

EMC Test Report

Application for Grant of Equipment Authorization pursuant to

FCC Part 15 Subpart C

Model: X1TXO

FCC ID: BRWDAMTX11

APPLICANT: Horizon Hobby, Inc. 4105 Fieldstone Road Champaign, IL 61822

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-5

REPORT DATE: July 27, 2009

FINAL TEST DATES: March 10, 2009

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer Elliott Laboratories.

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

R	Rev#	Date	Comments	Modified By
	1	August 7, 2009	First release	

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	5
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	7
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	8
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
FILTERS/ATTENUATORS	
ANTENNAS	9
ANTENNA MAST AND EQUIPMENT TURNTABLE	9
INSTRUMENT CALIBRATION	
TEST PROCEDURES EUT AND CABLE PLACEMENT	.10
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	12
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	13
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	13
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS EMMITS - THIS AND DISSIPATEMIS	14
SAMPLE CALCULATIONS - RADIATED EMISSIONS	14
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	15
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS	3
APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION	
APPENDIX E DETAILED PHOTOGRAPHS	5
APPENDIX F OPERATOR'S MANUAL	6
APPENDIX G BLOCK DIAGRAM	7
APPENDIX H SCHEMATIC DIAGRAMS	8
APPENDIX I THEORY OF OPERATION	9
APPENDIX J RF EXPOSURE INFORMATION	10

SCOPE

An electromagnetic emissions test has been performed on the Horizon Hobby, Inc. model X1TXO, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on model X1TXO. This model was considered representative of the following models.

STATEMENT OF COMPLIANCE

The tested sample of Horizon Hobby, Inc. model X1TXO complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Horizon Hobby, Inc. model X1TXO and therefore apply only to the tested sample. The sample was selected and prepared by Paul Beard of Horizon Hobby, Inc.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	0.85 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	$24.8 \text{ dBm} \\ (0.302 \text{ Watts}) \\ \text{EIRP} = 0.479 \text{ W}^{\text{Note 1}}$	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	2.1 dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All signal below the limit	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	50.8dBµV/m (346.7µV/m) @ 2352.0MHz (-3.2dB)	15.207 in restricted bands, all others < -20dBc	Complies

Note 1: EIRP calculated using antenna gain of 2 dBi for the highest EIRP multi-point system.

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	EUT uses non- standard micro coax connector	-	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	-	Refer to Standard	N/A – Receiver tunes above 960 MHz
15.207	RSS GEN Table 2	AC Conducted Emissions	-	Refer to standard	N/A – EUT is powered from battery powered host device
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Horizon Hobby, Inc. model X1TXO is a 2.4GHz Spread Spectrum transceiver module which is designed for model aircraft control and telemetry. Normally, the EUT would be mounted in a handheld remote control system. The EUT was mounted in a typical remote control system. The host system was battery powered. The electrical rating of the module is 5.0V DC 300mA.

The sample was received on March 10, 2009 and tested on March 10, 2009. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Horizon Hobby	X1TXO	2.4GHz SS	-	BRWDAMTX11
		Transceiver		
		Module		

ANTENNA SYSTEM

The EUT antenna is a 2dBi Folded dipole. The antenna connects to the EUT via a non-standard micro-coax, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment:

Manufacturer	Model	Description	Serial Number	FCC ID
Spektrum	DX7	Remote Control	=	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
FOIL	То	Description	Shielded or Unshielded	Length(m)
None	-	-	-	-

EUT OPERATION

The X1TXM module was configured to continuously transmit on a single channel (top, center or bottom) for transmit-mode tests. For receive mode tests the device was configured to continuously receive on the center channel.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on March 10, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	
Chamber 5	211948	2845B-5	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

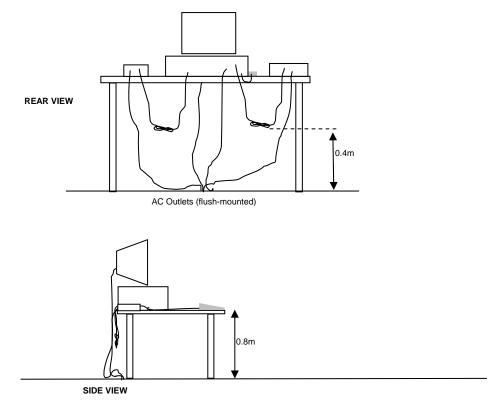
INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

