

Electromagnetic Compatibility Test Report

Tests Performed on a Horizon Hobby

2.4 GHz Transmitter Transciever, Model X1TXP

Radiometrics Document RP-7619

Product Detail:

FCC ID: BRWDAMTX12 IC: 6157A-AMTX12 Equipment type: DTS

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2012

Industry Canada RSS-210, Issue 8: 2010 as required for Category I Equipment

This report concerns: Original Grant for Certification

FCC Part 15.247

Tests Performed For:

Horizon Hobby

Radiometrics Midwest Corporation

12 East Devonwood

Romeoville, IL 60446

(815) 293-0772

Test Date(s): (Month-Day-Year)
July 8 to 25, 2013

Document RP-7619 Revisions:

Rev.	Issue Date	Affected Sections	Revised By
0	August 7, 2013		

Table of Contents

1 ADMINISTRATIVE DATA	
2 TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	4
3 EQUIPMENT UNDER TEST (EUT) DETAILS	
3.1 EUT Description	
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	
3.2 Related Submittals	
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	
4.3 Equipment Modifications	5
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6 RADIOMETRICS' TEST FACILITIES	5
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8 CERTIFICATION	6
9 TEST EQUIPMENT TABLE	6
10 TEST SECTIONS	7
10.1 Occupied Bandwidth	7
10.2 Peak Output Power	10
10.3 Power Spectral Density	11
10.4 Band-edge Compliance of RF Conducted Emissions	11
10.5 Spurious RF Conducted Emissions at Antenna Port	
10.6 Spurious Radiated Emissions (Restricted Band)	
10.6.1 Radiated Emissions Field Strength Sample Calculation	
10.6.2 Spurious Radiated Emissions Test Results	

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1 ADMINISTRATIVE DATA

Equipment Under Test: A Horizon Hobby, 2.4 GHz Transmitter Model: X1TXP Serial Number: none This will be referred to as the EUT in this Report	
Date EUT Received at Radiometrics: (Month-Day-Year) July 8, 2013	Test Date(s): (Month-Day-Year) July 8 to 25, 2013
Test Report Written By: Joseph Strzelecki Senior EMC Engineer	Test Witnessed By: Jeff Walker Horizon Hobby
Radiometrics' Personnel Responsible for Test: Strzelechi	Test Report Approved By Chris W. Carlson
Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Chris W. Carlson Director of Engineering NARTE EMC-000921-NE

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a 2.4 GHz Transmitter, Model X1TXP, manufactured by Horizon Hobby. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results

Environmental Phenomena	Frequency Range	Basic Standard	Test Result
RF Radiated Emissions	30-25,000 MHz	RSS-210 & FCC Part 15	Pass
Occupied Bandwidth Test	Fundamental Freq.	RSS-210 & FCC Part 15	Pass

Spread Spectrum Transmitter Requirements

Spread Spectrum Transmitter Requirements						
Environmental Phenomena	Frequency Range	FCC Section	RSS- Section	Test Result		
RF AC Mains Conducted Emissions	0.15 - 30 MHz	15.207	GEN; 7.2.2	Pass		
RF Radiated Emissions (Unintential	30-25,000 MHz	15.209	GEN; 7.2.5	Pass		
Radiation Receive mode)						
Time of Occupancy (Dwell Time)	2400 to 2483 MHz	15.247 a	210; A8.1 (2)	Pass		
6 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	210; A8.1 (4)	Pass		
20 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	210; A8.1 (4)	Pass		
Peak Output Power	2400 to 2483 MHz	15.247 b	210; A8.1 (1)	Pass		
Band-edge Compliance of RF	2400 to 2483 MHz	15.247 d	210; A8.4 (2)	Pass		
Conducted Emissions						
Spurious Radiated Emissions	30 MHz to 25 GHz	15.247 d	210; A8.5	Pass		
Power Spectral Density	2400 to 2483 MHz	15.247 e	210; A8.2 (1)	Pass		

RP-7619 Rev. 0 Page 3 of 23

Note: The RSS-210 specification is not currently covered in Radiometrics' Scope of Accreditation. This is technically very similar to FCC, CFR 47 Part 15 which is on Radiometrics scope.

2.1 RF Exposure Compliance Requirements

Since the power output is 19.6 mW, the EUT meets the FCC requirement for RF exposure. Since the EUT is less than 20 mW, it is exempt from RSS-102 102 SAR and RF exposure evaluations. There are no power level adjustments and the antenna is permanently attached. The detailed calculations for RF Exposure are presented in a separate document.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a 2.4 GHz Transmitter, Model X1TXP, manufactured by Horizon Hobby. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is a half wave monopole. The antenna has a reverse polarity connector type that is not readily available to the general public. Therefore it meets the 15.203 Requirements.

The antenna is permanently attached to the printed circuit board. The antenna is internal to the EUT and it is not readily available to be modified by the end user. Therefore it meets the 15.203 Requirements.

