13.8
14.8	13.8
14.7	13.7
	13.1 13.5 13.8 14.3 14.3 15.6 16.3 15.6 15.0 14.3 14.4 13.6 15.0 14.3 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.2 13.1 12.9 13.0 12.8 12.7 12.8 12.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 13.0 13.1 13.2 13.3 13.5 13.7 14.0 14.2 14.4 14.5 14.6 14.7 <t< td=""></t<>

159.0	14.8	13.8
160.0	14.8	13.8
161.0	15.0	14.0
162.0	15.1	14.0
163.0	15.3	14.2
164.0	15.4	14.2
165.0	15.7	14.4
166.0	15.7	14.4
167.0	16.0	14.7
168.0	15.9	14.7
169.0	16.1	14.9
170.0	16.1	15.0
171.0	16.1	15.2
172.0	16.1	15.2
173.0	16.2	15.4
174.0	16.3	15.5
175.0	16.4	15.7
176.0	16.5	15.8
177.0	16.7	16.0
178.0	16.8	16.1
179.0	16.9	16.3
180.0	17.0	16.4
181.0	17.1	16.6
182.0	17.1	16.7
183.0	17.2	16.9
184.0	17.2	17.0
185.0	17.3	17.1
186.0	17.3	17.2
187.0	17.5	17.3
188.0	17.6	17.5
189.0	17.8	17.6
190.0	17.8	17.7
191.0	17.9	17.7
192.0	17.8	17.5
193.0	17.8	17.5
194.0	17.7	17.3
195.0	17.8	17.4
196.0	17.7	17.4
197.0	17.9	17.5
198.0	17.8	17.4
199.0	17.7	17.5
200.0	17.6	17.3
201.0	17.7	17.4
202.0	17.6	17.3
202.0	17.5	17.3
203.0	17.4	17.3
204.0	17.4	17.3
205.0	17.4	17.5
200.0	11.2	1/.2

207.0	17.2	17.2		231.0	16.1	15.7	255.0	17.5	17.1		279.0	19.8	19.8
208.0	17.2	17.2	1	232.0	16.2	15.7	256.0	17.6	17.3	1	280.0	19.9	19.9
209.0	17.2	17.2	1	233.0	16.2	15.6	257.0	17.7	17.4	1	281.0	20.1	20.0
210.0	17.1	17.1		234.0	16.3	15.7	258.0	17.9	17.5		282.0	20.1	20.1
211.0	17.0	17.2	1	235.0	16.3	15.6	259.0	18.1	17.6	1	283.0	20.1	20.2
212.0	16.9	17.0	1	236.0	16.5	15.7	260.0	18.2	17.7	1	284.0	20.1	20.3
213.0	16.9	17.0	1	237.0	16.6	15.7	261.0	18.4	17.9	1	285.0	20.1	20.4
214.0	16.8	16.9	1	238.0	16.6	15.7	262.0	18.5	18.0	1	286.0	20.2	20.6
215.0	16.7	16.9	1	239.0	16.6	15.7	263.0	18.5	18.1	1	287.0	20.2	20.7
216.0	16.6	16.8	1	240.0	16.7	15.7	264.0	18.6	18.3	1	288.0	20.3	21.0
217.0	16.5	16.7	1	241.0	16.7	15.8	265.0	18.6	18.4	1	289.0	20.3	21.2
218.0	16.5	16.7	1	242.0	16.8	15.9	266.0	18.6	18.6	1	290.0	20.5	21.3
219.0	16.4	16.5	1	243.0	16.8	15.9	267.0	18.7	18.7	1	291.0	20.6	21.5
220.0	16.5	16.4	1	244.0	16.9	16.0	268.0	18.7	18.8	1	292.0	20.6	21.7
221.0	16.5	16.3	1	245.0	17.0	16.0	269.0	18.7	19.0	1	293.0	20.6	21.8
222.0	16.4	16.2	1	246.0	17.0	16.1	270.0	18.8	19.1	1	294.0	20.7	21.8
223.0	16.4	16.1		247.0	17.2	16.2	271.0	18.9	19.2		295.0	20.6	21.9
224.0	16.2	16.1		248.0	17.2	16.3	272.0	18.9	19.3		296.0	20.6	22.0
225.0	16.2	15.9		249.0	17.4	16.4	273.0	19.1	19.4		297.0	20.7	22.1
226.0	16.0	16.0		250.0	17.4	16.5	274.0	19.2	19.5		298.0	20.7	22.2
227.0	16.1	16.0	1	251.0	17.5	16.6	275.0	19.3	19.5	1	299.0	20.8	22.3
228.0	16.1	15.9]	252.0	17.5	16.7	276.0	19.4	19.6]	300.0	20.8	22.4
229.0	16.0	15.8]	253.0	17.5	16.8	277.0	19.5	19.7]			
230.0	16.1	15.7]	254.0	17.5	17.0	278.0	19.6	19.7]			