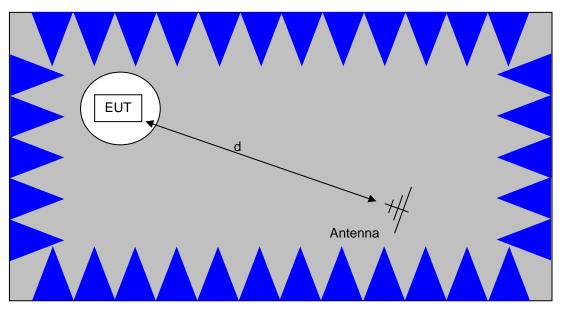
TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

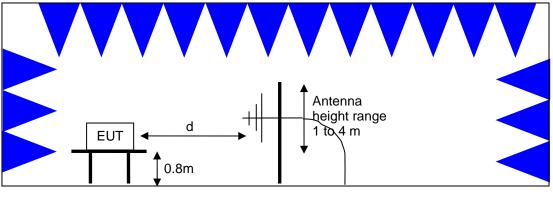

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m F_d = Distance Factor in dB
- $\Gamma_{\rm d}$ Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter

where P is the eirp (Watts)

Appendix A Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 25,000 MHz, 10-Mar-09 Engineer: Mehran Birgani

Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	09-Oct-09
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Mar-09
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts	NRV-Z32	1423	07-Nov-09
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1539	12-Sep-09
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	02-Dec-09

Appendix B Test Data

T74282 13 Pages

Elliott

EMC Test Data

e			
Client:	Horizon Hobby, Inc.	Job Number:	J74242
Model:	X1TXO	Test-Log Number:	T74282
		Project Manager:	Sheareen Washington
Contact:	Paul Beard	Project Engineer:	
Emissions Spec:	FCC 15.247, EN 300-328, EN 300-440	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Horizon Hobby, Inc.

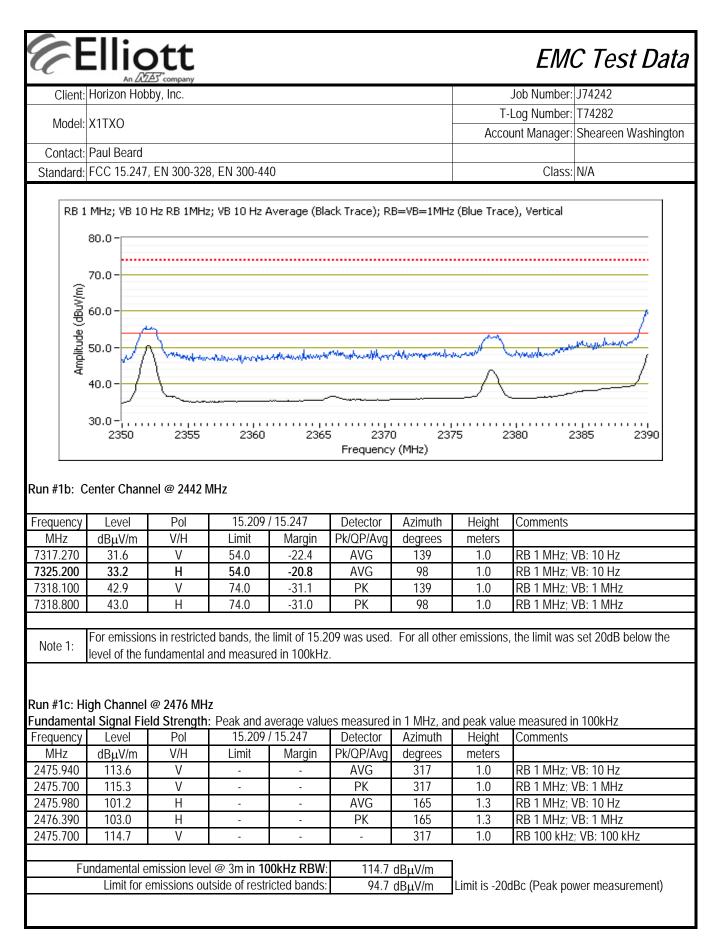
Model

X1TXO

Date of Last Test: 8/31/2009

Elliot	t		Глл	C Toot Data
	L Horizon Hobby, Inc.		Job Number:	C Test Data
	X1TXO		Test-Log Number:	
wouer.	λΠΛΟ	-		Sheareen Washington
Contact:	Paul Beard		i roject manager.	
	FCC 15.247, EN 300-328	, EN 300-440	Class:	В
Immunity Spec:			Environment:	-
	EU	JT INFORMATIO	ON	
Normally, the EUT wou	d be mounted in a handhe	General Description rer module which is designer eld remote control system. The electrical rating of the r	The EUT was mounted in	a typical remote control
	F	Equipment Under Tes	t	
Manufacturer	Model	Description	Serial Number	FCC ID
Horizon Hobby	X1TXO	2.4GHz SS Transceiver		BRWDAMTX11
the requirements of FC	C 15.203.	ntenna connects to the EUT EUT Enclosure gned to be installed within t		

