Appendix II

Test Report Cover Sheet

COMPANY NUMBER: 3506A

MODEL NUMBER: AMB-2010

MANUFACTURER: Sensormatic Electronics Corporation

TESTED TO RADIO STANDARD SPECIFICATION NO.: RSS 210

OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: 3506

FREQUENCY RANGE (or fixed frequency): 58

R.F. POWER IN WATTS: na

FIELD STRENGTH (at what distance): -23 dBuV/m @300 m

OCCUPIED BANDWIDTH (99% BW): 5 kHz

TYPE OF MODULATION: Pulse

EMISSION DESIGNATOR (TRC-43): 5k00P0N

TRANSMITTER SPURIOUS (worst case): -25 dBuV/m @ 30 m

RECEIVER SPURIOUS (worst case): na; transmitter on continuously

ATTESTATION: I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standard(s), and that the radio equipment identified in this application has been subject to all the applicable test conditions specified in the departmental standards and all of the requirements of the standard have been met.

Signature:

Date: December 13, 2002

NAME AND TITLE (Please print or Type):

Umbdenstock

Donald J. Umbdenstock Sr. Principal Engineer, Compliance Engineering

Note: This form must be completed and provided with the submission.

COMPANY Sensormatic Electronics Corp.

6600 Congress Ave Boca Raton, Florida

PRODUCT TESTED AMB-2010

FCC ID: BVCDEACLCD IC: 3506A-DEACLCD

FCC RULES 15.207, 15.209

IC SPECIFICATIONS RSS 210

TEST DATE December 2 – December 13, 2002

SUBMITTED BY Donald J. Umbdenstock

INDEX

I.	SUMMARY OF RESULTS	4
II.	GENERAL INFORMATION	4
	Test Methodology	4
	Test Facility	4
	System Description	5
	15.203 Compliance	5
III.	CONDUCTED EMISSIONS TESTING, 47 CFR 15.207	5
IV.	RADIATED EMISSIONS TESTING, 47 CFR 15.209	5
	•	
V.	OCCUPIED BANDWIDTH, RSS 210, Clause 5.9.1	6
<u> </u>		
VI.	RF EXPOSURE	6
V 1.		_
VII.	LIST OF MEASUREMENT EQUIPMENT	7
V 111.		
VII.	DATA	
V 111.	Part A – Conducted Emissions	8
	Tutt'I Conducted Emissions	O
	Part B – Radiated Emissions	10
	Part C – 20 dB Bandwidth	11

I. Summary of Results

47 CFR 15.207CONDUCTED EMISSIONSCOMPLIES47 CFR 15.209RADIATED EMISSIONSCOMPLIESRSS 210: 5.9.1OCCUPIED BANDWIDTHPROVIDED

II. General Information

1.1 Test Methodology

Both conducted and radiated emissions testing were performed according to the procedures in ANSI C63.4-1992, and the requirements of 15.31, 15.33, 15.35, 15.207, and 15.209. Radiated emissions measurements below 30 MHz were performed at a distance of 3 meters and the results extrapolated to the distance specified per 15.31 and 15.209 invoking the 2 point extrapolation method.

1.2 Test Facility

Measurements per 15.207 and 15.209 were performed at Sensormatic Electronics Corporation.

The shielded room conducted emissions measurement facility and the radiated emissions Open Area Test Site are located at Sensormatic Electronics Corporation Headquarters at 6600 Congress Avenue, Boca Raton, Florida 33487. These sites have been found acceptable by and are on file with the FCC per FCC Registration Number 90925, and Industry Canada per file number IC 3506.

1.3 Test System Description.

The device is an anti-theft system auxiliary device whose purpose is to detect and deactivate anti-theft

labels. The device consists of 2 modules – an external power supply and a controller. The controller

houses a transmitter, 2 receivers, a deactivator, and control electronics. When an anti-theft label is

brought in proximity of the loop antenna of the controller, the transmitter excites the label. The receiver

detects the presence of the label and enables the deactivator.

The other receiver operates as a frequency hopping 900 MHz device. It receives 60 Hz zero-crossing

information from a transmitter generating a reference signal. The reference signal is used to synchronize

the controller's transmitter to other transmitters in the area so that transmitters are not interfering with the

receive windows of various systems in the vicinity.

The product tested was a pre-production unit built to production drawings.

15.203. The antenna is an internal integral antenna, therefore the antenna is compliant with the

requirements of this clause.

III. Conducted Emissions

15.207. Conducted emissions data are presented in Section VIII "Data", Part A, Conducted Emissions.

The product demonstrated compliance with the requirements. The product was tested at 120 V, 60 Hz.

IV. Radiated Emissions

15.209. Radiated emissions data for this product are presented in Section VIII "Data", Part B, Radiated

Emissions. The product demonstrated compliance with the requirements. Radiated emissions

measurements were performed at 3 meters. Propagation loss was determined by extrapolating the results

to 300 meters as per 15.31(f)(2), using the 2 point extrapolation method.