3.2 Related Submittals

Horizon Hobby is not submitting any other products simultaneously for equipment authorization related to the EUT.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Since the EUT is wall mounted, it was placed in an upright configuration during the tests. The EUT was tested as a stand-alone device. Power was supplied with a new battery.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Tested System Configuration List

Item	Description Typ	e*	Manufacturer	Model Number	Serial Number
1	2.4 GHz Transmitter	Е	Horizon Hobby	X1TXP	none

^{*} Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

RP-7619 Rev. 0 Page 4 of 23

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2012	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2009	2009	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2009	2009	American National Standard for Testing Unlicensed Wireless Devices
IC RSS-210 Issue 8	2010	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 3	2010	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)
FCC 558074	2005	Measurement of Digital Transmission Systems Operating under Section 15.247

The test procedures used are in accordance with the FCC 558074, Industry Canada RSS-GEN and ANSI document C63.4, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber. The floor has a 9' x 9' section of microwave absorber for testing above 1 GHz.

Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

RP-7619 Rev. 0 Page 5 of 23

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A-1.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

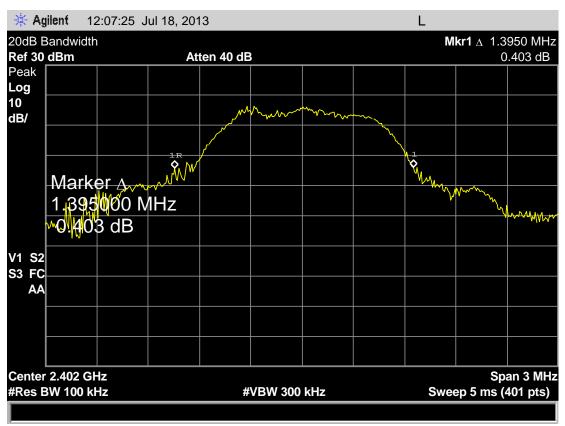
Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification and the data contained herein was taken with calibrated test equipment. The results relate only to the EUT listed herein.

9 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/24/13
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	01/15/13
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	01/16/13
AMP-29	HP / Agilent	Amplifier	11975A	2304A00158	2-8 GHz	12 Mo.	11/06/12
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/05/12
ANT-44	Impossible Machine	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	12/14/11
ANT-48	RMC	Std Gain Horn	HW2020	1001	18-26 GHz	12 Mo.	04/05/13
ANT-53	EMCO	Loop Antenna	6507	1453	1 kHz-30 MHz	24 Mo	10/26/11
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	24 Mo.	01/24/12
HPF-06	Mini-Circuits	High Pass Filter	VHF-3800+	31035	4-11 GHz	12 Mo.	08/06/12
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	06/14/11
LSN-03	Farnell	50 uH LISN	1EXLSN30B	000314	0.01-30MHz	24 Mo.	06/14/11
MXR-02	HP / Agilent	Harmonic Mixer	11970K	2332A00489	18-26.5GHz	12 Mo.	11/06/12
REC-03	Anritsu	Spectrum Analyzer	MS2601B	MT94589	0.01-2200MHz	12 Mo.	04/08/13
REC-08	Hewlett	Spectrum Analyzer	8566B	2648A13481	30Hz-22GHz	24 Mo.	
	Packard			2209A01436			10/28/11
	Hewlett						
REC-11	Packard	Spectrum Analyzer	E7405A	US39110103	9Hz-26.5GHz	12 Mo.	06/13/13
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	12 Mo.	05/25/12

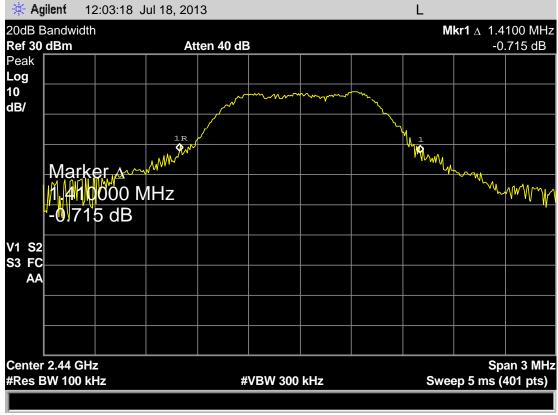
Note: All calibrated equipment is subject to periodic checks.

RP-7619 Rev. 0 Page 6 of 23

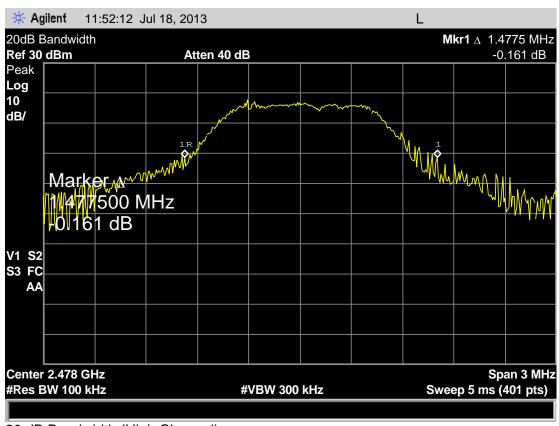

10 TEST SECTIONS

10.1 Occupied Bandwidth

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

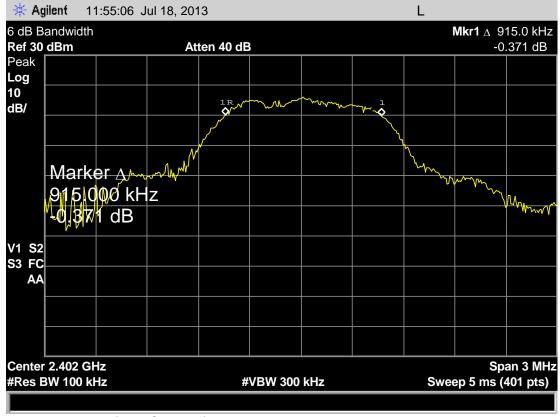

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 6 or 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the bandwidth of the emission.