Customer Name: Tyco Safety Products - Sensormatic Antenna Manufacturer: EMCO Antenna Model: 3146 – Log periodic Antenna Serial No.: 9303-3576 Temperature (Deg C). 3 Humidity (%). 65 Measurement Distance in Meters = 3

Antenna Polarization = VERT / H

Eroa	Vert	Horz
гіец	ACF	ACF
(MHz)	(dB)	(dB)
200.0	11.7	12.1
205.0	11.6	12.1
210.0	11.7	11.9
215.0	11.6	11.7
220.0	11.5	11.5
225.0	11.2	11.4
230.0	11.1	11.4
235.0	11.5	11.6
240.0	11.8	11.9
245.0	12.2	12.1
250.0	12.6	12.4
255.0	12.6	12.6
260.0	12.8	13.0
265.0	12.9	13.2
270.0	13.0	13.5
275.0	13.3	13.6
280.0	13.6	13.7
285.0	13.9	13.8
290.0	14.1	14.0
295.0	14.1	14.1
300.0	14.2	14.3
305.0	14.5	14.8
310.0	14.8	15.2
315.0	14.8	15.1
320.0	14.7	14.8
325.0	14.7	14.6
330.0	14.6	14.6
335.0	14.3	14.7
340.0	14.1	14.9
345.0	14.2	14.9
350.0	14.5	14.9
355.0	14.8	14.8
360.0	15.0	14.9
365.0	15.3	15.0
370.0	15.2	15.1
375.0	15.1	15.2
380.0	15.0	15.3
385.0	15.4	15.5
390.0	15.7	15.8
395.0	15.5	15.9
400.0	15.4	16.1
405.0	15.5	16.0
410.0	15.7	15.9
415.0	16.0	16.1
420.0	16.0	16.2

IORZ		
425.0	15.9	16.4
430.0	15.8	16.5
435.0	15.9	16.5
440.0	16.1	16.4
445.0	16.4	16.5
450.0	16.7	16.7
455.0	16.9	16.9
460.0	16.9	17.2
465.0	16.9	17.3
470.0	16.9	17.3
475.0	17.1	17.4
480.0	17.2	17.4
485.0	17.5	17.5
490.0	17.7	17.6
495.0	17.9	17.9
500.0	17.9	17.9
505.0	18.0	18.2
510.0	18.3	18.6
515.0	18.5	19.0
520.0	18.3	18.8
525.0	18.0	18.6
530.0	17.7	18.5
535.0	17.6	18.6
540.0	17.6	18.4
545.0	17.9	18.3
550.0	18.2	18.3
555.0	18.3	18.6
560.0	18.2	18.7
565.0	18.1	18.8
570.0	18.0	18.9
575.0	18.2	18.7
580.0	18.4	18.6
585.0	18.7	18.8
590.0	18.8	19.1
595.0	18.7	19.2
600.0	18.7	19.2
605.0	18.7	19.1
610.0	18.8	19.3
615.0	19.0	19.5
620.0	19.2	19.4
625.0	19.4	19.4
630.0	19.2	19.4
635.0	19.2	19.4
640.0	19.5	19.7
645.0	19.7	19.9
650.0	19.9	20.0
655.0	20.1	20.1
660.0	20.3	20.3