5

Maximum radiation was determined by first assessing symmetry while applying incremental rotation of the product. The product exhibited quadrant symmetry. Measurements were taken at radials of 22.5° throughout one quadrant. The measurement antenna was rotated for maximum pickup about the vertical and horizontal axis of the measurement antenna at the radial of the EUT with the maximum emission. The maximum emission was determined to be with the measurement loop antenna in the vertical polarization, parallel to the plane of the transmit loop antenna.

The product was tested at input voltages to the power supply ranging from 102 - 138 V, 60. See Section VIII, Part B.

V. Occupied Bandwidth

RSS 210:5.9.1. The 20 dB bandwidth measurements for this product are presented in Section VII "Data", Part C, Occupied Bandwidth. A bandwidth requirement was not specified for 58 kHz products, so the default 20 dB bandwidth was measured. The HP 8591EM spectrum analyzer cannot measure a bandwidth over 1.8 kHz in quasi-peak detection mode, so the bandwidth was measured in peak detection mode, providing a worst case occupied bandwidth.

VI. LIST OF MEASURING EQUIPMENT

The equipment used for determining compliance of the Ultra Post system with the requirements of 15.207 and 15.209 is marked with an "X" in the first column of the table below.

	Model	Description	Vendor	Serial #
X	ALP -70	Loop Antenna	Electro Metrics	163
	3110B	Biconnical Antenna	Electro Metrics	1017
	3146	Log Periodic Antenna	EMCO	3909
	3825/2	Line Imp Stable Network	EMCO	1562
X	3816/2NM	Line Imp Stable Network	EMCO	9703 1064
	6060B	Frequency Generator	Giga-tronics	5850202
	FM2000	Isotropic Field Monitor	Amplifier Research	15171
	FP2000	Isotropic Field Probe	Amplifier Research	15214
	888	Leveler	Amplifier Research	14998
	75A220	Low Band Amplifier	Amplifier Research	15208
	10W1000A	High Band Amplifier	Amplifier Research	15138
	PEFT Junior	EFT Generator	Haefely Trench	083 180-16
	PEFT Junior	Capacitive Cable Clamp	Haefely Trench	083-078-31
	NSG435	ESD Simulator	Schaffner	1197
	NSG431	ESD Simulator	Schaffner	1267
X	HP8591EM	EMC Analyzer	Hewlett - Packard	3520A00190
		Power Source	Pacific Instruments	
	F-2031	EM Injection Clamp	Fischer Cust. Comm.	30
	FCC-801-M3-16	Coupling Decoupling Nwk	Fischer Cust. Comm.	58
	FCC-801-M3-16	Coupling Decoupling Nwk	Fischer Cust. Comm.	59
	F-33-1	RF Current Probe	Fischer Cust. Comm.	304
	EM 7600	Transient Limiter	Electro-Metrics	187
	Roberts Ant	Tunable Dipole Set	Compliance Design	003282
	Roberts Ant	Tunable Dipole Set	Compliance Design	003283
	HP8594E	Spectrum Analyzer	Hewlett Packard	3246A00300
X	HP8447F Opt 64	Dual Preamplifier	Hewlett Packard	2805A03473

VII. Data

Part A contains conducted emissions data; Part B contains magnetic field radiated emissions data; Part C contains occupied bandwidth data.

Part A

Conducted Emissions

Project Name	Conducted Emissions EN55022 Class B Limit	Filename	LCD_CondEMI_FCC_12-3-02.doc
EUT Name	LCD Low Cost Deactivator	Serial Number	105S0244053647
Engineer	Steve Maitin	Part Number	0101-0040-01 Rev 7
Date of Test	12/03/2002 10:44:08 AM	Test Name	Conducted Emission
Reg. Staff	Stephen Krizmanich	Reviewer	Don Umbdenstock

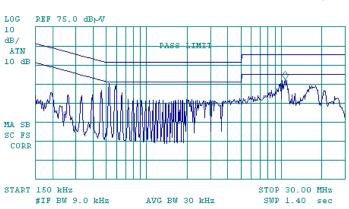
Comments	Line In: 120vac 60hz: Model: AMB-2010 P/N: 0101-0040-01 Rev 7 Serial #: 105S0244053647
	Ault Inc. I.T.E Power Supply Model: PW133 Input: 100-250vac 50-60Hz 1.0A Output: 18vdc 1.67A

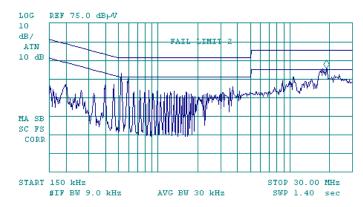
Signal List

Signal	Freq (MHz)	Peak Amp	QP Amp	Avg Amp	QP/Avg Limits	Comments
		(dBuV)	(dBuV)	(dBuV)	(dBuV)	
1	.532	47.8	46.0	42.9	56.0/46.0	Complies
2	.597	46.3	44.4	39.7	56.0/46.0	Complies
3	10.81	45.3	43.6	39.0	60.0/50.0	Complies
4	.466	43.2	40.5	36.1	56.6/46.6	Complies
5	18.62	44.5	39.4	31.2	60.0/50.0	Complies
6	3.72	37.1	36.3	33.6	56.0/46.0	Complies