Channel	20 dB EBW MHz	6 dB EBW MHz
2402	1.395	0.915
2440	1.410	0.952
2478	1.477	0.922

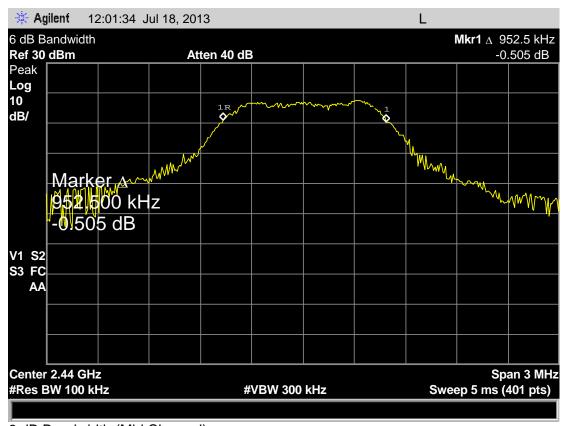


20 dB Bandwidth (Low Channel)

RP-7619 Rev. 0 Page 7 of 23

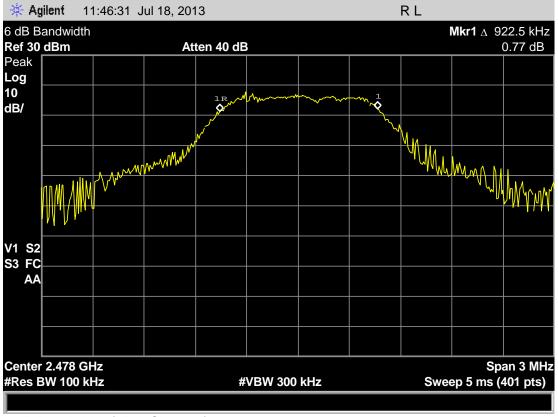


20 dB Bandwidth (Mid Channel)



20 dB Bandwidth (High Channel)

RP-7619 Rev. 0 Page 8 of 23



6 dB Bandwidth (Low Channel)

6 dB Bandwidth (Mid Channel)

RP-7619 Rev. 0 Page 9 of 23

6 dB Bandwidth (High Channel)

10.2 Peak Output Power

The EUT antenna port was connected to the Spectrum analyzer Via a low loss coaxial cable.

The power output option 2; Method #3 from FCC rules 558074 was used for this test. The spectrum analyzer was set to the following settings:

Span = 2 MHz

RBW = 1 MHz

VBW = 3 MHz

Sweep = auto

Detector function = peak

Trace = max hold

The trace was allowed to stabilize. The marker-to-peak function was used to measure the peak of the emission. The indicated level is the peak output power. The BW correction factor is 10*Log(BW). Note 30 dBm = 1 watt. Since the gain of the antenna is always less than 6 dB, the limit is not reduced.

Mode	Frequency	Reading	Cable Loss	Total Pov	ver (dBm)	Limit
iviode	(MHz)	(dBm)	(dB)	dBm	Watts	(dBm)
ANT 1	2402	17.6	0.3	17.9	0.0617	30
ANT 1	2440	19.7	0.3	20.0	0.1000	30
ANT 1	2478	19.6	0.3	19.9	0.0977	30
ANT 2	2402	18.1	0.3	18.4	0.0692	30
ANT 2	2440	19.6	0.3	19.9	0.0977	30
ANT 2	2478	19.4	0.3	19.7	0.0933	30

RP-7619 Rev. 0 Page 10 of 23

Judgment: Passed by 10 dB

10.3 Power Spectral Density

PSD option 1 was used for this test. No external attenuator was used. The spectrum analyzer was set to the following settings:

Span = 500 kHz

RBW = 3 kHz

VBW = 10 kHz

Sweep = 167 seconds

Detector function = Peak

Mode	Frequency (MHz)	Reading dBm	Cable Loss (dB)	3 kHz Spectral Density (dBm)	Limit (dBm)
ANT 1	2402	6.6	0.3	6.9	8.0
ANT 1	2440	7.2	0.3	7.5	8.0
ANT 1	2478	6.4	0.3	6.7	8.0
ANT 2	2402	7.1	0.3	7.4	8.0
ANT 2	2440	6.9	0.3	7.2	8.0
ANT 2	2478	5.8	0.3	6.1	8.0

