Measurement of RF Emissions from a Model No. DX9, Plano RF module Transmitter

Horizon Hobby 2904 Research Rd.

For

Champaign, IL61822P.O. Number20190205EH-01Date TestedFebruary 12, 2019Test PersonnelJavier CardenasTest SpecificationFCC "Code of Federal

20190205EH-01 February 12, 2019 Javier Cardenas FCC "Code of Federal Regulations" Title 47 Part15, Subpart C Industry Canada RSS-247 Industry Canada RSS-Gen Industry Canada RSS-210

Test Report By:

curren

Javier Cardenas EMC Engineer

Requested By:

Approved By:

Erin Hassan Horizon Hobby

Raymond J Klouda

Raymond J. Klouda Registered Professional Engineer of Illinois - 44894

Elite Electronic Engineering Inc. 1516 CENTRE CIRCLE DOWNERS GROVE, IL 60515

Flite

TEL: 630 - 495 - 9770 FAX: 630 - 495 - 9785

www.elitetest.com

TABLE OF CONTENTS

PARAGR/		DESCRIPTION OF CONTENTS	PAGE NO.						
1.1.	•								
1.2.	Purpose		5						
1.3.	Deviations, Additions and	I Exclusions	5						
1.4.	EMC Laboratory Identification								
1.5.	1.5. Laboratory Conditions								
2. Appl	2. Applicable Documents								
3. EUT	Setup and Operation		6						
3.1.	General Description		6						
3.1.1	1								
3.1.2 3.1.3		nt Leads							
3.1.4									
3.2.	Operational Mode		6						
3.3.	EUT Modifications		6						
4. Test	Facility and Test Instrume	ntation	6						
4.1.	Shielded Enclosure		6						
4.2.	Test Instrumentation		6						
4.3.	Calibration Traceability		7						
4.4.	Measurement Uncertaint	/	7						
5. Test		·							
5.1.		rements							
5.1.1	I. Requirements		7						
5.1.2 5.1.3									
5.2.									
5.2.1									
5.2.2 5.2.3									
5.3. 5.3.1	•								
5.3.2	2. Procedures		9						
5.3.3									
5.4. 5.4.1	. .								
5.4.2	2. Procedures		10						
-									
5.4.3									
5.5.	6dB Bandwidth Measurer	nent	10						
5.5.1	I. Requirement		10						
5.5.2	2. Procedures								

THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF ELITE ELECTRONIC ENGINEERING INCORPORATED.

TABLE OF CONTENTS

PARAG	RAPH	DESCRIPTION OF CONTENTS	PAGE NO.
5.5	5.3. R	DESCRIPTION OF CONTENTS esults	11
6. Ot	her Test C	Conditions	11
6.1.	Test Pe	ersonnel and Witnesses	11
6.2.	Disposi	ition of the EUT	11
7. Co	onclusions		11
8. Ce	ertification.		11
9. Eq	quipment L	ist	12

THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF ELITE ELECTRONIC ENGINEERING INCORPORATED.

REVISION HISTORY

Revision	Date	Description
_	22 FEB 2019	Initial release
А	26 FEB 2019	The following changes were made: -The address was changed from 4015 Fieldstone Road Champaign, IL 61822 to 2904 Research Rd. Champaign, IL 61822

Measurement of RF Emissions from a Plano RF module Transmitter

1. INTRODUCTION

1.1. Scope of Tests

This report presents the results of the RF emissions measurements performed on a Plano RF module, Model No. DX9 (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was designed to transmit in the 2400-2483.5 MHz band using an internal antenna. The EUT was manufactured and submitted for testing by Horizon Hobby located in Champaign, IL.

The EUT was originally tested in July 2018. Since it was last tested, the EUT has been modified to include a change in hardware. These tests were performed to determine if the changes will affect the compliance.

The original test results were presented in Elite Electronic Engineering Test Report No. 1801061-01A.

1.2. Purpose

The test series was performed to determine if the EUT meets the Class II Permissive Change requirements of the FCC "Code of Federal Regulations" Title 47, Part 2, Subpart J, Section 2.1043(b)(2) and the Class II Permissive Change requirements of the Innovation, Science, and Economic Development Canada RSP-100, Section 7.3.

Testing was performed to the requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.231 for Intentional Radiators, Innovation, Science, and Economic Development Canada RSS-210, Annex A, and ANSI C63.4-2014.

1.3. Deviations, Additions and Exclusions

There were no deviations, additions to, or exclusions from the test specification during this test series.

1.4. EMC Laboratory Identification

This series of tests was performed by Elite Electronic Engineering Incorporated of Downers Grove, Illinois. The laboratory is accredited by The American Association for Laboratory Accreditation (A2LA). A2LA Certificate Number: 1786.01.

1.5. Laboratory Conditions

The temperature at the time of the test was 21°C and the relative humidity was 16%.

2. APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C, dated 1 October 2016
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247, October 4, 2012
- Industry Canada Radio Standards Specifications, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

- Industry Canada Radio Standards Specification, RSS-Gen, "General Requirements for Compliance of Radio Apparatus", Issue 4, November 2014
- Industry Canada Radio Standards Specification, RSS-210, "License-Exempt Radio Apparatus: Category I Equipment", Issue 9, August 2016

3. EUT SETUP AND OPERATION

3.1. General Description

The EUT is a Horizon Hobby Plano RF module. This transmitter is made to fit in a controller. The controller in junction with the Plano RF module commands the functions of a RC device. A block diagram of the EUT setup is shown as Figure 1.

3.1.1.Power Input

The EUT was powered with four (4), 1.5VDC, AA batteries.

3.1.2.Peripheral Equipment

There was no peripheral equipment submitted with the EUT.

3.1.3. Signal Input/Output Leads

There were no interconnect cables submitted with the EUT.

3.1.4. Grounding

The EUT was ungrounded during the tests.

3.2. Operational Mode

For all tests the EUT and all peripheral equipment were placed on a 150cm high non-conductive stand. The EUT and all peripheral equipment were energized. The EUT was set to the following modes:

DSMR 5.5ms - When powered up and set to its "Surface" protocol, the EUT was set to transmit at 2478MHz.

DSM2 22ms - When powered up and set to its "Air" protocol, the EUT was set to transmit at 2478MHz.

3.3. EUT Modifications

No modifications were required for compliance to FCC Title 47, Part 15, Subpart C, Section 15.247.

4. TEST FACILITY AND TEST INSTRUMENTATION

4.1. Shielded Enclosure

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. With the exception of the floor, the reflective surfaces of the shielded chamber are lined with ferrite tiles on the walls and ceiling. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

4.2. Test Instrumentation

The test instrumentation and auxiliary equipment used during the tests are listed in Table 9-1.