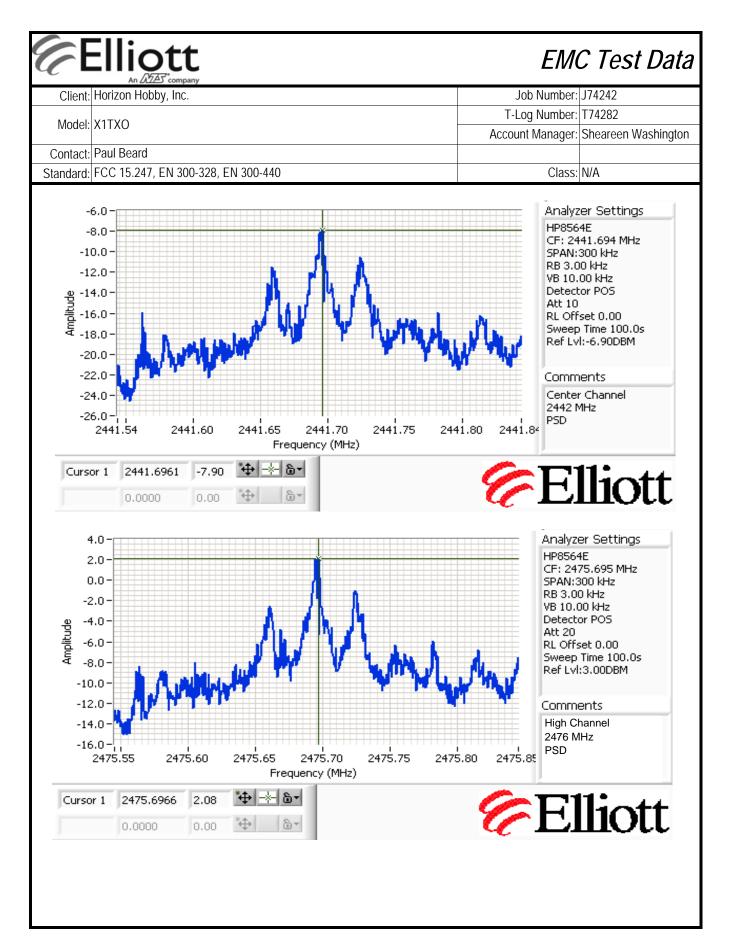
Client:	t Horizon Hobby, Inc.		Job Number:	J74242
Model:			T-Log Number:	T74282
				Sheareen Washington
	Paul Beard			_
	FCC 15.247, EN 300-328	, EN 300-440	Class:	В
Immunity Spec:	-		Environment:	-
	Tes	t Configuratio	n #1	
	Lo	cal Support Equipme	ent	
Manufacturer	Model	Description	Serial Number	FCC ID
Spektrum	DX7	Remote Control	-	-
	Ren	note Support Equipn		
Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-
Port	Connected To	Description	orts Cable(s) Shielded or Unshield	ded Length(m
Port None	Connected To	Description -	Cable(s)	ded Length(m -
None None	- EUT Oper	ration During Emissi	Cable(s) Shielded or Unshield	n) for transmit-mode