Judgment: Passed by 0.5 dB

10.4 Band-edge Compliance of RF Conducted Emissions

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

Span = 30 MHz

RBW = 300 kHz

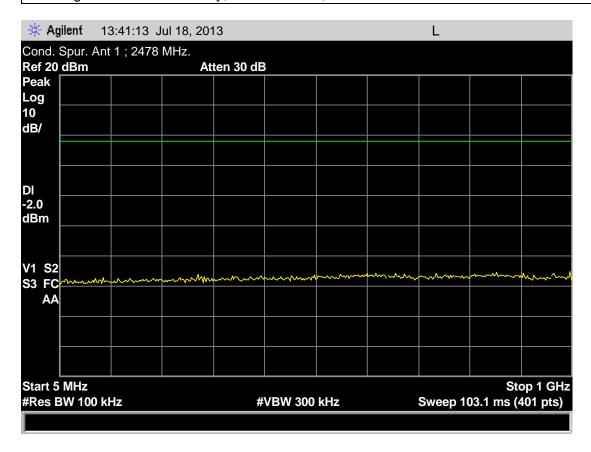
VBW = 1 MHz

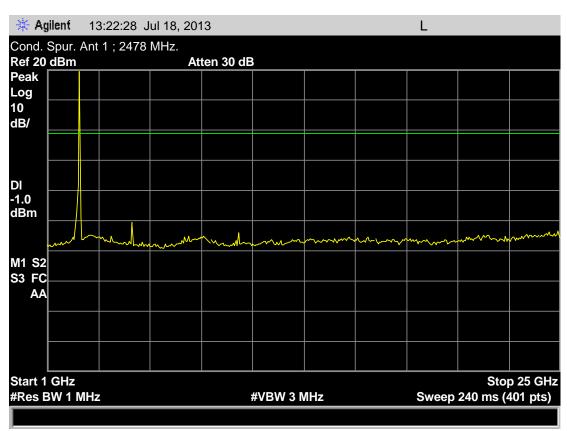
Sweep = auto

Detector function = peak

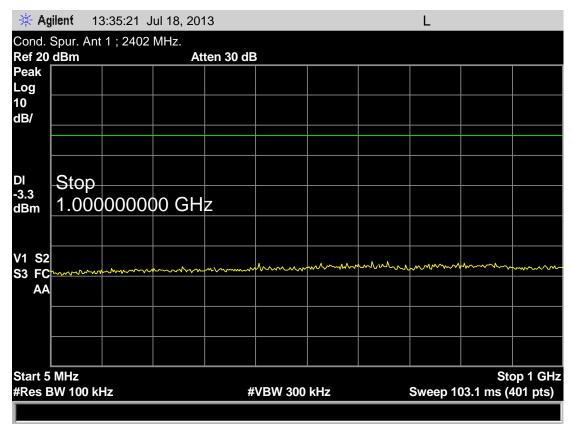
Trace = max hold

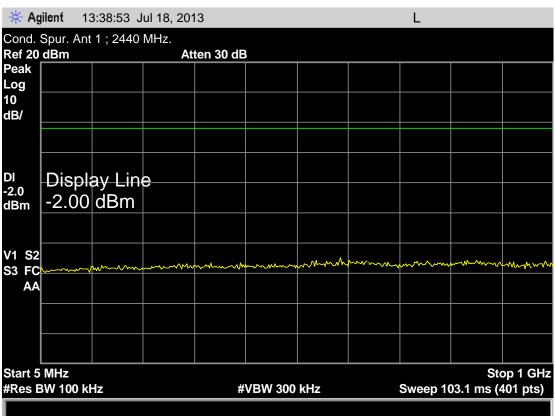
Channal	Reading at Band Edge		Minimum Allowed
Channel	Freq. (MHz)	Delta (dB)	dB
2402 Lower Band edge	2400	41.0	20
2474 Upper Band edge	2483.5	48.5	20

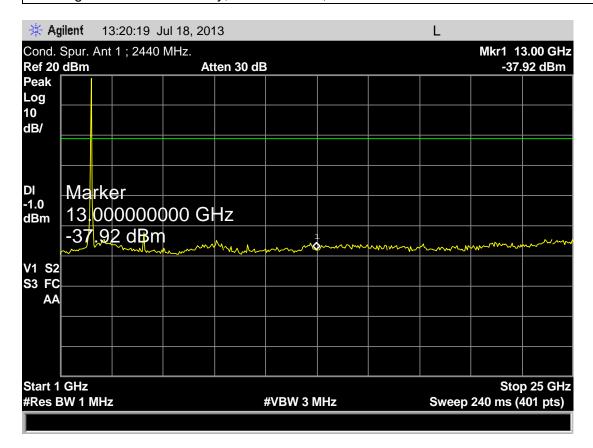

Judgment: Passed by 21.0 dB


10.5 Spurious RF Conducted Emissions at Antenna Port

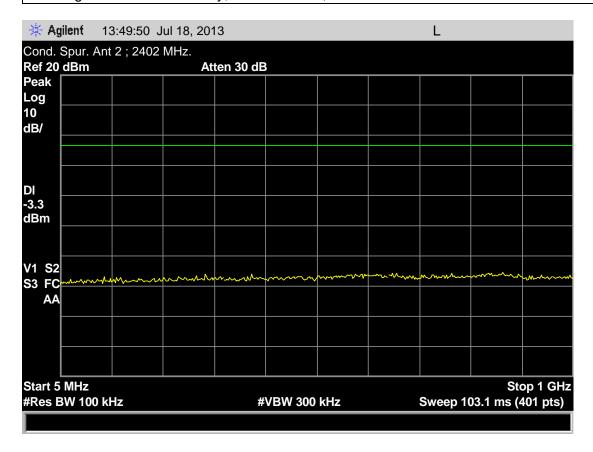
The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds.