Conducted and radiated emission measurements were performed with a spectrum analyzer. This receiver allows measurements with the bandwidths and detector functions specified in the requirements. The receiver bandwidth was 1MHz for the 1000MHz to 18000MHz radiated emissions data.

4.3. Calibration Traceability

Test equipment is maintained and calibrated on a regular basis with a calibration interval not greater than two years. All calibrations are traceable to the International System Units (SI).

4.4. Measurement Uncertainty

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

The measurement uncertainty for these tests is presented below:

Conducted Emissions Measurements		
Combined Standard Uncertainty	1.06	-1.06
Expanded Uncertainty (95% confidence)	2.12	-2.12

Radiated Emissions Measurements						
Combined Standard Uncertainty	2.09	-2.09				
Expanded Uncertainty (95% confidence)	4.19	-4.19				

5. TEST PROCEDURES

5.1. Duty Cycle Factor Measurements

5.1.1.Requirements

Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

5.1.2.Procedures

- a. The EUT was placed on the non-conductive stand and set to transmit continuously.
- b. A double ridged waveguide antenna was positioned at a 3 meter distance from the EUT. The output of the antenna was connected to the input of a spectrum analyzer.
- c. The center frequency of the spectrum analyzer was set to the transmit frequency of the EUT.
- d. The frequency span of the spectrum analyzer was set to 0Hz so that the time domain trace of the transmitted pulse of the EUT was displayed on the spectrum analyzer.
- e. The sweep time of the spectrum analyzer was adjusted so that the beginning and end of a single pulse could be seen on the display of the spectrum analyzer.
- f. The single sweep function of the spectrum analyzer was used multiple times to determine the maximum pulse width of the EUT.
- g. The maximum pulse width display of the spectrum analyzer was recorded and then plotted using a 'screen dump' utility.
- h. The sweep time of the spectrum analyzer was then adjusted to 100msec.
- i. The single sweep function of the spectrum analyzer was used multiple times to determine the

maximum number of transmitted pulses that occurred in a 100msec time period.

- j. The maximum number of pulses transmitted in a 100msec time period was recorded and then plotted using a 'screen dump' utility.
- k. The duty cycle correction was calculated using the following equation:

Duty Cycle Correction Factor (dB) = D.C. (dB)

D.C. (dB) = 20 x log [((pulse width (msec)) x (#pulses in a 100msecperiod)) / 100msec]

5.1.3.Results

Duty cycle plots and calculations for the DSMR 5.5ms and DSM2 22ms modes are shown on pages 17 through 21.

5.2. Radiated Measurements

5.2.1.Requirements

Per section 15.247(d), RSS-247 Section 5.5 and RSS-Gen Section 8.9, in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated emissions measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a).

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must comply with the radiated emission limits specified in §15.209(a).

Frequency MHz	Field Strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30.0-88.0	100	3
88.0-216.0	150	3
216.0-960.0	200	3
Above 960	500	3

Paragraph 15.209(a) has the following radiated emission limits:

5.2.2.Procedures

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

A preliminary radiated emissions test was performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency range from 1GHz to 18GHz was investigated using a peak detector function. The data was then processed by the computer to calculate equivalent field intensity.

The final open field emission tests were then manually performed over the frequency range of 1GHz to 18GHz. Between 1GHz and 18GHz, a broadband double ridged waveguide antenna was used as the pick-up

device for all frequencies. All significant broadband and narrowband signals were measured and recorded. The peak detected levels were converted to average levels using a duty cycle factor which was computed from the pulse train.

To ensure that maximum or worst case, emission levels were measured, the following steps were taken:

- 1) The EUT was set to the DSMR 5.5ms mode.
- 2) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- 3) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- 4) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
- 5) Steps (1) through (4) were repeated with the EUT set to the DSM2 22ms mode.

5.2.3.Results

The preliminary plots, with the EUT transmitting at 2478 MHz, are presented on data pages 22 and 29. The plots are presented for a reference only, and are not used to determine compliance.

The final open area radiated levels, with the EUT transmitting at 2478 MHz, are presented on data pages 30 through 35. As can be seen from the data, all emissions measured from the EUT were within the specification limits. Photographs of the test configuration which yielded the highest (or worst case) radiated emission levels are shown in Figures 3 through 4.

5.3. Peak Output Power

5.3.1.Requirement

Per section 15.247(b)(3) and RSS-247 Section 5.4(d), for systems using digital modulation the maximum peak output conducted power shall not be greater than 1.0W (30dBm). Per section 15.247(b)(4), this limit is based on the use of antennas with directional gains that do not exceed 6dBi. Since the limit allows for a 6dBi antenna gain, the maximum EIRP can be increased by 6dB to 4 Watt (36dBm).

5.3.2.Procedures

The EUT was placed on the non-conductive stand and set to transmit. A double ridged waveguide antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 6dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a double ridged waveguide antenna was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss and antenna gain, as required.

5.3.3.Results

The results are presented on pages 36 and 37. The maximum EIRP measured from the transmitter was 25.2 dBm or 0.331 W which is below the 4 Watt limit

5.4. Band Edge Compliance

5.4.1. Requirements

Per section 15.247(d) and RSS-Gen, the emissions at the band-edges must be at least 20dB below the highest level measured within the band but attenuation below the general limits listed in 15.209(a) is not required.

5.4.2.Procedures

5.4.2.1 Low Band Edge

- 1) The EUT was set to the DSMR 5.5ms mode.
- 2) The EUT was set to transmit continuously at the channel closest to the low band-edge (hopping function disabled).
- 3) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - a. Center frequency = low band-edge frequency.
 - b. Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - c. Resolution bandwidth (RBW) \geq 1% of the span.
 - d. The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
 - e. The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)
 - f. The analyzer's display was plotted using a 'screen dump' utility.
- 4) Step 3) was repeated with the DSM2 22ms mode.
- 5.4.2.2 High Band Edge
- 1) The EUT was set to the DSMR 5.5ms mode.
- 2) The EUT was set to transmit continuously at the channel closest to the high band-edge.
- 3) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - a. Center frequency = high band-edge frequency.
 - b. Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - c. Resolution bandwidth (RBW) $\ge 1\%$ of the span.
 - d. The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
 - e. The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the right of the center frequency (band-edge) must be below the display line.)
 - f. The analyzer's display was plotted using a 'screen dump' utility.
- 5) Step 3) was repeated with the DSM2 22ms mode.

5.4.3.Results

Pages 38 through 41 show the radiated band edge compliance results. As can be seen from these plots, the radiated emissions at the low end band edge are within the 20 dB down limits. The radiated emissions at the high end band edge are within the general limits

5.5. 6dB Bandwidth Measurement

5.5.1.Requirement

Per 15.247(a)(2) and RSS-247 Section 5.2(a), the minimum 6dB bandwidth shall be at least 500kHz for all systems using digital modulation techniques.