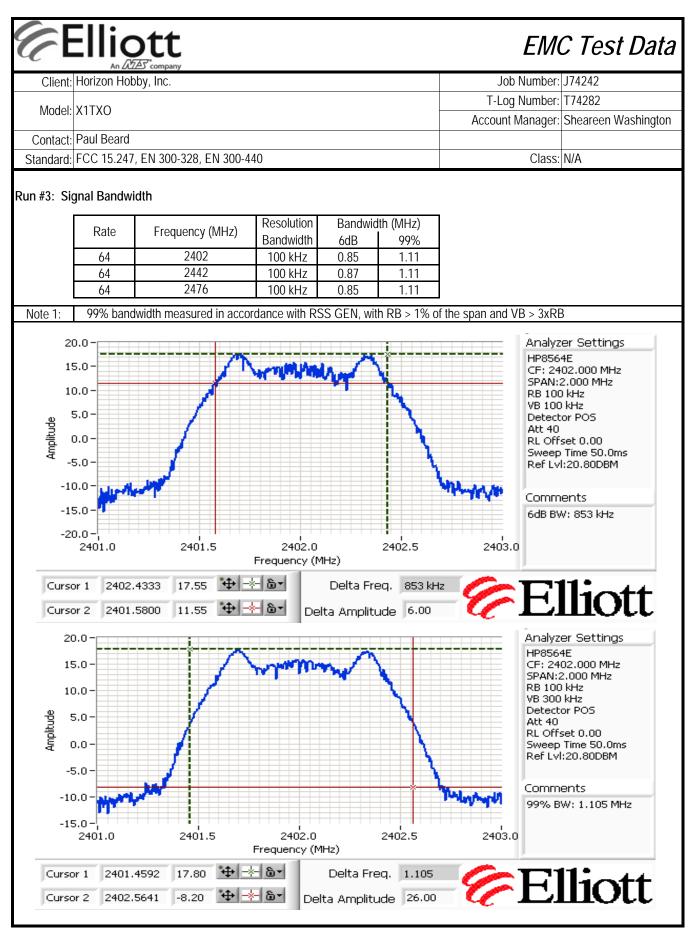

	Ellic				EM	C Test Da
Client	t: Horizon Hot	oby, Inc.			Job Number:	J74242
Mada		-			T-Log Number:	T74282
Model	I: X1TXO				Account Manager:	Sheareen Washingt
Contact	t: Paul Beard					
Standard	I: FCC 15.247	, EN 300-328	3, EN 300-440		Class:	N/A
			FCC 15.247 (D	TS) Radiated	Spurious Emi	ssions
est Spe	ecific Detail		a of this tast cassion is to a	oorform final qualification	a tacting of the FUT with r	accord to the
	Objective:		e of this test session is to p I listed above.	periorini ninai qualincatior	Tresting of the EUT with t	espect to the
		specification				
	Date of Test:	3/10/2009		Config. Used:	1	
Т	est Engineer:	Mehran Birg	ani	Config Change:	None	
Т	Fest Location:	Fremont Ch	amber #5	EUT Voltage:	Battery	
	ated emissions	Ũ	neasurement antenna was Temperature: Rel. Humidity:	s located 3 meters from t 22 °C 43 %	he EUT.	
Summar	y of Result	s - Device	Operating in the 240	00-2483.5 MHz Ban	d	
Run #	Channel	Measured Power	Test Performed	Limit	Result / Marg	
		-	Restricted Band Edge	FCC Part 15.209 /	50.8dBµV/m (346.7)	
1a	Low		(2390 MHz)	15.247(c)	2352.0MHz (-3.2	
		-	Radiated Emissions 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	35.2dBµV/m (57.5µ 7205.2MHz (-18.	
			Radiated Emissions	FCC Part 15.209 /	33.2dBµV/m (45.7µ	
	Center	-	1 - 26 GHz	15.247(c)	7325.2MHz (-20.	
1b			Restricted Band Edge	FCC Part 15.209 /	47.7dBµV/m (242.7)	
1b			Ű	15.247(c)	2483.5MHz (-6.3	
		-	(Z403.3 IVIHZ)			
1b 1c	High		(2483.5 MHz) Radiated Emissions	FCC Part 15.209 /	30.9dBµV/m (35.1µ	

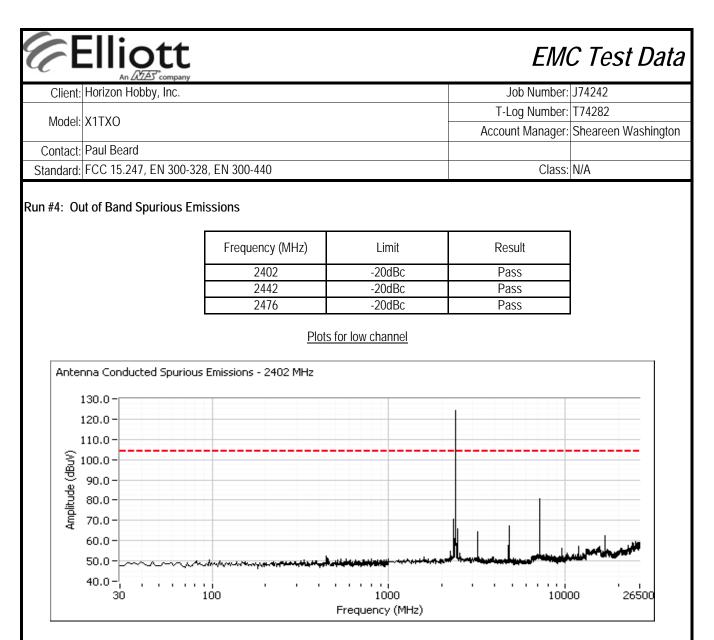
No modifications were made to the EUT during testing