665.0	20.4	20.4
670.0	20.5	20.6
675.0	20.5	20.7
680.0	20.5	20.9
685.0	20.4	20.9
690.0	20.4	21.1
695.0	20.4	21.0
700.0	20.5	21.0
705.0	20.6	21.0
710.0	20.5	21.0
715.0	20.5	21.0
720.0	20.5	21.2
725.0	20.7	21.3
730.0	20.7	21.2
735.0	20.7	21.2
740.0	20.6	21.1
745.0	20.6	21.2
750.0	20.6	21.4
755.0	20.6	21.4
760.0	20.7	21.3
765.0	20.7	21.4
770.0	20.7	21.4
775.0	20.7	21.4
780.0	20.7	21.4
785.0	20.7	21.4
790.0	20.8	21.5
795.0	20.9	21.6
800.0	21.1	21.6
805.0	21.0	21.7
810.0	21.1	21.7
815.0	21.1	21.8
820.0	21.3	22.0
825.0	21.4	22.1
830.0	21.5	22.1
835.0	21.6	22.2
840.0	21.7	22.3
845.0	21.7	22.4
850.0	21.8	22.4
855.0	21.9	22.5
860.0	22.2	22.7
865.0	22.4	22.9
870.0	22.5	23.0
875.0	22.6	23.1
880.0	22.6	23.1
885.0	22.5	23.2
890.0	22.6	23.1
895.0	22.6	23.1
900.0	22.7	23.3

905.0	22.7	23.3
910.0	22.8	23.3
915.0	22.8	23.2
920.0	22.6	23.3
925.0	22.6	23.4
930.0	22.6	23.4
935.0	22.7	23.4
940.0	22.7	23.5
945.0	22.7	23.6
950.0	22.6	23.5
955.0	22.7	23.6
960.0	22.9	23.7
965.0	22.9	23.9
970.0	23.1	23.8
975.0	23.1	23.8
980.0	23.1	23.9
985.0	23.2	23.9
990.0	23.3	24.1
995.0	23.5	24.4
1000.0	23.6	24.4

FCC ID: BVCIDX8000NA

Customer Name: Tyco Safety Products - Sensormatic Antenna Manufacturer: EMCO Antenna Model: 3115 Horn Antenna Serial No.: 3006 Temperature (Deg C): 20.0 Humidity (%): 37.0 Measurement Distance in Meters = 3.0Antenna Polarization = VERT / HORZ NOTES: Observed Pin Depth: -0.0003" from typical. Horz Vert Freq ACF ACF (MHz) (dB)(dB)1000.0 23.377 23.524 1500.0 25.067 25.087 2000.0 27.357 27.365 2500.0 29.000 29.024 3000.0 30.277 30.385 3500.0 31.557 31.512 4000.0 32.827 32.580 4500.0 32.593 32.499 5000.0 33.481 33.288 5500.0 34.467 34.421 6000.0 34.894 34.639 6500.0 34.730 34.612 7000.0 35.473 35.489 7500.0 36.832 36.780 37.271 37.207 8000.0 8500.0 37.649 37.600 9000.0 37.956 37.940 9500.0 37.858 37.743 38.517 10000.0 38.433 10500.0 38.992 39.004 11000.0 40.566 40.541 39.704 39.684 11500.0 12000.0 39.424 39.396 12500.0 38.797 38.822 13000.0 39.622 39.615 13500.0 40.408 40.394 41.209 41.203 14000.0 14500.0 41.665 41.584 15000.0 40.325 40.233 15500.0 38.024 38.049 16000.0 37.320 37.358 16500.0 38.400 38.340 41.136 40.903 17000.0

17500.0

18000.0

42.866

44.717

42.522

44.269