5.5.2.Procedures

The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 100kHz and the span was set to greater than the RBW.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

5.5.3.Results

The plots on pages 42 through 45 show that the minimum 6 dB bandwidth was 679kHz which is greater than the minimum allowable 6dB bandwidth requirement of 500kHz for systems using digital modulation techniques. The 99% bandwidth was measured to be 1.069MHz.

6. OTHER TEST CONDITIONS

6.1. Test Personnel and Witnesses

All tests were performed by qualified personnel from Elite Electronic Engineering Incorporated.

6.2. Disposition of the EUT

The EUT and all associated equipment were returned to Horizon Hobby upon completion of the tests.

7. CONCLUSIONS

Since the modifications made on the EUT have degraded the performance by more than 3dB and the EUT met the requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.231 for Intentional Radiators, Innovation, Science, and Economic Development Canada RSS-210, Annex A, and ANSI C63.4-2014, it was determined that the Horizon Hobby Plano RF module did fully meet the technical requirements for a Class II Permissive Change.

8. CERTIFICATION

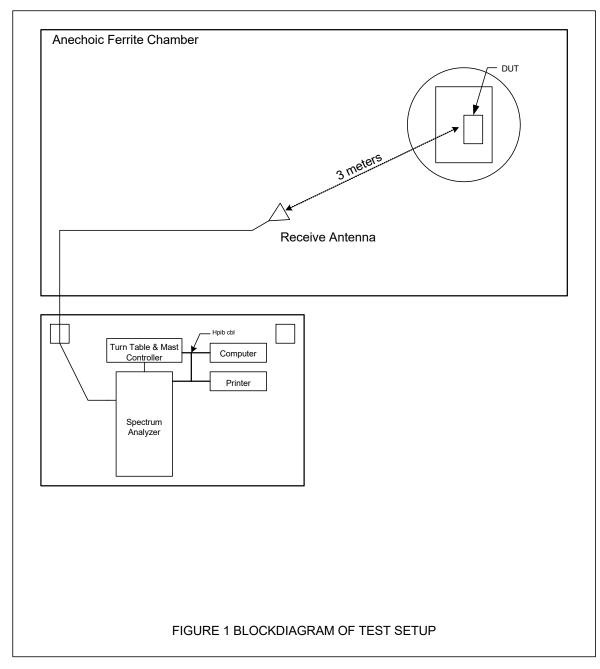
Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the EUT at the test date. Any electrical or mechanical modification made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST or any agency of the Federal Government.

9. EQUIPMENT LIST

Table 9-1 Equipment List


Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW11	PREAMPLIFIER	PMI	PE2-35-120- 5R0-10-12-SFF	PL11685/1241	1GHZ-20GHZ	4/5/2018	4/5/2019
CDX8	COMPUTER	ELITE	WORKSTATION			N/A	
GRE1	SIGNAL GENERATOR	AGILENT	E4438C	MY42081749	250KHZ-6GHZ	2/13/2018	2/13/2019
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	10/3/2018	10/3/2019
NWQ1	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS-LINDGREN	3117	66655	1GHZ-18GHZ	4/10/2018	4/10/2020
NWQ2	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66659	1GHZ-18GHZ	3/22/2018	3/22/2020
RBG3	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101592	2HZ-44GHZ	2/20/2018	2/20/2019
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	

I/O: Initial Only

N/A: Not Applicable

Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

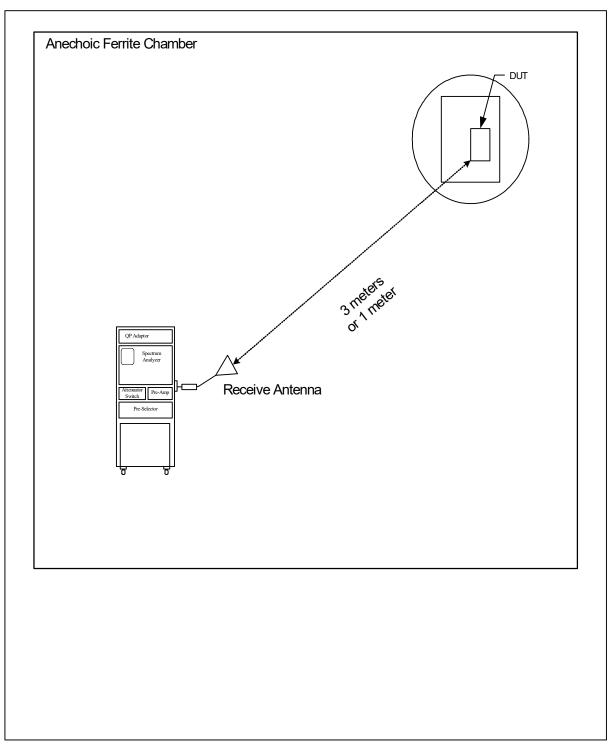


Figure 2 – Photographs of the EUT

Figure 3 – Test Setup for Radiated Emissions, 1GHz to 4.5GHz – Horizontal Polarization

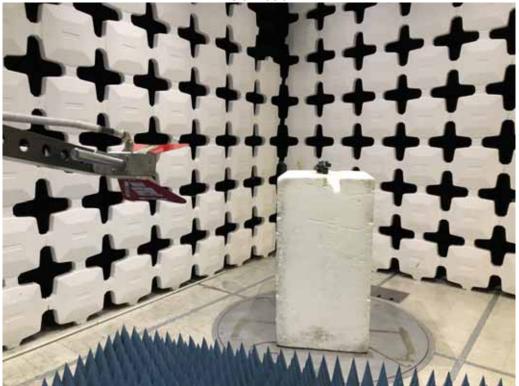
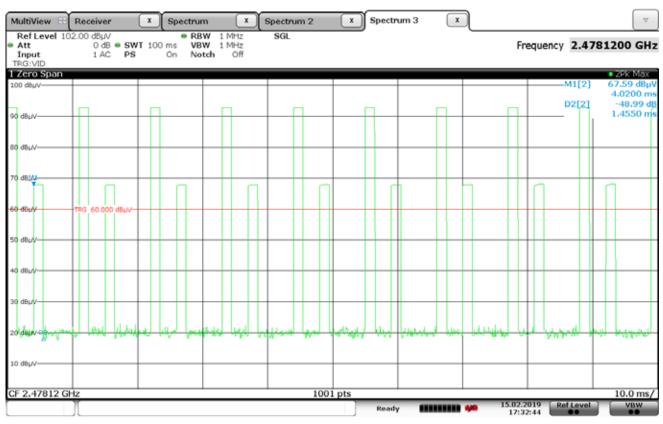


Figure 4 – Test Setup for Radiated Emissions, 1GHz to 4.5GHz – Vertical Polarization

Date: 15.FEB.2019 17:27:51

Manufacturer : Horizon Hobby Model Number : DX9 Serial Number : N/A Duty Cycle Calculation - 100ms Test : DSMR 5.5ms Mode Parameters : 19 pulses within 100ms Date : Feb 12,2019 Notes : Tx @ 2478MHz