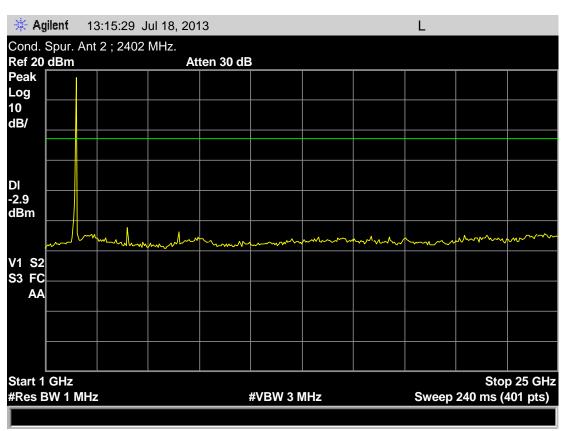

Antenna port 1

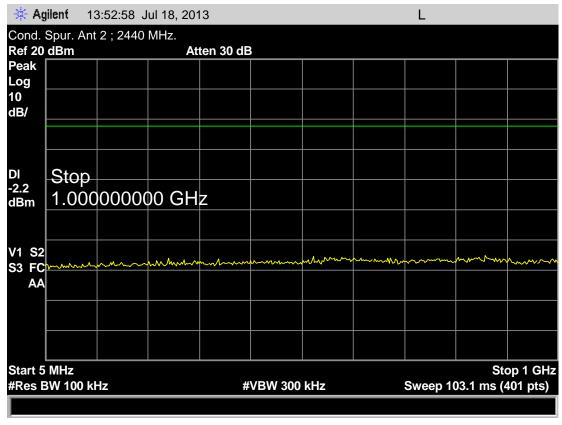

RP-7619 Rev. 0 Page 11 of 23

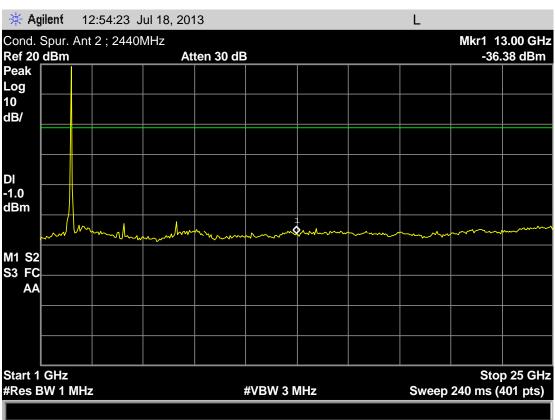


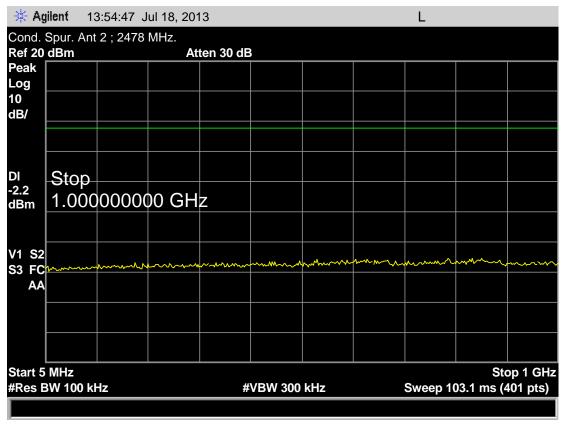
RP-7619 Rev. 0 Page 12 of 23

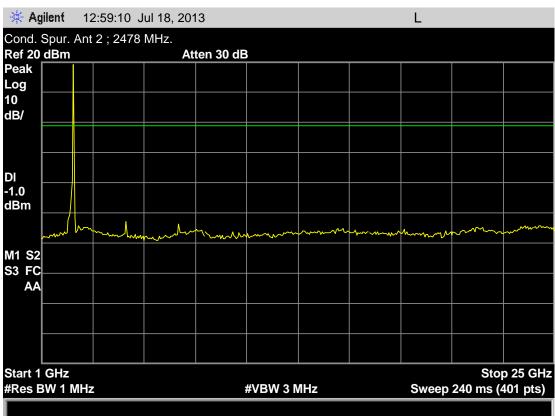



RP-7619 Rev. 0 Page 13 of 23


Antenna port 2


RP-7619 Rev. 0 Page 14 of 23




RP-7619 Rev. 0 Page 15 of 23

RP-7619 Rev. 0 Page 16 of 23

Judgement: Pass by at least 15 dB

RP-7619 Rev. 0 Page 17 of 23

10.6 Spurious Radiated Emissions (Restricted Band)

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 1000 MHz, an Anritsu spectrum analyzer was used. For tests from 1 to 25 GHz, an HP 8566 spectrum analyzer was used. For tests from 1 to 10 GHz, a high pass filter was used to reduce the fundamental emission. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests. In addition, a high pass filter was used to reduce the fundamental emission.