Deviations From The Standard

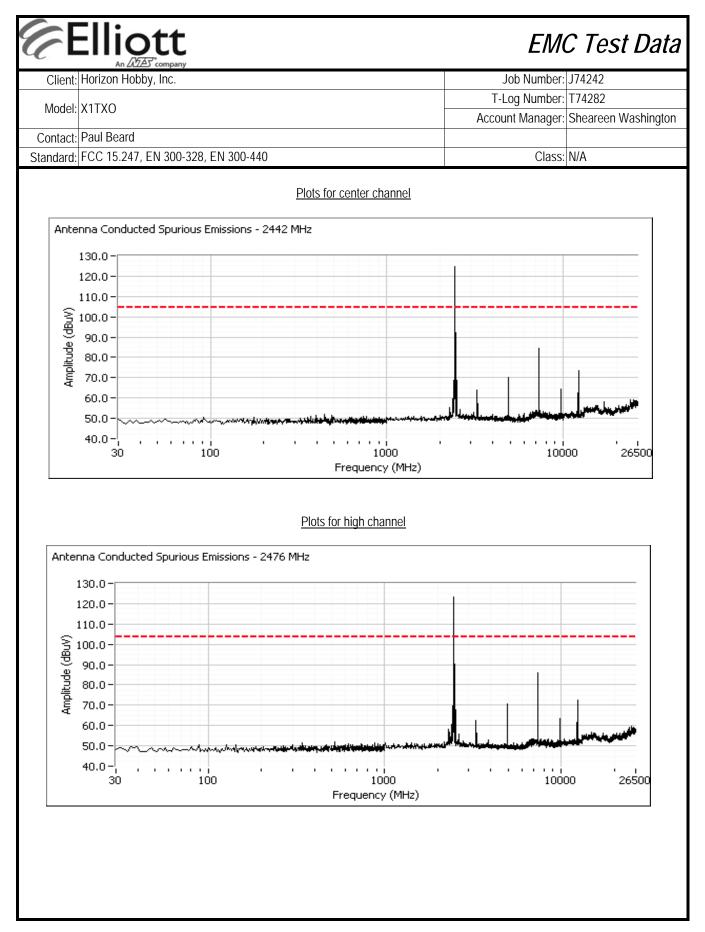
No deviations were made from the requirements of the standard.


Client:	Horizon Hob	by, Inc.						Job Number:	J74242
		.					T-	Log Number:	T74282
Model:	X1TXO							0	Sheareen Washingtor
Contact:	Paul Beard								
Standard:	FCC 15.247,	EN 300-328	3, EN 300-44	0				Class:	N/A
Note:	scan show	ed that at hi	gh channel t	he only signa	al was 2nd ha	rmonic; there	efore only th	nose signals w	e fundamental. Near fie vere measured. Also prientation only.
un #1a: L	ow Channel	@ 2402 MH	z		perating Mod		id peak valu	ie measured i	n 100kHz
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2401.960	106.0	V	-	-	AVG	9	1.0	RB 1 MHz;	/B: 10 Hz
2401.710	107.9	V	-	-	PK	9	1.0	RB 1 MHz; Y	/B: 1 MHz
401.960	98.3	Н	-	-	AVG	60	1.8	RB 1 MHz; Y	/B: 10 Hz
401.700	100.2	Н	-	-	PK	60	1.8	RB 1 MHz; Y	/B: 1 MHz
2402.360	107.1	V	-	-	-	9	1.0	RB 100 kHz	; VB: 100 kHz
		emissions ou	tside of restr	icted bands:		dBµV/m dBµV/m	Limit is -20	dBc (Peak po	wer measurement)
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2352.000	50.8	V	54.0	-3.2	AVG	9	1.0	RB 1 MHz; V	/B: 10 Hz
2390.000	59.4	V	74.0	-14.6	PK	9	1.0	RB 1 MHz;	/B: 1 MHz
	ious Emissio		15 000	115 047	Datastan	A -just th		Commonte	
	Level	Pol V/H		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 205.230	dBµV/m 35.2	<u>V/H</u>	Limit 54.0	Margin -18.8	Pk/QP/Avg AVG	degrees 105	meters 1.0	RB 1 MHz; V	/B· 10 H-
205.230	35.2 34.7	<u>н</u> V	54.0 54.0	-18.8 -19.3	AVG	0	2.2	RB 1 MHZ; RB 1 MHZ;	
205.470		 H	74.0		PK	105	1.0	RB 1 MHZ;	
205.030	44.9 46.1	<u>н</u> V	74.0	-29.1 -27.9	PK PK	0	2.2	RB 1 MHZ;	
201.100	70.1	v	<i>i</i> 1.0	21.7		0	2.2		
	Eor omissi	ons in restri	cted bands, t	he limit of 15	5.209 was use	ed. For all ot	her emissio	ns, the limit w	as set 20dB below the