MultiView	Receiver	X Spect	rum 🔆 🗶	Spectrum 2	🔆 🗴 Spectr	um 3 🛛 🗶	<u>ן</u>		♥
Ref Level 10 Att Input TRG:VID	02.00 dBµV 0 dB = SW 1 AC PS		W 1 MHz	SGL			Fr	equency 2.47	
1 Zero Span						_			2Pk Max
1 Zero Span 100 d8µV-								D2[2]	-44.71 dB
									525.00 µs
								M1[2]	88.95 dBµV
90 dBµ/V	1							—	0.00000000 s
00 dBµ//									
70 dBµ//									
60 dBL/V	TRG 60.000 dBu/V-								
50 dBµ//									
40 dBµ/V									
30 dBµV									
an and									
20 dBµ//							. h.		
20.0004	AND A REAL	A.B. Bachton	he which he had a set	a haile a kabila	da kuluta a danak	a mia iti ku shi Jalaha	فبنائه ومالها	CONTRACTOR CONTRACTOR	White data to task
	L. L. M. M. M. M. M.	h Ald (A	A holy which also	AND A A MARINE	adde Made office a	Ale ad A de set ad adda	La. 100 Morell Luff	Mord Marca M	I. Mard Models
10 dBµV							1.1.1	· · ·	
TO ODDA									
CF 2.47812 G	Hz	-		100	l pts				500.0 µs/
at at trong a	Υ			100	_		15.02.2	019 Ref Level) (VBW
	11				Read	y Aller	17:2	9:23	

Date: 15.FEB.2019 17:29:23

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: Duty Cycle Calculation – Pulse Length
Mode	: DSMR 5.5ms
Parameters	: Pulse length 0.525ms
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz

Duty Cycle = 20 Log $\left(\frac{19 \times 0.520 \text{ ms}}{100 \text{ ms}}\right)$ = -20.02

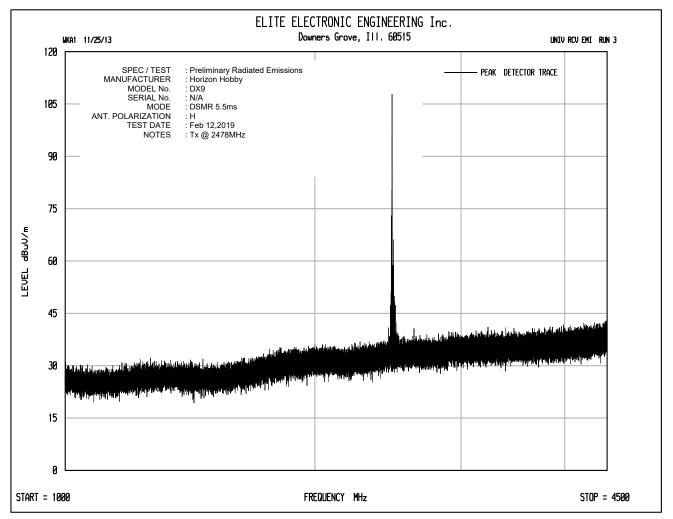
Date: 15.FEB.2019 17:32:44

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: Duty Cycle Calculation – 100ms
Mode	: DSM2 22ms
Parameters	: 10 "tall" pulses and 9 "short" pulses within 100ms
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz

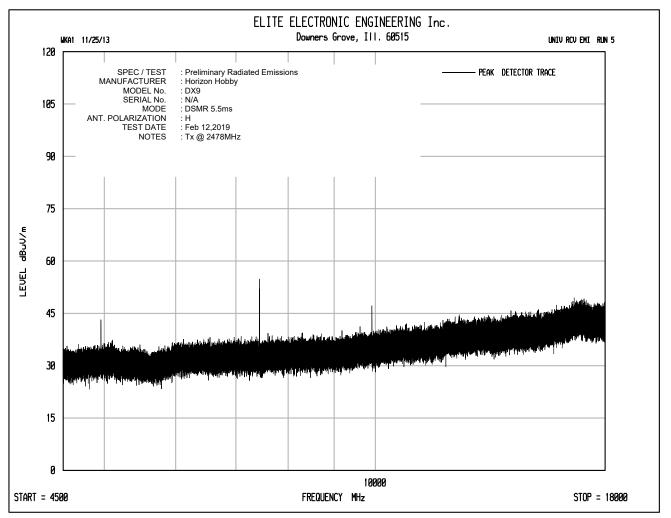
MultiView 😁	Receiver	X	Spectrun	n X	Spectrum 2	x	Spectr	um 3 🛛 🗶	ן		▽
Ref Level 10 Att Input TRG:VID		SWT 10 PS	e RBW ms VBW On Note	1 MHz	SGL				Fr	equency 2.	4781200 GHz
1 Zero Span						_					2Pk Max
100 d8µ//										D2[3	
											1.43500 ms
	D2									M1[
90 dBµV										<u> </u>	0.00000000 s
an (n.).											
00 dBµV											
70 dBu/V											
10 0001											
60 dBµ/V	TRG 60.000 d	Bulv									
50 dBµ//	+	_									
40 dBµ//											
30 dBµV											
20 dBµ/v		1		. Lun				L			http://
eo oopr	9663	MUMUM	والأراهية فوالهفري	aller Martin			44444	WORLD	of Martin parties	WANNER	When the state of
								1	1 T	out of the	17 IV
10 dBµ/v											
-											
CF 2.47812 G	Hz				100	l pts					1.0 ms/
	M						Ready	· · · · · · · · · · · · · · · · · · ·	15.02.2 17:3	019 Ref Lev	vel VBW

Date: 15.FEB.2019 17:31:45

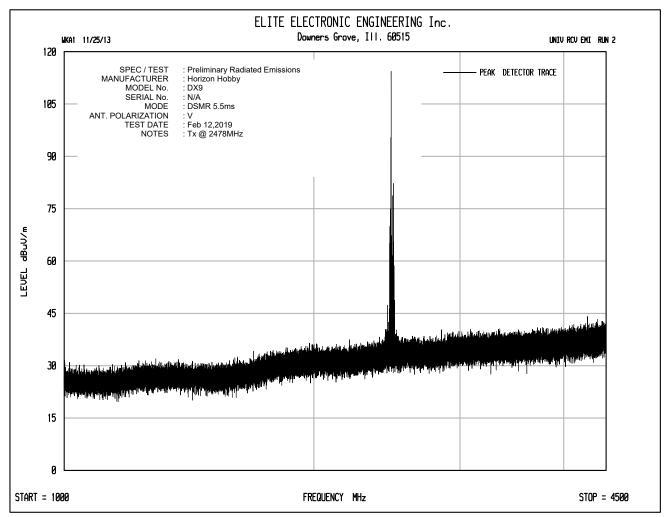
Manufacturer: Horizon HobbyModel Number: DX9Serial Number: N/ATest: Duty Cycle Calculation – "Tall" Pulse LengthMode: DSM2 22msParameters: Pulse length 1.435msDate: Feb 12,2019Notes: Tx @ 2478MHz