The was device was rotated through three orthogonal axis as per 13.1.4.1 of ANSI C63.4 during the radiated tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 25000 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

10.6.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG

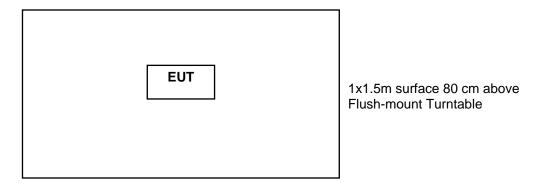
Where: FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain


HPF = High pass Filter Loss

PKA = Peak to Average Factor (This is zero for non-average measurements)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100).

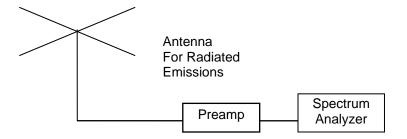

RP-7619 Rev. 0 Page 18 of 23

Figure 1. Drawing of Radiated Emissions Setup

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

10.6.2 Spurious Radiated Emissions Test Results

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

A Video Bandwidth of 10 Hz was used for Average measurements above 1 GHz.

RP-7619 Rev. 0 Page 19 of 23

Manufacturer	Horizon Hobby	Specification	FCC Part 15 Subpart C & RSS-210							
Model	X1TXP	Test Date	July 17, 2013							
Serial Number	none	Test Distance	3 Meters							
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical (ANT-3);									
	LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP									
Notes	Corr. Factors = Cable Loss - Preamp Gain - Duty Cycle Factor + HP Filter Loss									
Configuration	EUT Transmiting; Worst case emissions from the different operating frequencies									

Freq	Reading	Detector	Ant	Corr.	EUT	Limit	Margin	Note
MHz	dBuV		Pol.	dB	dBuV/m	dBuV/m	dB	
32.4	26.8	Р	Н	-12.1	14.7	40.0	25.3	
34.8	32.8	Р	Н	-12.2	20.6	40.0	19.4	
37.2	28.5	Р	Н	-12.4	16.1	40.0	23.9	
58.4	35.0	Р	Н	-16.8	18.2	40.0	21.8	
66.0	32.9	Р	Н	-19.4	13.5	40.0	26.5	
94.0	35.8	Р	Н	-19.3	16.5	43.5	27.0	
98.8	37.8	Р	Н	-18.4	19.4	43.5	24.1	
105.6	37.3	Р	Н	-15.8	21.5	43.5	22.0	
106.8	37.7	Р	Н	-16.3	21.4	43.5	22.1	
155.6	33.0	Р	Н	-17.0	16.0	43.5	27.5	
162.0	33.7	Р	Н	-16.4	17.3	43.5	26.2	
167.6	44.0	Р	Н	-17.2	26.8	43.5	16.7	
189.6	45.8	Р	Н	-16.8	29.0	43.5	14.5	
191.6	31.6	Р	Н	-16.7	14.9	43.5	28.6	
218.8	36.8	Р	Н	-15.0	21.8	46.0	24.2	
226.0	28.4	Р	Η	-14.5	13.9	46.0	32.1	
238.4	28.8	Р	Η	-14.6	14.2	46.0	31.8	
256.4	33.2	Р	Н	-14.7	18.5	46.0	27.5	
268.7	35.8	Р	Н	-14.7	21.1	46.0	24.9	
277.1	30.0	Р	Н	-14.4	15.6	46.0	30.4	
300.6	32.2	Р	Н	-14.6	17.6	46.0	28.4	
360.0	31.4	Р	Н	-12.8	18.6	46.0	27.4	
384.0	32.1	Р	Н	-12.0	20.1	46.0	25.9	
384.0	32.8	Р	Н	-12.0	20.8	46.0	25.2	
407.6	34.6	Р	Н	-11.8	22.8	46.0	23.2	
441.7	32.3	Р	Н	-9.9	22.4	46.0	23.6	
491.6	28.7	Р	Н	-9.7	19.0	46.0	27.0	
513.0	28.9	Р	Н	-9.2	19.7	46.0	26.3	
697.0	28.7	Р	Н	-6.5	22.2	46.0	23.8	
768.0	29.0	Р	Н	-5.3	23.7	46.0	22.3	
796.0	28.4	Р	Н	-5.9	22.5	46.0	23.5	
960.0	28.8	Р	Н	-3.1	25.7	74.0	48.3	
997.0	27.5	Р	Н	-1.7	25.8	74.0	48.2	
32.8	27.7	Р	V	-12.1	15.6	40.0	24.4	
33.2	29.8	Р	V	-12.1	17.7	40.0	22.3	
34.8	30.4	Р	V	-12.2	18.2	40.0	21.8	
41.6	32.4	Р	V	-12.7	19.7	40.0	20.3	
48.8	37.6	Р	V	-13.9	23.7	40.0	16.3	
72.4	28.9	Р	V	-20.6	8.3	40.0	31.7	
73.2	31.0	Р	V	-20.7	10.3	40.0	29.7	
93.6	33.9	Р	V	-19.3	14.6	43.5	28.9	