Figure 1. L1 Full Range

Figure 2. L2 Full Range




ACTV DET: PEAK
MEAS DET: PEAK QP AVG

MKR 10.69 MHz 47.05 dBpV ,10:47:45 DEC 03, 2002 F LCD Active FCC Class B L2

ACTV DET: PEAK

MEAS DET: PEAK QP AVG MKR 18.84 MHz 50.49 dBpV

Part B

Radiated Emissions

Project Name	Radiated Emissions	Filename	
EUT Name	AMB 2010	Serial Number	
Engineer	Steve Maitin	Phone Number	
Date of Test	December 13, 2002	Test Name	Radiated Emission
Reg. Staff	Don Umbdenstock	Reviewer	

Comments	Average detector specified; peak detector and associated calculations to arrive at average detector
	measurement used per previous FCC instructions.
	2. 2 point extrapolation used.
	Measurement distance 3 meters

Freq	S.A.	Det	BW	Ant Fact	PreAmp	ACF	DCF	Actual	Limit
kHz	dBuV			dB	dB	dB	dB	dBuV/m	dBuV/m
58/3	68			•		***************************************			
58/6	50						4		
58(pwr-15%)	68			•			<u> </u>		
58(pwr+15%)	68								
57.7	68	pk	9kHz	62.5	-28	-10.8	-120	-28.3	32.3/300
115.4	43	pk	9kHz	56.6	-28	-10.8	-120	-59.2	26.3/300
173.1	43	pk	9kHz	53.1	-28	-10.8	-120	-62.7	22.8/300
230.8	39.6	pk	9kHz	50.6	-28	-10.8	-120	-68.6	20.3/300
288.5	30.3	pk	9kHz	48.7	-28	-10.8	-120	-79.8	18.4/300
346.5	34.6	pk	9kHz	47.1	-28	-10.8	-120	-77.1	16.8/300
403.9	23	pk	9kHz	45.7	-28	-10.8	-120	-90.1	15.4/300
461.6	33.37	pk	9kHz	44.6	-28	-10.8	-120	-80.9	14.3/300
519.3	25	qp	9kHz	43.5	-28	-10.8	-60	-30.3	33.3/30
577	24	qp	9kHz	42.6	-28	-10.8	-60	-32.2	32.3/30

**: noise floor

SA: Spectrum Analyzer

Det: Detector

BW: Band Width

ACF: Average Correction Factor; duty cycle converted to dB.

ACF = 20*log(1.6/5.55) = -10.8 dB

Where 1.6 is the tx "on" time, 5.55 is the worst case period.

DCF: Distance Correction Factor

DCF = $20 \log(\text{Test Dist} / 300)P = 20 P \log(\text{Test Dist} / 300)$

Where P is the roll-off exponent . P is found as follows:

P = (Level(at Distance 1) - Level(at Distance 2)) / 20 log (Distance 2 / Distance 1)

P = 3

Ant Fact: Antenna Factor

Actual: Level = SA + Ant Fact + ACF + DCF. Cable factors are negligible at these frequencies.

Limit: 20 log (limit values, uV)

Part C

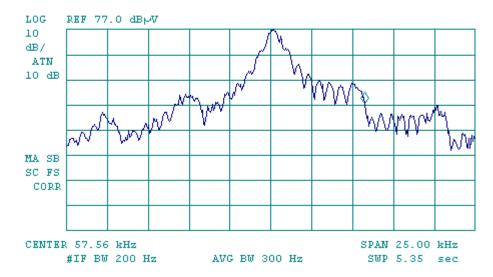
Occupied Bandwidth

Project Name	BandWidth Measurement Industry Canada	Filename	
EUT Name AMB 2010		Serial Number	
Engineer	Steve Maitin	Phone Number	
Date of Test	December 12, 2002	Test Name	BandWidth Measurement
Reg. Staff	Steve Krizmanich	Reviewer	Don Umbdenstock

Comments	Line Input: 120VAC 60Hz
----------	-------------------------

Test co	nditions	Modulation Bandwidth (kHz)			
		Low Cut-Off Freq	Nominal Freq	High Cut-Off Freq	
		-20 dB	58 kHz	+20 dB	
T _{nom 25} °C	V _{nom} 120 V	56 kHz	57.56 kHz	60 kHz	

Bandwidth set to 200 Hz


Figure 1.

| 11:10:15 DEC 05, 2002 | グ LCD BW measurement

ACTV DET: PEAK

MEAS DET: PEAK QP AVG

MKR 63.31 kHz 47.41 dB PV