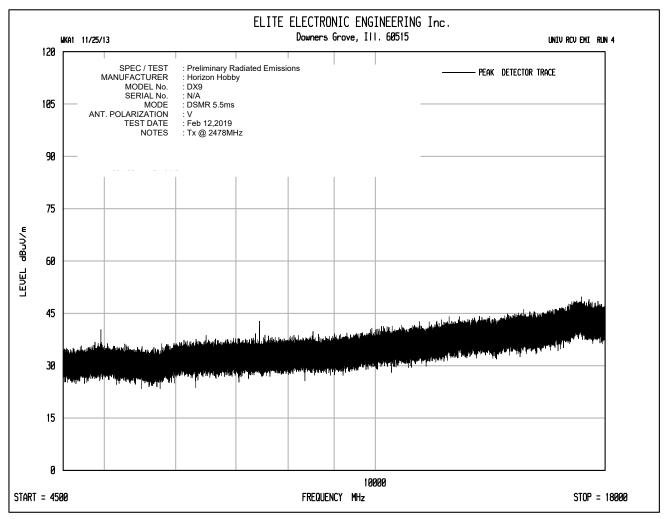

MultiView	Receiver	X Spectrum	n X	Spectrum 2	X Spec	trum 3			♥
Ref Level 1 Att Input TRG:VID	02.00 dBµV 0 dB = SW 1 AC PS		1 MHz	SGL			Fr	requency 2.42	781200 GHz
1 Zero Span									2Pk Max
100 d8µV								M1[2]	67.41 dBµV
									4.02000 ms
								D2[2]	-20.96 dB
90 dBu/V									1.45500 ms
00 dBu/V									
70 dBµ/V									
				¥					
60 dBuV	TRG 60.000 dBuV-								
ee aapr	1110 001000 0001								
50 dBuV									
					Q 2				
					f				
40 dBµ/V									
10 0001									
30 dBuV-									
and and a									
20 dBµ/V			. Lun				1		http://www.dl
20 0001	VALUAR N	hillingerteterenet	a MANAMILAUN		4.444	AUGULA HUBAN	Higher Marthe	A LALINA MARKING	A MARKAN AND
	with a	Comparent and	output of A A	1			11	a security h	
10 dBµ/V									
10 0001									
CF 2.47812 G	Hz			1001	pts	-	1		1.0 ms/
at at the state of	Υ			1001			15.02.3	2019 Ref Level	
	11				Rea	dy 🚺	17:3	2:14	•••

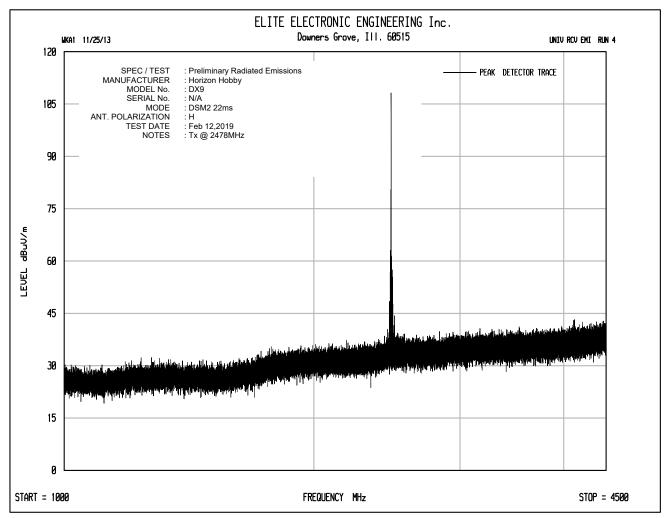
Date: 15.FEB.2019 17:32:14

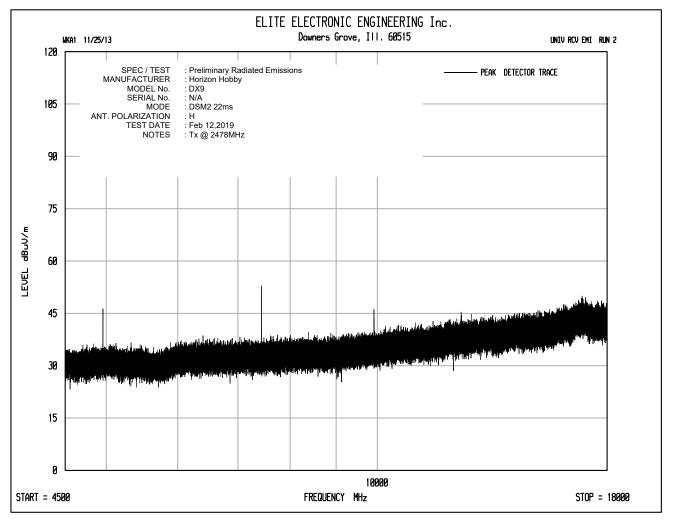

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: Duty Cycle Calculation – "Short" Pulse Length
Mode	: DSM2 22ms
Parameters	: Pulse length 1.455ms
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz

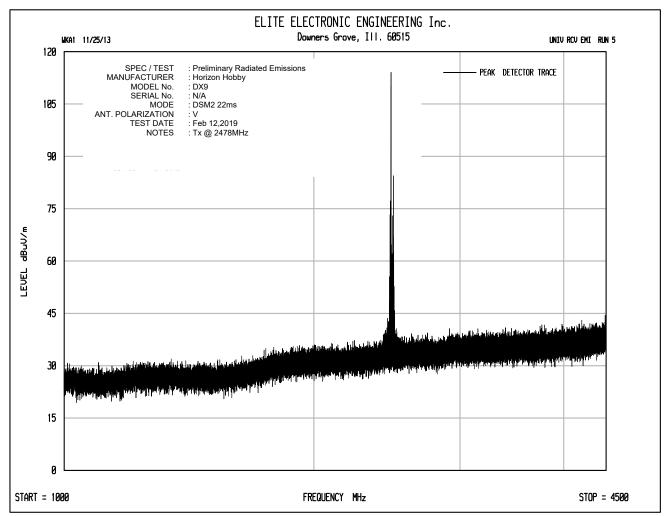
Duty Cycle = 20 Log $\left(\frac{(10 \times 1.435 \text{ms}) + (9 \times 1.455 \text{ms})}{100 \text{ms}}\right)$ = -11.17