RP-7619 Rev. 0 Page 20 of 23

Freq MHz	Reading dBuV	Detector	Ant Pol.	Corr. dB	EUT dBuV/m	Limit dBuV/m	Margin dB	Note
93.6	34.0	Р	V	-19.3	14.7	43.5	28.8	
162.0	33.5	Р	V	-16.4	17.1	43.5	26.4	
167.6	37.9	Р	V	-17.2	20.7	43.5	22.8	
246.3	30.5	Р	V	-14.7	15.8	46.0	30.2	
276.5	35.2	Р	V	-14.4	20.8	46.0	25.2	
334.8	31.0	Р	V	-13.7	17.3	46.0	28.7	
360.0	29.4	Р	V	-12.8	16.6	46.0	29.4	
382.4	32.5	Р	V	-12.0	20.5	46.0	25.5	
408.1	32.4	Р	V	-11.8	20.6	46.0	25.4	
443.4	33.2	Р	V	-10.0	23.2	46.0	22.8	
450.7	35.3	Р	V	-10.7	24.6	46.0	21.4	
491.6	31.3	Р	V	-9.7	21.6	46.0	24.4	
501.6	29.1	Р	V	-9.4	19.7	46.0	26.3	
507.0	30.2	Р	V	-9.2	21.0	46.0	25.0	
658.0	29.7	Р	V	-6.3	23.4	46.0	22.6	
744.0	29.3	Р	V	-6.2	23.1	46.0	22.9	
828.0	29.0	Р	V	-4.8	24.2	46.0	21.8	
877.0	28.2	Р	V	-4.3	23.9	46.0	22.1	
1010.0	39.1	Р	Н	-3.0	36.1	54.0	17.9	1
1046.3	44.0	Р	Н	-2.3	41.7	54.0	12.3	1
1250.0	38.8	Р	Η	-1.2	37.6	54.0	16.4	1
1272.5	38.9	Р	Ι	-1.2	37.7	54.0	16.3	1
1448.8	38.8	Р	Н	-1.2	37.6	54.0	16.4	1
1560.0	39.1	Р	Н	-0.9	38.2	54.0	15.8	1
1623.8	40.2	Р	Н	-0.7	39.5	54.0	14.5	1
1748.8	39.6	Р	Н	0.4	40.0	54.0	14.0	1
1875.0	39.1	Р	Н	1.3	40.4	54.0	13.6	1
1992.5	39.9	Р	Н	1.5	41.4	54.0	12.6	1
1995.0	40.7	Р	Н	1.5	42.2	54.0	11.8	1
2006.3	42.9	Р	Н	1.5	44.4	54.0	9.6	1
2036.3	41.2	Р	Н	1.7	42.9	54.0	11.1	1
2185.0	42.6	А	Н	1.9	44.5	54.0	9.5	1
2278.8	57.7	Р	Н	2.3	60.0	74.0	14.0	
2278.9	45.2	A	Н	2.3	47.5	54.0	6.5	
2346.3	58.5	P	Н	2.6	61.1	74.0	12.9	
2501.3	56.5	P	Н	3.5	60.0	74.0	14.0	
2501.6	41.8	A	H	3.5	45.3	54.0	8.7	
2505.0	40.5	P	H	3.6	44.1	54.0	9.9	1
2518.8	37.7	P	H	3.7	41.4	54.0	12.6	1
2556.3	45.1	<u>Р</u>	Н	4.0	49.1	54.0	4.9	1
	42.3	P			46.3		7.7	1
2566.3		P	H	4.0		54.0		1
2741.3	37.2			4.5	41.7	54.0	12.3	
2765.0	37.5	P	Н	4.4	41.9	54.0	12.1	1
2773.8	37.6	Р	H	4.4	42.0	54.0	12.0	1
2972.5	39.7	P	H	5.9	45.6	54.0	8.4	1
2972.5	39.2	P	H	5.9	45.1	54.0	8.9	1
3013.8	37.3	Р	Н	6.1	43.4	54.0	10.6	1

RP-7619 Rev. 0 Page 21 of 23

Freq MHz	Reading dBuV	Detector Ant Pol.		Corr. dB	EUT dBuV/m	Limit dBuV/m	Margin dB	Note
3023.8	38.1	Р	Н	6.1	44.2	54.0	9.8	1
3120.0	39.1	Р	Н	6.9	46.0	54.0	8.0	1
1001.3	42.8	Р	V	-3.2	39.6	54.0	14.4	1
1140.0	45.1	Р	V	-1.5	43.6	54.0	10.4	1
1148.8	44.9	Р	V	-1.5	43.4	54.0	10.6	1
1247.5	44.4	Р	V	-1.2	43.2	54.0	10.8	1
1283.8	45.6	Р	V	-1.2	44.4	54.0	9.6	1
1477.5	44.8	Р	V	-1.2	43.6	54.0	10.4	1
1485.0	46.8	Р	V	-1.3	45.5	54.0	8.5	1
1500.0	38.1	Р	V	-1.1	37.0	54.0	17.0	1
1667.5	43.1	Р	V	-0.2	42.9	54.0	11.1	1
1821.3	37.8	Р	V	1.0	38.8	54.0	15.2	1
1832.5	38.7	Р	V	0.9	39.6	54.0	14.4	1
1921.3	39.9	Р	V	1.2	41.1	54.0	12.9	1
1986.3	37.9	Р	V	1.5	39.4	54.0	14.6	1
1996.3	37.9	Р	V	1.5	39.4	54.0	14.6	1
2043.8	38.1	Р	V	1.7	39.8	54.0	14.2	1
2045.0	39.5	Р	V	1.7	41.2	54.0	12.8	1
2111.3	41.9	Р	V	1.9	43.8	54.0	10.2	1
2226.3	46.2	Р	V	1.8	48.0	54.0	6.0	1
2252.5	40.4	Р	V	2.1	42.5	54.0	11.5	1
2332.5	44.9	Р	V	2.5	47.4	54.0	6.6	1
2401.3	52.0	Р	V	3.3	55.3	74.0	18.7	
2401.5	39.1	Α	V	3.3	42.4	54.0	11.6	
2497.5	57.4	Р	V	3.5	60.9	74.0	13.1	
2497.8	42.1	Α	V	3.5	45.6	54.0	8.4	
2503.7	41.3	Α	V	3.6	44.9	54.0	9.1	
2503.8	50.7	Р	V	3.6	54.3	74.0	19.7	
2517.5	40.9	Α	V	3.7	44.6	54.0	9.4	
2532.5	40.7	Р	V	3.8	44.5	54.0	9.5	1
2743.8	36.6	Р	V	4.5	41.1	54.0	12.9	1
2760.0	38.1	Р	V	4.4	42.5	54.0	11.5	1
2983.8	38.7	Р	V	6.0	44.7	54.0	9.3	1
2992.5	38.3	Р	V	6.0	44.3	54.0	9.7	1