Client	Horizon Hob	by, Inc.						Job Number:	J74242
		-) ,					T·	Log Number:	T74282
Model:	X1TXO							0	Sheareen Washingto
Contact:	Paul Beard								
Standard:	FCC 15.247	EN 300-328	3, EN 300-44	0				Class:	N/A
nd Edae	Signal Field	Strength - I	Direct measu	irement of	field strength	,			
equency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
483.500	47.7	V	54.0	-6.3	AVG	317	1.0	RB 1 MHz;	VB: 10 Hz
83.500	38.3	Н	54.0	-15.7	AVG	165	1.3	RB 1 MHz;	
183.500	57.5	V	74.0	-16.5	PK	317	1.0	RB 1 MHz;	
97.360	48.7	Н	74.0	-25.3	PK	165	1.3	RB 1 MHz;	
								• •	
ier Spuri equency	ious Emissio	ons Pol	15.209/	15 2/7	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
51.430	30.7	H	54.0	-23.3	AVG	245	1.0	RB 1 MHz;	/R· 10 Hz
	30.9	V	54.0	-23.1	AVG	243	1.0	RB 1 MHz;	
51 500			54.0	20.1					
		V	74.0	-33.4	PK	264	1.0	RR I MHZ	
e 1:	40.6 40.6					264 245 For all othe	1.0 1.0 r emissions	RB 1 MHz; RB 1 MHz; , the limit was	
45.000 51.500 e 1: RB 1 I 7 7 6 8 9 9 9	40.6 40.6 For emission level of the fil MHz; VB 10 F 75.0 -	H Is in restricte undamental i Iz Average (74.0 ed bands, the and measure (Black Trace)	-33.4 limit of 15.2 d in 100kHz ; RB=VB=1	PK 09 was used.	245 For all othe ue Trace), V	1.0 r emissions 'ertical	RB 1 MHz; \	VB: 1 MHz
45.000 51.500 e 1: RB 1 I 7 (W/Angp) ep st 4 (W/Angp) ep st (W/Angp) ep st	40.6 40.6 For emission level of the fi MHz; VB 10 H 75.0 - 55.0 - 55.0 - 55.0 - 55.0 - 55.0 - 55.0 -	H Is in restricte undamental i Iz Average (74.0 ed bands, the and measure (Black Trace)	-33.4 limit of 15.2 d in 100kHz ; RB=VB=1	PK 09 was used. MHz Peak (Bl	245 For all othe ue Trace), V	1.0 r emissions 'ertical	RB 1 MHz; \	VB: 1 MHz
45.000 51.500 e 1: RB 1 I 7 6 6 9 9 9 9 9 9 1 1 4 4 4 4	40.6 40.6 For emission level of the fil MHz; VB 10 F 75.0 - 55.0 - 55.00	H Is in restricte undamental i Iz Average (74.0 ed bands, the and measure (Black Trace)	-33.4 limit of 15.2 d in 100kHz ; RB=VB=1	PK 09 was used. MHz Peak (Bl	245 For all othe ue Trace), V	1.0 r emissions 'ertical	RB 1 MHz; \	VB: 1 MHz
45.000 51.500 e 1: RB 1 I 7 6 6 9 9 9 9 9 1 1 4 4 4 4	40.6 40.6 For emission level of the fi MHz; VB 10 H 75.0 - 55.0 - 55.0 - 55.0 - 55.0 - 55.0 - 55.0 -	H Is in restricte undamental i Iz Average (74.0 ed bands, the and measure (Black Trace)	-33.4 limit of 15.2 d in 100kHz ; RB=VB=1	PK 09 was used. MHz Peak (Bl	245 For all othe ue Trace), V	1.0 r emissions 'ertical	RB 1 MHz; \	VB: 1 MHz