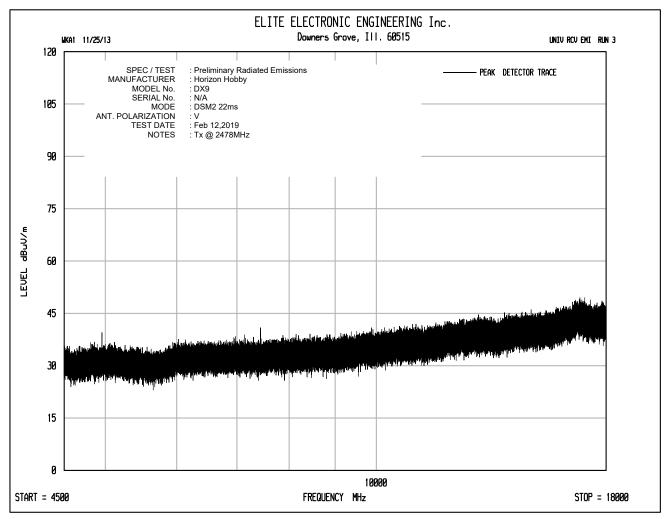












MANUFACTURER Horizon Hobby EUT Plano RF module SPECIFICATION FCC 15 C, Section 15.247 TEST Radiated Emissions not in the Restricted Bands – Peak MODE DSMR 5.5ms – 2478MHz DATE TESTED 02/12/2019

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2478.00	Н	83.1		3.5	32.5	0.0	119.0	896322.2		
2478.00	V	82.5		3.5	32.5	0.0	118.5	841325.7		
9912.00	Н	50.4		7.0	36.7	-39.2	54.8	549.0	28344.2	-34.3
9912.00	V	46.7		7.0	36.7	-39.2	51.1	360.2	28344.2	-37.9
14868.00	Н	38.5	*	8.9	39.7	-38.2	48.9	278.0	28344.2	-40.2
14868.00	V	37.7	*	8.9	39.7	-38.2	48.1	253.8	28344.2	-41.0
17346.00	Н	38.3	*	9.7	41.1	-37.7	51.3	366.9	28344.2	-37.8
17346.00	V	38.3	*	9.7	41.1	-37.7	51.3	368.1	28344.2	-37.7

Tested By: aver Va Javier Cardenas

MANUFACTURER Horizon Hobby EUT Plano RF module SPECIFICATION FCC 15 C, Section 15.247 TEST Radiated Emissions in the Restricted Bands – Peak MODE DSMR 5.5ms – 2478MHz DATE TESTED 02/12/2019

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4956.00	Н	55.4		4.9	34.3	-39.3	55.3	582.2	5000.0	-18.7
4956.00	V	56.6		4.9	34.3	-39.3	56.5	668.5	5000.0	-17.5
7434.00	Н	61.2		6.2	35.7	-39.4	63.7	1524.5	5000.0	-10.3
7434.00	V	56.7		6.2	35.7	-39.4	59.2	910.2	5000.0	-14.8
12390.00	Н	52.0		8.0	38.8	-39.0	59.8	972.5	5000.0	-14.2
12390.00	V	50.5		8.0	38.8	-39.0	58.3	818.3	5000.0	-15.7

Tested By: laver Va Javier Cardenas

MANUFACTURER Horizon Hobby EUT Plano RF module SPECIFICATION FCC 15 C, Section 15.247 TEST Radiated Emissions in the Restricted Bands – Average MODE DSMR 5.5ms – 2478MHz DATE TESTED 02/12/2019

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4956.00	Н	37.2		4.9	34.3	-39.3	-20.0	17.1	7.1	500.0	-36.9
4956.00	V	37.7		4.9	34.3	-39.3	-20.0	17.6	7.6	500.0	-36.4
7434.00	Н	38.74		6.2	35.7	-39.4	-20.0	21.2	11.4	500.0	-32.8
7434.00	V	36.3		6.2	35.7	-39.4	-20.0	18.7	8.6	500.0	-35.3
12390.00	Н	34.5		8.0	38.8	-39.0	-20.0	22.2	12.9	500.0	-31.8
12390.00	V	34.1		8.0	38.8	-39.0	-20.0	21.8	12.3	500.0	-32.2

Tested By: laver la Javier Cardenas

MANUFACTURERHorizon HobbyEUTPlano RF moduleSPECIFICATIONFCC 15 C, Section 15.247TESTRadiated Emissions not in the Restricted Bands – PeakMODEDSM2 22ms – 2478MHzDATE TESTED02/12/2019

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2478.00	Н	83.2		3.5	32.5	0.0	119.2	909838.2		
2478.00	V	80.2		3.5	32.5	0.0	116.1	641156.7		
9912.00	Н	54.6		7.0	36.7	-39.2	59.0	893.4	28771.6	-30.2
9912.00	V	51.2		7.0	36.7	-39.2	55.6	602.6	28771.6	-33.6
14868.00	Н	39.3		8.9	39.7	-38.2	49.8	307.6	28771.6	-39.4
14868.00	V	38.7		8.9	39.7	-38.2	49.1	285.5	28771.6	-40.1
17346.00	Н	37.9	*	9.7	41.1	-37.7	50.9	352.0	28771.6	-38.2
17346.00	V	37.6	*	9.7	41.1	-37.7	50.6	340.4	28771.6	-38.5

Tested By: aver Va Javier Cardenas

MANUFACTURER Horizon Hobby EUT Plano RF module SPECIFICATION FCC 15 C, Section 15.247 TEST Radiated Emissions in the Restricted Bands – Peak MODE DSM2 22ms – 2478MHz DATE TESTED 02/12/2019

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4956.00	Н	56.1		4.9	34.3	-39.3	56.0	631.8	5000.0	-18.0
4956.00	V	55.2		4.9	34.3	-39.3	55.1	567.6	5000.0	-18.9
7434.00	н	62.9		6.2	35.7	-39.4	65.3	1847.7	5000.0	-8.6
7434.00	V	57.5		6.2	35.7	-39.4	60.0	994.6	5000.0	-14.0
12390.00	н	51.4		8.0	38.8	-39.0	59.1	902.4	5000.0	-14.9
12390.00	V	49.8		8.0	38.8	-39.0	57.6	756.7	5000.0	-16.4

laver Tested By: ~ (A Javier Cardenas

MANUFACTURERHorizon HobbyEUTPlano RF moduleSPECIFICATIONFCC 15 C, Section 15.247TESTRadiated Emissions in the Restricted Bands – AverageMODEDSM2 22ms – 2478MHzDATE TESTED02/12/2019

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
4956.00	Н	39.9		4.9	34.3	-39.3	-11.2	28.6	26.9	500.0	-25.4
4956.00	V	37.8		4.9	34.3	-39.3	-11.2	26.4	20.9	500.0	-27.6
7434.00	Н	43.87		6.2	35.7	-39.4	-11.2	35.1	56.8	500.0	-18.9
7434.00	V	38.6		6.2	35.7	-39.4	-11.2	29.9	31.1	500.0	-24.1
12390.00	Н	35.0		8.0	38.8	-39.0	-11.2	31.5	37.5	500.0	-22.5
12390.00	V	34.5		8.0	38.8	-39.0	-11.2	31.0	35.4	500.0	-23.0