Note 1: Since the EUT passed the average limit in with the peak detector, No Average measurement was performed

Judgment: Passed by 4.9 dB

RP-7619 Rev. 0 Page 22 of 23

Fundamental, Harmonic and Band edge emissions from 1 to 25 GHz

		Spectrum Analyzer Readings									EUT	Peak	Ave	Peak	Ave	Margin
hrm	Tx	Peak Ave Peak					Ave	Corr.	Emission	Tot.	FS	Limit		Under		
			tical Po		tion	Horizontal Polariza			ation		Freq					
#	Freq	Χ	Υ	Z	Max	Χ	Y	Z	Max	Fact.	MHz	dBu	V/m	dBu\	<u>//m</u>	Limit
1	2402	98.1	98.5	106.2	84.3	106.2	103.5	102.5	84.3	3.3	2402.0	109.5	87.6	125	115	15.5
be	2402	50.0	50.4	58.1	36.2	58.1	55.4	54.4	36.2	3.3	2390.0	61.4	39.5	74	54	12.6
2	2402	53.6	55.1	56.0	34.1	57.8	58.4	54.4	36.5	11.9	4804.0	70.3	48.4	74	54	3.7
3	2402	48.5	47.6	49.4	27.5	51.6	49.2	49.4	29.7	12.6	7206.0	64.2	42.3	74	54	9.8
4	2402	41.6	41.8	42.0	20.1	41.5	42.1	41.6	20.2	19.2	9608.0	61.3	39.4	74	54	12.7
1	2440	100.4	102.2	108.7	86.8	108.8	107.3	105.5	86.9	3.3	2440.0	112.1	90.2	125	115	12.9
2	2440	56.2	50.3	56.5	34.6	59.5	58.0	57.1	37.6	11.5	4880.0	71.0	49.1	74	54	3.0
3	2440	55.0	56.1	56.3	34.4	59.3	53.9	57.7	37.4	12.8	7320.0	72.1	50.2	74	54	1.9
4	2440	42.7	42.1	43.1	21.2	45.1	44.9	43.5	23.2	21.1	9760.0	66.2	44.3	74	54	7.8
1	2478	103.1	104.3	109.8	87.9	109.4	109.1	104.5	87.5	3.4	2478.0	113.2	91.3	125	115	11.8
BE	2478	54.6	55.8	61.3	39.4	60.9	60.6	56.0	39.0	3.4	2483.5	64.7	42.8	74	54	9.3
2	2478	55.3	56.3	54.9	34.4	57.2	55.6	58.4	36.5	11.9	4956.0	70.3	48.4	74	54	3.7
3	2478	52.3	50.7	51.2	30.4	53.9	50.6	53.5	32.0	13.1	7434.0	67.0	45.1	74	54	7.0
4	2478	46.0	45.4	45.8	24.1	48.6	47.9	46.4	26.7	22.6	9912.0	71.2	49.3	74	54	2.8
	Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Judgment: Passed by 1.9 dB

No other emissions were detected from 10 to 25 GHz.

Column #1. hrm = Harmonic; BE = Band Edge emissions

Column #2. Frequency of Transmitter.

Column #3. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #4. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #5. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #6. Average Reading based on peak reading reduced by the Duty cylce correction

Column #7. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #8. Uncorrected readings from the spectrum analyzer with Second Axis Rotation. Column #9. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #10. Average Reading based on peak reading reduced by the Duty cylce correction

Column #11. Corr. Factors = Cable Loss - Preamp Gain + Antenna Factor

Column #12. Frequency of Tested Emission

Column #13. Highest peak field strength at listed frequency.

Column #14. Highest Average field strength at listed frequency.

Column #15. Peak Limit.

Column #16. Average Limit.

Column #17. The margin (last column) is the worst case margin under the peak or average limits for

that row.

RP-7619 Rev. 0 Page 23 of 23