Account Mana	
C Port Measu Is Emissions	Class: N/A urements
Port Measurs Emissions	urements
s Emissions	
\mathfrak{r} testing of the EUT \mathfrak{r}	with respect to the
1 None Battery	
uator. All measurem	nents were made on a single
mit Pass /	/ Fail Result / Margin
(7/1)	ss 24.8 dBm
47(b) Pas	
47(d) Pas	ss 2.1 dBm/3kHz
	ss 2.1 dBm/3kHz
	Battery


							EIVI	C Test Dat
Client:	Horizon Hobby, Inc.						Job Number	: J74242
Model	Х1ТХО					T-l	_og Number	: T74282
						Accou	int Manager	: Sheareen Washingto
	Paul Beard							
Standard:	FCC 15.247, EN 300-328	3, EN 300-44	0				Class	:: N/A
un #1։ Օւ	utput Power							
Rate ²	Frequency (MHz)		Power	Antenna	Result	EI	RP	
	1 5 . ,	(dBm) ¹	mW	Gain (dBi)		dBm	W	4
64	2402	24.7	295.1	2.0	Pass	26.7	0.468	-
64 64	2442 2476	24.8 24.5	302.0 281.8	2.0 2.0	Pass Pass	26.8 26.5	0.479 0.447	-
04	2470	24.0	201.0	2.0	P d 5 5	20.0	0.447]
Note 1:	Output power measure	ed using a pe	ak power m	eter				
Note 2:	The Rate = 64 represe				ıg.			
Rate	wer spectral Density Frequency (MHz)	PS (dBm/3k	SD Hz) ^{Note 1}	Limit dBm/3kHz	Result			
64	2401.695).2	8.0	Pass			
64	2441.696				1 455			
			'.9	8.0	Pass			
64 Note 1:	2475.697 Power spectral density ensure a dwell time of	2 measured u at least 1 sec	.1 Ising RB=3 I cond per 3k	8.0 KHz, VB=10kH Hz. The meas	Pass Pass Iz, analyzer v urement is m	ade at the fr	equency of	PPSD determined from
64 Note 1: 	2475.697 Power spectral density ensure a dwell time of preliminary scans usin 0.0 - -2.0 - -4.0 - -6.0 - -6.0 - -8.0 - 10.0 - 14.0 - 14.0 - 16.0 -	2 measured u at least 1 sec	.1 Ising RB=3 I cond per 3k	8.0 KHz, VB=10kH Hz. The meas	Pass Pass Iz, analyzer v urement is m	ade at the fr	Analy Analy HP85 CF: 2 SPAN RB 3 VB 10 Dete Att 1 RL 0 Swee Ref L	PPSD determined from of the signal. /zer Settings /2401.697 MHz 1:300 kHz .00
64 Note 1: 	2475.697 Power spectral density ensure a dwell time of preliminary scans usin 0.0 - -2.0 - -4.0 - -6.0 - -6.0 - -6.0 - -8.0 - 12.0 - 14.0 - 16.0 - 2401.55 2401.60	2 measured u at least 1 ser g RB=3kHz u 2401.6	.1 Ising RB=3 I cond per 3k using multipl	8.0 Hz, VB=10kH Hz. The meas e sweeps at a	Pass Pass Iz, analyzer v urement is m faster rate o	ade at the fr	Analy HP85 CF: 2 SPAN RB 3 VB 10 Dete Att 1 RL 0 Sweet Ref L Comi Low 0 2402 D1.85	PPSD determined from of the signal. //zer Settings //2er Settings

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Appendix C Photographs of Test Configurations

Appendix D Proposed FCC ID Label & Label Location

Appendix E Detailed Photographs

Appendix F Operator's Manual

Appendix G Block Diagram

Appendix H Schematic Diagrams

Appendix I Theory of Operation

Appendix J RF Exposure Information