Tested By: ~ laver Javier Cardenas

Manufacturer Test Item Serial No.	: Horizon Hobby : Plano RF module : N/A
Mode	: DSMR 5.5ms
Test	: EIRP
Test Limits	: FCC 15.247
Date	: 02/12/2019
Notes	: Tx @ 2478MHz

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2478.00	Н	83.1	21.7	5.8	2.7	24.8	36.0	-11.2
2478.00	V	82.7	21.3	5.8	2.7	24.4	36.0	-11.6

Tested By: Javier Cardenas Javier Cardenas

Manufacturer Test Item	: Horizon Hobby : Plano RF module
Serial No.	: N/A
Mode	: DSM2 22ms
Test	: EIRP
Test Limits	: FCC 15.247
Date	: 02/12/2019
Notes	: Tx @ 2478MHz

Freq. (MHz)	Ant Pol	Wide BW Meter Reading (dBuV)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2478.00	Н	83.4	22.1	5.8	2.7	25.2	36.0	-10.8
2478.00	V	82.1	21.5	5.8	2.7	24.6	36.0	-11.4

Tested By: Javier Javier Cardenas

Manufacturer	: Horizon Hobby
Test Item	: Plano RF module
Serial No.	: N/A
Mode	: DSMR 5.5ms
Test	: Low Band Edge Compliance
Test Limits	: FCC 15.247
Date	: 02/12/2019
Notes	: Tx @ 2478MHz

MultiView 🕀	Receiver	x	Spectrum	× Sp	ectrum 2 🛛 🤌	×				
Ref Level 102. Att Input	00 dBµV 0 dB = SW 1 AC PS	/T5ms \	RBW 1 MHz VBW 1 MHz Mo Notch Off	de Auto Swe	tp		ł	requency	2.39	91500 GHz
1 Frequency Sw	/eep									2Pk Max
100 dBµV								M3	[2]	83.42 dBµV
									2	.4052240 GHz
90 dBµV										
90 00pv										
								-K		
80 dBµV		-						+		
								$ \rangle$	- 1	
								$ \rangle$	- 1	
70 dBµV							1			
	1 63.420 dBuV-									
60 dBµ/v				_			1		\downarrow	
							4			
						1 1			\sim	
50 dBµV						f			-\	
									- 1	
40 dBuV						1				
40 0600						and the second				and a fame
						have			- 1	Marada .
30 dBµV				1.15	March Constanting					~
and the second states	ويعاليه ومعادية	manuth	and an enter the second	mun	الاسل من المسلم				- 1	
									- 1	
20 dBµV								-		
									- 1	
10 dBµV										
							vi		- 1	
CF 2.39915 GHz			1001	pts		2.0 MHz/				pan 20.0 MHz
					Measu	ring			Level	VBW

Date: 13.FEB.2019 19:16:07

Manufacturer Test Item	: Horizon Hobby : Plano RF module
Serial No.	: N/A
Mode	: DSMR 5.5ms
Test	: High Band Edge Compliance
Test Limits	: FCC 15.247
Date	: 02/12/2019
Notes	: Tx @ 2478MHz

Peak Measurement

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2483.50	Н	34.1		3.5	32.5	0.0	70.1	3190.5	5000.0	-3.9
2483.50	V	33.0		3.5	32.5	0.0	69.0	2827.2	5000.0	-5.0

Average Measurement

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2483.50	Н	10.3		3.5	32.5	0.0	-20.0	26.3	20.6	500.0	-27.7
2483.50	V	9.9		3.5	32.5	0.0	-20.0	25.9	19.7	500.0	-28.1

Tested By: Javier Cardenas Javier Cardenas

Manufacturer	: Horizon Hobby
Test Item	: Plano RF module
Serial No.	: N/A
Mode	: DSM2 22ms
Test	: Low Band Edge Compliance
Test Limits	: FCC 15.247
Date	: 02/12/2019
Notes	: Tx @ 2478MHz

MultiView 8	Receiver	×s	pectrum	× Spectru	um 2 🛛 🤌 🔍							♥
Ref Level 102 Att Input	2.00 dBµV 0 dB = SW 1 AC PS	/T5ms VBV		Auto Sweep				Fre	equency :	2.395	55500	GHz
1 Frequency Sv	weep										• 2Pk	Max
100 d8µV									M1		79.91 402203	dBµV 0 GHz
90 dBµV										+		
80 dBµV									M1	_		
70 dBµV										\downarrow		
-60-d0u/v	H1 59.910 dBuV											
50 dBµV							1				1	
40 dBµV						. under	1			1	a de la como	Laboration in
30 dBµV	mentantook	munn	المتقارب معينا ويتحمد والم	- Al remander	was made and	water				1		
20 dBµ/v			, and a second							+		
10 dBµV							v			-		
CF 2.39555 GH	IZ		1001 pt	ts	2	.0 MHz/	_	12.02.2	010 (0 1		an 20.0	
	1				Measurin	ng	440	13.02.2	019 Ref I	evel		BW)

Date: 13.FEB.2019 19:20:49

Manufacturer	: Horizon Hobby
Test Item	: Plano RF module
Serial No.	: N/A
Mode	: DSM2 22ms
Test	: High Band Edge Compliance
Test Limits	: FCC 15.247
Date	: 02/12/2019
Notes	: Tx @ 2478MHz

Peak Measurement

							Peak	Peak	Peak	
		Meter		CBL	Ant	Pre	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2483.50	Н	32.3		3.5	32.5	0.0	68.3	2602.3	5000.0	-5.7
2483.50	V	32.2		3.5	32.5	0.0	68.2	2566.6	5000.0	-5.8

Average Measurement

								Average	Average	Average	
		Meter		CBL	Ant	Pre	Duty	Total	Total	Limit	
Freq.	Ant	Reading		Fac	Fac	Amp	Cycle	dBuV/m	uV/m	uV/m	Margin
MHz	Pol	(dBuV)	Ambient	(dB)	(dB)	(dB)	(dB)	at 3m	at 3 m	at 3 m	(dB)
2483.50	Н	11.2		3.5	32.5	0.0	-11.2	36.0	62.8	500.0	-18.0
2483.50	V	11.1		3.5	32.5	0.0	-11.2	35.8	61.8	500.0	-18.2

Tested By: Javier Condenas Javier Cardenas

MultiView	Receiver	x) Sp	ectrum	× Spectru	ım 2 🛛 🔍				▽
Ref Level 102 Att Input		VT 5 ms = VBW		Mode Auto Sweep			Free	quency 2.4	1780000 GHz
1 Frequency Sv			01						2Pk Max
100 dBuV-								M1[2]	92.10 dBµV
				M1					2.47773000 GHz
90 dBµV					The second se				
80 dBµV					\rightarrow				
70 dBµV									
60 dBµV				m	he	n			
50 dBµV				5		λ			
50 dBuv 40 dBuv 30 dBuv Mir Mar Marin 20 dBuv			and a real of the			you ,	di i		
40 dBµV		. New	w			Hut	1 William Contraction		
30 dBµV	Ale	apple and					- north	there	
Why When	wrone								munimum
20 dBµV									
10 dBµV									
CF 2.478 GHz			1001	ote	1	.0 MHz/			Span 10.0 MHz
2 Marker Table			1001	pro	1	10 10112/			apan 10.0 MHz
Type Ref		X-Value		Y-Value	Func	tion	Eup	ction Result	
M1		2.47773 GH	z	92.10 dBuV	ndB		1.011	6.0 dB	
T1	2	2.47761 GH		85.57 dBuV	ndB down l	BW	699	9.00 kHz	
T2	2	2.47831 GH		86.08 dBµV	Q Factor			3543.2	
					Measurin	ng (111111)	15.02.20 17:27:		el VBW

Date: 15.FEB.2019 17:27:16

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: 6dB Bandwidth
Mode	: DSMR 5.5ms
Parameters	: 6dB Bandwidth = 699kHz
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz

MultiView	Receiver	× sp	ectrum	🗶 Spectri	Jm 2 🔍			∇
Ref Level 102 Att Input		/T 4.96 ms 🖷 V	BW 100 kHz BW 300 kHz lotch Off	Mode Auto Swee	Þ		Frequen	cy 2.4780000 GHz
1 Occupied Bar								2Pk Max
100 d8µV								M1[2] 89.66 dBµV
								2.47824000 GHz
					MI			
90 d8µV				1000	- v.			
80 dBµV				TV	12			
00000				1 7	I Y			
70 dBµV			-					
60 dBu/V				m	4.0			
00 0000				1		N N		
				·				
50 dBuV						4		
		ann an	Mr.			hu		
						UMI A	n.1	
40 dBµV			WWW			1.000	M	Mun Mummhuran
		avvar					Mary 1	
30 dBu/V	- hul	all the second sec					Martin	A
mouling	M.M. Martin							The second se
. Mire Concerned on								mound
20 dBµ/V								
10 (0.4)								
10 dBµV								
CF 2.478 GHz		-	1001	pts	. 1	.0 MHz/		Span 10.0 MHz
2 Marker Table	h							
Type Ref		X-Value		Y-Value	Fund	ction	Function	Result
M1	2	2.47824 G	iHz	89.66 dBµV	T GIT		T GIRLOUT	
T1	2	2.4774406 (77.69 dBuV	Occ Bw		1.0689310	D69 MHz
T2	2	2.4785095 (78.06 dBµV	000001			
							15.02.2019	Ref Level VBW
L	Л				Measurin	ng 🗰 🖬	17:27:05	ee ee ee

Date: 15.FEB.2019 17:27:05

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: 99% Occupied Bandwidth
Mode	: DSMR 5.5ms
Parameters	: 99% Occupied Bandwidth = 1.069MHz
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz

MultiView 🕀	Receiver	X Spectrur		Spectrum 2	X Spectr	rum 3 🛛 🔆 🗴			♥
Ref Level 10 Att Input		T 5 ms = VBW On Notch		de Auto Sweep			Fn	equency 2.4	4781200 GHz
1 Frequency S	2								 2Pk Max
100 d8µV				M1	~			M1[2]	93.62 dBµV 2.47800000 GHz
90 dBµV				1	¥.				
80 dBµV				-/					
70 dBµV				/					
60 dBµV			~~~~~~~~~~~~~~~~~~~~~~~~~~	W					
50 dBµV			Jone			manit			
40 dBµV	and an and the second	mole of works	nul ^u			WWW	Www.war		
30 dBLV	mar application						and the fire	Munder	When we have
20 dBµV									
10 dBµV									
CF 2.47812 G	Hz		1001 pt	s	1	.0 MHz/			Span 10.0 MHz
2 Marker Tab		N Mala		v valar		at an I		- de De la	
Type Re M1 T1 T2 T2	f Trc 2 2 2	X-Value 2.4778 GH 2.47763 GH 2.47831 GH	z	Y-Value 3.62 dBµV 87.08 dBµV 87.33 dBµV	ndB ndB down I Q Factor			6.0 dB 60 dB 79.00 kHz 3647.8	
	J				Measurin	ıg (4 15.02.2 17:30		el VBW

Date: 15.FEB.2019 17:30:31

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: 6dB Bandwidth
Mode	: DSM2 22ms
Parameters	: 6dB Bandwidth = 679kHz
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz

MultiView 88	Receiver	X	Spect	rum	x	Spectrum 2	X Spectr	um 3 🛛 🔆 🗴	ב			♥
Ref Level 10 Att Input		SWT 4. PS	96 ms = On		100 kHz 300 kHz Off	Mode Auto Swee	P		F	requency	2.47	81200 GHz
1 Occupied Ba	andwidth											 2Pk Max
100 dBµV										M1[2		93.04 dBµV
	1					M1					2.4	47797000 GHz
90 dBu/v						1 nr	2					
80 dBµV				-		1 9	Ÿ				-	
70 dBµV												
	1									1		
10 10-11					1	-1	her					
60 dBµV					1							
	1				1			1		1		
50 dBµV					met			N	.4		-	
40 dB+44				and				Why approved	n l			
40 dBµV			you all Walk						<u> </u>			
		m							and the second	Address .		Wellingents
30 dBµV	- aller the states of the									- whent	new	A work .
males and a	1											As a contraction
20 dBµ//												
	1									1		
10 dBuV		_										
	1									1		
CF 2.47812 G	147				1001 p	te	1	.0 MHz/				pan 10.0 MHz
2 Marker Tab					1001 p	15	1	10 MI127			3	part 10.0 MHz
Type Re			X-Value			Y-Value	Eune	tion	E	unction Res	adt	
M1	2		47797			93.04 dBµV	. un			and don reco	Call C	
T1	2		.477440			78.70 dBµV	Occ Bw		1.05	8941059	MH:	z
T2	2	2	.4784996	5 GHz		78.69 dBµV						
	1						Measurin	ng (15.02. 17:3		Level	VBW

Date: 15.FEB.2019 17:31:05

Manufacturer	: Horizon Hobby
Model Number	: DX9
Serial Number	: N/A
Test	: 99% Occupied Bandwidth
Mode	: DSM2 22ms
Parameters	: 99% Occupied Bandwidth = 1.059MHz
Date	: Feb 12,2019
Notes	: Tx @ 2478MHz